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1 Overview1

We first show more qualitative comparison in Section 2, which is followed by a demonstration of2

additional examples on real-world images and the text-to-3D task in Sections 3 and 4 respectively.3

Furthermore, we present the details of our elevation estimation module in Section 5, training and4

evaluation details in Section 6. We finally show the failure cases and discuss the limitations in5

Section 7. In addition, we offer three HTML files that will be introduced in the following6

sections, showcasing videos of 360◦ meshes. We recommend opening these HTML files using7

Chrome or Firefox browsers, since Safari users may encounter loading issues.8

2 More Qualitative Comparison9

Figure 1: We compare One-2-3-45 with Point-E [7], Shap-E [3], Zero123 (Stable Dreamfusion
version) [4], 3DFuse [10], and RealFusion [6]. In each example, we present both the textured and
textureless meshes. As 3DFuse [10] and RealFusion [6] do not natively support the export of textured
meshes, we showcase the results of volume rendering instead.
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Figure 2: We compare One-2-3-45 with Shap-E [3] on real-world images. In each example, we
present the input image, generated textured and textureless meshes.

In Figure 1, we demonstrate more qualitative comparison on Objaverse [1] and GoogleScannedObjects10

(GSO) [2] datasets. Note that all test shapes are not seen during the training of our 3D reconstruction11

module. See comparison.html for videos of 360◦ meshes.12

3 More Examples on Real-World Images13

In Figure 2, we showcase more examples on real-world images and compare our method with the14

concurrent method Shap-E [3]. The input images are from unsplash.com or captured by ourselves.15

Note that our results exhibit a closer adherence to the input image. See real world.html for videos16

of 360◦ meshes.17
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Figure 3: Text-to-3D: We compare our method against two native text-to-3D approaches Stable
DreamFusion [8] and 3DFuse [10]. To enable text-to-3D, our method first uses a pretrained text-to-
image model DALL-E 2 [9] to generate an image from input text (prompted with “3d model, long
shot”), and then uplifts the image to a 3D textured mesh.

4 More Examples on Text-to-3D18

In Figure 3, we present additional examples for the text-to-3D task. It is evident that existing19

approaches struggle to capture fine-grained details, such as a tree hollow, or achieve compositionality,20

as seen in examples like an orange stool with green legs, a pineapple-shaped Havana hat, or a21

rocking horse chair. In contrast, our method produces superior results that adhere more closely to22

the input text. We hypothesize that controlling such fine-grained attributes in the 3D space using23
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existing optimization strategies is inherently challenging. However, by leveraging established 2D24

text-to-image diffusion models, our method becomes more effective in lifting a single 2D image to a25

corresponding 3D textured mesh. See text to 3d.html for videos of 360◦ meshes.26

5 Details of Elevation Estimation27

To estimate the elevation angle θ of the input image, we first utilize Zero123 [4] to predict four nearby28

views (10 degrees apart) of the input view. With these predicted views, we proceed to enumerate29

all possible elevation angles and compute the re-projection error for each candidate angle. The30

re-projection error assesses the consistency between camera poses and image observations, akin to31

the bundle adjustment module employed in the Structure-from-Motion (SfM) pipeline.32

Specifically, we enumerate all candidate elevation angles in a coarse-to-fine manner. In the coarse33

stage, we enumerate elevation angles with a 10-degree interval. Once we have determined the34

elevation angle e∗ associated with the smallest re-projection error, we proceed to the fine stage. In this35

stage, we enumerate elevation angle candidates ranging from e∗ − 10◦ to e∗ + 10◦ with a 1-degree36

interval. This coarse-to-fine design facilitates rapid estimation, completing the elevation estimation37

module in under 1 second for each shape.38

Given a set of four predicted nearby views, we perform feature matching to identify corresponding39

keypoints across each pair of images (a total of six pairs) using an off-the-shelf module LoFTR [11].40

For each elevation angle candidate, we calculate the camera pose for the input image by employing41

the spherical coordinate system with a radius of 1.2 and an azimuth angle of 0. Note that the azimuth42

angle ϕ and the radius r can be arbitrarily adjusted, resulting in the rotation and scaling of the43

reconstructed object accordingly. Subsequently, we obtain the camera poses for the four predicted44

views by incorporating the specified delta poses.45

Once we have the four posed images, we compute the re-projection error by enumerating triplet46

images. For each triplet of images (a, b, c) sharing a set of keypoints P , we consider each point47

p ∈ P . Utilizing images a and b, we perform triangulation to determine the 3D location of p. We then48

project the 3D point onto the third image c and calculate the reprojection error, which is defined as the49

l1 distance between the reprojected 2D pixel and the estimated keypoint in image c. By enumerating50

all image triplets and their corresponding shared keypoints, we obtain the mean projection error for51

each elevation angle candidate.52

6 Details of Training and Evaluation53

Training We train the reconstruction module using the following loss function:54

L = Lrgb + λ0Ldepth + λ1Leikonal + λ2Lsparsity (1)

where Lrgb represents the l1 loss between the rendered and ground truth color, weighted by the sum of55

accumulated weights; Ldepth corresponds to the l1 loss between the rendered and ground truth depth;56

Leikonal and Lsparsity are the Eikonal and sparsity terms, respectively, following SparseNeuS [5].57

We empirically set the weights as λ0 = 1, λ1 = 0.1, and λ2 = 0.02. For λ2, we adopt a linear58

warm-up strategy following SparseNeuS [5]. To train our reconstruction module, we utilize the LVIS59

subset of the Objaverse [1] dataset, which consists of 46k 3D models across 1,156 categories. The60

reconstruction module is trained for 300k iterations using two A10 GPUs, with the training process61

lasting approximately 6 days. It is important to note that our reconstruction module does not heavily62

rely on large-scale training data, as it primarily leverages local correspondence to infer the geometry,63

which is relatively easier to learn and generalize.64

Evaluation We evaluate all baseline approaches using their official codebase. Since the approaches65

take only a single image as input, the predicted mesh may not have the same scale and transformation66

as the ground-truth mesh. To ensure a fair comparison, we employ the following process to align the67

predicted mesh with the ground-truth mesh. First, we align the up direction for the results generated68

by each approach. Next, for each generated mesh, we perform a linear search over scales and rotation69

angles along the up direction. After applying each pair of scale and z-rotation, we utilize the Iterative70

Closest Point (ICP) algorithm to align the transformed mesh to the ground-truth mesh. Finally, we71

select the mesh with the largest number of inliers as the final alignment. This alignment process72
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Figure 4: Failure cases. Our method relies on Zero123 to generate multi-view images, and we
encounter challenges when Zero123 generates inconsistent results. (a) The input view lacks sufficient
information. (b) The input view contains ambiguous or complicated structures.

helps us establish a consistent reference frame for evaluating the predicted meshes across different73

approaches.74

7 Failure Cases and Limitations75

Our method relies on Zero123 for generating multi-view images, which introduces challenges due76

to its occasional production of inconsistent results. In Figure 4, we present two typical cases that77

exemplify such inconsistencies. The first case involves an input view that lacks sufficient information,78

such as the back view of a fox. In this scenario, Zero123 struggles to generate consistent predictions79

for the invisible regions, such as the face of the fox. As a consequence, our method may encounter80

difficulties in accurately inferring the geometry for those regions. The second case involves an input81

view with ambiguous or complex structures, such as the pulp and peel of a banana. In such situations,82

Zero123’s ability to accurately infer the underlying geometry becomes limited. As a result, our83

method may be affected by the inconsistent predictions generated by Zero123. It is important to84

acknowledge that these limitations arise from the occasional scenarios, and they can impact the85

performance of our method in certain cases. Addressing these challenges and refining the reliability86

of Zero123’s predictions remain areas for further investigation and improvement.87

We have also noticed slight artifacts on the back side of our generated results. As one of the first works88

in combining view-conditioned 2D diffusion models with generalizable multi-view reconstruction,89

we believe that there is still ample room for exploring more advanced reconstruction techniques and90

incorporating additional regularizations. By doing so, we expect to significantly mitigate the minor91

artifacts and further enhance results in the future.92
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