
Roadmap to the appendix602

Appendix A includes omitted material from the Model section from the main text. Appendix B603

includes the proofs omitted from Section 3 (Offline Setting). Appendix C includes the proofs omitted604

from Section 4 (Online Setting). Appendix D includes the equilibrium analysis. A few results from605

prior work that we invoke are in Appendix E.606

A Appendix: Examples for the Model607

Example 1. Let K = 3 and n = 2. Suppose the valuations are v1 = (5, 2) and v2 = (4, 1). If the608

players submit bids b1 = (2, 1) and b2 = (3, 2), the bid are sorted in the order (b2,1, b1,1, b2,2, b1,2).609

Then the allocation is x1 = 1 and x2 = 2.610

Under the K-th price auction, the price is set to p = b2,2 = 2. Then the utilities of the players are611

u1(b) = V1(1)− p = 5− 2 = 3 and u2(b) = V2(2)− 2 · p = (4 + 1)− 2 · 2 = 1.612

Under the (K +1)-st price auction, the price is set to p = b1,2 = 1. Then the utilities of the players613

are u1(b) = V1(1)− p = 5− 1 = 4 and u2(b) = V2(2)− 2 · p = (4 + 1)− 2 · 1 = 3.614

B Appendix: Offline Setting615

In this section we include the proofs omitted from the main text for the offline setting.616

Observation 1 (restated). Player i has an optimum bid vector β = (β1, . . . , βK) ∈ D
K with617

βj ∈ Si for all j ∈ [K].618

Proof. Let c = (c1, . . . , cK) be an arbitrary optimum strategy for player i. Suppose c �∈ SK
i .619

We use c to construct an optimum bid vector β ∈ SK
i as follows. For each j ∈ [K]:620

• If cj ∈ Si, then set βj = cj .621

• Else, set βj = max
{
y ∈ Si | y ≤ cj

}
.622

Then in each round t, player i gets the same allocation when playing β as it does when playing c623

and the others play bt
−i since the ordering of the owners of the bids is the same under (c,bt

−i) as624

it is under (β,bt
−i); moreover, the price weakly decreases in each round t. Thus player i’s utility625

weakly improves. Since c was an optimal strategy for player i, it follows that β is also an optimal626

strategy for player i and, moreover, β ∈ SK
i as required.627

Next we show how to find an optimal bid vector in polynomial time. The proof uses several lemmas,628

which are proved after the theorem.629

Theorem 1 (restated, formal). Suppose we are given a number n of players, number K of units,630

valuation vi of player i, discretization level ε > 0, and bid history H−i = (b1−i, . . . ,b
T
−i) by631

players other than i. Then an optimum bid vector for player i can be computed in polynomial time632

in the input parameters.633

Proof of Theorem 1. Compute the set Si given by equation (1) and the graph Gi from Definition 1.634

The proof has several steps as follows.635

Gi is a DAG. All the edges in Gi flow from the source z− to the nodes from layer 1, then from the636

nodes in layer j to those in layer j+1 (i.e. of the form (zr,j , zs,j+1) for all j ∈ [K−1] and r, s ∈ Si637

with r ≥ s), and finally from all the nodes in layer K to the sink z+. A cycle would require at least638

one back edge, but such edges do not exist.639
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Bijective map between bid vectors and paths from source to sink in Gi. To each bid vector640

β = (β1, . . . , βK) ∈ SK
i , associate the following path in Gi: P (β) =

(
z−, zβ1,1, . . . , zβK ,K , z+

)
.641

We show next the map P is a bijection from the set Si of candidate bid vectors for player i to the642

set of paths from source to sink in Gi. Consider arbitrary bid vector β = (β1, . . . , βK) ∈ SK
i . By643

definition of a bid vector, we have β1 ≥ . . . ≥ βK . Then P (β) = (z−, zβ1,1, . . . , zβK ,K , z+) is a644

valid path in Gi.645

Conversely, since Gi has an edge (zr,j , zs,j+1) if and only if r ≥ s, each path from source to sink in646

Gi has the form Q = (z−, zβ1,1, . . . , zβK ,K , z+) for some numbers β1, . . . , βK ∈ Si, and so it can647

be mapped to bid vector β = (β1, . . . , βK). Thus Q = P (β), and so P is a bijective map.648

Utility of player i and weight of a path of length K in Gi. Let β = (β1, . . . , βK) ∈ SK
i .649

Additionally, let βK+1 = 0. The total utility of player i when bidding β in each round t while the650

others bid bt
−i is Ui(β) =

∑T
t=1 ui(h

t), where ht = (β,bt
−i) ∀t ∈ [T ] .651

Let P (β) = (z−, zβ1,1, . . . , zβK ,K , z+) be the path in Gi corresponding to β. The edges of the path652

P (β) are (z−, zβ1,1), (zβ1,1, zβ2,2), . . . , (zβK−1,K−1, zβK ,K), (zβK ,K , z+), while the weight of the653

path is equal to the sum of its edges. Summing equation (2), which gives the weight of an edge,654

across all edges of P (β) implies that the weight of path P (β) is equal to655

w(P (β)) =

K∑
j=1

T∑
t=1

[
�{xi(ht)≥j}(vi,j − βj) + j

(
�{xi(ht)>j}(βj − βj+1) + �{xi(ht)=j}(βj − p(ht))

)]
.

(7)

We claim that Ui(β) = w(P (β)). The high level idea is to rewrite the utility to “spread it” across656

the edges of the path corresponding to bid profile β. Towards this end, recall the utility of player i657

at strategy profile ht = (β,bt
−i) is658

ui(h
t) =

K∑
j=1

�{xi(ht)≥j}(vi,j − p(ht)) . (8)

By Lemma 1, equation (8) is equivalent to659

ui(h
t) =

K∑
j=1

[
�{xi(ht)≥j}(vi,j − βj) + j

(
�{xi(ht)>j}(βj − βj+1) + �{xi(ht)=j}(βj − p(ht))

)]
.

(9)

Summing ui(h
t) over all rounds t gives660

Ui(β) =

T∑
t=1

ui(h
t)

=

T∑
t=1

K∑
j=1

[
�{xi(ht)≥j}(vi,j − βj) + j

(
�{xi(ht)>j}(βj − βj+1) + �{xi(ht)=j}(βj − p(ht))

)]
(By equation (9))

=

K∑
j=1

T∑
t=1

[
�{xi(ht)≥j}(vi,j − βj) + j

(
�{xi(ht)>j}(βj − βj+1) + �{xi(ht)=j}(βj − p(ht))

)]
(Swapping the order of summation)

= w(P (β)) . (By equation (7))

Thus the weight of the path P (β) is equal to the utility of player i from bidding β. The implication661

is that to find an optimum bid vector, it suffices to compute a maximum weight path in Gi.662
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Computing a maximum weight path in Gi. The graph Gi is a DAG with a number of vertices of663

Gi that is polynomial in the input parameters. By Lemma 2, the edge weights of Gi can be computed664

in polynomial time.665

A maximum weight path in a DAG can be computed in polynomial time by changing every weight666

to its negation to obtain a graph −G. Since G has no cycles, the graph −G has no negative cycles.667

Thus running a shortest path algorithm on −G will yield a longest (i.e. maximum weight) path on668

G in polynomial time, as required.669

The unique bid vector corresponding to the maximum weight path found can then be recovered in670

time O(K) and it represents an optimum bid vector for player i.671

Lemma 1. In the setting of Theorem 1, for each bid profile β ∈ SK
i and round t ∈ [T ], define672

ht = (β,bt
−i). Then we have673

ui(h
t) =

K∑
j=1

[
�{xi(ht)≥j}(vi,j − βj) + j

(
�{xi(ht)>j}(βj − βj+1) + �{xi(ht)=j}(βj − p(ht))

)]
.

(10)

Proof. Given bid profile β = (β1, . . . , βK), we also define βK+1 = 0.674

If xi(h
t) = 0 then both sides of equation (10) are zero, so the statement holds. Thus it remains to675

prove equation (10) when xi(h
t) > 0. Let ui,j(h

t) = �{xi(ht)≥j}(vi,j − p(ht)) for each j ∈ [K].676

The term ui,j(h
t) represents the amount of utility obtained from the j-th unit acquired by player i677

at price p(ht), so ui(h
t) =

∑K
j=1 ui,j(h

t).678

679

We first show that for each j ∈ [K]:680

ui,j(h
t) = �{xi(ht)≥j}(vi,j − βj) +

K∑
k=j

[
�{xi(ht)>k}(βk − βk+1) + �{xi(ht)=k}(βk − p(ht))

]
.

(11)

To prove (11), we will rewrite ui,j(h
t) by considering three cases and writing a unified expression681

for all of them.682

1. xi(h
t) = j. Then683

ui,j(h
t) = vi,j − p(ht)

= (vi,j − βj) + (βj − p(ht))

= �{xi(ht)≥j}(vi,j − βj) + �{xi(ht)=j}(βj − p(ht)

= �{xi(ht)≥j}(vi,j − βj) +

K∑
k=j

[
�{xi(ht)>k}(βk − βk+1) + �{xi(ht)=k}(βk − p(ht))

]
.

(Since �{xi(ht)>k} = 0 ∀k ≥ j and �{xi(ht)=k} = 1 if and only if k = j.)

2. xi(h
t) > j. Then xi(h

t) = j + �, for some � ∈ {1, . . . ,K − j}. We have684

ui,j(h
t) = vi,j − p(ht)

= (vi,j − βj) + (βj − βj+�) + (βj+� − p(ht))

= (vi,j − βj) +

⎛⎝j+�−1∑
k=j

βk − βk+1

⎞⎠+ (βj+� − p(ht)) . (12)

We are in the case where �{xi(ht)≥j} = 1, �{xi(ht)>k} = 1 if and only if k ∈ {j, . . . , j +685

� − 1}, and �{xi(ht)=k} = 1 if and only if k = j + �. Adding indicators to the terms in686

(12) gives687

ui,j(h
t) = �{xi(ht)≥j}(vi,j − βj) +

K∑
k=j

[
�{xi(ht)>k}(βk − βk+1) + �{xi(ht)=k}(βk − p(ht))

]
.
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3. xi(h
t) < j. Then �{xi(ht)≥j} = 0, �{xi(ht)>k} = 0 for all k ∈ {j, . . . ,K}, and �{xi(ht)=k} =688

0 for all k ∈ {j, . . . ,K}. Thus we trivially have the identity required by the lemma state-689

ment since ui,j(h
t) = 0 and the right hand side of (11) is zero as well.690

Thus equation (11) holds in all three cases as required.691

For each i ∈ [n] and j ∈ [K], define692

Ai,j =

K∑
k=j

[
�{xi(ht)>k}(βk − βk+1) + �{xi(ht)=k}(βk − p(ht))

]
. (13)

Then equation (11) is equivalent to693

ui,j(h
t) = �{xi(ht)≥j}(vi,j − βj) +Ai,j , (14)

Summing equation (13) over all j ∈ [K] gives694

K∑
j=1

Ai,j =

K∑
j=1

K∑
k=j

[
�{xi(ht)>k}(βk − βk+1) + �{xi(ht)=k}(βk − p(ht))

]
(15)

a
=

K∑
k=1

k∑
j=1

[
�{xi(ht)>k}(βk − βk+1) + �{xi(ht)=k}(βk − p(ht))

]
(16)

=

K∑
k=1

(βk − βk+1)

k∑
j=1

�{xi(ht)>k} +
K∑

k=1

(βk − p(ht))

k∑
j=1

�{xi(ht)=k} (17)

=
K∑

k=1

(βk − βk+1) · k · �{xi(ht)>k} +
K∑

k=1

(βk − p(ht)) · k · �{xi(ht)=k} (18)

where equation (a) holds because we change the order of the double summations and in the double695

summations, we consider any (integer) pair of (j, k) such that 1 ≤ k ≤ j ≤ K.696

Then we can rewrite the utility ui(h
t) as697

ui(h
t) =

K∑
j=1

ui,j(h
t)

=

K∑
j=1

[
�{xi(ht)≥j}(vi,j − βj) +Ai,j

]
(By equation (11))

=

K∑
j=1

�{xi(ht)≥j}(vi,j − βj) +

K∑
j=1

(βj − βj+1) · j · �{xi(ht)>j} +
K∑

k=1

(βj − p(ht)) · j · �{xi(ht)=j}

(By equation (18))

=

K∑
j=1

[
�{xi(ht)≥j}(vi,j − βj) + j

(
�{xi(ht)>j}(βj − βj+1) + �{xi(ht)=j}(βj − p(ht))

)]
,

as required by the lemma statement.698

Lemma 2. In the setting of Theorem 1, the edge weights of the graph Gi can be computed in699

polynomial time.700

Proof. Recall the graph Gi is constructed given as parameters the number n of players, the number701

of units K, a player i with valuation vi, discretization level ε > 0, and a bid history H−i =702

(b1−i, . . . ,b
T
−i) by players other than i. Thus the goal is to show the edge weights of Gi can be703

computed in polynomial time in the bit length of these parameters.704
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Towards this end, we will show there exist efficiently computable values It>j , I
t
≥j , I

t
j ∈ {0, 1} and705

qt ∈ Si such that the weight we of edge e = (zr,j , zs,j+1) is equal to706

we =

T∑
t=1

It≥j (vi,j − r) + j
(
It>j (r − s) + Itj

(
r − qt)

))
. (19)

Roughly, qt will correspond to the price and It>j , I
t
≥j , I

t
j will tell whether player i gets more than j707

units, at least j units, or exactly j units, respectively, at some profile β = (β1, . . . , βK) ∈ Si with708

βj = r and βj+1 = s. The choice of β in will not matter, as long as βj = r and βj+1 = s.709

We prove equation (19) in several steps:710

Step (i). For each t ∈ [T ], define Γt : R→ R, where711

Γt(x) =
∣∣∣{(�, j) | (bt�,j > x and � ∈ [n] \ {i}, j ∈ [K]

)
or

(
bt�,j = x and � ∈ [n], � < i, j ∈ [K]

)}∣∣∣ .
Thus Γt(x) counts the bids in profile bt

−i that would have priority to a bid of value x submitted by712

player i (i.e. it counts bids strictly higher than x and submitted by players other than i, as well as713

bids equal to x but submitted by players lexicographically before i).714

Step (ii). Recall the edge is denoted e = (zr,j , zs,j+1). Let β ∈ Si be an arbitrary bid profile with715

βj = r and βj = s. Also define βK+1 = 0.716

If Γt(s) < K−j, then at ht = (β,bt
−i) player i receives one unit for each of the bids β1, . . . , βj+1,717

since there are at most K−j−1 bids of other players that have higher priority than player i’s highest718

j + 1 bids. Else, player i does not get more than j units. Thus It>j = �{xi(ht)>j}.719

Step (iii). If Γt(r) ≤ K − j, then player i receives at least j units at (β,bt
−i). The corresponding720

indicator is721

It≥j = �{Γt(s)≤K−j} = �{xi(ht)≥j} .

Step (iv). If Γt(r) ≤ K − j and Γt(s) > K − j, then player i receives exactly j units at (β,bt
−i).722

The indicator is723

Itj = �{Γt(r)≤K−j} · �{Γt(s)>K−j} = �{xi(ht)=j} .

Now suppose Itj = 1. Then we show the price qt = p(ht) can be computed precisely without724

knowing the whole bid β.725

Consider the multiset of bids B = bt
−i ∪ {β1, . . . , βj+1}, recalling βK+1 was defined as zero. Sort726

B in descending order. We know the top j − 1 bids of player i are winning, so the price is not727

determined by any of them. Thus the price is determined by βj = r, βj+1 = s, or by one of the bids728

in bt
−i. Remove elements β1, . . . , βj−1 from B and set the price as follows:729

• Case (iv.a). For (K + 1)-st price auction: set qt to the (K + 2− j)th highest value in B.730

• Case (iv.b). For K-th price auction: set qt to the (K + 1− j)th highest value in B.731

Step (v). Combining steps (i-iv), the weight of edge e = (zr,j , zs,j+1) can be rewritten as732

we =

T∑
t=1

�{xi(ht)≥j} (vi,j − r) + j
[
�{xi(ht)>j} (r − s) + �{xi(ht)=j}

(
r − p(ht)

)]
(By Definition 1)

=

T∑
t=1

It≥j (vi,j − r) + j
[
It>j (r − s) + Itj

(
r − qt)

)]
. (By steps (i-iv))

Thus the weight of each edge can be computed in polynomial time as required.733
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C Appendix: Online Setting734

In this section we include the material omitted from the main text for the online setting.735

Before studying the full information and bandit feedback models in greater detail, we replace the set736

Si of candidate bids for player i from equation (1) of the offline section by a coarser set737

Sε = {ε, 2ε, · · · , 	vi,1/ε
ε} .

The regret, which was defined in equation (3), depends on whether the model is the K-th or (K+1)-738

st price auction; however the next lemma holds for both variants of the auction.739

Lemma 3. For all ε > 0, let Regi(πi, H
T
−i, ε) be the counterpart of (3) where Si is replaced by the740

set Sε. Then Regi(πi, H
T
−i) ≤ Regi(πi, H

T
−i, ε) + TKε.741

Proof. First observe that it is not beneficial to bid above vi,1, so we can assume without loss of
generality that the maximizer β in (3) satisfies βj ≤ vi,1 for all j ∈ [K]. Now we convert β into

another bid vector βε ∈ SK
ε as follows: for each j ∈ [K], let

βε
j = min{y ∈ Sε | y ≥ βj} .

Clearly βj ≤ βε
j ≤ βj + ε.742

Then we claim that the next inequalities hold:743

p(βε,bt
−i) ≤ p(β,bt

−i) + ε; (20)

�{xi(βε,bt
−i)≥j} ≥ �{xi(β,bt

−i)≥j} . (21)

Inequality (20) follows since744

• p(b) is either the K-th or the (K + 1)-st largest element of b, and745

• increasing each entry of b by at most ε can only increase p(b) by no more than ε.746

Inequality (21) is due to the fact that bidding a higher price can only help to win the unit.747

Consequently, we have748

T∑
t=1

K∑
j=1

(
vi,j − p(β,bt

−i)
) · �{xi(β,bt

−i)≥j} ≤
T∑

t=1

K∑
j=1

(
vi,j − p(β,bt

−i)
) · �{xi(βε,bt

−i)≥j}

≤
T∑

t=1

K∑
j=1

(
vi,j − p(βε,bt

−i)− ε
) · �{xi(βε,bt

−i)≥j}

≤
T∑

t=1

K∑
j=1

(
vi,j − p(βε,bt

−i)
) · �{xi(βε,bt

−i)≥j} + TKε .

This gives the desired statement of the lemma.749

C.1 Full Information Feedback750

In this section we include the omitted details for the full information setting.751

We begin with the formal definition of the graph Gt = (V,E,wt) used by the online learning752

algorithm with full information feedback.753

Definition 2 (The graph Gt). Given valuation vi of player i, bid profile bt
−i of the players at round754

t, and ε > 0, construct a graph Gt = (V,E,wt) as follows.755

• Vertices. Create a vertex zs,j for each s ∈ Sε and index j ∈ [K]. We say vertex zs,j is in756

layer j. Add source z− and sink z+.757

• Edges. For each index j ∈ [K − 1] and pair of bids r, s ∈ Sε with r ≥ s, create a directed758

edge from vertex zr,j to vertex zs,j+1. Moreover, add edges from source z− to each node759

in layer 1 and from each node in layer K to the sink z+.760
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• Edge weights. For each edge e = (zr,j , zs,j+1) or e = (zr,K , z+), let β = (β1, . . . , βK) ∈761

SK
ε be a bid vector with βj = r and βj+1 = s (we define s = 0 if j = K). For each t, let762

ht = (β,bt
−i). Define the weight of edge e as763

wt(e) = �{xi(ht)≥j} (vi,j − r) + j
[
�{xi(ht)>j} (r − s) + �{xi(ht)=j}

(
r − p(ht)

)]
.

The edges incoming from z− have weight zero.764

The next observation follows immediately from the definition.765

Observation 2. The next properties hold:766

• The weight wt(e) of each edge e of Gt can be computed efficiently (see Lemma 2).767

• There is a bijective map between bid vectors β ∈ SK
ε of player i and paths from the source768

to the sink of Gt (see proof of Theorem 1).769

Next we include the main theorem with its proof for the online learning algorithm under full infor-770

mation feedback.771

Theorem 2 (restated). For each player i and time horizon T , under full-information feedback,772

Algorithm 2 runs in time O(T 2) and guarantees the player’s regret is at most O
(
vi,1

√
TK3 log T

)
.773

Proof. The detailed algorithm description is presented as Algorithm 2. At a high level, the proof774

has three parts: (i) showing that Algorithm 2 is a correct implementation of the Hedge algorithm775

where each expert is a path from source to sink in the DAG Gt for time t, (ii) bounding its regret776

for an appropriate choice of the learning rate, and (iii) bounding the runtime.777

Step I: Algorithm 2 is a correct implementation of Hedge. We show that Algorithm 2 is the778

same as the Hedge algorithm in which every path in the DAG is equivalent to an expert in the Hedge779

algorithm.780

To do so, for each vertex u in the DAG, let φt(u, ·) be a probability distribution over the outneighbors781

of u. Then, given the recursive sampling of the bids based on the probability distribution φt’s, the782

probability that a path p is chosen in Algorithm 2 is equal to783

P t(p) =
∏
e∈p

φt(e), (22)

where φt’s are updated in equation (5), which is restated below:784

φt(e) = φt−1(e) · exp (η · wt−1(e)
) · Γt−1(v)

Γt−1(u)
, for all e = (u, v) ∈ E(Gt) . (5 revisited .)

On the other hand, in the Hedge algorithm, the path probabilities are updated as follows: Given a785

learning rate η, define P 1
h (p) =

∏
e∈p φ

1(e), and for t ≥ 2,786

P t
h(p) =

P t−1
h (p) exp(η

∑
e∈p w

t−1(e))∑
q P

t−1
h (q) exp(η

∑
e∈q wt−1(e))

. (23)

The subscript ‘h’ in P t
h(p) stands for Hedge. To show that the update rule in Algorithm 2 is equiva-787

lent to the one in Hedge, we first prove the following statement:788

(†) For any vertex u in the graph, let P(u) be the set of all paths from u to z+.789

Then790

Γt−1(u) =
∑

q∈P(u)

∏
e∈q

[
φt−1(e) exp(ηwt−1(e))

]
. (24)
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We prove equation (24) by induction on u, from the bottom layer to the top layer. If u = z+, by791

definition Γt−1(z+) = 1, and (24) holds. Now suppose that (24) holds for all u in the (k + 1)-st792

layer, for some 0 ≤ k ≤ K. Then if u is in the k-th layer, the recursion of Γt−1 gives that793

Γt−1(u) =
∑

v:(u,v)∈E
φt−1((u, v)) exp(ηwt−1((u, v)) · Γt−1(v)

=
∑

v:(u,v)∈E
φt−1((u, v)) exp(ηwt−1((u, v))) ·

∑
q∈P(v)

∏
e∈q

[
φt−1(e) exp(ηwt−1(e))

]
=

∑
q∈P(u)

∏
e∈q

[
φt−1(e) exp(ηwt−1(e))

]
,

and therefore (24) holds.794

Having shown equation (24), we prove by induction on t our claim that Algorithm 2 is a correct795

implementation of Hedge, i.e. that P t(p) = P t
h(p) for all paths p and rounds t. For t = 1, by796

definition of our initialization we have P 1
h (p) = P 1(p). Suppose that at time t− 1, for every path p797

we have P t−1
h (p) = P t−1(p) =

∏
e∈p φ

t−1(e). Then at time t, it holds that798

P t(p) =
∏
e∈p

φt(e)
(a)
=

∏
e=(u,v)∈p

[
φt−1(e) · exp (η · wt−1(e)

) · Γt−1(v)
Γt−1(u)

]
(b)
= P t−1

h (p) exp

(
η
∑
e∈p

wt−1(e)

)
· Γ

t−1(z+)
Γt−1(z−)

,

where step (a) is due to equation (5), and step (b) follows using telescoping and the induction hy-799

pothesis P t−1
h (p) =

∏
e∈p φ

t−1(e).800

Given equation (23), by applying equation (24) to u ∈ {z−, z+} and the induction hypothesis801

P t−1
h (p) =

∏
e∈p φ

t−1(e), the induction is complete.802

Thus Algorithm 2 is a correct implementation of Hedge.803

Step II: Regret upper bound. Let804

ε = vi,1
√
K/T . (25)

Applying Lemma 3 yields805

Regi(πi, H
T
−i) ≤ Regi(πi, H

T
−i, ε) + TKε = Regi(πi, H

T
−i, ε) + vi,1

√
TK3, (26)

where Regi(πi, H
T
−i, ε) is the counterpart of (3) where Si is replaced by the set806

Sε = {ε, 2ε, · · · , 	vi,1/ε
ε} .

We also claim that
∑

e∈p w
t(e) ≤ Kvi,1 for each path p from source to sink in Gt. To see this, let807

β be the bid vector corresponding to path p. As shown in Lemma 1 and using the fact that edges808

outgoing from z− have weight zero, we have ui(β, b
t
−i) =

∑
e∈p w

t(e). Since player i’s utility809

satisfies ui(β,b
t
−i) ≤ Vi(xi(β,b

t
−i)) ≤ Kvi,1, we obtain

∑
e∈p w

t(e) ≤ Kvi,1.810

By Step I, Algorithm 2 is a correct implementation of Hedge. To bound the regret of the algorithm,811

we will invoke Corollary 1—which is a slight variant of [CBL06, Theorem 2.2]—with the following812

parameters:813

• N experts, where each expert is a path from source to sink in Gt;814

• learning rate η, time horizon T , and maximum reward L = Kvi,1;815

• initial distribution σ on the experts, where σp = P 1(p) for each expert (path from source816

to sink) p.817
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By Corollary 1, we obtain818

Regi(πi, H
T
−i, ε) ≤

1

η
max
p∈[N ]

log

(
1

σp

)
+

TL2η

8
. (27)

Recall Algorithm 2 initially selects a path by starting at the source z− and then performing an819

unbiased random walk in the layered DAG until reaching the sink z+. Since the number of vertices820

in each layer is 	vi,1/ε
, the initial probability of selecting a particular expert (i.e. path from source821

to sink) p is822

σp = P 1(p) ≥ 1

	vi,1/ε
K
, ∀p ∈ [N ] . (28)

Substituting (28) in (27) yields823

Regi(πi, H
T
−i, ε) ≤

1

η
max
p∈[N ]

log

(
1

σp

)
+

TL2η

8
≤ K log (	vi,1/ε
)

η
+

TL2η

8

=
K log

(⌈√
T
K

⌉)
η

+
T (Kvi,1)

2
η

8
(Since ε = vi,1

√
K
T and L = Kvi,1.)

≤ K log T

η
+

T (Kvi,1)
2
η

8
. (29)

For η =
√
log T/(vi,1

√
KT ), inequality (29) gives824

Regi(πi, H
T
−i, ε) ≤

K · log T√
log T/(vi,1

√
KT )

+
T
√
log T

8(vi,1
√
KT )

· (Kvi,1)
2

=
9 vi,1
8

√
TK3 log T . (30)

Combining inequalities (26) and (30), we get that the regret of player i when running Algorithm 2 is825

Regi(πi, H
T
−i) ≤ Regi(πi, H

T
−i, ε) + vi,1

√
TK3

≤ 9 vi,1
8

√
TK3 log T + vi,1

√
TK3 ∈ O

(
vi,1

√
TK3 log T

)
. (31)

This completes the proof of the regret upper bound.826

Polynomial time implementation. Finally we analyze the running time of the above algorithm.827

At every step, the computation of path kernels traverses all edges (note that each edge only appears828

in the sum once) and could be done in O(|E|) = O(Kv2i,1/ε
2) time. Similarly, the update of edge829

probabilities φt for all edges also takes O(|E|) = O(Kv2i,1/ε
2) time.830

Therefore, the overall computational complexity is O(TKv2i,1/ε
2) = O(T 2), where we used the831

choice of ε = vi,1
√

K/T . This completes the proof of the theorem.832

C.2 Bandit Feedback833

In this section we include the main theorem and proof for the bandit setting. Recall that our algorithm834

for the bandit setting is the same as Algorithm 2, only with wt(e) replaced by ŵt(e):835

ŵt(e) = w(e)− w(e)− wt(e)

pt(e)
�{e∈pt}, with pt(e) =

∑
p:e∈p

P t(p),

with P t given in (22), and836

w(e) =

⎧⎨⎩
vi,1 − r + j(r − s) if e = (zr,j , zs,j+1),

vi,1 − r +Kr if e = (zr,K , z+),

0 if e = (z−, zr,1).
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The resolution parameter and learning rate are chosen to be837

ε = vi,1min{(K3 log T/T )1/4, 1}, η = min
{
ε
√
log(vi,1/ε)/(TK3v4i,1), 1/(Kvi,1)

}
. (32)

Theorem 3 (restated). For each player i and time horizon T , under the bandit feedback, there is an838

algorithm for bidding that runs in time O(TK +K−5/4T 7/4) and guarantees the player’s regret is839

at most O(min{vi,1(T 3K7 log T )1/4, vi,1KT}).840

Proof. By Lemma 3 and the choice of ε in (32), it suffices to show that the above algorithm πi runs
in time O(TKv3i,1/ε

3) and achieves

Regi(πi, H
T
−i, ε) = O

(
v2i,1

√
TK5 log(vi,1/ε)/ε+ vi,1K

2 log(vi,1/ε)

)
.

The claimed result then follows from the fact that the regret is always upper bounded by O(vi,1KT ).841

Before we proceed to the proof, we first comment on the choice of estimator ŵt(e). First of all, this is842

an unbiased estimator of wt(e), i.e. Ept∼P t [ŵt(e)] = wt(e) for every edge e in Gt. Second, instead843

of using the natural importance-weighted estimator ŵt(e) = wt(e)�{e∈pt}/pt(e), the current form844

in (6) is the loss-based importance-weighted estimator used for technical reasons, similar to [LS20,845

Eqn. (11.6)]. Third, by exploiting our DAG structure and the definition of wt(e) in (4), we construct846

an edge-specific quantity w(e) which always upper bounds wt(e).847

We now analyze the regret of the algorithm with ŵt(e) given by (6). The standard EXP3 analysis848

(see, e.g. [LS20, Chapter 11]) gives that849

Regi(πi, H
T
−i, ε) ≤

1

η
max

p
log

1

P 1(p)
+

T∑
t=1

E

[
1

η
log

(∑
p

P t(p)eηŵ
t(p)

)
−
∑
p

P t(p)ŵt(p)

]
,

(33)

where ŵt(p) =
∑

e∈p ŵ
t(e) is the estimated total weight of path p, and the expectation is with850

respect to the randomness in the estimator ŵt(e). For every path p = (z−, zr1,1, · · · , zrK ,K , z+)851

from the source to the sink, we have (by convention rK+1 = 0):852

ŵt(p) =
∑
e∈p

wt(e) ≤
∑
e∈p

w(e) =

K∑
j=1

(vi,1 − (j − 1)rj + jrj+1) = Kvi,1.

Since ex ≤ 1 + x+ x2 whenever x ≤ 1 and log(1 + y) ≤ y whenever y > −1, if η ≤ 1/(Kvi,1),853

inequality (33) gives854

Regi(πi, H
T
−i, ε) ≤

1

η
max

p
log

1

P 1(p)
+ η

T∑
t=1

∑
p

P t(p)E[ŵt(p)2]

≤ K

η
log

⌈vi,1
ε

⌉
+ η

T∑
t=1

∑
p

P t(p) · (K + 1)
∑
e∈p

E[ŵt(e)2],

where the last equality uses (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i , and that each path p from the source to the855

sink has length K + 1. To proceed, note that856

E[ŵt(e)2] = w(e)2 · (1− pt(e)) +

(
w(e)− w(e)− wt(e)

pt(e)

)2
· pt(e)

= wt(e)2 + (w(e)− wt(e))2 ·
(

1

pt(e)
− 1

)
,

and therefore857 ∑
p

P t(p)
∑
e∈p

E[ŵt(e)2] =
∑
p

P t(p)
∑
e∈p

[
wt(e)2 + (w(e)− wt(e))2 ·

(
1

pt(e)
− 1

)]

=
∑
e

[
wt(e)2 + (w(e)− wt(e))2 ·

(
1

pt(e)
− 1

)] ∑
p:e∈p

P t(p)

=
∑
e

[
wt(e)2pt(e) + (w(e)− wt(e))2(1− pt(e))

] ≤∑
e

w(e)2,
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where in the middle we have used the definition
∑

p:e∈p P
t(p) = pt(e) in (6). To further upper858

bound the above quantity, note that859 ∑
e

w(e)2 ≤
K∑
j=1

∑
1≤s≤r≤�vi,1/ε�

(vi,1 + (j − 1)rε)2

≤
⌈vi,1

ε

⌉ K∑
j=1

�vi,1/ε�∑
r=1

(V + (j − 1)rε)2

≤ 2
⌈vi,1

ε

⌉ K∑
j=1

�vi,1/ε�∑
r=1

(v2i,1 + (j − 1)2r2ε2) = O

(
K3v4i,1
ε2

)
.

A combination of the above inequalities shows that as long as η ≤ 1/(Kvi,1),860

Regi(πi, H
T
−i, ε) = O

(
K

η
log

vi,1
ε

+
ηTK4v4i,1

ε2

)
.

Next, by the choice of η in (32), we have861

Regi(πi, H
T
−i, ε) = O

(
v2i,1

√
TK5 log(vi,1/ε)

ε
+K2vi,1 log

vi,1
ε

)
.

As for the computational complexity, the only difference from the Algorithm 2 is the additional862

computation of the estimated weights ŵt(e) in (6), or equivalently, the marginal probability pt(e).863

As P t has a product structure in (22), the celebrated message passing algorithm in graphical mod-864

els [WJ08, Section 2.5.1] takes O(|E|vi,1/ε) = O(Kv3i,1/ε
3) time to compute all edge marginals865

{pt(e)}e∈E . Therefore the overall computational complexity is O(TKv3i,1/ε
3).866

C.3 Regret Lower Bound867

In this section we include the theorem and proof for the regret lower bound. The construction uses868

the (K + 1)-st highest price, but is similar for the K-th highest price.869

Theorem 4 (restated, formal). Let K ≥ 2. For any policy πi used by player i, there ex-870

ists a bid sequence {bt
−i}Tt=1 for the other players such that the expected regret in (3) satisfies871

E[Regi(πi, {bt
−i}Tt=1)] ≥ cvi,1K

√
T , where c > 0 is an absolute constant.872

Proof. Without loss of generality assume that K = 2k is an even integer, and by scaling we may873

assume that vi,1 = 1. Consider the following two scenarios:874

• the utility of the bidder i is vi,j ≡ 1, for all j ∈ [K];875

• at scenario 1, for every t ∈ [T ], the other bidders’ bids are876

bt
−i =

{(
2
3 ,

2
3 , · · · , 23 , 0, · · · , 0

)
with probability 0.5 + δ,(

2
3 ,

2
3 , · · · , 23 , 23 , · · · , 23

)
with probability 0.5− δ,

where the number of non-zero entries is k in the first line and 2k in the second line, and877

δ ∈ (0, 1/4) is a parameter to be determined later. The randomness used at different times878

is independent.879

• at scenario 2, for every t ∈ [T ], the other bidders’ bids are880

bt
−i =

{(
2
3 ,

2
3 , · · · , 23 , 0, · · · , 0

)
with probability 0.5− δ,(

2
3 ,

2
3 , · · · , 23 , 23 , · · · , 23

)
with probability 0.5 + δ,

where the number of non-zero entries is k in the first line and 2k in the second line, and881

δ ∈ (0, 1/4) is a parameter to be determined later. The randomness used at different times882

is independent.883
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We denote by P and Q the distributions of {bt
−i}Tt=1 under scenarios 1 and 2, respectively, then884

DKL(P‖Q) = T ·DKL(Bern(0.5 + δ)‖Bern(0.5− δ))

≤ T · χ2(Bern(0.5 + δ)‖Bern(0.5− δ))

= T · (2δ)2

(0.5 + δ)(0.5− δ)
≤ 64

3
Tδ2.

Consequently, by [Tsy09, Lemma 2.6],885

1− TV(P,Q) ≥ 1

2
exp (−DKL(P‖Q)) ≥ 1

2
exp

(
−64Tδ

2

3

)
.

Next we investigate the separation between these two scenarios. It is clear that886

max
bi

EP

[
ui(bi;b

t
−i)

] ≥ EP

[
ui((1, 1, · · · , 1, 0, · · · , 0);bt

−i)
]

=

(
1

2
+ δ

)
· k +

(
1

2
− δ

)
· k
3
=
2 + 2δ

3
· k;

max
bi

EQ

[
ui(bi;b

t
−i)

] ≥ EQ

[
ui((1, 1, · · · , 1, 1, · · · , 1);bt

−i)
]

=

(
1

2
− δ

)
· 2k
3
+

(
1

2
+ δ

)
· 2k
3
=
2k

3
.

Moreover, under (P +Q)/2 (i.e. bt
−i follows a Bern(1/2) distribution), suppose that the vector bi887

has k′ components smaller than 2/3. Distinguish into two scenarios:888

• if k′ < k, then889

E(P+Q)/2

[
ui(bi;b

t
−i)

] ≤ 1

2
· 2k − k′

3
+
1

2
· 2k − k′

3
≤ 2k

3
;

• if k′ ≥ k, then890

E(P+Q)/2

[
ui(bi;b

t
−i)

] ≤ 1

2
· (2k − k′) +

1

2
· 2k − k′

3
≤ 2k

3
.

Therefore, it always holds that891

max
bi

E(P+Q)/2

[
ui(bi;b

t
−i)

] ≤ 2k

3
.

Consequently, for each bi,892

max
b�

i

EP

[
ui(b

�
i ;b

t
−i)− ui(bi;b

t
−i)

]
+max

b�
i

EQ

[
ui(b

�
i ;b

t
−i)− ui(bi;b

t
−i)

]
≥ max

b�
i

EP

[
ui(b

�
i ;b

t
−i)

]
+max

b�
i

EQ

[
ui(b

�
i ;b

t
−i)

]− 2max
bi

E(P+Q)/2

[
ui(bi;b

t
−i)

]
≥ 2 + 2δ

3
k +

2k

3
− 2 · 2k

3
=
2δk

3
.

In other words, any bid vector bi either incurs a total regret (δkT )/3 under P , or incurs a total regret893

(δkT )/3 under Q.894

Now the classical two-point method (see, e.g. [Tsy09, Theorem 2.2]) gives895

E(P+Q)/2[Regi(πi, {bt
−i}Tt=1)] ≥

δkT

3
· (1− TV(P,Q)) ≥ δkT

6
exp

(
−64Tδ

2

3

)
for every δ ∈ (0, 1/4). Choosing δ = 1/(8

√
T ) gives that896

E(P+Q)/2[Regi(πi, {bt
−i}Tt=1)] ≥

K
√
T

96e1/3
,

i.e. the claimed lower bound holds with c = 1/(96e1/3).897
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D Appendix: Equilibrium Analysis898

In this section we show that the pure Nash equilibria with price zero of the (K + 1)-st auction are899

the only ones that are robust to deviations by groups of players, captured through the notion of the900

core in the game among the bidders. The core of a game was formulated by Edgeworth [Edg81] and901

brought into game theory by Gillies [Gil59]. There is an extensive body of literature on the core of902

various games, including for auctions; see, e.g., analysis of collusion (cartel behavior) in first price903

auctions in [Pes00].904

Our focus here is the core of the game among the bidders, where the auctioneer first sets the auction905

format and then the bidders can strategize and collude among themselves, without the auctioneer.906

Roughly speaking, a strategy profile is core-stable if no group C of players can deviate simultane-907

ously (i.e. each player i ∈ C deviates to some alternative strategy profile), such that each player in C908

weakly improves and the improvement is strict for at least one player. For a deviation to take place,909

the players in C coordinate and switch their strategies simultaneously, while the players outside C910

keep their previous strategies. Every core-stable strategy profile is also a Nash equilibrium, since a911

strategy profile that is stable against deviations by groups of players is also stable against deviations912

by individuals.913

We consider two variants of the core, with and without monetary transfers [SS69, Bon63, Sha67].914

In the case with transfers, the players can make monetary payments to each other, and so a strategy915

profile consists of a tuple of bids and transfers. In the case without transfers, the players cannot916

make such transfers and their strategy is the bid vector; thus the only agreement they can make in917

this case is to coordinate their bids.918

D.1 Core with transfers919

A strategy profile in this setting is described by a tuple (b, t), where b is a bid profile and t is a920

profile of payments (aka monetary transfers), such that ti,j ≥ 0 is the monetary payment of player921

i to player j. At this strategy profile, the auctioneer runs the auction with bids b and returns the922

outcome (price and allocation), while the players make the monetary transfers t to each other.923

For each profile of monetary transfers t, let mi(t) be the net amount of money that player i gets
after all the transfers are made:

mi(t) =

n∑
j=1

tj,i −
n∑

j=1

ti,j .

The utility of player i at profile (b, t) is

ui(b, t) = mi(t) +

⎛⎝xi(b)∑
j=1

vi,j

⎞⎠− p · xi(b) .

Deviations. Since in the case of auctions the actions (e.g. bids) of a group of players can affect the924

utility of the players outside of the group, it is necessary to model how the players outside S react to925

the deviation. Such reactions have been studied in the literature on the core with externalities (see,926

e.g., [Koc07, Koc09]).927

We consider neutral reactions, where non-deviators (i.e. players outside S) have a mild reaction to928

the deviation: they maintain the same bids as before the deviation and the monetary transfer of each929

player i ∈ [n]\S to each player j ∈ S is non-negative. The core where the deviators assume the non-930

deviators will have neutral reactions to the deviation is known as the neutral core [SMR+13]. Several931

other variants of the core exist, such as pessimistic core, where each deviator assumes that they will932

be punished in the worst possible way by the non-deviators. Such variants are also interesting to933

study, but next we focus on the basic case of neutral reactions.934

A group of players will alternatively be called a coalition. The set of all players, [n], will also be935

called sometimes the grand coalition.936

A group of players that agree on a deviation are known as a blocking coalition, formally defined937

next.938
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Definition 3 (Blocking coalition, with transfers). Let (b, t) be a tuple of bids and monetary trans-939

fers. A group S ⊆ [n] of players is a blocking coalition if there exists a profile (b̃, t̃), at which each940

player i ∈ S weakly improves their utility, the improvement is strict for at least one player in S, and941

• b̃i,j = bi,j if i ∈ [n] \ S, j ∈ [K].942

• t̃i,j = 0 if i ∈ [n] \ S and j ∈ S.943

In other words, the blocking coalition S needs to agree on their bids and transfers to each other,944

such that they improve their utility when the players outside S maintain their existing bids but stop945

payments to players in S. In fact our characterization holds even if the players outside S make any946

non-negative transfers to the players in S; the case where the transfers are zero is the extreme case.947

If a coalition S deviates with zero transfers from players outside S, it also deviates for any transfers948

that are non-negative.949

Definition 4 (The core with transfers). The core with transfers consists of profiles (b, t) at which950

there are no blocking coalitions. Such profiles are core-stable.951

Theorem 6 (Core with transfers; restated). Consider K units and n > K hungry players. The952

core with transfers of the (K + 1)-st auction can be characterized as follows:953

• Let (b, t) be an arbitrary tuple of bids and transfers that is core stable. Then the allocation954

x(b) maximizes social welfare, the price is zero (i.e. p(b) = 0), and there are no transfers955

between the players (i.e. t = 0).956

Proof. The proof has three steps as follows.957

Step I: core transfers are zero. Assume towards a contradiction that (b, t) is core stable and958

t �= 0. Consider the directed weighted graph G = ([n], E, t), where E consists of all the directed959

edges (i, j) and the weight of each edge is ti,j . The net amount of money that each player i gets960

from transfers is mi(t) =
∑n

j=1 tj,i −
∑n

j=1 ti,j .961

If there is a cycle C = (i1, . . . , ik) such that the payments along the cycle are strictly positive:962

ti1,i2 > 0, . . . , tik−1,ik > 0, and tik,i1 > 0, then some cancellations take place. That is, by subtract-963

ing min{ti1,i2 , . . . , tik−1,ik , tik,i1} from the weight of each edge (i, j) ∈ C, we obtain a weighted964

directed graph without cycle C and where each player has the same net amount of money as in the965

original graph. Iterating the operation of removing cycles, we obtain a directed acyclic graph where966

the players have the same net amount of money as in the original graph.967

Thus we can in fact assume the transfers t are such that G is acyclic.968

Consider a topological ordering (i1, . . . , in) of the vertices of G. Let j be the minimum index for969

which vertex ij has no incoming edges and at least one outgoing edge. Then mij (t) < 0. The utility970

of player ij can be upper bounded as follows:971

uij (b, t) = mij (t) +

⎛⎝xij
(b)∑

k=1

vij ,k

⎞⎠− p(b) · xij (b) <

⎛⎝xij
(b)∑

k=1

vij ,k

⎞⎠− p(b) · xij (b) .

We claim that player ij has an improving deviation by keeping its bid vector bij and stopping all972

payments to other players. Since the other players have neutral reactions to the deviations, we obtain973

an outcome (b̃, t̃) such that b̃ = b, t̃ij ,k = 0 for all k ∈ [n], and t̃k,ij ≤ tk,ij for all k �= ij . The974

gain of player ij from the deviation can be bounded by:975

uij (b̃, t̃)− uij (b, t) = uij (b, t̃)− uij (b, t) (Since b̃ = b.)

=

⎡⎣mij (t̃) +

⎛⎝xij
(b)∑

k=1

vij ,k

⎞⎠− p(b) · xij (b)

⎤⎦−
⎡⎣mij (t) +

⎛⎝xij
(b)∑

k=1

vij ,k

⎞⎠− p(b) · xij (b)

⎤⎦
= mij (t̃)−mij (t)

= −mij (t) (Since mij (t̃) = 0.)

> 0 . (Since mij (t) < 0 by choice of ij .)
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Thus player ij has a strictly improving deviation, which contradicts the choice of (b, t) as core-976

stable with t �= 0. Thus the assumption must have been false. It follows that the only core stable977

profiles (if any) have t = 0.978

Step II: the social welfare is maximized. Next we show that if (b, t) is a core-stable outcome,979

then the allocation induced by b is welfare maximizing. Assume towards a contradiction this is not980

the case. By Step I, we have t = 0.981

Let w1 ≥ . . . ≥ wn·K be the bids sorted in decreasing order (breaking ties lexicographically) at the982

truth-telling bid profile v. For each j ∈ [n · K], let πj be the player that submitted bid wj in this983

ordering.984

Let w̃1 ≥ . . . ≥ w̃n·K be the bids sorted in decreasing order (breaking ties lexicographically) at the985

bid profile b. Let π̃j be the player that submitted bid w̃j in this ordering.986

Consider an undirected bipartite graph G = (L,R,E), where L is the left part, R the right part, and987

E the set of edges. Define988

• L = {(i, j) | i ∈ [n], j ∈ [K], and xi(v) ≥ j}. For example, if xi(v) = 2, then L has989

nodes (i, 1) and (i, 2). If on the other hand xi(v) = 0, then L has no nodes (i, j), for any990

j.991

• R = {(i, j) | i ∈ [n], j ∈ [K], and xi(b) ≥ j}.992

• E = (s1, s2), for all s1 ∈ L and s2 ∈ R.993

Since both allocations x(v) and x(b) allocate exactly K units, we have |L| = |R| = K. Consider994

now a graph G1 = (L1, R1, E1) obtained from G as follows. Set G = G1. Then for each node995

(i, j) ∈ L: if the node also appears in R, then delete both copies of the node, together with any996

edges containing them.997

Thus in G1, the left side L1 consists of nodes (i, j) with xi(v) ≥ j but xi(b) < j. For each such998

node (i, j), let k be the rank of the valuation vi,j in the ordering π. By definition of G1, we have999

that R1 does not have any node of the form (i, s) for any s. To see this, observe that1000

• nodes (i, s) with s < j were deleted when constructing G1 from G, and1001

• nodes (i, s) with s ≥ j do not exist even in G (if they did, then (i, j) would exist in both L1002

and R and so would have been deleted when constructing G1).1003

Let d(i, j) be the player that displaces player i’s bid for the j-th unit at the bid profile b. Formally,1004

d(i, j) is the owner of bid w̃k when considering the bids b in descending order. Let ω(i, j) ∈ N be1005

such that player d(i, j) obtains an ω(i, j)-th unit in their bundle at b.1006

Since xi(b) < j, we have i �= d(i, j). Since at the truth-telling profile player i gets a j-th unit1007

but player d(i, j) does not get an ω(i, j)-th unit, we have vi,j ≥ vd(i,j),ω(i,j). Moreover, since the1008

allocation x(v) maximizes welfare but x(b) does not, the inequality is strict for some (i, j) ∈ L1.1009

We claim that [n] is a blocking coalition. To show this, we will argue there is a bid profile b∗ and1010

vector of transfers t∗ such that at (b∗, t∗) the utility of each player i ∈ [n] is weakly improved and1011

the improvement is strict for at least one player. For each i ∈ [n], k ∈ [K], let1012

b∗i,j =
{
vi,j if xi(v) ≥ j

0 otherwise.

Then x(b∗) = x(v) and p(b∗) = 0. Also define monetary transfers t∗ as follows:1013

• Initialize t∗ = 0. Let ε = min(i,j)∈L1

(
vi,j − vd(i,j),ω(i,j)

)
/2. Then vi,j ≥ vd(i,j),ω(i,j) +1014

ε for each (i, j) ∈ L1.1015

• For each (i, j) ∈ L1, let t∗i,d(i,j) := t∗i,d(i,j) + vd(i,j),ω(i,j) + ε.1016
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Thus each player i that got a j-th unit in their bundle at the truth-telling profile did so because their1017

bid for the j-th unit had rank k ≤ K. Since i does not get the j-th unit at bid profile b, there is a1018

player d(i, j) whose bid for the j-th unit had rank k and who received this way a ω(i, j)-th unit in1019

their bundle.1020

We argue that all the players weakly improve their utility at (b∗, t∗), and the improvement is strict1021

for at least one of them.1022

• For each pair (i, j) ∈ L1, under the bid profile b∗ player i receives the j-th unit at a cost of1023

zero and transfers an amount of vd(i,j),ω(i,j) + ε to player d(i, j).1024

The component of the utility that player i gets from unit j, counting the value, price, and1025

transfer related to unit j, is vi,j − 0 − (vd(i,j),ω(i,j) + ε) ≥ 0, where the inequality holds1026

by choice of ε. This is a weak improvement compared to the utility that player i gets from1027

unit j at profile (b,0), which is zero. Moreover, the improvement is strict for at least one1028

pair (i, j) ∈ L1, since the bid profile b does not induce a welfare maximizing allocation.1029

• For each pair (i, j) ∈ L \ L1, at the profile (b,0) player i gets utility vi,j − p(b) from1030

unit j, since it makes no transfers. At profile b∗, player i gets unit j at a price of zero and1031

makes no transfers (towards other players) related to unit j. Thus the component of the1032

utility related to unit j is vi,j − 0− 0 = vi,j . Since p(b) ≥ 0, we have vi,j − p(b) ≤ vi,j ,1033

a weak improvement for player i with respect to unit j.1034

• For each pair (i, j) �∈ L: if (i, j) �∈ R, then player i does not get a j-th unit under either b1035

or b∗, so its utility from unit j is zero at both profiles. If on the other hand (i, j) ∈ R, since1036

(i, j) �∈ L, it must be that (i, j) ∈ R1. At profile (b, t) the utility of player i from unit j1037

is vi,j − p(b) since it gets the unit and receives no transfers. At profile (b∗, t∗) player i1038

does not receive the unit but receives a transfer of vi,j + ε from the player that gets the unit1039

instead. This is again a weak improvement.1040

Thus all players weakly improve their utility at (b∗, t∗) and the improvement is strict for at least1041

one player, so the profile (b,0) is not stable. This is a contradiction, thus the assumption that x(b)1042

is not welfare maximizing must have been false.1043

Step III: the price is zero. Next we show that if profile (b,0) is core-stable, then p(b) = 0. By1044

Step II, the bid profile b induces a welfare maximizing allocation.1045

Suppose towards a contradiction that p(b) > 0. Then we show there exists a blocking coalition.1046

Let w1 ≥ . . . ≥ wn·K be the bids sorted in decreasing order (breaking ties lexicographically) at bid1047

profile b. For each i ∈ [n ·K], let πi be the owner of bid wi.1048

We match the players as follows. Create a bipartite graph with left part L = (π1, . . . , πK) (allowing1049

repetitions) and right part R = (πK+1, . . . , π2K) (allowing repetitions). For each i ∈ [K], create1050

edge (πi, πK+i). Consider the profile (b∗, t∗), where1051

b∗i,j =
{
vi,j if xi ≥ j

0 otherwise.

Define the transfers as follows:1052

• Initialize t∗ = 0. Set ε = p/(2K). For each i ∈ [K], let player πi pay an additional1053

amount of ε to player πK+i: t
∗
πi,πK+i

= t∗πi,πK+i
+ ε.1054

Then each player i with xi(b) > 0 gets the same allocation at b∗ as at b, but pays a price of zero for1055

the units and makes a transfer of at most p/2 to other players, resulting in improved utility compared1056

to the utility at profile (b,0).1057

On the other hand, each player i with xi(b) = 0 on the other hand gets the same allocation at b∗1058

as at b (i.e. no units), but receives a non-negative amount of money from other players, and the net1059

amount of money received is strictly positive for all the players πK+1, . . . , π2K .1060

Thus there is an improving deviation, which contradicts the choice of (b, t) as core-stable. Thus the1061

assumption must have been false, and p(b) = 0.1062
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D.2 Core without transfers1063

A strategy profile in this setting is described by a bid profile b, where bi = (bi,1, . . . , bi,K) is the1064

bid vector of player i. In the setting without transfers, given a profile b of bids, a blocking coalition1065

S needs to agree on simultaneously changing their bids, such that when the players outside S still1066

bid according to b, the players in S weakly improve their utility and the improvement is strict for at1067

least one player in S.1068

The core stable profiles are those that have no such blocking coalitions. Formally, we have:1069

Definition 5 (Blocking coalition, without transfers). Let b be a bid profile. A group S ⊆ [n] of1070

players is a blocking coalition if there exists a bid profile b̃, at which each player i ∈ S weakly1071

improves their utility, the improvement is strict for at least one player in S, and b̃i,j = bi,j for all1072

i ∈ [n] \ S, j ∈ [K].1073

Definition 6 (The core with transfers). The core with transfers consists of bid profiles b at which1074

there are no blocking coalitions. Such profiles are core-stable.1075

The non-transferable utility core can be characterized as follows.1076

1077

Theorem 5 (Core without transfers; restated). Consider K units and n > K hungry players. The1078

core without transfers of the (K + 1)-st auction can be characterized as follows:1079

• every bid profile b that is core stable has price zero (i.e. p(b) = 0);1080

• each allocation z where all the units are allocated can be supported in a core stable bid1081

profile b with price zero (i.e. x(b) = z and p(b) = 0).1082

Proof. The proof is in two parts.1083

Part I: the price in the core is zero. Consider a bid profile b that is core-stable. Suppose towards1084

a contradiction that p(b) > 0.1085

Let M =
n∑

�1=1

K∑
�2=1

v�1,�2 . Define a bid profile b̃ such that for all i ∈ [n], j ∈ [K]:1086

b̃i,j =

{
M if j ≤ xi(b)

ε otherwise.
(34)

At b̃, the players only submit bids equal to M > 0 for the units they are supposed to get at allocation1087

x(b), and moreover, there are exactly K strictly positive bids. Thus x(b̃) = x(b). Moreover,1088

p(b) = 0 since the (K + 1)-st highest bid is 0.1089

Then the grand coalition C = [n] is blocking with the profile b̃, in contradiction with b being core1090

stable. Thus the assumption must have been false, so p(b) = 0.1091

Part II: every allocation can be implemented at a core-stable bid profile. Let z be an arbitrary1092

allocation at which all the units are allocated.1093

Define b such that for all i ∈ [n], j ∈ [K], we have bi,j =M if j ≤ zi and bi,j = 0 otherwise. Then1094

x(b) = z and p(b) = 0. Let W = {i ∈ [n] | zi > 0} be the set of “winners” at b.1095

Assume towards a contradiction that b is not stable. Then there is a blocking coalition C =1096

{i1, . . . , ik} ⊆ [n] with alternative bid profile d = (di1 , . . . ,dik). Denote b̃ = (d,b−C) the1097

profile where each player i ∈ C bids b̃i = di and each player i �∈ C bids b̃i = bi. We must have1098

ui(b̃) ≥ ui(b) for all i ∈ C, with strict inequality for some player i ∈ C.1099

If C ∩W = ∅, then the only way for at least one of the players in C to change their allocation is to1100

make some of their bids at least H . But this increases the price from zero to at least H , which yields1101

negative utility for everyone. Thus C ∩W �= ∅. We consider two cases:1102
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1. Case p(b̃) > 0. Each player i ∈ C ∩ W requires strictly more units at b̃ than at b,1103

to compensate for the higher price at b̃. Thus xi(b̃) > zi for all i ∈ C ∩ W (†). If1104

xi(b̃i) < zi for some player i ∈W \C, there would have to exist at least K + 1 bids with1105

value at least H , and so p(b̃) ≥ H , which would give negative utility to all the players1106

including the deviators. Thus xi(b̃i) ≥ zi for all i ∈W \ C (‡).1107

Combining (†) and (‡) gives a contradiction:∑
i∈C∪(W\C)

xi(b̃) >
∑

i∈C∪(W\C)
zi = K .

Thus p(b̃) > 0 cannot hold.1108

2. Case p(b) = 0. Then each player i ∈ C ∩W requires ui(b̃) ≥ zi. Since p(b̃) = 0, the top1109

K bids are strictly positive and the remaining bids are zero. Then each player i ∈ C ∩W1110

submits exactly zi strictly positive bids. It follows that xi(b̃) = xi(b) and p(b̃) = p(b) for1111

each i ∈ [n], which means no player in C strictly improves. Thus C cannot be blocking.1112

In both cases 1 and 2 we obtained a contradiction, so b is core-stable, p(b) = 0, and x(b) = z as1113

required.1114

E Theorems from prior work1115

In this section we include the theorem from [CBL06] that we use. In the problem of prediction under1116

expert advice, there are N experts in total, and at each round t ∈ [T ]:1117

• learner chooses a probability distribution pt over [N ];1118

• nature reveals the losses {�t,i}i∈[N ] of all experts at time t, where �t,i ∈ [0, L].1119

For a given sequence of probability distributions (p1, · · · , pT ), the learner’s regret is defined to be1120

Reg(T, (p1, · · · , pT )) =
T∑

t=1

N∑
i=1

pt(i)�t,i − min
i�∈[N ]

T∑
t=1

�t,i� .

For this problem, the exponentially weighted average forecaster, also known as the Hedge algorithm,1121

is defined as follows. The algorithm initializes p1 = σ, an arbitrary prior distribution over the experts1122

[N ] such that each expert i is selected with probability σi > 0. For t ≥ 2, the forecaster updates1123

pt(i) =
pt−1(i) exp(−η�t−1,i)∑N

j=1 pt−1(j) exp(−η�t−1,j)
, ∀i ∈ [N ],

where η > 0 is a learning rate.1124

Next we include the statement of Theorem 2.2 of [CBL06] in our notation.1125

Theorem 7 (Theorem 2.2 of [CBL06]). Consider the exponentially weighted average forecaster1126

with N experts, learning rate η > 0, time horizon T , and rewards in [0, 1]. Suppose the initial1127

distribution σ on the experts is uniform, that is, σ = (1/N, . . . , 1/N). The regret of the forecaster1128

is1129

Reg(T, (p1, · · · , pT )) ≤ logN

η
+

Tη

8
.

The following corollary is a well known variant of the above theorem, to allow rewards in an interval1130

[0, L] and an arbitrary initial distribution σ over the experts.1131

Corollary 1. Consider the exponentially weighted average forecaster with N experts, learning rate1132

η > 0, time horizon T , and rewards in [0, L]. Suppose the initial distribution on the experts is σ.1133

The regret of the forecaster is1134

Reg(T, (p1, · · · , pT )) ≤ 1

η
max
i∈[N ]

log

(
1

σi

)
+

TL2η

8
.
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The proof of Corollary 1 is identical to that of Theorem 7, except for the following two differences:1135

• Instead of Wt =
∑N

i=1 exp(−η
∑

s≤t �s,i), we define Wt =
∑N

i=1 σi exp(−η
∑

s≤t �s,i).1136

In this way,1137

log
WT

W0
= logWT ≥ −η min

i�∈[N ]

T∑
t=1

�t,i� − max
i∈[N ]

log
1

σi
.

• When applying [CBL06, Lemma 2.2], we use the interval for the rewards as [0, L] instead1138

of [0, 1].1139
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