
VERIX: Towards Verified Explainability of
Deep Neural Networks

Min Wu
Department of Computer Science

Stanford University
minwu@cs.stanford.edu

Haoze Wu
Department of Computer Science

Stanford University
haozewu@cs.stanford.edu

Clark Barrett
Department of Computer Science

Stanford University
barrett@cs.stanford.edu

Abstract

We present VERIX (VERIfied eXplainability), a system for producing optimal
robust explanations and generating counterfactuals along decision boundaries
of machine learning models. We build such explanations and counterfactuals
iteratively using constraint solving techniques and a heuristic based on feature-
level sensitivity ranking. We evaluate our method on image recognition benchmarks
and a real-world scenario of autonomous aircraft taxiing.

1 Introduction

Broad deployment of artificial intelligence (AI) systems in safety-critical domains, such as au-
tonomous driving [18] and healthcare [63], necessitates the development of approaches for trust-
worthy AI. One key ingredient for trustworthiness is explainability: the ability for an AI system to
communicate the reasons for its behavior in terms that humans can understand.

Early work on explainable AI includes well-known model-agnostic explainers which produce expla-
nations that remain valid for nearby inputs in feature space. In particular, LIME [42] and SHAP [38]
learn simple, and thus interpretable, models locally around a given input. Following LIME, work
on Anchors [43] attempts to identify a subset of such input explanations that are (almost) sufficient
to ensure the corresponding output value. Such approaches can produce explanations efficiently,
however, they do not provide any formal guarantees and are thus inappropriate for use in high-risk
scenarios. For instance, in healthcare, if a diagnosis model used by a dermatologist has an explanation
claiming that it depends only on a patient’s skin lesions (such as “plaque”, “pustule”, and “ulcer”
in [10]), yet in actuality, patients with similar such lesions but different skin tones (“Fitzpatrick
I-II, III-IV, V-VI” [19]) receive dissimilar diagnoses, then the explanation is not only wrong, but
may actually mask bias in the model. Another drawback of model-agnostic approaches is that they
often depend on access to training data, which may not always be available (perhaps due to privacy
concerns). And even if available, distribution shift can compromise the results.

Recent efforts towards formal explainable AI [40] aim to compute rigorously defined explanations
that can guarantee soundness, in the sense that fixing certain input features is sufficient to ensure the
invariance of a model’s prediction. However, their work only considers unbounded perturbations,
which may be too course-grained to be useful (for other limitations, see Section 5). To mitigate
those drawbacks, [33] bring in two types of bounded perturbations, ϵ-ball and k-NN box closure,
and show how to compute optimal robust explanations with respect to these perturbations for natural

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(a) Original “2” (b) Segmentation (c) VERIX (d) “2” into “7” (e) “2” into “0” (f) “2” into “3”

Figure 1: Intuition for our VERIX approach: (a) An MNIST handwritten “2”; (b) Segmentation of
“2” into 3 partitions; (c) Our VERIX explanation (green pixels) of “2”; (d)(e)(f) Masking white pixels
or whitening black pixels may turn “2” into possible counterfactuals.

language processing (NLP) models. k-NN box closure essentially chooses a finite set of the k closest
tokens for each word in a text sample, so the perturbation space is intrinsically discrete; on the other
hand, ϵ-ball perturbations provide a way to handle a continuous word embedding (though the authors
of [33] suggest that these may be more cumbersome in NLP applications and focus on k-NN box
perturbations in their experimental results).

In this paper, we present VERIX (VERIfied eXplainability), a tool for producing optimal robust
explanations and generating counterfactuals along decision boundaries of deep neural networks. Our
contributions can be summarized as follows.

• We utilize constraint solving techniques to compute robust and optimal explanations with
provable guarantees against infinite and continuous perturbations in the input space.

• We bring a feature-level sensitivity traversal into the framework to efficiently approximate
global optima, which improves scalability for high-dimensional inputs and large models.

• We note for the first time the relationship between our explanations and counterfactuals, and
show how to compute such counterfactuals automatically at no additional cost.

• We provide an extensive evaluation on a variety of perception models, including a safety-
critical real-world autonomous aircraft taxiing application.

We start by providing intuition for our VERIX approach by analyzing an example explanation in
Figure 1. This explanation is generated for a fully-connected model trained on the MNIST dataset.
Model-agnostic explainers such as Anchors [43] rely on partitioning an image into a disjoint set of
segments and then selecting the most prominent segment(s). Figure 1b shows “2” divided into 3
parts using k-means clustering [37]. Based on this segmentation, the purple and yellow parts would
be chosen for the explanation, suggesting that the model largely relies on these segments to make
its decision. This also matches our intuition, as a human would immediately identify these pixels
as containing information and disregard the background. However, does this mean it is enough to
focus on the salient features when explaining a classifier’s prediction? Not necessarily. VERIX’s
explanation is highlighted in green in Figure 1c. It demonstrates that whatever is prominent is
important but what is absent in the background also matters. We observe that VERIX not only marks
those white pixels forming the silhouette of “2” but also includes some background pixels that might
affect the prediction if changed. For instance, neglecting the bottom white pixels may lead to a
misclassification as a “7”; meanwhile, the classifier also needs to check if the pixels along the left
and in the middle are not white to make sure it is not “0” or “3”. While Figures 1d, 1e, and 1f are
simply illustrative to provide intuition about why different parts of the explanation may be present,
we remark that explanations from VERIX are produced automatically and deterministically.

2 VERIX: Verified eXplainability

Let f be a neural network and x a d-dimensional input vector of features ⟨χ1, . . . , χd⟩. We use
Θ(x), or simply Θ, when the context is clear, to denote its set of feature indices {1, . . . , d}. We
write xA where A ⊆ Θ(x) to denote only those features indexed by indices in A. We denote model
prediction as f(x) = c, where c is a single quantity in regression or a label among others (c ∈ C)
in classification. For the latter, we use fc(x) to denote the confidence value (pre- or post- softmax)
of classifying as c, i.e., f(x) = argmax fc(x). Depending on different application domains, x can
be an image consisting of d pixels as in our case or a text comprising d words as in NLP [33]. In
this paper, we focus on perception models. This has the additional benefit that explanations in this
context are self-illustrative and thus easier to understand.

2

2.1 Optimal robust explanations

Existing work such as abductive explanations [26], prime implicants [45], and sufficient reasons [11]
define a formal explanation as a minimal subset of input features that are responsible for a model’s
decision, in the sense that any possible perturbations on the rest features will never change prediction.
Building on this, [33] introduces bounded perturbations and computes “distance-restricted” such
explanations for NLP models. Our definition closely follows [33] except: (1) rather than minimizing
an arbitrary cost function, we consider the uniform case (i.e., the same cost is assigned to each feature)
so as to compute the smallest number of features; (2) we focus on continuous ϵ-ball perturbations
not discrete k-NN box closure; (3) we allow for bounded variation (parameterized by δ) in the
output to accommodate both classification (set δ to 0) and regression (δ could be some pre-defined
hyper-parameter quantifying the allowable output change) whilst [33] focuses on sentiment analysis
(i.e., binary classification).

Definition 2.1 (Optimal Robust Explanation). Given a neural network f , an input x, a manipulation
magnitude ϵ, and a discrepancy δ, a robust explanation with respect to norm p ∈ {1, 2,∞} is a set of
input features xA such that if B = Θ(x) \A, then

∀ xB′
.
∥∥∥xB − xB′

∥∥∥
p
≤ ϵ ⇒ |f(x)− f(x′)| ≤ δ, (1)

where xB′
is some perturbation on features xB and x′ is the input variant combining xA and xB′

. In
particular, we say that the robust explanation xA is optimal if

∀χ ∈ xA. ∃ xB′
, χ′.

∥∥∥(xB ⊕ χ)− (xB′
⊕ χ′)

∥∥∥
p
≤ ϵ ∧ |f(x)− f(x′)| > δ, (2)

where χ′ is some perturbation of χ and ⊕ denotes concatenation of two features.

Figure 2: Graphical illustration of VERIX.
Each gray square denotes the original input
x (big blue “+”) or a variant (smaller “+”).
Variants (blue “+”) that do not change the
explanation A (green circle) are guaran-
teed to lie on the same side of the decision
boundary. Counterfactuals (orange “+”)
with perturbed explanations A′ are classi-
fied differently.

We refer to xB as the irrelevant features. Intuitively,
perturbations bounded by ϵ imposed upon the irrelevant
features xB will never change prediction, as shown by
the small blue “+” variants in Figure 2. Moreover, each
feature χ (and their combinations) in the optimal expla-
nation xA can be perturbed, together with the irrelevant
features, to go beyond the decision boundary, i.e., the
orange “+” variants. We mention two special cases:
(1) if x is ϵ-robust, then all features are irrelevant, i.e.,
A = ∅, meaning there is no valid explanation as any
ϵ-perturbation does not affect the prediction at all (in
other words, a larger ϵ is required to get a meaningful
explanation); (2) if perturbing any feature in input x can
change the prediction, then A = Θ(x), meaning the
entire input is an explanation.

We remark that our definition of optimality is local in
that it computes a minimal subset of features. An in-
teresting problem would be to find a globally optimal
explanation, i.e., the smallest (fewest features) among
all possible local optima, also known as the cardinality-
minimal explanation [26]. Approaches (such as those
based on minimum hitting sets [33, 4]) for computing
such global optima are often too computationally diffi-
cult to converge for large models and high-dimensional inputs as in our case. Therefore, we propose
a tractable heuristic (Section 3.3) that approximates the ideal and works fairly well in practice.

2.2 Counterfactuals along decision boundary

While there are infinitely many variants in the input space, we are particularly interested in those that
lie along the decision boundary of a model. Figure 2 shows several pairs of variants (blue and orange
“+”) connected by red dotted lines. Each pair has the property that the blue variant has the same
prediction as the original input x, whereas the orange variant, obtained by further perturbing one

3

Table 1: Evolving index set A for explanation xA and index set B for irrelevant features xB along
reasoning result (True / False) of the CHECK sub-procedure when processing Example 3.1.

feature A B B′ reasoner irrelevant features xB explanation xA

χ1 ∅ ∅ B ∪ {1} True ⟨χ1⟩ –
χ2 ∅ {1} B ∪ {2} True ⟨χ1, χ2⟩ –
χ3 ∅ {1, 2} B ∪ {3} True ⟨χ1, χ2, χ3⟩ –
χ4 ∅ {1, 2, 3} B ∪ {4} False ⟨χ1, χ2, χ3⟩ ⟨χ4⟩
χ5 {4} {1, 2, 3} B ∪ {5} False ⟨χ1, χ2, χ3⟩ ⟨χ4, χ5⟩
χ6 {4, 5} {1, 2, 3} B ∪ {6} True ⟨χ1, χ2, χ3, χ6⟩ ⟨χ4, χ5⟩
χ7 {4, 5} {1, 2, 3, 6} B ∪ {7} True ⟨χ1, χ2, χ3, χ6, χ7⟩ ⟨χ4, χ5⟩
χ8 {4, 5} {1, 2, 3, 6, 7} B ∪ {8} False ⟨χ1, χ2, χ3, χ6, χ7⟩ ⟨χ4, χ5, χ8⟩
χ9 {4, 5, 8} {1, 2, 3, 6, 7} B ∪ {9} True ⟨χ1, χ2, χ3, χ6, χ7, χ9⟩ ⟨χ4, χ5, χ8⟩

single feature χ in the optimal explanation xA (together with the irrelevant features, i.e., xB′ ⊕ χ′

in Equation (2), produces a different prediction. We note that these orange variants are essentially
counterfactual explanations [51]: each is a concrete example of a nearby point in the input space
illustrating one way to change the model prediction. We emphasize that our focus in this paper is to
compute explanations of the form in Definition 2.1, but it is noteworthy that these counterfactuals are
generated automatically and at no additional cost during the computation. In fact, we end up with a
distinct counterfactual for each feature in our explanation, as we will see below (see [20, 50] for a
comprehensive review of counterfactual explanations and their uses).

3 Computing VERIX explanations by constraint solving

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

χ1 χ2 χ3

χ4 χ5 χ6

χ7 χ8 χ9

Figure 3: Computing a VERIX expla-
nation by constraint solving for a sim-
ple input x = ⟨χ1, . . . , χ9⟩. Green
is the optimal robust explanation xA;
gray denotes irrelevant features xB.

Before presenting the VERIX algorithm (Algorithm 1) in
detail, we first illustrate it via a simple example.
Example 3.1 (VERIX Computation). Suppose x is an input
with 9 features ⟨χ1, . . . , χ9⟩ as in Figure 3, and we have
classification network f , a perturbation magnitude ϵ, and are
using p = ∞. The outer loop of the algorithm traverses
the input features. For simplicity, assume the order of the
traversal is from χ1 to χ9. Both the explanation index set A
and the irrelevant set B are initialized to ∅. At each iteration,
VERIX decides whether to add the index i to A or B. The
evolution of the index sets is shown in Table 1. Concretely,
when i = 1, VERIX formulates a pre-condition which spec-
ifies that χ1 can be perturbed by ϵ while the other features
remain unchanged. An automated reasoner is then invoked
to check whether the pre-condition logically implies the post-
condition (in this case, f(x) = f(x̂), meaning the prediction
is the same after perturbation). Suppose the reasoner returns
True; then, no ϵ-perturbation on χ1 can alter the prediction.
Following Equation (1) of Definition 2.1, we thus add χ1 to
the irrelevant features xB. Figure 3, top left, shows a visu-
alization of this. VERIX next moves on to χ2. This time the
precondition allows ϵ-perturbations on both χ1 and χ2 while keeping the other features unchanged.
The post-condition remains the same. Suppose the reasoner returns True again – we then add χ2 to
xB (Figure 3, top middle). Following similar steps, we add χ3 to xB (Figure 3, top right). When it
comes to χ4, we allow ϵ-perturbations for ⟨χ1, χ2, χ3, χ4⟩ while the other features are fixed. Suppose
this time the reasoner returns False – there exists a counterexample (this counterexample is the
counterfactual for feature χ4) that violates f(x) = f(x̂), i.e., the prediction can be different. Then,
according to Equation (2) of Definition 2.1, we add χ4 to the optimal explanation xA (shown as
green in Figure 3, middle left). The computation continues until all the input features are visited.
Eventually, we have xA = ⟨χ4, χ5, χ8⟩ (Figure 3, bottom right), which means that, if the features in
the explanation are fixed, the model’s prediction is invariant to any possible ϵ-perturbation on the other
features. Additionally, for each of the features in xA, we have a counterfactual that demonstrates
how that feature can be altered (together with irrelevant features) to change the prediction.

4

3.1 Building optimal robust explanations and counterfactuals iteratively

We now formally describe our VERIX methodology, which exploits an automated reasoning engine
for neural network verification as a black-box sub-procedure. We assume the reasoner takes as inputs
a network f and a specification

ϕin(x̂) ⇒ ϕout(ĉ) (3)

where x̂ are variables representing the network inputs and ĉ are expressions representing the network
outputs. ϕin(x̂) and ϕout(ĉ) are formulas. We use χ̂i to denote the variable corresponding to the ith

feature. The reasoner checks whether a specification holds on a network.

Algorithm 1 VERIX (VERIfied eXplainability)
Input: neural network f and input x = ⟨χ1, . . . , χd⟩
Parameter: ϵ-perturbation, norm p, and discrepancy δ
Output: optimal robust explanation xA, counterfactuals
C for each χ ∈ xA

1: function VERIX(f,x)
2: A,B,C 7→ ∅, ∅, ∅
3: c 7→ f(x)
4: ĉ 7→ f(x̂)
5: π 7→ TRAVERSALORDER(x)
6: for i in π do
7: B+ 7→ B ∪ {i}
8: ϕ 7→ (

∥∥∥χ̂B+ − χB+
∥∥∥
p
≤ ϵ)

9: ϕ 7→ ϕ ∧ (χ̂Θ\B+

= χΘ\B+

)
10: (HOLD,m) 7→ CHECK(f, ϕ ⇒ |ĉ− c| ≤ δ)
11: if HOLD then B 7→ B+

12: else A 7→ A ∪ {i} ; C 7→ C ∪ {m}
13: return (xA, C)

Inspired by the deletion-based method [8],
we propose Algorithm 1, in which the
VERIX procedure takes as input a net-
work f and an input x = ⟨χ1, . . . , χd⟩.
It outputs an optimal explanation xA with
respect to perturbation magnitude ϵ, dis-
tance metric p, and discrepancy δ. It also
outputs a set of counterfactuals, one for
each feature in xA. The procedure main-
tains three sets, A, B, and C, throughout:
A comprises feature indices forming the
explanation; B includes feature indices
that can be excluded from the explanation;
and C is the set of counterfactuals. Re-
call that xB denotes the irrelevant features
(i.e., perturbing xB while leaving xA un-
changed never changes the prediction). To
start with, these sets are initialized to ∅
(Line 2), and the prediction for input x is
recorded as c, for which we remark that c
may or may not be an accurate prediction
according to the ground truth – VERIX
generates an explanation regardless. Over-
all, the procedure examines every feature
χi in x according to TRAVERSALORDER (Line 5) to determine whether i can be added to B or
must belong to A. The traversal order can significantly affect the size and shape of the explanation.
We propose a heuristic for computing a traversal order that aims to produce small explanations in
Section 3.3 (in Example 3.1, a sequential order is used for ease of explanation). For each i, we
compute ϕ, a formula that encodes two conditions: (i) the current χi and xB are allowed to be
perturbed by at most ϵ (Line 8); and (ii) the rest of the features are fixed (Line 9). The property that
we check is that ϕ implies |ĉ− c| ≤ δ (Line 10), denoting prediction invariance.

An automated reasoning sub-procedure CHECK is deployed to examine whether on network f the
specification ϕ ⇒ |ĉ− c| ≤ δ holds (Line 10), i.e., whether perturbing the current χi and irrelevant
features while fixing the rest ensures a consistent prediction. It returns (True, m) if this is the
case (where m is arbitrary) and (False, m) if not, where m is a concrete input falsifying the
formula. In practice, this CHECK can be instantiated with an off-the-shelf neural network verification
tool [46, 41, 31, 56, 21]. If HOLD is True, i is added to the irrelevant set B (Line 11). Otherwise, i is
added to the explanation index set A (Line 12), which conceptually indicates that χi contributes to
the explanation of the prediction (since feature indices in B have already been proven to not affect
prediction). In other words, an ϵ-perturbation that includes the irrelevant features as well as the
current χi can breach the decision boundary of f . This fact is represented by the counterexample
m, which represents the counterfactual1 for χi and is added to the set C of counterfactuals. The
procedure continues until all feature indices in x are traversed and placed into one of the two disjoint
sets A and B. At the end, xA is returned as the optimal explanation and C is returned as the set of
counterfactuals.

1Properties of counterfactuals such as actionability [20] can be addressed by using an appropriate ϵ to ensure
that the counterexamples returned by verifiers will always be from the input data distribution.

5

3.2 Soundness and optimality of explanations

To ensure the VERIX procedure returns a robust explanation, we require that CHECK is sound, i.e., the
solver returns True only if the specification actually holds. For the robust explanation to be optimal,
CHECK also needs to be complete, i.e., the solver always returns True if the specification holds. We
can incorporate various existing reasoners as the CHECK sub-routine. We note that an incomplete
reasoner (the solver may return Unknown) does not undermine the soundness of our approach, though
it does affect optimality (the produced explanations may be larger than necessary).
Lemma 3.2. If the CHECK sub-procedure is sound, then, at the end of each for-loop iteration
(Lines 7–12) in Algorithm 1, the irrelevant set of indices B satisfies

(
∥∥χ̂B − χB

∥∥
p
≤ ϵ) ∧ (χ̂Θ\B = χΘ\B) ⇒ |ĉ− c| ≤ δ. (4)

Intuitively, any ϵ-perturbation imposed upon all irrelevant features when fixing the others will always
keep the prediction consistent, i.e., the infinite number of input variants (indicated with a small blue
“+” in Figure 2) will always remain within the decision boundary. We include rigorous proofs for
Lemma 3.2 and Theorems 3.3 and 3.4 in Appendix A. Soundness directly follows from Lemma 3.2.
Theorem 3.3 (Soundness). If the CHECK sub-procedure is sound, then the value xA returned by
Algorithm 1 is a robust explanation – this satisfies Equation (1) of Definition 2.1.
Theorem 3.4 (Optimality). If the CHECK sub-procedure is sound and complete, then the robust
explanation xA returned by Algorithm 1 is optimal – this satisfies Equation (2) of Definition 2.1.

Intuitively, optimality holds because if it is not possible for an ϵ-perturbation on some feature χi in
explanation xA to change the prediction, then it will be added to the irrelevant features xB when
feature χi is considered during the execution of Algorithm 1.
Proposition 3.5 (Complexity). Given a d-dimensional input x and a network f , the complexity of
computing an optimal robust explanation using the VERIX algorithm is O(d · P (f)), where P (f) is
the cost of checking a specification (of the form in Equation (3)) over f .

An optimal explanation can be achieved from one traversal of input features as we are computing
the local optima. If f is piecewise-linear, checking a specification over f is NP-complete [30]. We
remark that such complexity analysis is closely related to that of the deletion-based method [8]; here
we particularly focus on how a network f and a d-dimensional input x would affect the complexity
of computing an optimal robust explanation.

3.3 Feature-level sensitivity traversal

While Example 3.1 used a simple sequential order for illustration purpose, we introduce a heuristic
based on feature-level sensitivity, inspired by the occlusion method [64], to produce actual traversals.
Definition 3.6 (Feature-Level Sensitivity). Given an input x = ⟨χ1, . . . , χd⟩ and a network f , the
feature-level sensitivity (in classification for a label c or in regression for a single quantity) for a
feature χi with respect to a transformation T is

sensitivity(χi) = f(c)(x)− f(c)(x
′), (5)

where x′ is x with χi replaced by T (χi).

Typical transformations include deletion (T (χ) = 0) and reversal (T (χ) = χ− χ, where χ is the
upper bound for feature χ). Intuitively, we measure how sensitive (in terms of an increase or decrease)
a model’s confidence is to each individual feature. Given sensitivity values with respect to some
transformation, we rank the feature indices into a traversal order from least to most sensitive.

4 Experimental results

We have implemented the VERIX algorithm in Python, using the Marabou neural network verification
tool [31] to implement the CHECK sub-procedure of Algorithm 1 (Line 10). The VERIX code
is available at https://github.com/NeuralNetworkVerification/VeriX. We trained fully-
connected and convolutional networks on the MNIST [34], GTSRB [47], and TaxiNet [29] datasets
for classification and regression tasks. Model specifications are in Appendix D. Experiments were
performed on a workstation equipped with AMD Ryzen 7 5700G CPUs running Fedora 37. We set a
time limit of 300 seconds for each CHECK call.

6

https://github.com/NeuralNetworkVerification/VeriX

(a) “keep right, 50 mph, road work, no passing” (b) Handwritten digit “1”, not “8”, not “5”, not “2”

Figure 4: Optimal robust explanations (green) from VERIX on GTSRB (left) and MNIST (right)
images. (b) Pixels in yellow are those in the explanation to rule out different counterfactuals.

4.1 Example explanations for image recognition benchmarks

Figure 4 shows examples of VERIX explanations for GTSRB and MNIST images. The convolutional
model trained on GTSRB and fully-connected model on MNIST are in Appendix D, Tables 8 and 6.
Aligning with our intuition, VERIX can distinguish the traffic signs (no matter a circle, a triangle, or a
square in Figure 6a) from their surroundings well; the explanations focus on the actual contents within
the signs, e.g., the right arrow denoting “keep right” and the number 50 as in “50 mph”. Interestingly,
for traffic signs consisting of irregular dark shapes on a white background such as “road work” and
“no passing”, VERIX discovers that the white background contains the essential features. We observe
that MNIST explanations for the fully-connected model are in general more scattered around the
background because the network relies on the non-existence of white pixels to rule out different
counterfactuals (Figure 4b shows which pixels in the explanation have associated counterfactuals with
predictions of “8”, “5”, and “2”, respectively), whereas GTSRB explanations for the convolutional
model can safely disregard the surrounding pixels outside the traffic signs.

4.2 Visualization of the effect of varying perturbation magnitude ϵ

(a) MNIST “0” (b) ϵ : 1 → 0.1 (c) ϵ : 1 → 0.05

Figure 5: Expansion of the irrelevant pixels
when perturbation magnitude ϵ decreases from
100% to 10% and further to 5% (from deep blue
to light yellow). Each brighter color denotes the
pixels added when moving to the next smaller
ϵ, e.g., 100%, 90%, 80% and so on.

A key parameter of VERIX is the perturbation mag-
nitude ϵ. When ϵ is varied, the irrelevant features
change accordingly. Figure 5 visualizes this, show-
ing how the irrelevant features change when ϵ is
tightened from 100% to 10% and further to 5%. As
ϵ decreases, more pixels become irrelevant. Intu-
itively, the VERIX explanation helps reveal how the
network classifies this image as “0”. The deep blue
pixels are those that are irrelevant with ϵ = 100%.
Light blue pixels are more sensitive, allowing per-
turbations of only 10%. The light yellow pixels
represent 5%, and bright yellow are pixels that can-
not even be perturbed 5% without changing the
prediction. The resulting pattern is roughly consis-
tent with our intuition, as the shape of the “0” can
be seen embedded in the explanation.

We remark that determining a suitable magnitude ϵ is non-trivial because if ϵ is too loose, explanations
may be too conservative, allowing very few pixels to change. On the other hand, if ϵ is too small,
nearly the whole set of pixels could become irrelevant. For instance, in Figure 5, if we set ϵ to 1%
then all pixels become irrelevant – the classifier’s prediction is robust to 1%-perturbations. The “color
map” we propose makes it possible to visualize not only the explanation but also how it varies with ϵ.
The user then has the freedom to pick a specific ϵ depending on their application.

4.3 Sensitivity vs. random traversal to generate explanations

To show the advantage of the feature-level sensitivity traversal, Figure 6 compares VERIX expla-
nations using sensitivity-based and random traversals. Sensitivity, as shown in the heatmaps of
Figures 6a and 6b, prioritizes pixels that have more influence on the network’s decision, whereas a
random ranking is simply a shuffling of all the pixels. We mention that, to compute the sensitivity,
we used pixel deletion T (χ) = 0 for GTSRB and reversal T (χ) = χ − χ for MNIST (deleting
background pixels of MNIST images may have little effect as they often have zero values). We
observe that the sensitivity traversal generates much more sensible explanations. In Figure 6c, we

7

(a) GTSRB “priority road”, sensitivity, explanations. (b) MNIST “0”, sensitivity, explanations.

(c) Sensitivity vs. random traversals in explanation size (number of pixels).

Figure 6: Comparing VERIX explanations from sensitivity and random traversals. (a)(b) 1st column:
the original image; 2nd column: sensitivity heatmap; 3rd and 4th columns: explanations from
sensitivity (green) and random (red) traversals. (c) Each blue triangle is a unique explanation size
from sensitivity ranking, and each set of circles shows explanation sizes from 100 random rankings.

(a) Original, VERIX, Anchors, segmentation (b) Original, VERIX, Anchors, misclassified as “yield”

Figure 7: Comparing VERIX (green) to Anchors (red) on two different versions of a “keep right”
traffic sign from the GTSRB dataset, one with strong light in the background and one without.

compare explanation sizes for the first 10 images (to avoid potential selection bias) of the MNIST test
set. For each image, we show 100 explanations from random traversal compared to the deterministic
explanation from sensitivity traversal. We observe that the latter is almost always smaller, often
significantly so, suggesting that sensitivity-based traversals are a reasonable heuristic for attempting
to approach globally optimal explanations.

4.4 VERIX vs. existing approaches

We compare VERIX with Anchors [43]. Figure 7 shows both approaches applied to two different
“keep right” traffic signs. Anchors performs image segmentation and selects a set of the segments
as the explanation, making its explanations heavily dependent on the quality of the segmentation.
For instance, distractions such as strong light in the background may compromise the segments
(Figure 7a, last column) thus resulting in less-than-ideal explanations, e.g., the top right region of
the anchor (red) is outside the actual traffic sign. Instead, VERIX utilizes the model to compute the
sensitivity traversal, often leading to more reasonable explanations. Anchors is also not designed to
provide formal guarantees. In fact, replacing the background of an anchor explanation – used by the
original paper [43] to justify “almost” guarantee – can change the classification. For example, the last
column of Figure 7b is classified as “yield” with confidence 99.92%. We conducted a quantitative
evaluation on the robustness of explanations, as shown in Table 2 under “robust wrt # perturbations”.
When quantifying the robustness of Anchors, we generate 100 explanations for 100 MNIST and
100 GTSRB images separately, and impose 10, 100, 500, 1000 perturbations on each explanation by
overlapping it with other images in the same dataset. If the prediction remains unchanged, then the
explanation is robust against these perturbations. We notice that the robustness of Anchors decreases
quickly when the number of perturbations increases, and when imposing 1000 perturbations per
image, only 37 MNIST and 15 GTSRB explanations out of 100 are robust. This was not done for
LIME, since it would be unfair to LIME as it does not have robustness as a primary goal. In contrast,
VERIX provides provable robustness guarantees against any ϵ-perturbations in the input space.

Two key metrics for evaluating the quality of an explanation are the size and the generation time.
Table 2 shows that overall, VERIX produces much smaller explanations than Anchors and LIME but

8

Table 2: VERIX vs. existing approaches, showing average explanation size (number of pixels),
generation time (seconds), and an empirical evaluation of the robustness of the produced explanations
against perturbations. In VERIX, ϵ is set to 5% for MNIST and 0.5% for GTSRB.

MNIST GTSRB
size time robust wrt # perturbations size time robust wrt # perturbations

VERIX
sensitivity 180.6 174.77 100% 357.0 853.91 100%

random 294.2 157.47 100% 383.5 814.18 100%

Anchors 494.9 13.46
10 100 500 1000

557.7 26.15
10 100 500 1000

85% 52% 40% 37% 72% 23% 16% 15%

LIME 432.8 9.03 – 452.9 7.85 –

(a) 3.94 (3.91) m (b) 5.09 (4.97) m (c) 3.32 (3.38) m (d) 1.75 (1.55) m (e) 1.58 (1.60) m (f) 3.88 (4.07) m

Figure 8: VERIX applied to the TaxiNet dataset – each column includes a sampled camera view (top),
its VERIX explanation (bottom), and the cross-track estimate of the form “actual (estimate) meters”.

takes much longer (our limitation) to perform the computation necessary to ensure formal guarantees
– this thus provides a trade-off between time and quality. Table 2 also shows that sensitivity traversal
produces significantly smaller sizes than its random counterpart with only a modest overhead in time.

4.5 Deployment in vision-based autonomous aircraft taxiing

Figure 9: An autonomous aircraft taxi-
ing scenario [29]. Pictures taken from
the camera fixed on the right wing are
cropped (red box) and downsampled.

We also applied VERIX to the real-world safety-critical
aircraft taxiing scenario [29] shown in Figure 9. The
vision-based autonomous taxiing system needs to make
sure the aircraft stays on the taxiway utilizing only pictures
taken from the camera on the right wing. The task is to
evaluate the cross-track position of the aircraft so that a
controller can adjust its position accordingly. To achieve
this, a regression model is used that takes a picture as
input and produces an estimate of the current position.
A preprocessing step crops out the sky and aircraft nose,
keeping the crucial taxiway region (in the red box). This is
then downsampled into a gray-scale image of size 27× 54
pixels. We label each image with its corresponding lateral
distance to the runway centerline together with the taxiway
heading angle. We trained a fully-connected regression network on this dataset, referred to as the
TaxiNet model (Appendix D.3, Table 10), to predict the aircraft’s cross-track distance.

Figure 8 exhibits VERIX applied to the TaxiNet dataset, including a variety of taxiway images with
different heading angles and number of lanes. For each taxiway, we show its VERIX explanation
accompanied by the cross-track estimate. We observe that the model is capable of detecting the more
remote line – its contour is clearly marked in green. Meanwhile, the model is mainly focused on the
centerline (especially in Figures 8b, 8d, 8e, and 8f), which makes sense as it needs to measure how
far the aircraft has deviated from the center. Interestingly, while we intuitively might assume that
the model would focus on the white lanes and discard the rest, VERIX shows that the bottom middle
region is also crucial to the explanation (e.g., as shown in Figures 8a and 8c). This is because the
model must take into account the presence and absence of the centerline. This is in fact in consistent
with our observations about the black background in MNIST images (Figure 1). We used ϵ = 5%
for these explanations, which suggests that for modest perturbations (e.g., brightness change due
to different weather conditions) the predicted cross-track estimate will remain within an acceptable
discrepancy, and taxiing will not be compromised.

9

Table 3: Complete vs. incomplete verification, showing average explanation size (number of pixels)
and generation time (seconds). As in Table 2, ϵ is set to 5% for MNIST and 0.5% for GTSRB.

MNIST GTSRB
complete incomplete complete incomplete

size time size time size time size time

VERIX
sensitivity 180.6 174.77 330.8 106.11 357.0 853.91 385.2 858.39

random 294.2 157.47 467.4 100.19 383.5 814.18 400.2 816.38

4.6 Using sound but incomplete analysis as the CHECK sub-procedure

We also evaluate using sound but incomplete analysis, such as DeepPoly [46], as the CHECK sub-
procedure of Algorithm 1. In Table 3, we report the quantitative comparison.

We observe that, in general, explanations are larger when using incomplete analysis, but have shorter
generation times. In other words, there is a trade-off between complete and incomplete analyses with
respect to explanation size and generation time. This makes sense as the DeepPoly analysis deploys
bound propagation without complete search, so when the verifier returns Unknown on a certain feature
(Line 10 of Algorithm 1), it is unknown whether perturbing this feature (together with the current
irrelevant set B) can or cannot change the model’s prediction. Therefore, such features are put into
the explanation set A, as only ϵ-robust features are put into the irrelevant set B. This results in larger
explanations. We re-emphasize that such explanations are no longer locally minimal, but they are still
sound as ϵ-perturbations on the irrelevant features will definitely not alter the prediction. Another
observation is that on MNIST, the discrepancy between explanations (size and time) from complete
and incomplete verifiers is more pronounced than the discrepancy on GTSRB. This is because here
we set ϵ to 5% for MNIST and to 0.5% for GTSRB. So when generating explanations on MNIST,
complete search is often required for a precise answer due to the larger ϵ value, whereas on GTSRB,
bound propagation is often enough due to the small ϵ, and thus complete search is not always needed.

Due to space limitations, additional analyses of runtime performance and scalability for both complete
and incomplete verifiers are included in Appendix B.

5 Related work

Earlier work on formal explanations [40] has the following limitations. First, in terms of scala-
bility, they can only handle simple machine learning models such as naive Bayes classifiers [39],
random forests [28, 6], decision trees [27], and boosted trees [24, 25]. In particular, [26] addresses
networks but with very simple structure (e.g., one hidden layer of 15 or 20 neurons to distinguish
two MNIST digits). In contrast, VERIX works with models applicable to real-world safety-critical
scenarios. Second, the size of explanations can be unnecessarily large. As a workaround, approximate
explanations [52, 53] are proposed as a generalization to provide probabilistic (thus compromised)
guarantees of prediction invariance. VERIX, by using feature-level sensitivity ranking, produces
reasonably-sized explanations with rigorous guarantees. Third, these formal explanations allow any
possible input in feature space, which is not necessary or realistic. For this, [33] brings in bounded
perturbations for NLP models but their k-NN box closure essentially chooses a finite set of the k
closest tokens for each word so the perturbation space is intrinsically discrete. In other words, their
method will not scale to our high-dimensional image inputs with infinite perturbations. One the other
hand, those model-agnostic feature selection methods such as Anchors [43] and LIME [42] can work
with large networks, however, they cannot provide strong guarantees like our approach can. A brief
survey of work in the general area of neural network verification appears in Appendix C.

6 Conclusions and future work

We have presented the VERIX framework for computing optimal robust explanations and counterfac-
tuals along the decision boundary. Our approach provides provable guarantees against infinite and
continuous perturbations. A possible future direction is generalizing to other crucial properties such
as fairness. Recall the diagnosis model in Section 1; our approach can discover potential bias (if
it exists) by including skin tones (“Fitzpatrick I-II, III-IV, V-VI” [19]) in the produced explanation;
then, a dermatologist could better interpret whether the model is producing a fair and unbiased result.

10

Acknowledgments

This work was supported in part by NSF grant 2211505, the Stanford Center for AI Safety, and the
Stanford Center for Automated Reasoning.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization and abstrac-
tion: a synergistic approach for analyzing neural network robustness. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
731–744, 2019.

[3] Stanley Bak, Changliu Liu, Taylor T. Johnson, Christopher Brix, and Mark Müller. The 3rd
international verification of neural networks competition (vnn-comp), 2022. https://sites.
google.com/view/vnn2022.

[4] Shahaf Bassan and Guy Katz. Towards formal approximated minimal explanations of neural
networks. arXiv preprint arXiv:2210.13915, 2022.

[5] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener.
Efficient verification of relu-based neural networks via dependency analysis. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 3291–3299, 2020.

[6] Ryma Boumazouza, Fahima Cheikh-Alili, Bertrand Mazure, and Karim Tabia. Asteryx: A
model-agnostic sat-based approach for symbolic and score-based explanations. In Proceedings
of the 30th ACM International Conference on Information & Knowledge Management, pages
120–129, 2021.

[7] Rudy Bunel, Ilker Turkaslan, Philip HS Torr, M Pawan Kumar, Jingyue Lu, and Pushmeet
Kohli. Branch and bound for piecewise linear neural network verification. Journal of Machine
Learning Research, 21:1–39, 2020.

[8] John W Chinneck and Erik W Dravnieks. Locating minimal infeasible constraint sets in linear
programs. ORSA Journal on Computing, 3(2):157–168, 1991.

[9] François Chollet et al. Keras. https://keras.io, 2015.

[10] Roxana Daneshjou, Mert Yuksekgonul, Zhuo Ran Cai, Roberto Novoa, and James Y Zou.
Skincon: A skin disease dataset densely annotated by domain experts for fine-grained debugging
and analysis. Advances in Neural Information Processing Systems, 35:18157–18167, 2022.

[11] Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. In Proceedings of the
24th European Conference on Artificial Intelligence, 2020.

[12] Sumanth Dathathri, Sicun Gao, and Richard M Murray. Inverse abstraction of neural networks
using symbolic interpolation. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 3437–3444, 2019.

[13] Alessandro De Palma, Harkirat S Behl, Rudy Bunel, Philip Torr, and M Pawan Kumar. Scaling
the convex barrier with active sets. In International Conference on Learning Representations,
2021.

11

https://sites.google.com/view/vnn2022
https://sites.google.com/view/vnn2022
https://keras.io

[14] Dimitar Iliev Dimitrov, Gagandeep Singh, Timon Gehr, and Martin Vechev. Provably robust
adversarial examples. In International Conference on Learning Representations (ICLR 2022).
OpenReview, 2022.

[15] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
International Symposium on Automated Technology for Verification and Analysis, pages 269–
286. Springer, 2017.

[16] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete
verification via multi-neuron relaxation guided branch-and-bound. In International Conference
on Learning Representations, 2022.

[17] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. AI2: safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2018.

[18] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

[19] Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek,
and Omar Badri. Evaluating deep neural networks trained on clinical images in dermatology
with the fitzpatrick 17k dataset. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1820–1828, 2021.

[20] Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and
benchmarking. Data Mining and Knowledge Discovery, pages 1–55, 2022.

[21] Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive
refinement and adversarial search. In ECAI 2020, pages 2513–2520. IOS Press, 2020.

[22] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo,
Min Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability. Computer Science
Review, 37:100270, 2020.

[23] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In International conference on computer aided verification, pages 3–29.
Springer, 2017.

[24] Alexey Ignatiev. Towards trustable explainable ai. In Proceedings of the Twenty-Ninth In-
ternational Conference on International Joint Conferences on Artificial Intelligence, pages
5154–5158, 2020.

[25] Alexey Ignatiev, Yacine Izza, Peter J Stuckey, and Joao Marques-Silva. Using maxsat for
efficient explanations of tree ensembles. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 3776–3785, 2022.

[26] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for
machine learning models. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 1511–1519, 2019.

[27] Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On tackling explanation redundancy in
decision trees. J. Artif. Intell. Res., 75:261–321, 2022.

[28] Yacine Izza and Joao Marques-Silva. On explaining random forests with sat. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 2584–2591. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. Main Track.

[29] Kyle D Julian, Ritchie Lee, and Mykel J Kochenderfer. Validation of image-based neural
network controllers through adaptive stress testing. In 2020 IEEE 23rd international conference
on intelligent transportation systems (ITSC), pages 1–7. IEEE, 2020.

12

[30] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

[31] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The marabou framework
for verification and analysis of deep neural networks. In International Conference on Computer
Aided Verification, pages 443–452, 2019.

[32] Haitham Khedr, James Ferlez, and Yasser Shoukry. Peregrinn: Penalized-relaxation greedy
neural network verifier. In International Conference on Computer Aided Verification, pages
287–300. Springer, 2021.

[33] Emanuele La Malfa, Rhiannon Michelmore, Agnieszka M. Zbrzezny, Nicola Paoletti, and
Marta Kwiatkowska. On guaranteed optimal robust explanations for nlp models. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 2658–2665. International Joint Conferences on Artificial Intelligence
Organization, 8 2021.

[34] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[35] Mark H Liffiton and Karem A Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40:1–33, 2008.

[36] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J
Kochenderfer, et al. Algorithms for verifying deep neural networks. Foundations and Trends®
in Optimization, 4(3-4):244–404, 2021.

[37] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[38] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
pages 4768–4777, 2017.

[39] Joao Marques-Silva, Thomas Gerspacher, Martin C Cooper, Alexey Ignatiev, and Nina Naro-
dytska. Explaining naive bayes and other linear classifiers with polynomial time and delay. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
pages 20590–20600, 2020.

[40] Joao Marques-Silva and Alexey Ignatiev. Delivering trustworthy ai through formal xai. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 3806–3814, 2022.

[41] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Prima: general and precise neural network certification via scalable convex hull approximations.
Proceedings of the ACM on Programming Languages, 6(POPL):1–33, 2022.

[42] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?” explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: high-precision model-
agnostic explanations. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, pages 1527–1535,
2018.

[44] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta
Kwiatkowska. Global robustness evaluation of deep neural networks with provable guar-
antees for the Hamming distance. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pages 5944–5952, 7 2019.

13

[45] Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining bayesian
network classifiers. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 5103–5111, 2018.

[46] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–
30, 2019.

[47] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,
32:323–332, 2012.

[48] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. In International Conference on Learning Representations, 2019.

[49] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T Johnson. Verification of deep
convolutional neural networks using imagestars. In International Conference on Computer
Aided Verification, pages 18–42. Springer, 2020.

[50] Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan E. Hines, John P. Dickerson, and Chirag
Shah. Counterfactual explanations and algorithmic recourses for machine learning: A review.
arXiv preprint arXiv:2010.10596, 2020.

[51] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without open-
ing the black box: Automated decisions and the gdpr. Harvard Journal of Law & Technology,
31(2):2018, 2017.

[52] Stephan Waeldchen, Jan Macdonald, Sascha Hauch, and Gitta Kutyniok. The computational
complexity of understanding binary classifier decisions. Journal of Artificial Intelligence
Research, 70:351–387, 2021.

[53] Eric Wang, Pasha Khosravi, and Guy Van den Broeck. Probabilistic sufficient explanations.
In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence, IJCAI-21, pages 3082–3088. International Joint Conferences on Artificial
Intelligence Organization, 8 2021. Main Track.

[54] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal
safety analysis of neural networks. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 6369–6379, 2018.

[55] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security
analysis of neural networks using symbolic intervals. In Proceedings of the 27th USENIX
Conference on Security Symposium, pages 1599–1614, 2018.

[56] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In Proceedings of the 35th Conference on Neural Information Processing
Systems (NeurIPS), volume 34, pages 29909–29921, 2021.

[57] Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. Scalable
verification of GNN-based job schedulers. Proc. ACM Program. Lang., 6(OOPSLA2), oct 2022.

[58] Haoze Wu, Alex Ozdemir, Aleksandar Zeljić, Kyle Julian, Ahmed Irfan, Divya Gopinath,
Sadjad Fouladi, Guy Katz, Corina Pasareanu, and Clark Barrett. Parallelization techniques for
verifying neural networks. In 2020 Formal Methods in Computer Aided Design (FMCAD),
pages 128–137. IEEE, 2020.

[59] Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George Pappas,
Hamed Hassani, Corina Pasareanu, and Clark Barrett. Toward certified robustness against real-
world distribution shifts. In IEEE Conference on Secure and Trustworthy Machine Learning,
2023.

14

[60] Haoze Wu, Aleksandar Zeljić, Guy Katz, and Clark Barrett. Efficient neural network analysis
with sum-of-infeasibilities. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 143–163. Springer, 2022.

[61] Min Wu and Marta Kwiatkowska. Robustness guarantees for deep neural networks on videos.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 311–320, 2020.

[62] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. A game-
based approximate verification of deep neural networks with provable guarantees. Theoretical
Computer Science, 807:298–329, 2020.

[63] Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in healthcare.
Nature biomedical engineering, 2(10):719–731, 2018.

[64] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[65] Tom Zelazny, Haoze Wu, Clark Barrett, and Guy Katz. On optimizing back-substitution methods
for neural network verification. In Formal Methods in Computer Aided Design (FMCAD), pages
17–26. IEEE, 2022.

[66] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pages 4944–4953, 2018.

[67] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. Interpreting neural network judgments
via minimal, stable, and symbolic corrections. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 4879–4890, 2018.

15

A Proofs for Section 3.2

We present rigorous proofs for Lemma 3.2, Theorems 3.3 and 3.4 in Section 3.2, justifying the
soundness and optimality of our VERIX approach. For better readability, we repeat each lemma and
theorem before their corresponding proofs.

A.1 Proof for Lemma 3.2

Lemma 3.2. If the CHECK sub-procedure is sound, then, at the end of each for-loop iteration
(Lines 7–12) in Algorithm 1, the irrelevant set of indices B satisfies

(
∥∥χ̂B − χB

∥∥
p
≤ ϵ) ∧ (χ̂Θ\B = χΘ\B) ⇒ |ĉ− c| ≤ δ. (6)

Proof. Recall that the sub-procedure CHECK is sound means the deployed automated reasoner returns
True only if the specification actually holds. That is, from Line 10 we have

ϕ ⇒ |ĉ− c| ≤ δ

holds on network f . Simultaneously, from Lines 8 and 9 we know that, to check the current feature
χi of the traversing order π, the pre-condition ϕ contains

ϕ 7→ (
∥∥∥χ̂B+

− χB+
∥∥∥
p
≤ ϵ) ∧ (χ̂Θ\B+

= χΘ\B+

).

Specifically, we prove this through induction on the number of iteration i. When i is 0, pre-condition
ϕ is initialized as ⊤ and the specification holds trivially. In the inductive case, suppose CHECK returns
False, then the set B is unchanged as in Line 12. Otherwise, if CHECK returns True, which makes
HOLD become True, then the current feature index i is added into the irrelevant set of feature indices
B as in Line 11, with such satisfying specification

(
∥∥∥χ̂B+

− χB+
∥∥∥
p
≤ ϵ) ∧ (χ̂Θ\B+

= χΘ\B+

) ⇒ |ĉ− c| ≤ δ.

As the iteration proceeds, each time CHECK returns True, the irrelevant set B is augmented with the
current feature index i, and the specification always holds as it is explicitly checked by the CHECK
reasoner.

A.2 Proof for Theorem 3.3

Theorem 3.3 (Soundness). If the CHECK sub-procedure is sound, then the value xA returned by
Algorithm 1 is a robust explanation – this satisfies Equation (1) of Definition 2.1.

Proof. The for-loop from Line 6 indicates that Algorithm 1 goes through every each feature xi in
input x by traversing the set of indices Θ(x). Line 5 means that π is one such instance of ordered
traversal. When the iteration ends, all the indices in Θ(x) are either put into the irrelevant set of
indices by B 7→ B+ as in Line 11 or the explanation index set by A 7→ A ∪ {i} as in Line 12. That
is, A and B are two disjoint index sets forming Θ(x); in other words, B = Θ(x) \A. Therefore,
combined with Lemma 3.2, when the reasoner CHECK is sound, once iteration finishes we have the
following specification

(
∥∥χ̂B − χB

∥∥
p
≤ ϵ) ∧ (χ̂Θ\B = χΘ\B) ⇒ |ĉ− c| ≤ δ. (7)

holds on network f , where χ̂B is the variable representing all the possible assignments of irrelevant
features xB, i.e., ∀ xB′

, and the pre-condition χ̂Θ\B = χΘ\B fixes the values of the explanation
features of an instantiated input x. Meanwhile, the post-condition |ĉ− c| ≤ δ where c 7→ f(x) as in
Line 3 ensures prediction invariance such that δ is 0 for classification and otherwise a pre-defined
allowable amount of perturbation for regression. To this end, for some specific input x we have the
following property

∀ xB′
. (
∥∥∥xB′

− xB
∥∥∥
p
≤ ϵ) ⇒ |f(x′)− f(x)| ≤ δ. (8)

holds. Here we prove by construction. According to Equation (1) of Definition 2.1, if the irrelevant
features xB satisfy the above property, then we call the rest features xA a robust explanation with
respect to network f and input x.

16

A.3 Proof for Theorem 3.4

Theorem 3.4 (Optimality). If the CHECK sub-procedure is sound and complete, then the robust
explanation xA returned by Algorithm 1 is optimal – this satisfies Equation (2) of Definition 2.1.

Proof. We prove this by contradiction. From Equation (2) of Definition 2.1, we know that explanation
xA is optimal if, for any feature χ in the explanation, there always exists an ϵ-perturbation on χ and
the irrelevant features xB such that the prediction alters. Let us suppose xA is not optimal, then there
exists a feature χ in xA such that no matter how to manipulate this feature χ into χ′ and the irrelevant
features xB into xB′

, the prediction always remains the same. That is,

∃ χ ∈ xA. ∀ xB′
, χ′.

∥∥∥(xB ⊕ χ)− (xB′
⊕ χ′)

∥∥∥
p
≤ ϵ ⇒ |f(x)− f(x′)| ≤ δ, (9)

where ⊕ denotes concatenation of two features. When we pass this input x and network f into the
VERIX framework, suppose Algorithm 1 examines this feature χ at the i-th iteration, then as in
Line 7, the current irrelevant set of indices is B+ 7→ B∪ {i}, and accordingly the pre-conditions are

ϕ 7→ (
∥∥∥χ̂B∪{i} − χB∪{i}

∥∥∥
p
≤ ϵ) ∧ (χ̂Θ\(B∪{i}) = χΘ\(B∪{i})). (10)

Because χ̂B∪{i} is the variable representing all the possible assignments of irrelevant features xB

and the i-th feature χ, i.e., ∀ xB′
, χ′, and meanwhile

χ̂Θ\(B∪{i}) = χΘ\(B∪{i}) (11)

indicates that the other features are fixed with specific values of this x. Thus, with c 7→ f(x) in
Line 3, we have the specification ϕ ⇒ |ĉ− c| ≤ δ holds on input x and network f . Therefore, if the
reasoner CHECK is sound and complete,

CHECK(f, ϕ ⇒ |ĉ− c| ≤ δ) (12)

will always return True. Line 10 assigns True to HOLD, and index i is then put into the irrelevant
set B thus i-th feature χ in the irrelevant features xB. However, based on the assumption, feature
χ is in explanation xA, so χ is in xA and xB simultaneously – a contradiction occurs. Therefore,
Theorem 3.4 holds.

17

B Runtime performance and scalability

B.1 Runtime performance when using sound and complete verifiers

Table 4: Average execution time (seconds) of CHECK and VERIX for complete verification. In
particular, magnitude ϵ is set to 3% across the Dense, Dense (large), CNN models and the MNIST,
TaxiNet, GTSRB datasets for sensible comparison.

Dense Dense (large) CNN

CHECK VERIX CHECK VERIX CHECK VERIX
MNIST (28× 28) 0.013 160.59 0.055 615.85 0.484 4956.91

TaxiNet (27× 54) 0.020 114.69 0.085 386.62 2.609 8814.85

GTSRB (32× 32× 3) 0.091 675.04 0.257 1829.91 1.574 12935.27

We analyze the empirical time complexity of our VERIX approach in Table 4. The model structures
are described in Appendix D.4. Typically, the individual pixel checks (CHECK) return a definitive
answer (True or False) within a second on dense models and in a few seconds on convolutional
networks. For image benchmarks such as MNIST and GTSRB, larger inputs or more complicated
models result in longer (pixel- and image-level) execution times for generating explanations. As for
TaxiNet as a regression task, while its pixel-level check takes longer than that of MNIST, it is actually
faster in total time on dense models because TaxiNet does not need to check against other labels.

B.2 Scalability on more complex models using sound but incomplete analysis

Table 5: Average execution time (seconds) of CHECK and VERIX for incomplete verification. Magni-
tude ϵ is 3% for both MNIST-sota and GTSRB-sota models.

ReLU # MaxPool CHECK VERIX
MNIST-sota 50960 5632 2.31 1841.25

GTSRB-sota 106416 5632 8.54 8770.15

Figure 10: Sound but incomplete CHECK procedure DeepPoly contributes to robust but not optimal
(larger than necessary) VERIX explanations for the convolutional network MNIST-sota.

The scalability of VERIX can be improved if we perform incomplete verification, for which we
re-emphasize that the soundness of the resulting explanations is not undermined though optimality is
no longer guaranteed, i.e., they may be larger than necessary. To illustrate, we deploy the incomplete
DeepPoly [46] analysis (implemented in Marabou) to perform the CHECK sub-procedure. Table 5
reports the runtime performance of VERIX when using incomplete verification on state-of-the-art
network architectures with hundreds of thousands of neurons. See model structures in Appendix D,
Tables 7 and 9. Experiments were performed on a cluster equipped with Intel Xeon E5-2637 v4
CPUs running Ubuntu 16.04. We set a time limit of 300 seconds for each CHECK call. Moreover, in
Figure 10, we include some example explanations for the convolutional model MNIST-sota when
using the sound but incomplete CHECK procedure DeepPoly. We can see that they indeed appear
larger than the optimal explanations when the complete Marabou reasoner is used. We remark that, as
soundness of the explanations is not undermined, they still provide guarantees against perturbations
on the irrelevant pixels. Interestingly, MNIST explanations on convolutional models tend to be less
scattered than these on fully-connected models, as shown in Figures 4b and 6b, due to the effect of
convolutions. In general, the scalability of VERIX will grow with that of verification tools, which has
improved significantly in the past several years as demonstrated by the results from the Verification
of Neural Networks Competitions (VNN-COMP) [3].

18

C Supplementary related work and discussion

C.1 Related work (cont.)

Continued from Section 5, our work expands on [33] in four important ways: (i) we focus on ϵ-ball
perturbations and perception models, whose characteristics and challenges are different from those of
NLP models; (ii) whereas [33] simply points to existing work on hitting sets and minimum satisfying
assignments for computing optimal robust explanations, we provide a detailed algorithm with several
illustrative examples, and include a concrete traversal heuristic that performs well in practice; we
believe these details are useful for anyone wanting to produce a working implementation; (iii) we note
for the first time the relationship between optimal robust explanations and counterfactuals; and (iv) we
provide an extensive evaluation on a variety of perception models. We also note that in some aspects,
our work is more limited: in particular, we use a simpler definition of optimal robust explanation
(without a cost function) as our algorithm is specialized for the case of finding explanations with the
fewest features.

We discuss some further related work in the formal verification community that are somewhat centered
around interpretability or computing minimal explanations. [14] uses formal techniques to identify
input regions around an adversarial example such that all points in those regions are also guaranteed to
be adversarial. Their work improves upon previous work on identifying empirically robust adversarial
regions, where points in the regions are empirically likely to be adversarial. Analogously, our work
improves upon informal explanation techniques like Anchors. [12] is similar to [14] in that it also
computes pre-images of neural networks that lead to bad outputs. In contrast, we compute a subset of
input features that preserves the neural network output. [67] is more akin to our work, with subtle yet
important differences. Their goal is to identify a minimal subset of input features that when corrected,
changes a network’s prediction. In contrast, our goal is to find a minimal subset of input features
that when fixed, preserves a network’s prediction. These two goals are related but not equivalent:
given a correction set found by [67], a sound but non-minimal VERIX explanation can be obtained
by fixing all features not in the correction set along with one of the features in the correction set.
Symmetrically, given a VERIX explanation, a sound but non-minimal correction can be obtained by
perturbing all the features not in the explanation along with one of the features in the explanation.
This relation is analogous to that between minimal correction sets and minimal unsatisfiable cores in
constraint satisfaction (e.g., [35]). Both are considered standard explanation strategies in that field.

C.2 Verification of neural networks

Researchers have investigated how automated reasoning can aid verification of neural networks with
respect to formally specified properties [36, 22], by utilizing reasoners based on abstraction [66, 46, 17,
49, 41, 54, 55, 2, 65, 57, 59] and search [15, 30, 31, 23, 56, 48, 21, 7, 13, 44, 62, 61, 5, 32, 16, 58, 60].
Those approaches mainly focus on verifying whether a network satisfies a certain pre-defined property
(e.g., robustness), i.e., either prove the property holds or disprove it with a counterexample. However,
this does not shed light on why a network makes a specific prediction. In this paper, we take a step
further, repurposing those verification engines as sub-routines to inspect the decision-making process
of a model, thereby explaining its behavior (through the presence or absence of certain input features).
The hope is that these explanations can help humans better interpret machine learning models and
thus facilitate appropriate deployment.

C.3 Trustworthiness of the explanations

For a fixed model f and a fixed input x, a unique traversal order passed into Algorithm 1 contributes
to a unique explanation. That said, different traversals can produce different explanations with various
sizes. A natural question then is how to evaluate which of these explanations are more trustworthy
than others? Following a suggestion by an anonymous reviewer, we propose that the size of an
explanation can be used as a rough proxy for its trustworthiness, since our experiments show that
explanations from sensitivity traversals are much smaller and more sensible than those explanations
from random traversals. This also suggests that the global cardinality-minimal explanation might be
more trustworthy than its locally minimal counterparts. However, as mentioned above, computing a
globally minimal explanation is extremely expensive computationally. We view the exploration of
better ways to approach globally minimum explanations as a promising direction for future research.

19

D Model specifications

Apart from those experimental settings in Section 4, we include detailed model specifications for
reproducibility and reference purposes. Although evaluated on the MNIST [34], GTSRB [47], and
TaxiNet [29] image datasets – MNIST and GTSRB in classification and TaxiNet in regression, our
VERIX framework can be generalized to other machine learning applications such as natural language
processing. As for the sub-procedure CHECK of Algorithm 1, while VERIX can potentially incor-
porate existing automated reasoners, we deploy the neural network verification tool Marabou [31].
While it supports various model formats such as .pb from TensorFlow [1] and .h5 from Keras [9], we
employ the cross platform .onnx format for better Python API support. When importing a model with
softmax as the final activation function, we remark that, for the problem to be decidable, one needs
to specify the outputName parameter of the read_onnx function as the pre-softmax logits. As a
workaround for this, one can also train the model without softmax in the last layer and instead use
the SoftmaxLoss loss function from the tensorflow_ranking package. Either way, VERIX produces
consistent results.

D.1 MNIST

For MNIST, we train a fully-connected feed-forward neural network with 3 dense layers activated
with ReLU (first 2 layers) and softmax (last classification layer) functions as in Table 6, achieving
92.26% accuracy. While the MNIST dataset can easily be trained with accuracy as high as 99.99%,
we are more interested in whether a very simple model as such can extract sensible explanations – the
answer is yes. Meanwhile, we also train several more complicated MNIST models, and observe that
their optimal explanations share a common phenomenon such that they are relatively more scattered
around the background compared to the other datasets. This cross-model observation indicates
that MNIST models need to check both the presence and absence of white pixels to recognize the
handwritten digits correctly. Besides, to show the scalability of VERIX, we also deploy incomplete
verification on state-of-the-art model structure as in Table 7.

D.2 GTSRB

As for the GTSRB dataset, since it is not as identically distributed as MNIST, to avoid potential
distribution shift, instead of training a model out of the original 43 categories, we focus on the top
first 10 categories with highest occurrence in the training set. This allows us to obtain an appropriate
model with high accuracy – the convolutional model we train as in Table 8 achieves a test accuracy
of 93.83%. It is worth mentioning that, our convolutional model is much more complicated than the
simple dense model in [26], which only contains one hidden layer of 15 or 20 neurons trained to
distinguish two MNIST digits. Also, as shown in Table 5 of Appendix B, we report results on the
state-of-the-art GTSRB classifier in Table 9.

D.3 TaxiNet

Apart from the classification tasks performed on those standard image recognition benchmarks, our
VERIX approach can also tackle regression models, applicable to real-world safety-critical domains.
In this vision-based autonomous aircraft taxiing scenario [29] of Figure 9, we train the regression
model in Table 10 to produce an estimate of the cross-track distance (in meters) from the ownship to
the taxiway centerline. The TaxiNet model has a mean absolute error of 0.824 on the test set, with no
activation function in the last output layer.

D.4 Dense, Dense (large), and CNN

In Appendix B, we analyze execution time of VERIX on three models with increasing complexity:
Dense, Dense (large), and CNN as in Tables 11, 12, and 13, respectively. To enable a fair and
sensible comparison, those three models are used across the MNIST, TaxiNet, and GTSRB datasets
with only necessary adjustments to accommodate each task. For example, in all three models h×w×c
denotes different input size height× width× channel for each dataset. For the activation function
of the last layer, softmax is used for MNIST and GTSRB while TaxiNet as a regression task needs no
such activation. Finally, TaxiNet deploys he_uniform as the kernel_initializer parameter in the
intermediate dense and convolutional layers for task specific reason.

20

Table 6: Structure for the MNIST classifier.

Layer Type Parameter Activation
Input 28× 28× 1 –

Flatten – –
Fully Connected 10 ReLU

Fully Connected 10 ReLU

Fully Connected 10 softmax

Table 7: Structure for the MNIST-sota classifier.

Type Parameter Activation
Input 28× 28× 1 –

Convolution 3× 3× 32 ReLU

Convolution 3× 3× 32 ReLU

MaxPooling 2× 2 –
Convolution 3× 3× 64 ReLU

Convolution 3× 3× 64 ReLU

MaxPooling 2× 2 –
Flatten – –

Fully Connected 200 ReLU

Dropout 0.5 –
Fully Connected 200 ReLU

Fully Connected 10 softmax

Table 8: Structure for the GTSRB classifier.

Type Parameter Activation
Input 32× 32× 3 –

Convolution 3× 3× 4 (1) –
Convolution 2× 2× 4 (2) –

Fully Connected 20 ReLU

Fully Connected 10 softmax

Table 9: Structure for the GTSRB-sota classifier.

Type Parameter Activation
Input 28× 28× 1 –

Convolution 3× 3× 32 ReLU

Convolution 3× 3× 32 ReLU

Convolution 3× 3× 64 ReLU

MaxPooling 2× 2 –
Convolution 3× 3× 64 ReLU

Convolution 3× 3× 64 ReLU

MaxPooling 2× 2 –
Flatten – –

Fully Connected 200 ReLU

Dropout 0.5 –
Fully Connected 200 ReLU

Fully Connected 10 softmax

21

Table 10: Structure for the TaxiNet model.

Type Parameter Activation
Input 27× 54× 1 –

Flatten – –
Fully Connected 20 ReLU

Fully Connected 10 ReLU

Fully Connected 1 –

Table 11: Structure for the Dense model.

Layer Type Parameter Activation
Input h× w× c –

Flatten – –
Fully Connected 10 ReLU

Fully Connected 10 ReLU

Fully Connected 10 / 1 softmax / –

Table 12: Structure for Dense (large).

Layer Type Parameter Activation
Input h× w× c –

Flatten – –
Fully Connected 30 ReLU

Fully Connected 30 ReLU

Fully Connected 10 / 1 softmax / –

Table 13: Structure for the CNN model.

Layer Type Parameter Activation
Input h× w× c –

Convolution 3× 3× 4 –
Convolution 3× 3× 4 –

Fully Connected 20 ReLU

Fully Connected 10 / 1 softmax / –

22

	Introduction
	VeriX: Verified eXplainability
	Optimal robust explanations
	Counterfactuals along decision boundary

	Computing VeriX explanations by constraint solving
	Building optimal robust explanations and counterfactuals iteratively
	Soundness and optimality of explanations
	Feature-level sensitivity traversal

	Experimental results
	Example explanations for image recognition benchmarks
	Visualization of the effect of varying perturbation magnitude
	Sensitivity vs. random traversal to generate explanations
	VeriX vs. existing approaches
	Deployment in vision-based autonomous aircraft taxiing
	Using sound but incomplete analysis as the `3́9`42`"̇613A``45`47`"603Acheck sub-procedure

	Related work
	Conclusions and future work
	Proofs for Section 3.2
	Proof for Lemma 3.2
	Proof for Theorem 3.3
	Proof for Theorem 3.4

	Runtime performance and scalability
	Runtime performance when using sound and complete verifiers
	Scalability on more complex models using sound but incomplete analysis

	Supplementary related work and discussion
	Related work (cont.)
	Verification of neural networks
	Trustworthiness of the explanations

	Model specifications
	MNIST
	GTSRB
	TaxiNet
	Dense, Dense (large), and CNN

