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Abstract

In complex reinforcement learning (RL) problems, policies with similar rewards1

may have substantially different behaviors. It remains a fundamental challenge2

to optimize rewards while also discovering as many diverse strategies as possible,3

which can be crucial in many practical applications. Our study examines two design4

choices for tackling this challenge, i.e., diversity measure and computation frame-5

work. First, we find that with existing diversity measures, visually indistinguishable6

policies can still yield high diversity scores. To accurately capture the behavioral7

difference, we propose to incorporate the state-space distance information into8

the diversity measure. In addition, we examine two common computation frame-9

works for this problem, i.e., population-based training (PBT) and iterative learning10

(ITR). We show that although PBT is the precise problem formulation, ITR can11

achieve comparable diversity scores with higher computation efficiency, leading to12

improved solution quality in practice. Based on our analysis, we further combine13

ITR with two tractable realizations of the state-distance-based diversity measures14

and develop a novel diversity-driven RL algorithm, State-based Intrinsic-reward15

Policy Optimization (SIPO), with provable convergence properties. We empirically16

examine SIPO across three domains from robot locomotion to multi-agent games.17

In all of our testing environments, SIPO consistently produces strategically diverse18

and human-interpretable policies that cannot be discovered by existing baselines.19

1 Introduction20

A consensus in deep learning (DL) is that different local optima have similar mappings in the21

functional space, leading to similar losses to the global optimum [57, 52, 36]. Hence, via stochastic22

gradient descent (SGD), most DL works only focus on the final performance without considering23

which local optimum SGD discovers. However, in complex reinforcement learning (RL) problems, the24

policies associated with different local optima can exhibit significantly different behaviors [9, 31, 59].25

Thus, it is a fundamental problem for an RL algorithm to not only optimize rewards but also discover26

as many diverse strategies as possible. A pool of diversified policies can be further leveraged27

towards a wide range of applications, including the discovery of emergent behaviors [30, 2, 56],28

generating diverse dialogues [26], designing robust robots [11, 22, 17], and enhancing human-AI29

collaboration [34, 8, 10].30

Obtaining diverse RL strategies requires a quantitative method for measuring the difference (i.e.,31

diversity) between two policies. However, how to define such a measure remains an open challenge.32

Previous studies have proposed various diversity measures, such as comparing the difference between33

the action distributions generated by policies [55, 34, 69], computing probabilistic distances between34

the state occupancy of different policies [39], or measuring the mutual information between states and35

policy identities [14]. However, it remains unclear which measure could produce the best empirical36

performance. Besides, the potential pitfalls of these measures are rarely discussed.37
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In addition to diversity measures, there are two common computation frameworks for discovering38

diverse policies, including population-based training (PBT) and iterative learning (ITR). PBT directly39

solves a constrained optimization problem by learning a collection of policies simultaneously, subject40

to policy diversity constraints [48, 34, 8]. Although PBT is perhaps the most popular framework in41

the existing literature, it can be computationally challenging [44] since the number of constraints42

grows quadratically with the number of policies. The alternative framework is ITR, which iteratively43

learns a single policy that is sufficiently different from previous policies [39, 69]. ITR is a greedy44

relaxation of the PBT framework and it largely simplifies the optimization problem in each iteration.45

However, the performance of the ITR framework has not been theoretically analyzed yet, and it is46

often believed that ITR can be less efficient due to its sequential nature.47

We provide a comprehensive study of the two aforementioned design choices. First, we examine48

the limitations of existing diversity measures in a few representative scenarios, where two policies49

outputting very different action distributions can still lead to similar state transitions. In these50

scenarios, state-occupancy-based measures are not sufficient to truly reflect the underlying behavior51

differences of the policies either. By contrast, we observe that diversity measures based on state52

distances can accurately capture the visual behavior differences of different policies. Therefore, we53

suggest that an effective diversity measure should explicitly incorporate state distance information54

for the best practical use. Furthermore, for the choice of computation framework, we conduct an55

in-depth analysis of PBT and ITR. We provide theoretical evidence that ITR, which has a simplified56

optimization process with fewer constraints, can discover solutions with the same reward as PBT57

while achieving at least half of the diversity score. This finding implies that although ITR is a greedy58

relaxation of PBT, their optimal solutions can indeed have comparable qualities. Furthermore, note59

that policy optimization is much simplified in ITR, which suggests that ITR can result in much better60

empirical performances and should be preferred in practice.61

Following our insights, we combine ITR and a state-distance-based diversity measure to develop a62

generic and effective algorithm, State-based Intrinsic-reward Policy Optimization (SIPO), for discov-63

ering diverse RL strategies. In each iteration, we further solve this constrained optimization problem64

via Lagrangian method and two-timescale gradient descent ascent (GDA) [27]. We theoretically65

prove that our algorithm is guaranteed to converge to a neighbor of ϵ-stationary point. Regarding the66

diversity measure, we provide two practical realizations, including a straightforward version based67

on the RBF kernel and a more general learning-based variant using Wasserstein distance.68

We evaluate SIPO in three domains ranging from single-agent continuous control to multi-agent69

games: Humanoid locomotion [38], StarCraft Multi-Agent Challenge [53], and Google Research70

Football (GRF) [23]. Our findings demonstrate that SIPO surpasses baselines in terms of population71

diversity score across all three domains. Remarkably, our algorithm can successfully discover 672

distinct human-interpretable strategies in the GRF 3-vs-1 scenario and 4 strategies in two 11-player73

GRF scenarios, namely counter-attack and corner, without any domain-specific priors, which are74

beyond the capabilities of existing algorithms.75

2 Related Work76

Diversity in RL. It has been shown that policies trained under the same reward function can exhibit77

significantly different behaviors [9, 31]. Merely discovering a single high-performing solution may78

not suffice in various applications [11, 59, 22]. As such, the discovery of a diverse range of policies79

is a fundamental research problem, garnering attention over many years [40, 12, 24]. Early works80

are primarily based on multi-objective optimization [41, 51, 35, 43, 50], which assumes a set of81

reward functions is given in advance. In RL, this is also related to reward shaping [42, 1, 13, 56]. We82

consider learning diverse policies without any domain knowledge.83

Population-based training (PBT) is the most popular framework for diverse solutions by jointly84

learning separate policies. Representative works include evolutionary computation [60, 33, 48],85

league training [59, 20], computing Hessian matrix [47] or constrained optimization with a population86

diversity measure [34, 68, 25, 32, 8]. An improvement is to learn a latent variable policy instead of87

separate ones. Prior works have incorporated different domain knowledge to design the latent code,88

such as action clustering [61], agent identities [25] or prosocial level [49, 2]. The latent variable can89

be also learned in an unsupervised fashion, such as in DIYAN [14] and its variants [22, 45]. Zahavy90

et al. [66] learns latent-conditioned diverse policies with hard constraints on rewards to ensure the91
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derived policies are (nearly) optimal. In contrast, we prioritize diversity and fully accept sub-optimal92

strategies, leading to a hard constraint on diversity measures.93

Iterative learning (ITR) simplifies PBT by only optimizing a single policy in each iteration and94

forcing it to behave differently w.r.t. previously learned ones [39, 55, 69]. While some ITR works95

require an expensive clustering process before each iteration [67] or domain-specific features [65], we96

consider domain-agnostic ITR in an end-to-end fashion. Besides, Pacchiano et al. [46] learns a kernel-97

based score function to iteratively guide policy optimization. The score function is conceptually98

similar to SIPO-WD but is applied to a parallel setting with more restricted expressiveness power.99

Diversity Measure. Most previous works considered diversity measures on action distribution100

and state occupancy. For example, measures such as Jensen-Shannon divergence [34] and cross-101

entropy [69] are defined over policy distributions to encourage different policies to take different102

actions on the same state, implicitly promoting the generation of diverse trajectories. Other measures103

such as maximum mean discrepancy [39] maximize the probability distance between the state104

distributions induced by two policies. However, these approaches can fail to capture meaningful105

behavior differences between two policies in certain scenarios, as we will discuss in Section 4.1. There106

also exist specialized measures, such as cross-play rewards [8], which is designed for cooperative107

multi-agent games. It is worth noting that diversity measures are closely related to exploration108

criteria [3, 18, 5] and skill discovery [7, 28, 21], where a diversity surrogate objective is often109

introduced to encourage broad state coverage. However, this paper aims to explicitly discover110

mutually distinct policies. Our diversity measure depends on a function that computes the distance111

between states visited by two policies.112

3 Preliminary113

Notation: We consider POMDP [54] defined by M = ⟨S,A,O, r, P,O, ν,H⟩. S is the state114

space. A and O are the action and observation space. r : S × A → R is the reward function.115

O : S → O is the observation function. H is the horizon. P is the transition function. At timestep116

h, the agent receives an observation oh = O(sh) and outputs an action ah ∈ A w.r.t. its policy117

π : O → △ (A). The RL objective J(π) is defined by J(π) = E(sh,ah)∼(P,π)

[∑H
h=1 r(sh, ah)

]
.118

The above formulation can be naturally extended to cooperative multi-agent settings, where π and119

R correspond to the joint policy and the shared reward. Moreover, in this paper, we assume access120

to object-centric information and features rather than pure visual observations to simplify our121

discussion. We remark that although we restrict the scope of this paper to states, our method can be122

further extended to high-dimensional inputs (e.g. images, see App. B.3) via representation learning.123

Finally, to discover diverse strategies, we aim to learn a set of M policies {πi}Mi=1 such that all of124

these policies are locally optimal under J(·) but mutually distinct subject to some diversity measure125

D(·, ·) : △×△→ R, which captures the difference between two policies.126

Existing Diversity Measures: We say a diversity measure D is defined over action distribution if it127

can be written as128
D(πi, πj) = Es∼q(s)

[
D̃A (πi(· | s)∥πj(· | s))

]
, (1)

129 where q is an occupancy measure over states, D̃A : △×△→ R measures the difference between130

action distributions. D̃A can be any probability distance as defined in prior works [55, 34, 69, 48].131

Denote the state occupancy of π as qπ . We say a diversity measure is defined over state occupancy if132

it can be written as133 D(πi, πj) = D̃S
(
qπi
∥qπj

)
, (2)

134 which can be realized as an integral probability metric [39]. We remark that qπ is usually intractable.135

In addition to diversity measures, we present two popular computation frameworks for this purpose.136

Population-Based Training (PBT): PBT is a straightforward formulation by jointly learning M137

policies {πi}Mi=1 subject to pairwise diversity constraints, i.e.,138

max
{πi}

M∑
i=1

J(πi) s.t. D(πj , πk) ≥ δ,∀j, k ∈ [M ], j ̸= k, (3)

139 where δ is a threshold. In our paper, we consistently refer to the aforementioned computation140

framework as "PBT", rather than adjusting hyperparameters [19]. Despite a precise formulation, PBT141

poses severe optimization challenges due to mutual constraints.142
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Agent Goal Table 1: Diversity measures of the grid-world example. Computation details can be
found in App. B.

human action-based state-distance-based

KL JSD1 JSD0/EMD L2 norm L2 norm EMD

D(π1, π2) small +∞ log 2 1/2
√

7 2
√
2 5.7

D(π1, π3) large +∞ log 2 1/8 1 2
√

6 11.3

Figure 1: (left) A grid-world environment with 5 different optimal policies. Intuitively, D(π1, π2) < D(π1, π3)
and D(π3, π4) < D(π3, π5). However, action-based measures can give DA(π1, π2) ≥ DA(π1, π3) and
state-occupancy-based measures can give D(π3, π4) = D(π3, π5).

Iterative Learning (ITR): ITR is a greedy approximation of PBT by iteratively learning novel143

policies. In the i-th (1 ≤ i ≤M ) iteration, ITR solves144

π⋆
i = argmax

πi

J(πi) s.t. D(πi, π
⋆
j ) ≥ δ,∀1 ≤ j < i. (4)

π⋆
j is recursively defined by the above equation. Compared with PBT, ITR trades off wall-clock time145

for less required computation resources (e.g., GPU memory) and performs open-ended training (i.e.,146

the population size M does not need to be fixed at the beginning of training).147

4 Analysis of Existing Diversity-Discovery Approaches148

In this section, we conduct both quantitative and theoretical analyses of existing approaches to149

motivate our method. We first discuss diversity measures in Sec. 4.1 and then compare computation150

frameworks, namely PBT and ITR, in Sec. 4.2.151

4.1 A Common Missing Piece in Diversity Measure: State Distance152

The perception of diversity among humans primarily relies on the level of dissimilarity within the153

state space, which is measured by a distance function. However, the diversity measures outlined154

in Eq. (1) and Eq. (2) completely fail to account for such crucial information. In this section, we155

provide a detailed analysis to instantiate this observation with concrete examples and propose a novel156

diversity measure defined over state distances.157

First, we present a synthetic example to demonstrate the limitations of current diversity measures.158

Our example consists of a grid-world environment with a single agent and grid size NG. The agent159

starts at the top left of the grid-world and must navigate to the bottom right corner, as shown in160

Fig. 1. While NG can be large in general, we illustrate with NG = 5 for simplicity. We draw five161

distinct policies, denoted as π1 through π5, which differ in their approach to navigating the grid-world.162

Consider π1, π2, and π3 first. Although humans may intuitively perceive that policies π1 and π2,163

which move along the diagonal, are more similar to each other than to π3, which moves along the164

boundary, diversity measures based on actions can fail to reflect this intuition, as shown in Table 1.165

Then, let’s switch to policies π3, π4, and π5. We find that state-occupancy-based diversity measures166

are unable to differentiate between π4 and π5 in contrast to π3. This is because the states visited by167

π3 are entirely disjoint from those visited by both π4 and π5. However, humans would judge π5 to be168

more distinct from π3 than π4 because both π3 and π4 tend to visit the upper boundary.169

Next, we consider a more realistic and complicated multi-agent football scenario in Fig. 2, where an170

idle player in the backyard takes an arbitrary action without involving in the attack at all. Although171

the idle player stays still with no effect on the team strategy, action-based measures can produce high172

diversity scores when the idle player takes different duplicated actions.173

To summarize, existing measures suffer from a significant limitation — they only compare the174

behavior trajectories implicitly through the lens of action or state distribution without explicitly175

measuring state distance. Specifically, action-based measures fail to capture the behavioral differences176

that may arise when similar states are reached via different actions. Similarly, state occupancy177

measures do not quantify the degree of dissimilarity between states. To address this limitation, we178

propose a new diversity measure that explicitly takes into account the distance function in state space:179

D(πi, πj) = E(s,s′)∼γ [g (d (s, s
′))] , (5)

4



Dribbling Player

Idle Player

Figure 2: Duplicate actions in
multi-agent football. For players
who are not involved in the at-
tack, actions like “pass”, “shoot”,
and “slide” result in the same
consequence. Diversity measures
should not focus on these actions.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Epoch 0 Epoch 10 Epoch 20 Epoch 30

PBT

IL

Training Progress

Figure 3: Illustration of the learning process of PBT and ITR in a
2-D navigation environment with 4 modes. PBT will not uniformly
converge to different landmarks as computation can be either too
costly or unstable. By contrast, ITR repeatedly excludes a particular
landmark, such that policy in the next iteration can continuously
explore until a novel landmark is discovered.

d is a distance metric over S × S. g : R+ → R is a monotonic cost function. γ ∈ Γ(qπi
, qπj

)180

is a distribution over state pairs. Γ(qπi , qπj ) denotes the collection of all distributions on S × S181

with marginals qπi and qπj on the first and second factors respectively. We also note that states are182

consequences of performed actions. Hence, a state-distance-based measure also implicitly reflects the183

(meaningful) differences in actions between two policies. We compute two simple measures based on184

state distance, i.e., the L2 norm and the Earth Moving Distance (EMD), for the grid-world example185

and present results in Table 1. These measures are consistent with human intuition.186

4.2 Computation Framework: Population-Based or Iterative Learning?187

δ/2 δ/2 δ/2 δ/2

optimal solution

solution found by IL

with threshold δ/2
worst-case solution found

by IL with threshold δ

J(π)

π

1

2

1 2

Figure 4: 1-D worst case of IL. With threshold δ, IL
finds solutions with inferior rewards. However, IL can
find optimal solutions if the threshold is halved.

We first consider a simplest motivating exam-188

ple to intuitively illustrate the optimization chal-189

lenges. Let’s assume that πi is a scalar, J(πi)190

is linear in πi, and D(πi, πj) = |πi − πj |. In191

our definition, where M denotes the number192

of diverse policies, PBT involves Θ(M2) con-193

straints in a single linear programming problem194

while ITR involvesO(M) constraints in each of195

M iterations. Given that the complexity of lin-196

ear programming is a high-degree polynomial197

(higher than 2) of the number of constraints,198

solving PBT is harder (and probably slower) than solving ITR in a total of M iterations, despite PBT199

being parallelized. This challenge can be more severe in RL due to complex solution space and large200

training variance.201

Although ITR can be optimized efficiently, it remains unclear whether ITR, as a greedy approximation202

of PBT, can obtain solutions of comparable rewards. Fig. 4 shows the worst case in the 1-D setting203

when the ITR solutions (green) can indeed have lower rewards than the PBT solution (red) subject to204

the same diversity constraint. However, we will show in the next theorem that ITR is guaranteed to205

have no worse rewards than PBT by trading off half of the diversity.206

Theorem 4.1. Assume D is a distance metric. Denote the optimal value of Eq.( 3) as T1. Let207

T2 =
∑M

i=1 J(π̃i) where208

π̃i = argmax
πi

J(πi) s.t. D(πi, π̃j) ≥ δ/2, ∀1 ≤ j < i (6)

for i = 1, . . . ,M , then T2 ≥ T1.209

Please see App. E.1 for the proof. The above theorem provides a quality guarantee for ITR. The proof210

can be intuitively explained by the 1-D example in Fig. 4, where green points represent the worst211

case with threshold δ and blue points represent the solutions with threshold δ/2. Thm. 4.1 shows that,212
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for any policy pool derived by PBT, we can always use ITR to obtain another policy pool, which has213

the same rewards and comparable diversity scores.214

Table 2: The number of discovered
landmarks across 6 seeds with stan-
dard deviation in the bracket.

setting PBT ITR

NL = 4 2.0 (1.0) 3.5 (0.5)
NL = 5 2.2 (0.9) 4.5 (0.5)

Empirical Results: We empirically compare PBT and ITR in a215

2-D navigation environment with 1 agent and NL landmarks in216

Fig. 3. The reward is 1 if the agent successfully navigates to a217

landmark and 0 otherwise. We train NL policies using both PBT218

and ITR to discover strategies toward each of these landmarks.219

More details can be found in App. D. Table 2 shows the number220

of discovered landmarks by PBT and ITR. ITR performs consis-221

tently better than PBT even in this simple example. We intuitively222

illustrate the learning process of PBT and ITR in Fig. 3. ITR, due to its computation efficiency, can223

afford to run longer iterations and tolerate larger exploration noises. Hence, it can converge easily to224

diverse solutions by imposing a large diversity constraint. PBT, however, only converges when the225

exploration is faint, otherwise it diverges or converges too slowly.226

4.3 Practical Remark227

Based on the above analyses, we suggest ITR and diversity measures based on state distances228

be preferred in RL applications. We also acknowledge that, by the no-free-lunch theorem, they229

cannot be universal solutions and that trade-offs may still exist (see discussions in Sec.7 and App.F).230

Nonetheless, in the following sections, we will show that the effective implementation of these choices231

can lead to superior performances in various challenging benchmarks. We hope that our approach will232

serve as a starting point and provide valuable insights into the development of increasingly powerful233

algorithms for potentially more challenging scenarios.234

5 Method235

In this section, we develop a diversity-driven RL algorithm, State-based Intrinsic-reward Policy236

Optimization (SIPO), by combining ITR and state-distance-based measures. SIPO runs M iterations237

to discover M distinct policies. At the i-th iteration, we solve equation (4) by converting it into238

unconstrained optimization using the Lagrange method. The unconstrained optimization can be239

written as:240

min
πi

max
λj≥0, 1≤j<i

−J(πi)−
i−1∑
j=1

λj

(
DS(πi, π

⋆
j )− δ

)
(7)

241
λj (1 ≤ j < i) are Lagrange multipliers. {π⋆

j }
i−1
j=1 are previously obtained policies. We adopt242

two-timescale Gradient Descent Ascent (GDA) [27] to solve the above minimax optimization, i.e.,243

performing gradient descent over πi and gradient ascent over λj with different learning rates. In our244

algorithm, we additionally enforce the dual variables λj to be bounded (i.e., in an interval [0,Λ] for245

a large number Λ), which plays an important role both in the theoretical analysis and in empirical246

convergence. However, DS(πi, π
⋆
j ) cannot be directly optimized w.r.t. πi through gradient-based247

methods because it is related to the states visited by πi. We cast DS(πi, π
⋆
j ) as intrinsic rewards and248

optimize the joint return via policy gradient. The pseudocode of SIPO can be found in App. G.249

An important property of SIPO is the convergence guarantee. We present an informal illustration in250

Thm. 5.1 and present the formal theorem with proof in App. E.2.251

Theorem 5.1. (Informal) Under continuity assumptions, SIPO converges to an ϵ-stationary point.252

Remark: We assumed that the return J and the distance DS are smooth in policies. In practice, this253

is true if (1) policy and state space are bounded and (2) reward function and system dynamics are254

continuous in the policy. (Continuous functions are bounded over compact spaces.) The key step is to255

analyze the role of the bounded dual variables λ, which achieves an 1
Λ -approximation of constraint256

without hurting the optimality condition.257

Instead of directly defining DS , we define intrinsic rewards as illustrated in Sec. 5, such that258

DS(πi, π
⋆
j ) = Esh∼µπi

[∑H
h=1 rint(sh;πi, π

⋆
j )
]
.259

RBF Kernel: The most popular realization of Eq. (5) in machine learning is through kernel functions.260

Herein, we realize Eq. (5) as an RBF kernel on states. Formally, the intrinsic reward is defined by261

rRBF
int (sh;πi, π

⋆
j ) =

1

H
Es′∼µπ⋆

j

[
− exp

(
−∥sh − s′∥2

2σ2

)]
(8)
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where σ is a hyperparameter controlling the variance.262

Wasserstein Distance: For stronger discrimination power, we can also realize Eq. (5) as L2-263

Wasserstein distance. According to the dual form [58], we define264

rWD
int (sh;πi, π

⋆
j ) =

1

H
sup

∥f∥L≤1

f(sh)− Es′∼µπ⋆
j

[
f(s′)

]
(9)

where f : S → R is a 1-Lipschitz function. We implement f as a neural network and clip parameters265

to [−0.01, 0.01] to ensure the Lipschitz constraint. Note that rWD
int incorporates representation learning266

by utilizing a learnable scoring function f and is more flexible in practice. We also show in App. B.3267

that rWD
int is robust to different inputs, including states with random noises and RGB images.268

We name SIPO with rRBF
int and rWD

int SIPO-RBF and SIPO-WD respectively.269

Implementation: To incorporate temporal information, we stack the recent 4 global states to270

compute intrinsic rewards and normalize the intrinsic rewards to stabilize training. In multi-agent271

environments, we learn an agent-ID-conditioned policy [15] and share the parameter across all agents.272

Our implementation is based on MAPPO [64] with more details in App. D.273

6 Experiments274

We evaluate SIPO across three domains that exhibit multi-modality of solutions. The first domain275

is the humanoid locomotion task in Isaac Gym [38], where diversity can be quantitatively assessed276

by well-defined behavior descriptors. We remark that the issues we addressed in Sec. 4.1 may not277

be present in this task where the action space is small and actions are highly correlated with states.278

Further, we examine the effectiveness of SIPO in two much more challenging multi-agent domains,279

StarCarft Multi-Agent Challenge (SMAC) [53] and Google Research Football (GRF) [23], where280

well-defined behavior descriptors are not available and existing diversity measures may produce281

misleading diversity scores. We provide introductions to these environments in App. C.282

First, we show that SIPO can efficiently learn diverse strategies and outperform several baseline283

methods, including DIPG [39], SMERL [22], DvD [48], and RSPO [69]. Then, we qualitatively284

demonstrate the emergent behaviors learned by SIPO, which are both visually distinguishable and285

human-interpretable. Finally, we perform an ablation study over the building components of SIPO286

and show that both the diversity measure, ITR, and GDA are critical to the performance.287

All algorithms run for the same number of environment frames on a desktop machine with an288

RTX3090 GPU. Numbers are average values over 5 seeds in Humanoid and SMAC and 3 seeds in289

GRF with standard deviation shown in brackets. More algorithm details can be found in App. D.290

Additional visualization results can be found in our project website (see App. A).291

6.1 Comparison with Baseline Methods292

Table 3: Pairwise distance of joint
torques (i.e., diversity scores) in the hu-
manoid locomotion task.

SIPO-RBF SIPO-WD RSPO

0.53(0.17) 0.71(0.23) 0.53(0.05)

DIPG DvD SMERL

0.12(0.04) 0.40(0.22) 0.01(0.00)

Humanoid Locomotion. Following Zhou et al. [69], we train293

a population of size 4. We assess diversity by the pairwise294

distance of joint torques, a widely used behavior descriptor295

in recent Quality-Diversity works [62]. Torque states are not296

included as the input of diversity measures and we only use297

them for evaluation to ensure a fair comparison. Results are298

shown in Table 3. We can see that both variants of SIPO299

can outperform all baseline methods except that SIPO-RBF300

achieves comparable performance with RSPO, even if RSPO301

explicitly encourages the output of different actions/forces.302

SMAC Following Zhou et al. [69], we run SIPO and all baselines on an easy map, 2m_vs_1z, and303

a hard map, 2c_vs_64zg, both across 4 iterations. We merge all trajectories produced by the policy304

collection and incorporate a k-nearest-neighbor state entropy estimation [28] to assess diversity.305

Intuitively, a more diverse population should have a larger state entropy value. We set k = 12306

following Liu and Abbeel [28] and show results in Table 4. On these maps, two agents are both307

involved in the attack. Therefore, RSPO, which incorporates an action-based cross-entropy measure,308

can perform well across all baselines. However, SIPO explicitly compares the distance between309

resulting trajectories and can even outperform RSPO, leading to the most diverse population.310
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2c_vs_64zg

2m_vs_1z

Figure 5: Heatmaps of agent positions in SMAC across 4 iterations with SIPO-RBF.

GRF We consider three academy scenarios, specifically 3v1, counterattack (CA), and corner. The311

GRF environment is more challenging than SMAC due to the large action space, more agents, and the312

existence of duplicate actions. We determine a population size M = 4 by balancing resources and313

wall-clock time across different baselines. Table 5 compares the number of distinct policies (in terms314

of ball-passing routes, see App. B.2) discovered in the population. Due to the strong adversarial power315

of our diversity measures and the application of GDA, SIPO is the most efficient and robust — even316

in the challenging 11-vs-11 corner and CA scenario, SIPO can effectively discover different winning317

strategies in just a few iterations across different seeds. By contrast, baselines suffer from learning318

instability in these challenging environments and tend to discover policies with slight distinctions.319

We also calculate the estimated state entropy as we did in SMAC. However, we find that this metric320

cannot distinguish fine-grained ball-passing behaviors in GRF (check our discussions in App. B).321

Table 4: State entropy estimated by k-
nearest-neighbor in SMAC. (k = 12)

2m_vs_1z 2c_vs_64zg

SIPO-RBF 0.038(0.002) 0.072(0.003)
SIPO-WD 0.036(0.001) 0.056(0.003)

RSPO 0.032(0.003) 0.070(0.001)
DIPG 0.032(0.002) 0.056(0.004)

SMERL 0.028(0.002) 0.042(0.002)
DvD 0.030(0.002) 0.057(0.003)

Remark: In GRF experiments, when M is small, even322

repeated training with different random seeds (PG) is a323

strong baseline (see Table 5). Hence, the numbers are324

actually restricted in a small interval (with a lower bound325

equal to PG results and an upper bound equal to M = 4),326

which makes the improvements by SIPO seemingly less327

significant. However, achieving clear improvements in328

these challenging applications remains particularly non-329

trivial. With a population size M = 10, SIPO clearly330

outperforms baselines by consistently discovering one or331

more additional strategies.332

6.2 Qualitative Analysis333

For SMAC, we present heatmaps of agent positions in Fig. 5. The heatmaps clearly show that SIPO334

can consistently learn novel winning strategies to conquer the enemy. Fig. 6 presents the learned335

behavior by SIPO in the GRF 3v1 scenario of seed 1. We can observe that agents have learned a wide336

spectrum of collaboration strategies across merely 7 iterations. The strategies discovered by SIPO337

are both diverse and human-interpretable. In the first iteration, all agents are involved in the attack338

such that they can distract the defender and obtain a high win rate. The 2nd and the 6th iteration339

demonstrate an efficient pass-and-shoot strategy, where agents quickly elude the defender and score a340

goal. In the 3rd and the 7th iterations, agents learn smart “one-two” strategies to bypass the defender,341

a prevalent tactic employed by human football players. We note that NONE of the baselines have342

Table 5: Number of distinct strategies in GRF discovered by different methods in terms of
the ball-passing route. Details of the evaluation protocol can be found in App. B.2.

Population Size M
ours baselines random

SIPO-RBF SIPO-WD DIPG SMERL DvD1 RSPO PG

3v1 4 3.0 (0.8) 3.0 (0.0) 2.7 (0.5) 1.3 (0.5) 3.0 (0.8) 2.0 (0.0) 2.7 (0.5)
CA 4 3.3 (0.5) 3.0 (0.8) 2.3 (0.5) 1.3 (0.5) - 2.0 (0.0) 1.7 (0.5)

corner 4 2.7 (0.5) 3.0 (0.8) 1.7 (0.5) 1.0 (0.0) - 1.6 (0.5) 2.0 (0.8)
3v1 10 4.3 (0.5) 5.7 (0.5) 3.7 (0.5) - - 2.3 (0.5) -

1 Training DvD in CA and corner or with M = 10 requires >24GB GPU memory, which exceeds our memory limit.
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Figure 6: Learning curves and discovered strategies by SIPO-WD in the 3v1 scenario over 7 iterations.
Strategies of seed 1 are shown.

ever discovered this strategy across all runs, while SIPO is consistently able to derive such strategies343

for all random seeds. Visualization results in CA and corner scenarios can be found in App. B.344

6.3 Ablation Study345

We apply these changes to SIPO-WD:346

• fix-L: Fixing the multiplier λi instead of applying GDA.347

• CE: The intrinsic reward is replaced with cross-entropy, i.e., rCE
int (sh, ah) = − log π⋆

j (ah | sh), where348

π⋆
j denotes a previously discovered policy. Additionally, GDA is still applied.349

• filter: Optimizing the extrinsic rewards on trajectories that have intrinsic returns exceeding δ and350

optimizing intrinsic rewards defined by Eq. (9) for other trajectories [69].351

• PBT: Simultaneously training M policies with M(M −1)/2 constraints (i.e., directly solving Eq. (3))352

with intrinsic rewards defined by Eq. (9) and GDA.353

Table 6: # distinct strategies of ablations in GRF.

ours fix-L CE filter PBT

3v1 3.0 (0.0) 1.0 (0.0) 2.7 (0.5) 1.3 (0.5) 2.7 (0.5)
CA 3.0 (0.8) -1 2.3 (0.8) 1.0 (0.0) -2

corner 3.0 (0.8) -1 1.7 (0.5) 1.0 (0.0) -2

1 Not converged.
2 Training requires >24GB memory and exceeds our memory limit.

We report the number of visually354

distinct policies discovered by these355

methods in Table 6. Comparison be-356

tween SIPO and CE demonstrates357

that the action-based cross-entropy358

measure may suffer from duplicate359

actions in GRF and produce nearly360

identical behavior by overly exploit-361

ing duplicate actions, especially in the CA and corner scenarios with 11 agents. Besides, the fixed362

Lagrange coefficient, the filtering-based method, and PBT are all detrimental to our algorithm. These363

methods also suffer from significant training instability. Overall, the state-distance-based diversity364

measure, ITR, and GDA are all critical to the performance of SIPO.365

7 Conclusion366

We tackle the problem of discovering diverse high-reward policies in RL. First, we demonstrate367

concrete failure cases of existing diversity measures and propose a novel measure that explicitly368

compares the distance in state space. Next, we present a thorough comparison between PBT and ITR,369

and show that ITR is much easier to optimize and can derive solutions with comparable quality to370

PBT. Motivated by these insights, we combine ITR with a state-distance-based diversity measure371

to develop SIPO, which has provable convergence and can efficiently discover a wide spectrum of372

human-interpretable strategies in a wide range of environments.373

Limitations: First, we assume direct access to an object-centric state representation. When such374

a representation is not available (e.g., image-based observations), representation learning becomes375

necessary and algorithm performance can be affected by the quality of the learned representations.376

Second, because ITR requires sequential training, the wall clock time of SIPO can be longer than the377

PBT alternatives when fixing the total number of training samples. The acceleration of ITR remains378

an open challenge.379
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A Project Website663

Check https://sites.google.com/view/diversity-sipo for GIF demonstrations.664

B Additional Results665

B.1 More Qualitative Results666

1

1

2

3

G

2
34

1

1

2

3

4

G

2
34

1

1

2

3

4

G

2
34

1

1

2

3

4

G

2
34

4

1 1Attacker Ball Direction Player DirectionDefender

Figure 7: Visualization of learned behaviors in GRF CA across a single training trial.
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Figure 8: Visualization of learned behaviors in GRF corner.

We show additional visualization results in Fig. 7, Fig. 8, and Fig. 9. Corresponding GIF visualizations667

can be found in our project website.668

B.2 Evaluation Metric and Protocol669

B.2.1 Humanoid670

The Humanoid locomotion task is well-studied in the Quality-Diversity (QD) community, enabling671

the application of well-defined behavior descriptors (BD) to assess diversity scores. While domain-672

agnostic metrics like DvD scores can also be applied, we consider domain-specific BDs to be more673

appropriate and accurate for evaluation in this setting.674
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Table 7: k-nearest neighbor state entropy estimation in GRF. Population size M = 4.
ours baselines

SIPO-RBF SIPO-WD DIPG SMERL1 DvD2 RSPO1 PG (random seeding)

3v1 0.009(0.000) 0.012(0.000) 0.010(0.001) 0.011(0.002) 0.010(0.000) 0.011(0.001) 0.009(0.001)
CA 0.037(0.000) 0.031(0.006) 0.036(0.002) - - 0.034(0.001) 0.039(0.001)

Corner 0.028(0.001) 0.031(0.001) 0.030(0.002) - - - 0.028(0.002)

1 The learned policy in some iteration cannot even collect a single winning trajectory. We are unable to
compute diversity score.

2 Training DvD in CA and corner requires >24GB GPU memory, which exceeds our memory limit.

B.2.2 SMAC675

Complex multi-agent tasks like SMAC lack well-defined BDs. Hence, domain-agnostic diversity676

measures such as the state-entropy measure should be applied. Moreover, different SMAC winning677

strategies tend to visit different areas of the map, which can be usually captured by the state-entropy678

measure.679

B.2.3 GRF680

In our initial study of the GRF task, diversity was evaluated using the k-nearest-neighbor state entropy681

estimation as in SMAC (see Table 7). However, we observed a significant difference between the682

computed scores and visualized behaviors. Further investigation revealed that state entropy can683

sometimes report fake diversity in GRF. For example, the ball-moving route is highly fine-grained684

between nearby players in the counter-attack (CA) scenario, and additional passes may not change685

the state entropy significantly. Instead, agents’ positions play a crucial role in this scenario, where686

different shooting positions can introduce substantial state variance and lead to a higher entropy score.687

As an example, readers can refer to the replays of SIPO-RBF (4 iterations of seed 2) and PG (seed 2,688

1002, 2002, and 3002), where SIPO-RBF discovers four distinct passing strategies, while PG keeps689

passing the ball to the same player. Nevertheless, the state entropy of PG (0.0397) is higher than that690

of SIPO-RBF (0.0378).691

Hence, we counted the number of distinct policies according to their ball-passing routes, such as692

passing the ball to different players or shooting with different players, to evaluate diversity in GRF.693

To quantify these differences, we extracted the positions of the ball and the players in the field and694

calculated the nearest ally player ID to the ball across a winning episode. We then removed timesteps695

where the nearest distance was above a pre-defined threshold of 0.03. Typically, these timesteps696

correspond to instances when the ball is being transferred among players, making the nearest player697

ID irrelevant. Next, we removed consecutive duplicate player IDs from the resulting sequence to698

obtain a concise and informative embedding of the ball passing route. By comparing the lengths of699

their respective embeddings and verifying that the player IDs in each embedding are identical, we700

determined whether two policies exhibit similar behavior.701

We acknowledge that existing diversity measures may not be applicable in GRF, and hence we702

opted for this novel approach to evaluate diversity. Additionally, we experimented with using raw703

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 9: Visualization of learned behaviors in Humanoid.
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observations, which include ball ownership information provided by the game engine, but found it to704

be highly inaccurate based on our visualization.705

B.3 Ablation Study of the State Input706

B.3.1 Vectorized States in Google Research Football707

We perform an additional ablation study over the input of our diversity measure in GRF 3v1 scenario708

with SIPO-WD. We consider the following kinds of state input besides the default state input we709

adopted in Sec. 6:710

• full observation (named full, 115 dims);711

• default state input with random noises of the same dimension (named random, 36 dims).712

The numbers of visually distinct strategies are listed in Table 8. The performance of full and random713

is similarly good. The result implies that the learnable discriminator can automatically filter out714

irrelevant states to some extent, and that SIPO-WD performs relatively robust w.r.t. different state715

input of the diversity measure.

Table 8: State input ablation. The table shows the number of distinct strategies in GRF 3v1.
SIPO-WD full random

3v1 3.0 (0.0) 3.0 (0.8) 3.0 (0.0)

716

B.3.2 RGB Images in Locomotion Tasks717

We run SIPO-WD in the visual Humanoid task based on Isaac Gym [38]. The training protocol is718

similar to the state-only version (i.e., the input of policy and intrinsic rewards are both locomotion719

states of the Humanoid) except that we stack recent 4 RGB camera observations (84 × 84) as the720

input of intrinsic rewards in Eq. 9. We adopt the training code developed in Isaac Gym and the default721

PPO configuration. The backbone of the discriminator is composed of 4 convolutional layers with722

kernel size 3, stride 2, padding 1, and [16, 32, 32, 32] channels. Then the feature is passed to an MLP723

with 1 hidden layer and 256 hidden units. The activation function is leaky ReLU with slope 0.2.724

We also compute the pairwise distance of joint torques as in the state-only version and show the725

result in Table 9. Visualizations are shown in Fig. 10. SIPO-WD can also learn meaningful diverse726

behaviors with RGB images as the state input thanks to the learnable Wasserstein discriminator. This727

implies that our algorithm can be naturally extended to high-dimensional states and incorporated with728

advances in representation learning, which may be a potential future direction.729

B.4 How to Adjust Constraint-Related Hyperparameters730

Three hyperparameters are essential in the implementation of the intrinsic reward rint: the threshold731

δ, the intrinsic reward scale factor α, and the variance factor σ in rRBF
int . These parameters differ under732

(a)  normal running (b) left-leg jumping

(c)  right-leg jumping (d) hand-balanced mincing

Figure 10: Results of SIPO-WD in the visual Humanoid task.
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Table 9: Pairwise distance of joint torques (i.e., diversity score) in Humanoid with visual input.
Results in visual experiments are averaged over 3 seeds.

SIPO-WD (visual) SIPO-WD RSPO (best baseline)

0.62 (0.26) 0.71 (0.23) 0.53 (0.05)

Figure 11: Average intrinsic re-
ward during training π1.

Table 10: The values of δ and α in different environments.

football smac

3v1 corner CA 2m_vs_1z 2c_vs_64zg

δWD 0.004 0.01 0.012 0.02 0.2
αWD 1 1 0.5 0.5 0.05
δRBF 0.03 0.01 0.015 0.002 0.001
αRBF 0.001 0.001 0.001 0.001 0.001
σ2 0.02 0.02 0.02 0.02 0.02

different domains and must be adjusted individually. We find proper parameters by running two733

iterations without constraints and get two similar policies π0 and π1. We record rint during training734

π1 and the trend is shown in Fig. 11. Not surprisingly, rint gradually decreases as training proceeds.735

Threshold We set δ = c1DS(π0, π1). We try several different c1 ∈ {1, 1.2, 1.4, 1.6, 1.8, 2.0} and736

find that c1 = 1.2 or 1.4 are universal proper solutions for all the experimental environments.737

Intrinsic Scale Factor We need to balance the intrinsic reward rint and the original reward J so738

that neither of the two rewards can dominate the training process. Empirically, the maximums of739

the two rewards should be in the same order of magnitude. i.e., maxπ J(π) = α× c2λmaxδ, where740

c2 = O(1). When c2 is too large, the new-trained policy πj will oscillate near the boundary of741

D(πi, πj) = δ for some pre-trained policy pi. Conversely, when c2 is too small, the intrinsic reward742

rint cannot yield diverse strategies. In experiments, we set c2 = 1.0.743

Variance Factor We sweep the variance factor across {1e− 3, 5e− 3, 1e− 2, 2e− 2, 1e− 3} by744

training π1 and observe the trend of intrinsic rewards. We find the steepest trend and select the745

corresponding σ. Empirically, we find that our algorithm performs robustly well when σ2 = 0.02.746

The δ and α of GRF and SMAC are listed in Table 10.747

B.5 Task Performance Evaluation748

The evaluation win rates of the demonstrated visualization results in SMAC and GRF are shown in749

Table 11. Evaluated episode returns in Humanoid are shown in Table 12.750

Table 11: Evaluation win rate (%) of the demonstrated visualization results in SMAC and GRF.
SMAC GRF

2m1z 2c64zg 3v1 CA corner

π1 100.0(0.0) 98.1(2.1) 92.3(6.2) 48.2(10.4) 78.2(16.2)
π2 99.6(0.9) 100.0(0.0) 82.1(8.4) 43.8(42.2) 57.0(37.7)
π3 100.0(0.0) 96.9(3.3) 90.7(1.1) 54.7(30.6) 55.7(20.8)
π4 99.6(0.6) 98.6(2.4) 63.6(45.0) 17.2(30.0) 30.7(29.0)
π5 - - 85.4(9.1) - -
π6 - - 93.2(1.9) - -
π7 - - 64.6(32.5) - -
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Table 12: Episode returns in Humanoid.
SIPO-RBF SIPO-WD SIPO-WD (visual)

π1 4863.9(970.3) 3909.4(533.4) 4761.3(107.8)
π2 3746.5(488.0) 3784.2(481.2) 4349.3(169.0)
π3 3092.0(805.0) 3770.4(674.4) 4724.3(946.5)
π4 2332.8(519.8) 3589.6(387.4) 3819.7(588.7)

B.6 Computation of Action-Based Measures in the Grid-World Example751

We consider the policies illustrated in Fig. 12. These policies are all optimal since these actions only752

include “right” and “down” and actions on non-visited states can be arbitrary. We only mark actions753

on states visited by any of these 3 policies and actions on other states can be considered the same.754

B.6.1 Action-Distribution-Based Measures755

Action-distribution-based diversity measures can be defined as756

DA(πi, πj) = Es∼q(s)

[
D̃ (πi(· | s)∥πj(· | s))

]
, (10)

where D̃(·, ·) : △×△→ R is a measure over action distributions and q : △(S) is a state distribution.757

Here, we consider q to be the joint state distribution visited by πi and πj .758

KL Divergence KL divergence is defined by759

DKL (πi(· | s), πj(· | s)) =
∫
A
πi(a | s) log

πi(a | s)
πj(a | s)

da.

When πj(a | s) = 0 at any state s, KL divergence is +∞. Since the trajectories of these policies760

have disjoint states, DKL
A (π1, π2) = DKL

A (π1, π3) = +∞. Similar results can be obtained for761

cross-entropy.762

JSDγ JSDγ was defined in [34] and we consider two special cases when γ = 0 and γ = 1.763

As illustrated by [34], JSD0 measures the expected number of times two policies will “disagree”764

by selecting different actions. On trajectories induced by π1 and π2, there are 4 + 4 states that π1765

disagrees with π2 (π1 and π2 are symmetric) and DJSD0

A (π1, π2) = 8/16 = 1/2. Similarly, π1 and766

π3 only disagree at the initial state, therefore we have DJSD0

A (π1, π3) = 2/16 = 1/8.767

Figure 12: Policies in the grid-world example when NG = 5.
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JSD1 is defined by768

JSD1(πi, πj) =−
1

2

∑
τi

P (τi | πi)

T∑
t=1

1

T
log

πi(τi) + πj(τi)

2πi(τi)

− 1

2

∑
τj

P (τj | πj)

T∑
t=1

1

T
log

πi(τj) + πj(τj)

2πj(τj)
.

Since each of the policies considered only induces a single trajectory and πi(τj) = 0 (i ̸= j), we can769

easily compute770

DJSD1

A (π1, π2) = DJSD1

A (π1, π3) = log 2

Wasserstein Distance Wasserstein distance or Earth Moving Distance (EMD) is 1 if two policies771

disagree on a state and 0 otherwise. Therefore, it equals to DJSD0

A .772

B.6.2 Action Norm773

We embed the action “right” as vector [1, 0] since it increases the x-coordinate by 1 and the action774

“down” as vector [0,−1] since it decreases the y-coordinate by 1. This embedding can be naturally775

extended to a continuous action space with velocity actions. Following [48], we compute the action776

norm over a uniform distribution on states. We can see that there are 7 states where π1 and π2 perform777

differently and 1 state (the initial state) where π1 and π3 perform differently. Therefore, we can get778

D(π1, π2) =
√
7 and D(π1, π3) = 1.779

B.6.3 State-Distance-Based Measures780

State L2 Norm Similar to action L2 norm, we concatenate the coordinates instead of actions as the781

embedding and compute the L2 norm between embedding.782

Wasserstein Distance Wasserstein distance is tractable in the grid-world example. We consider783

7 states (except the initial and final states) in each trajectory and compute the pair-wise distance as784

matrix C. Then we solve the following linear programming785

min
γ

∑
i,j

γ ⊙ C

s.t. γ1 = a, γT1 = b

γi,j ≥ 0

where ⊙ means element-wise multiplication, 1 is a all-one vector, a = [1T ,0T ]T and b = [0T ,1T ]T786

is the marginal state distribution of each policy.787

C Environment Details788

C.1 Details of the 2D Navigation Environment789

The navigation environment has an agent circle with size a and 4 landmark circles with size b. We790

pre-specify a threshold c and constrain that the distance of final states reaching different landmarks791

must be larger than c. Correspondingly, landmark circles are randomly initialized by constraining the792

pairwise distance between centers to be larger than a threshold c+ 2(a+ b) such that the final-state793

constraint is valid. An episode ends if the agent touches any landmarks, i.e., the distance between the794

center of the agent and the center of the landmark d < a+ b, or 1000 timesteps have elapsed. The795

observation space includes the positions of the agent and all landmarks, which is a 10-dimensional796

vector. The action space is a 2-dimensional vector, which is the agent velocity. The time interval is797

set to be ∆t = 0.1, i.e., the next position is computed by xt+1 = xt +∆t · v. The reward is 1 if the798

agent touches the landmark and 0 otherwise.799
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Table 13: Hyperparameters in the 2D navigation environment.
discount GAE λ PPO epochs clip parameter entropy bonus λmax actor lr critic lr Lagrange lr batch size

0.997 0.95 10 0.2 0 10 3e-4 1e-3 0.5 4000

C.2 Details of Environments800

We provide training configurations and environment introductions below and refer readers to our801

project website in App. A for visualizations of these environments.802

Humanoid We use the Humanoid environment in IsaacGym [38] with default observation and803

action spaces. The input of intrinsic rewards or diversity measure is the observation without all torque804

states.805

SMAC We adopt the SMAC environment in the MAPPO codebase1 with the same configuration806

as Yu et al. [64]. The input of intrinsic rewards or diversity measure is the state of all allies, including807

positions, health, etc.808

On the “easy” map 2m_vs_1z, two marines must be controlled to defeat a Zealot. The marines can809

attack from a distance, while the Zealot’s attacks are limited to close range. A successful strategy810

involves alternating the marines’ attacks to distract the Zealot. On the “hard” map 2c_vs_64zg, two811

colossi must be controlled by the agents to fight against 64 zergs. The colossi have a wider attack812

range and can move over cliffs. Strategies on this map may include hit-and-run tactics, waiting in813

corners, or dividing and conquering enemies. The level of difficulty is determined by the learning814

performance of existing MARL algorithms. Harder maps require more exploration and training steps.815

GRF We adopt the “simple115v2” representation as observation with both “scoring” and “check-816

point” reward. The reward is shared across all agents. The input of intrinsic rewards or diversity817

measure is the position and velocity of all attackers and the ball. All policies are trained to control818

the left team to score against build-in bots.819

academy_3_vs_1_with_keeper: In this scenario, a team of three players (left) try to score a goal820

against a single defender and a goalkeeper. The left team starts with the ball and has to dribble past821

the defender and the goalkeeper to score a goal.822

academy_counterattack_easy: In this scenario, the left team starts with the ball in the front-yard and823

try to score a goal against several defenders. All eleven players in the left players can be controlled.824

academy_corner: In this scenario, the left team tries to score a goal from a corner kick. The right825

team defends the goal and tries to prevent the left team from scoring. All eleven players in the left826

players can be controlled.827

D Implementation Details828

D.1 2D Navigation829

We apply PPO with Lagrange multipliers to optimize the policy and hyperparameters are summarized830

in Table 13. D(πi, πj) is simply taken as the L2 distance of the final state reached by πi and πj , i.e.,831

D(πi, πj) = ∥sπi

H − s
πj

H ∥2. The applied algorithm is the same as SIPO (see Appendix G) except that832

the intrinsic reward is only computed at the last timestep.833

D.2 SIPO834

In the i-th iteration (1 ≤ i ≤ M ), we learn an actor and a critic with i separate value heads to835

accurately predict different return terms, including i− 1 intrinsic returns for the diversity constraints836

and the environment reward. We include all practical tricks mentioned in [64] because we find837

them all critical to algorithm performance. We use separate actor and critic networks, both with838

hidden size 64 and a GRU layer with hidden size 64. The common hyperparameters for SIPO,839

1https://github.com/marlbenchmark/on-policy
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Table 14: Common hyperparameters for SIPO, baselines, and ablations.
discount GAE λ actor lr critic lr clip parameter entropy bonus GRF batch size SMAC batch size

0.99 0.95 5e-4 1e-3 0.2 0.01 9600 3200

Table 15: SIPO hyperparameters across all
environments.
λmax Discriminator lr Lagrangian lr

10 4.0e-4 0.1

baselines, and ablations are listed in Table 14. Other environment-specific parameters, such as PPO840

epochs and mini-batch size, are all the same as [64]. Besides, Table 10 and Table 15 lists some extra841

hyperparameters for SIPO.842

D.3 Baselines843

We re-implement all baselines with PPO based on the MAPPO [64] project. All algorithms run for844

the same number of environment frames. Specific hyperparameters for baselines can be found in845

Appendix D.3.846

SMERL SMERL trains a latent-conditioned policy that can robustly adapt to new scenarios. It847

promotes diversity by maximizing the mutual information between states and the latent variable.848

We implement SMERL with PPO, where the actor and the critic take as the input the concatenation849

of observation and a one-hot latent variable. The discriminator is a 2-layer feed-forward network850

with 64 hidden units. The learning rate of the discriminator is the same as the learning rate of851

the critic network. The input of the discriminator is the same as the input we use for SIPO-WD.852

The critic has 2 value heads for an accurate estimation of intrinsic return. Since SMERL trains a853

single latent-conditioned policy, we train SMERL for M× more environment steps, such that total854

environment frames are the same. The scaling factor of intrinsic rewards is 0.1 and the threshold855

for diversification is [0.81, 0.45, 0.72] (0.9× [0.9, 0.5, 0.8]) for “3v1”, “counterattack”, and “corner”856

respectively.857

DvD DvD simultaneously trains a population of policies to maximize the determinant of a kernel858

matrix based on action difference. We concatenate the one-hot actions along a trajectory as the859

behavioral embedding. The square of the variance factor, i.e., σ2 in the RBF kernel, is set to be the860

length of behavioral embedding. We also use the same Bayesian bandits as proposed in the original861

paper. Training DvD in “counterattack” and “corner” exceeds the GPU memory and we exclude the862

results in the main body.863

DIPG DIPG iteratively maximizes the maximum mean discrepancy (MMD) distance between the864

state distribution of the current policy and previously discovered policies. For DIPG, we follow the865

opensource implementation2. We set the same variance factor in the RBF kernel as SIPO-RBF and866

apply the same state as the input of the RBF kernel. We sweep the coefficient of MMD loss among867

{0.1, 0.5, 0.9} and find 0.1 the most appropriate (larger value will cause training instability). We use868

the same method to save archived trajectories as SIPO and the input of the RBF kernel is the same as869

the input we use for SIPO-RBF. To improve training efficiency, we only back-propagate the MMD870

loss at the first PPO epoch.871

RSPO RSPO iteratively discovers diverse policies by optimizing extrinsic rewards on novel tra-872

jectories while optimizing diversity on other trajectories. The diversity measure is defined as the873

action-cross entropy along the trajectory. For RSPO, we follow the opensource implementation3874

and use the same hyperparameters on the SMAC 2c_vs_64zg map in the original paper for GRF875

experiments.876

2https://github.com/dtak/DIPG-public
3https://github.com/footoredo/rspo-iclr-2022
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TrajDi TrajDi was originally designed for cooperate multi-agent domains to facillitate zero-shot877

coordination. It defines a generalized Jensen-Shanon divergence objective between policy action distri-878

butions. Then this objective and rewards are simultaneously optimized via population-based training.879

We tried TrajDi in SMAC and GRF. We sweep the action discount factor among {0.1, 0.5, 0.9} and880

the coefficient of TrajDi loss among {0.1, 0.01, 0.001}. However, TrajDi fails to converge in the “3v1”881

scenario and exceeds the GPU memory in the “counterattack” and “corner” scenarios. Therefore, we882

exclude the performance of TrajDi in the main body.883

D.4 Ablation Study Details884

For the three ablation studies: fix-L, CE, and filter, we list the specific hyperparameters here:885

• fix-L: we set the Lagrange multiplier to be 0.2;886

• CE: the threshold is 3.800 and the intrinsic reward scale factor is 1/1000 of that in the WD887

setting;888

• filter: all the hyperparameters in the setting is the same as those in the WD setting.889

E Proofs890

E.1 Proof of theorem 4.1891

Theorem 4.1. Assume D is a distance metric. Denote the optimal value of Problem 3 as T1. Let892

T2 =
∑M

i=1 J(π̃i) where893

π̃i = argmax
πi

J(πi)

s.t. D(πi, π̃j) ≥ δ/2, ∀1 ≤ j < i
(3)

for i = 1, . . . ,M , then T2 ≥ T1.894

Proof. Suppose the optimal solution of Problem 3 is π1, π2, ..., πM satisfying J(π1) ≥ J(π2) ≥895

... ≥ J(πM ) and the optimal solution of Problem 6 is π̃1, π̃2, ..., π̃M satisfying J(π̃1) ≥ J(π̃2) ≥896

... ≥ J(π̃M ).897

Assume the contrary that Thm. 4.1 is not true, which means
∑M

i=1 J(πi) = T1 > T2 =
∑M

i=1 J(π̃i).
Then we choose the smallest number N ≤M that satisfies

N∑
i=1

J(πi) >

N∑
i=1

J(π̃i).

By T1 > T2 we know that N exists. In addition, because Problem 6 solves unconstrained RL in the898

first iteration, we know that π̃1 = argmaxπ J(π) and then J(π1) ≤ J(π̃1). Therefore, N ≥ 2.899

Suppose J(πN ) ≤ J(π̃N ). Then we have900

N−1∑
i=1

J(πi) >

N−1∑
i=1

J(π̃i).

Contradicting the fact that N is the smallest number satisfies that equation.901

Hence, we know that J(πN ) > J(π̃N ). Then

J(π1) ≥ J(π2) ≥ ... ≥ J(πN ) > J(π̃N ).

Consider the optimization problem of π̃N :902

π̃N = argmax
π

J(π)

s.t. D(π, π̃j) ≥ δ/2, ∀1 ≤ j < N.
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This optimization does not find {π1, . . . , πN} but find π̃N , which means that for each πi, 1 ≤ i ≤ N ,903

there exists 1 ≤ ji < N such that D(πi, π̃ji) < δ/2. Otherwise, we will get the solution of the above904

problem as πi instead of π̃N .905

By the Pigeonhole Principle, we know that there exist two indexes i1 ∈ [N ] and i2 ∈ [N ] (i1 ̸= i2)

such that ji1 = ji2 = ĵ. Then we have

D(πi1 , πi2) ≤ D(πi1 , π̃ĵ) +D(πi2 , π̃ĵ) < δ/2 + δ/2 = δ,

where the inequality follows by the triangle inequality of the distance function.906

It contradict with the fact that D(πi1 , πi2) ≥ δ in Problem 3.907

Therefore, we prove the theorem
∑M

i=1 J(πi) = T1 ≤ T2 =
∑M

i=1 J(π̃i).908

E.2 Proof of Theorem 5.1909

In this section, we consider the i-th iteration of SIPO illustrated in Eq. (4). For the sake of simplicity,910

we use a ≤ λ ≤ b for vector λ to denote each component of λ satisfies a ≤ λi ≤ b, where a, b ∈ R.911

We use π to denote the policy we are optimizing, and πj (1 ≤ j < i) to denote a previously obtained912

policy. We denote the Lagrange function as L(π,λ) = −J(π)−
∑i−1

j=1 λj (D(π, πj)− δ).913

To prove Theorem 5.1, we consider the following two optimization problems:914

(πi,λ
⋆) = argmin

π
max
λ≥0

L(π,λ) (11)

and915

(π̃i, λ̃
⋆) = argmin

π
max

0≤λ≤Λ
L(π,λ), (12)

where Λ = 1
ϵ0

and ϵ0 > 0 is sufficiently small.916

We make the following assumptions to prove this theorem:917

Assumption E.1. 0 ≤ J(·) ≤ 1.918

Assumption E.2. ∀λ ≥ 0, L(·,λ) is l-smooth and ζ-Lipschitz.919

We may notice that, solving optimization problem (11) is hard because its domain is unbounded.920

Therefore, we make some approximation and consider bounded optimization problem (12). First we921

prove the following lemma about the value function J :922

Lemma E.3. J(πi) ≤ J(π̃i).923

Proof. As the domain of λ in Eq. 12 is smaller than Eq. (11), we have L(πi,λ) ≥ L(π̃i, λ̃).924

By the fundamental property of Lagrange duality, we know that L achieves its optimal value when925

λ = 0 and the optimal value is −J(πi).926

By the optimality of (π̃i, λ̃
⋆), we know that927

−
i−1∑
j=1

λ̃⋆
j (D(π̃i, πj)− δ) ≥ 0. (13)

Then we have

−J(πi) = L(πi,λ
⋆) ≥ L̃(π̃i, λ̃

⋆) = −J(π̃i)−
i−1∑
j=1

λ̃⋆
j (D(π̃i, πj)− δ) ≥ −J(π̃i).

928

Then we prove the distance between optimal policy π̃i in problem (12) and optimal policy πi in929

problem (11) is very small:930

Lemma E.4. Under Assumption E.1, D(π̃i, πj) ≥ δ − ϵ0, ∀1 ≤ j < i.931
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Proof. We prove by contradiction.932

Suppose there exists 1 ≤ j0 < i, D(π̃i, πj0) < δ − ϵ0. Then we choose λ̂ such that933

λ̂j =

{
Λ j = j0 ,

0 1 ≤ j < i, j ̸= j0 .

By the Assumption E.1, Eq. (13), and Λ = 1
ϵ0

, we have934

0 ≥ −J(πi) = L(πi,λ
⋆) ≥ L(π̃i, λ̃

⋆) ≥ L(π̃i, λ̂) ≥ −1− Λ(D(π̃i, πj0)− δ) > 0.

That is a contradiction. So we have proved that

D(π̃i, πj) ≥ δ − ϵ0, ∀1 ≤ j < i.

935

From the deduction above, we get the following approximation lemma:936

Lemma E.5. Denote the optimal solution of Eq. 11 and Eq. 12 as (πi, λ) and (π̃i, λ̃) respectively.937

Then we have the following approximation about the optimal value and distance:938

J(πi) ≤ J(π̃i)

D(π̃i, πj) ≥ δ − ϵ0, ∀1 ≤ j < i

Proof. This lemma follows directly by Lemma E.3 and Lemma E.4.939

Therefore, it is reasonable to consider the constrained optimization problem (12) instead of primal940

problem (11) because we have proved that the optimal value doesn’t get smaller and the distance of941

policy is ϵ0-approximation of the primal problem. Finally we use the conclusion in the paper [27] to942

analysis the convergence of problem (12):943

Lemma E.6. ([27], Theorem 4.8) Under Assumption E.2, solving Eq. (12) via two-timescale GDA
with learning rate ηπ = Θ(ϵ4/l3ζ2Λ2) and ηλ = Θ(1/l) requires

O
(
l3ζ2Λ2C1

ϵ6
+

l3Λ2C2

ϵ4

)
iterations to converge to an ϵ-stationary point π⋆

i , where C1 and C2 are the constants that depend on944

the distance between the initial point and the optimal point.945

Theorem 5.1. Under assumptions E.1 and E.2 and learning rate with learning rate ηπ =946

Θ(ϵ4/l3ζ2Λ2) and ηλ = Θ(1/l), SIPO converges to an ϵ-stationary point with convergence rate947

O
(

l3ζ2Λ2C1

ϵ6 + l3Λ2C2

ϵ4

)
.948

Proof. We consider the following constraint nonconvex-concave optimization:949

min
π

max
0≤λ≤Λ

L(π,λ) . (14)

Following Lemma E.6, we know that the Two-Timescale GDA algorithm converges to an ϵ-stationary950

point π∗
i .951

From the above deduction, the Two-Timescale GDA algorithm requires O
(

l3ζ2Λ2C1

ϵ6 + l3Λ2C2

ϵ4

)
952

iterations with learning rate ηπ = Θ(ϵ4/l3ζ2Λ2) and ηλ = Θ(1/l) to converge to an ϵ-stationary953

point with convergence rate.954

955
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F Discussion956

F.1 The Failure Case of State-Distance-Based Diversity Measures957

A failure case of state-distance-based diversity measures may be when the state space includes958

many irrelevant features. These features cannot reflect behavioral differences. If we run SIPO959

in such an environment, the learned strategies may be only diverse w.r.t these features and have960

little visual distinction. Like the famous noisy TV problem [4], the issue of irrelevant features is961

intrinsically challenging for general RL applications, which cannot be resolved by using action-based962

or state-occupancy-based diversity measures either.963

Thanks to the advantages we discussed in the paper, we generally find that state-distance-based964

measures can be preferred in challenging RL problems. Meanwhile, since the state dimension can be965

much higher than actions, it is possible that RL optimization over states may be accordingly more966

difficult than actions. In practice, we can design a feature selector for those most relevant features967

for visual diversity and run diversity learning over the filtered features. In SMAC and GRF, we968

utilize the agent features (excluding enemies) as the input of diversity constraint without further969

modifications, as discussed in Appendix D. We remark that even after filtering, the agent features970

remain high-dimensional while our algorithm still works well. Note that using a feature selector is971

a common practice in many existing domains, such as novelty search [11], exploration [29], and972

curriculum learning [6]. There are also works studying how to extract useful low-dimensional features973

from observations [63, 16], which are orthogonal to our focus.974

F.2 The Distance Metric975

In Sec. 5, we adopt the two most popular implementations in the machine learning literature, i.e.,976

RBF kernel and Wasserstein distance, while it is totally fine to adopt alternative implementations.977

For example, we can learn state representations (e.g. auto-encoder, Laplacian, or successor feature)978

and utilize pair-wise distance or norms as a diversity measure. Similar topics have been extensively979

discussed in the exploration literature [63, 37]. We leave them as our future directions.980

G Pseudocode of SIPO981

The pseudocode of SIPO is shown in Algorithm 1.982
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Algorithm 1 SIPO (red for SIPO-RBF and blue for SIPO-WD)

Input: Number of Iterations M , Number of Training Steps within Each Iteration T .
Hyperparameter: Learning Rate ηπ, Diversity Threshold δ, Intrinsic Scale Factor α, Lagrange

Multiplier Upperbound λmax, Lagrange Learning rate ηλ, Wasserstein Critic Learning Rate ηW ,
RBF Kernel Variance σ.

1: Archived trajectories X ← ∅ // to store states visited by previous policies
2: for iteration i = 1, . . . ,M do
3: Initialize policy πθi // initialization
4: Initialize Wasserstein critic fϕi

5: for archive index j = 1, . . . , i− 1 do
6: Lagrange multiplier λj ← 0
7: end for
8: for Training step t = 1, . . . , T do
9: Collect trajectory τ = {(sh,ah, r(sh,ah))}Hh=1

10: for archive index j = 1, . . . , i− 1 do
11: Rj

int ← 0
12: end for
13: for timestep h = 1, . . . ,H do
14: rint,h ← 0 // compute intrinsic reward
15: for archive trajectory χj ∈ X do
16: rjint,h ← −

1
H|χj |

∑
s′∈χj

exp
(
−∥sh−s′∥2

2σ2

)
17: rjint,h ←

1
H

[
fϕj

(sh)− 1
|χj |

∑
s′∈χj

fϕj
(s′)

]
18: rint,h ← rint,h + λj · rjint,h

19: Rj
int ← Rj

int,h + rjint,h
20: end for
21: rh ← r(sh,ah) + α · rint,h
22: end for
23: for archive index j = 1, . . . , i− 1 do
24: λj ← clip

(
λj + ηλ

(
−Rj

int + δ
)
, 0, λmax

)
// gradient ascent on λj

25: ϕj ← ϕj + ηW
1
H

∑H
h=1∇ϕj

(
fϕj

(sh)− 1
|χj |

∑
s′∈χj

fϕj
(s′)

)
26: ϕj ← clip(ϕj ,−0.01, 0.01)
27: end for
28: Update πθi with {(sh,ah, rh)} by PPO algorithm // policy gradient on θi
29: end for
30: Collect many trajectories χi // collect trajectories to approximate dπθi

31: X ← X ∪ {χi} // for the use of following iterations
32: end for
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