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Abstract

In reinforcement learning (RL), balancing exploration and exploitation is crucial for
achieving an optimal policy in a sample-efficient way. To this end, existing sample-
efficient algorithms typically consist of three components: estimation, planning,
and exploration. However, to cope with general function approximators, most of
them involve impractical algorithmic components to incentivize exploration, such
as data-dependent level-set constraints or complicated sampling procedures. To
address this challenge, we propose an easy-to-implement RL framework called
Maximize to Explore (MEX), which only needs to optimize unconstrainedly a single
objective that integrates the estimation and planning components while balancing
exploration and exploitation automatically. Theoretically, we prove that the MEX
achieves a sublinear regret with general function approximators and is extendable
to the zero-sum Markov game setting. Meanwhile, we adapt deep RL baselines to
design practical versions of MEX in both the model-based and model-free settings,
which outperform baselines in various MuJoCo environments with sparse reward by
a stable margin. Compared with existing sample-efficient algorithms with general
function approximators, MEX achieves similar sample efficiency while also enjoying
a lower computational cost and is more compatible with modern deep RL methods.
Our codes are available at https://github.com/agentification/MEX.

1 Introduction

The crux of online reinforcement learning (online RL) lies in maintaining a balance between exploiting
the current knowledge of the agent about the environment and exploring unfamiliar areas [69]. To
fulfill this, agents in existing sample-efficient RL algorithms predominantly undertake three tasks: i)
estimate a hypothesis using historical data to encapsulate their understanding of the environment; ii)
perform planning based on the estimated hypothesis to exploit their current knowledge; iii) further
explore the unknown environment via carefully designed exploration strategies.

There exists a long line of research on integrating the aforementioned three components harmoniously,
to find optimal policies in a sample-efficient manner. From theoretical perspectives, existing theories
aim to minimize the notion of online external regret which measures the camulative suboptimality gap
of the policies learned during online learning. It is well studied that one can design both statistically
and computationally efficient algorithms (e.g., upper confidence bound (UCB), [6, 39, 12, 91])
with sublinear online regret for tabular and linear Markov decision processes (MDPs). But when it
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comes to MDPs with general function approximations, most of them involve impractical algorithmic
components to incentivize exploration. Usually, to cope with general function approximations,
agents need to solve constrained optimization problems within data-dependent level-sets [37, 20],
or sample from complicated posterior distributions over the space of hypotheses [19, 2, 89], both of
which pose considerable challenges for implementation. From a practical perspective, a prevalent
approach in deep RL for balancing exploration and exploitation is to use an ensemble of neural
networks [75, 59, 14, 53, 44, 18, 45], which serves as an empirical approximation of the UCB method.
However, such an ensemble method suffers from high computational cost and lacks theoretical
guarantee when the underly MDP is neither linear nor tabular. As for other deep RL algorithms for
exploration [29, 3, 11, 9, 17, 65], such as curiosity-driven method [60], it also remains unknown in
theory whether they are provably sample-efficient in the context of general function approximations.

Hence, in this paper, we are aimed at tackling these issues and answering the following question:

Under general function approximation, can we design a sample-efficient and
easy-to-implement RL framework to trade off between exploration and exploitation?

To this end, we propose an easy-to-implement RL framework, Maximize to Explore (MEX), as an
affirmative answer to the question. To strike a balance between exploration and exploitation, MEX
propose to maximize a weighted sum of two objectives: (i) the optimal expected total return associated
with a given hypothesis and (ii) the negative estimation error of that hypothesis. Consequently, MEX
naturally combines planning and estimation components in just a single objective. By choosing the
hypothesis that maximizes the weighted sum and executing the optimal policy with respect to the
chosen hypothesis, MEX automatically balances between exploration and exploitation.

We highlight that the objective of MEX is not obtained by taking the Lagrange dual of the constrained
optimization objective within data-dependent level-sets [37, 20, 15].This is because the coefficient
of the weighted sum, which remains fixed, is data-independent and predetermined for all episodes.
Contrary to Lagrangian methods, MEX does not necessitate an inner loop of optimization for dual
variables, thereby circumventing the complications associated with minimax optimization. As a
maximization-only framework, MEX is friendly to implementations with neural networks and does not
rely on sampling or ensemble.

In the theory part, we prove that MEX achieves a sublinear regret O (Poly(H) - dé/;c(l JVHK)-K'/?)
under mild assumptions and is thus sample-efficient, where K is the number of episodes and H is the
horizon length. Here dggc(+) is the Generalized Eluder Coefficient (GEC) [89] that characterizes the
complexity of learning the underlying MDP under general function approximations. Because the
class of low-GEC MDPs includes almost all known theoretically tractable MDP instances, our proved
result can be tailored to a multitude of specific settings with either a model-free or a model-based
hypothesis, such as MDPs with low Bellman eluder dimension [37], MDPs of bilinear class [20],
and MDPs with low witness rank [67]. Besides, thanks to the flexibility of the MEX framework, we
further extend it to online RL in two-player zero-sum Markov games (MGs), for which we further
extend the definition of GEC to two-player zero-sum MGs and establish the sample efficiency with
general function approximations. Moving beyond theory and into practice, we adapt famous RL
baselines TD3 [27] and MBPO [34] to design practical versions of MEX in model-free and model-based
fashion, respectively. On various MuJoCo environments [71] with sparse rewards, experimental
results show that MEX outperforms baselines steadily and significantly. Compared with other deep
RL algorithms, MEX has low computational overhead and straightforward implementation while
maintaining a theoretical guarantee.

Contributions. We conclude our contributions from three perspectives.

1. We propose an easy-to-implement RL algorithm framework MEX that unconstrainedly maximizes
a single objective to fuse estimation and planning, automatically trading off between exploration
and exploitation. Under mild structural assumptions, we prove that MEX achieves a sublinear regret

O(Poly(H) - dé{fc(l /VHK)K'/?) with general function approximators, and thus is sample-
efficient. Here dggc(-) is the generalized Eluder Coefficient (GEC) of the underlying MDP.

2. We instantiate the generic MEX framework to several model-based and model-free examples and
establish corresponding theoretical results. Further, we extend the MEX framework to two-player
zero-sum MGs and also prove the sample efficiency with an extended definition of GEC.

3. We design practical implementations of MEX for MDPs in both model-based and model-free styles.
Experiments on various MuJoCo environments with sparse reward demonstrate the effectiveness
of our proposed MEX framework.



1.1 Related work

Sample-efficient RL with function approximation. The success of DRL methods has motivated a
line of work focused on function approximation scenarios. This work originated in the linear case
[74, 81, 12, 39, 84, 5, 82, 57, 91, 90] and is later extended to general function approximation. Wang
et al. [73] first study the general function approximation using the notion of eluder dimension [63],
which takes the linear MDP [39] as a special case but with inferior results. Zanette et al. [85] consider
a different type of framework based on Bellman completeness, which assumes that the class used
for approximating the optimal Q-functions is closed in terms of the Bellman operator and improves
the results for linear MDP. After this, Jin et al. [37] consider the eluder dimension of the class of
Bellman residual associated with the RL problems, which captures more solvable problems. Another
line of works focuses on the low-rank structures of the problems, where Jiang et al. [35] propose
the Bellman rank for model-free RL and Sun et al. [67] propose the witness rank for model-based
RL. Following these two works, Du et al. [20] propose the bilinear class, which contains more MDP
models with low-rank structures [6, 67, 39, 57, 12, 91] by allowing a flexible choice of discrepancy
function class. However, it is known that neither BE nor bilinear class captures each other. Dann
et al. [19] first consider eluder-coefficient-type complexity measure on the Q-type model-free RL.
It was later extended by Zhong et al. [89] to cover all the above-known solvable problems in both
model-free and model-based manners. Foster et al. [25, 23] study another notion of complexity
measure, the decision-estimation coefficient (DEC), which also unifies the Bellman eluder dimension
and bilinear class. The DEC framework is appealing due to the matching lower bound in some
decision-making problems, where all other complexity measures do not have. However, due to the
presence of a minimax subroutine in its definition, they require a much more complicated minimax
optimization oracle and cannot apply to the classical optimism-based or sampling-based methods.
Chen et al. [13], Foster et al. [24] extend the vanilla DEC (to the model-free case) by incorporating an
optimistic modification, which was originally referred to as the feel-good modification in Zhang [87].
Chen et al. [15] study Admissible Bellman Characterization (ABC) class to generalize BE. They also
extend the GOLF algorithm and Bellman completeness in model-free RL to the model-based case by
considering more general (vector-form) discrepancy loss functions to construct sharper in-sample
error estimators and obtain sharper bounds compared to Sun et al. [67]. Xie et al. [79] connect the
online RL with the coverage condition in the offline RL, and also study the GOLF algorithm proposed
in Jin et al. [37].

Algorithmic design in sample-efficient RL with function approximation. The most prominent
approach in this area is based on the principle of “Optimism in the Face of Uncertainty” (OFU),
which dates back to Auer et al. [4]. For instance, for linear function approximation, Jin et al. [39]
propose an optimistic variant of Least-Squares Value Iteration (LSVI), which achieves optimism by
adding a bonus at each step. For the general case, Jiang et al. [36] first propose an elimination-based
algorithm with optimism in model-free RL and is extended to model-based RL by [67]. After
these, Du et al. [20], Jin et al. [37] propose two OFU-based algorithms, which are more similar
to the lin-UCB algorithm [1] studied in the linear contextual bandit literature. The model-based
counterpart (Optimistic Maximum Likelihood Estimation) is studied in Liu et al. [46], Chen et al.
[13]. Specifically, these algorithms explicitly maintain a confidence set that contains the ground
truth with high probability and conducts a constraint optimization step at each iteration to select the
most optimistic hypothesis in the confidence set. The other line of work studies another powerful
algorithmic framework based on posterior sampling. For instance, Zanette et al. [84] study randomized
least-squares value iteration (RLSVI), which can be interpreted as a sampling-based algorithm and
achieves an order-optimal result for linear MDP. For general function approximation, the works
mainly follow the idea of the “feel-good” modification proposed in Zhang [87]. These algorithms
start from some prior distribution over the hypothesis space and update the posterior distribution
according to the collected samples but with certain optimistic modifications in either the prior or
the loglikelihood function. Then the hypothesis for each iteration is sampled from the posterior and
guides data collection. In particular, Dann et al. [19] studies the model-free Q-type problem, and
Agarwal and Zhang [2] studies the model-based problems, but under different notions of complexity
measures. Zhong et al. [89] further utilize the idea in Zhang [87] and extend the posterior sampling
algorithm in Dann et al. [19] to be a unified sampling-based framework to solve both model-free and
model-based RL problems, which is also shown to apply to the more challenging partially observable
setting. In addition to the OFU-based algorithm and the sampling-based framework, Foster et al. [25]
propose the Estimation-to-Decisions (E2D) algorithm, which can solve problems with low DEC but
requires solving a complicated minimax subroutine to fit in the framework of DEC.



Due to the limitation of the page, we defer the remaining discussions of Relationship with reward-
biased maximum likelihood estimation, Exploration of DRL, and Two-player Zero-Sum Markov
Game to Appendix B.

2 Preliminaries

2.1 Episodic Markov Decision Processes and Online Reinforcement Learning
We consider an episodic MDP defined by a tuple (S, .4, H,P,r), where S and A are the state and
action spaces, H is a finite horizon, P = {P,}/L  with P}, : S x A ~— A(S) the transition kernel at

the h-th timestep, and r = {rj, }__, withrj,: S x A — [0, 1] the reward function at the h-th timestep.
Without loss of generality, we assume that the reward function r;, is both deterministic and known.

In the episodic MDP, the agent interacts with the environment by the following online protocol. At
the beginning of the k-th episode, the agent selects a policy 7% = {7¥ : S — A(A)}EL,. It takes an
action af ~ 7F (- | 2F) at timestep h and state z'§. After receiving the reward 5 = 7y, (x%, af) from
the environment, it transits to the next state x’,z 1 Pr(-| xZ, aﬁ). When the agent reaches the state
x’f_l 4 1» it ends the k-th episode. Without loss of generality, we assume that the initial state 1 = x is
fixed. Our analysis can be generalized to the setting where x is sampled from a distribution on S.

Policy and value functions. For a policy 7 = {m, : S — A(A)}L_,, we denote by V" : S — R
and Q7 : S x A — Rits value function and state-action value function at the h-th timestep, which
characterizes the expected total rewards received by the agent under policy 7 afterward, starting from
somex, =x € S(orzy =x € S,a = a € A, resp.), till the end of the episode. Specifically,

H
V;ZT(SU) =FE, Z T}L/(Z'h/,ah/) Ty = SE] , Vx e S, 2.1
h'=h
H
Q(z,a) :=E, Z T (Thyap )| T = 2 ap = a] , Y(z,a) e S x A (2.2)
h'=h

We know there exists an optimal policy 7* which has the optimal value function for all initial states
[61], thatis, V™ (s) = sup,. V;7(z) forall h € [H] and = € S. For simplicity, we abbreviate V™ as
V* and the optimal state-action value function Q™" as Q*. Moreover, the optimal value functions Q*
and V* satisfy the following Bellman optimality equation [61], given by

Vi) = maxQi(wa), Vi () =0, @3
Q3 () = (ThQir) (#,0) i= 11(@,0) + Egrop ) [Vies (@), 4

forall (z,a,h) € S x A x [H]. We call Ty, the Bellman optimality operator at timestep h. Also, for
any two functions @ and Q1 on S x A, we define

gh(Qh7Qh+1;$7a) = Qh(xva) _771Qh+1(x7a)7 V(xva) GS X A7 (25)
as the Bellman residual at timestep h of (Qp, Qp+1).

Performance metric. We measure the online performance of an agent after K episodes by regret.
We assume that the learner predicts the optimal policy 7* via 7* in the k-th episode for each k € [K].
Then the regret of K episodes is defined as the cumulative suboptimality gap of {Wk}ke[ K]Z,

K

Regret(K) = Y Vi(z1) — Vi (a1). (2.6)
The target of sample-efficient online RL is t(’;:alchieve sublinear regret (2.6) with respect to K.
2.2 Function Approximation: Model-Free and Model-Based Hypothesis
To handle MDPs with large or even infinite state space, we introduce a family of function approxi-
mators. In specific, we consider a hypothesis class H = H; X - -+ X H g, which can be specified to

model-based and model-free settings respectively. Also, we denote by II = II; x --- x Iy as the
space of Markovian policies. We now specify H for model-free and model-based settings.

We allow the agent to predict the optimal policy via 7* while executing some other exploration policy wfxp
to interact with the environment and collect data, as is considered in the related literature [67, 20, 89]



Algorithm 1 Maximize to Explore (MEX)
1: Input: Hypothesis class #, parameter 7 > 0.
2: fork=1,--- ,Kdo
3:  Solve f* € H via

H
¥ =argsup{ Vi p(z1) —n- Y _LEH(f) ¢ 3.1
fen h=1
4: Execute Texp(f*) to collect data D* = {Df} e () with Df = (2f, aff, vf, 2, ).

5:  Predict the optimal policy via 7 ¢x.

6: end for

Example 2.1 (Model-free hypothesis). For model-free hypothesis class, H contains state-action value
functions of the MDP, i.e., Hp, C {fn : S x A — R}. Specifically, for any f = (f1, -+, fu) € H,
we denote Qy = {Qn, s fhe[a) With Qn,y = fn- Also, we denote the corresponding optimal state-
value function Vi = {Vy, ¢ }nem) with Vi, y(-) = maxqe 4 Qn, s (-, a) and denote the corresponding
optimal policy by Ty = {7, f fnejm) with Th 5 (-) = argmaxae 4 Qn, £ (, a). Finally, we denote the
optimal state-action value function under the true model, i.e., Q*, by f*.

Example 2.2 (Model-based hypothesis). For model-based hypothesis class, H contains models of
the MDP, i.e., the transition kernel. Specifically, we denote f =Py = (P17,--- Py s) € H. For
any (f,m) € H x 11, we define VI = {V;" ;}ne () as the state-value function induced by model P
and policy w. We use Vi = {V}, t }he[m) to denote the corresponding optimal state-value function,
i.e., Vi,p = suprcp V' . The corresponding optimal policy is denoted by 7ty = {7, }ne(n), where
Th,f = argsup ey Vj, ;. Finally, we denote the true model P of the MDP as f

We remark that the main difference between the model-based hypothesis (Example 2.2) and the
model-free hypothesis (Example 2.1) is that model-based RL directly learns the transition kernel of
the underlying MDP, while model-free RL learns the optimal state-action value function. Since we
do not add any specific structural form to the hypothesis class, e.g., linear function or kernel function,
we are in the context of general function approximations [67, 37, 20, 89, 15].

3 Algorithm: Maximize to Explore for Online RL

In this section, we propose Maximize to Explore (MEX, Algorithm 1) for online RL in MDPs with
general function approximations. With a novel single objective, MEX automatically balances the goal
of exploration and exploitation. We first give a generic algorithm framework and then instantiate it to
model-free (Example 2.1) and model-based (Example 2.2) hypotheses respectively.

Generic algorithm design. In each episode k € [K], the agent first estimates a hypothesis f* € H
using historical data {D“"}i?;ll by maximizing a composite objective (3.1). Specifically, in order to
achieve exploiting history knowledge while encouraging exploration, the agent considers a single
objective that sums: (a) the negative loss fLZ_l (f) induced by the hypothesis f, which represents
the exploitation of the agent’s current knowledge; (b) the expected total return of the optimal policy
associated with this hypothesis, i.e., V; ¢, which represents exploration for a higher return. With a
tuning parameter 7 > 0, the agent balances the weight put on the tasks of exploitation and exploration.
The agent then predicts 7* via the optimal policy with respect to the hypothesis that maximizes the

composite exploration-exploitation objective function, i.e., m¢x. Also, the agent executes certain

exploration policy exp(f¥) to collect data D* = {(a},af, 7}, «F )}, and updates the loss

function LY (f). The choice of mex,(f*) depends on the specific MDP structure, and we refer to
examples in Section 5 for detailed discussions.

We highlight that MEX is not a Lagrangian duality of constrained optimization objectives within
data-dependent level-sets [37, 20, 15]. In fact, MEX only needs to fix the parameter 1 across each
episode. Thus 7 is independent of data and predetermined, which contrasts Lagrangian methods that
involve an inner loop of optimization for the dual variables. We also remark that we can rewrite
(3.1) as a joint optimization (f,7) = argsup ey ren Vi'y (1) — 1 Ethl L¥~Y(f). When 1 tends
to infinity, MEX can be reduced to vanilla Actor-Critic framework [41], where critic f minimizes
estimation error and actor 7 conducts greedy policy following the critic f. In the following two parts,



we instantiate Algorithm | to model-based and mode-free hypotheses by specifying the loss function
Ly (f).
Model-free algorithm. For model-free hypothesis (Example 2. 1) (3.1) becomes

fen |m€A

¥ = argsup {max Q1,¢(z1,a1) — 1 - ZLk 1 } (3.2)

Regarding the choice of the loss function, for seek of theorencal analysis, to deal with MDPs with
low Bellman eluder dimension [37] and MDPs of bilinear class [20], we assume the existence of
certain function [ which generalizes the notion of Bellman residual.

Assumption 3.1. Suppose the functionl : H X Hp X Hpt1 X (S X A X R x 8) — R satisfies:
i) (Generalized Bellman completeness) [89, 15] there exists an operator Py, : Hp41 — Hp, such that
forany (f', fr, fne1) € H X Hp X Hpy1 and D, = (Th, ap,Thy The1) € S X A X R X S, it holds

Ly ((fhs frs1)s Dn) = L (Prfists fas1)s Dn) = By Clamsan) [ ((Frs fra1), D) |
where we require that Py, f}; | = f; and that Py fr, 11 € Hy, for any fry1 € Hpy1 and step h € [H];
ii) (Boundedness) it holds that sup ¢4, |Lg ((fn, frt1), Di)lleo < By for some constant By > 0.
We then set the loss function LY as an empirical estimation of the generalized squared Bellman error
|Erh+1~Ph( |zh,an) [lf ((ffu fh+1) Dh)]|2 glven by

k
s\ 2 . s\ 2
= Z lfs ((fhv fh—‘rl)» Dh) - f’lgf Z lfs ((f]{m fh—‘rl)» Dh) . (33)
s=1 RSTER 1

We remark that the subtracted infimum term in (3.3) is to handle the variance terms in the estimation to
achieve a fast theoretical rate. Similar essential ideas are also adopted by [37, 78, 19, 38, 52, 2, 89, 15].

Model-based algorithm. For model-based hypothesis (Example 2.2), (3.1) becomes

¥ = argsup < sup V' (= L 34
feH mell ! Pf 1 — Z
which is a joint optimization over the model P, and the pOlle 7. In the model-based algorithm, we
choose the loss function Lﬁj as the negative log-likelihood loss, defined as
k
Ly (f) = = > log Py p(wf 11|}, af)- (3.5
s=1

4 Regret Analysis for MEX Framework

In this section, we establish a regret analysis for the MEX framework (Algorithm 1). We give a generic
theoretical guarantee which holds for both model-free and model-based settings. We first present
three key assumptions needed for sample-efficient learning with MEX. In Section 5, we specify the
generic theory to specific examples of MDPs and hypothesis classes satisfying these assumptions.

Firstly, we assume that the hypothesis class 7 is well-specified, containing the true hypothesis f*.
Assumption 4.1 (Realizablity). We assume that the true hypothesis f* € H.

Then we need to make a structural assumption on the MDP to ensure sample-efficient online learning.
Inspired by Zhong et al. [89], we require the MDP to have low Generalized Eluder Coefficient
(GEQ). A low GEC indicates that the agent can effectively mitigate out-of-sample prediction errors
by minimizing in-sample errors derived from historical data. To introduce, we define a discrepancy
function £/ (f; &) : H x H % (S x A xR x §) — R which characterizes the error of a hypothesis
f € Hondata &, = (xp,an,rn, xre1). Specific choices of ¢ are given in Section 5 for concrete
model-free and model-based examples.

Assumption 4.2 (Low Generalized Eluder Coefficient [89]). We assume that given an € > 0, there
exists d(€) € R, such that for any sequence of {f*}e(r) C H. {ﬂexp(fk)}ke[K cIL

K H K k-1
Zvlvfk V1 fk< inf { ZZZEE’INWSXP o) éf (f gh +\/ HK+€HK}
k=1

n>0
h=1k=1 s=1
We denote the smallest number d(e) € R satisfying this condition as dGEC ().



As is shown by Zhong et al. [89], the low-GEC MDP class covers almost all known theoretically
tractable MDP instances, such as linear MDP [81, 39], linear mixture MDP [5, 57, 12], MDPs of low
witness rank [67], MDPs of low Bellman eluder dimension [37], and MDPs of bilinear class [20].

Finally, we make a concentration-style assumption which characterizes how the loss function L’,i is
related to the expectation of the discrepancy function E[¢] appearing in the definition of GEC. For
ease of presentation, we assume that 7 is finite, i.e., |H| < oo, but our result can be directly extended
to an infinite A using covering number arguments [72, 37, 49, 38].

Assumption 4.3 (Generalization). We assume that H is finite, i.e., |H| < +oo, and that with
probability at least 1 — 6, for any episode k € [K| and hypothesis f € H, it holds that

H H k-1
SIS =L ) S D0 By Ure (£:60)] + B(H log(HK /) + log(|H])),
h=1 h=1 s=1

where B = Bl2 for model-free hypothesis (Assumption 3.1) and B = 1 for model-based hypothesis.

Such a concentration style inequality is well known in the literature of online RL with general function
approximation and similar analysis is also adopted by [37, 15]. With Assumptions 4.1, 4.2, and 4.3,
we can present our main result (see Appendix D.1 for a proof).

Theorem 4.4 (Online regret of MEX (Algorithm 1)). Under Assumptions 4.1, 4.2, and 4.3, by setting

y = dgrc(1/VHK)
(Hlog(HK/5) + log(|H))) B - K’
then the regret of Algorithm 1 after K episodes is upper bounded by

Regret(K) S \/darc(1/VHK) - (Hlog(HK/6) + log([H])) - B K,

with probability at least 1 — 0. Here dgrc(-) is defined in Assumption 4.2.

Theorem 4.4 shows that the regret of Algorithm 1 scales with the square root of the number of episodes
K and the polynomials of horizon H, GEC dggc(1/v/K), and log covering number log N'(H, 1/K).
When the number of episodes K tends to infinity, the average regret vanishes, meaning that the output
policy of Algorithm 1 achieves global optimality. Since the regret of Algorithm 1 is sublinear with
respect to the number of episodes K, Algorithm 1 is proved to be sample-efficient. In Appendix C,
we extend the algorithm framework and the analysis to the two-player zero-sum Markov game (MG)
setting, for which we also extend the definition of GEC to two-player zero-sum MGs.

Besides, as we can see from Theorem 4.4 and its specifications in Section 5, MEX matches existing theo-
retical results in the literature of online RL with general function approximations [89, 67, 20, 37, 19, 2].
But in the meanwhile, MEX does not require explicitly solving a constrained optimization problem
within data-dependent level-sets or performing a complex sampling procedure. This advantage makes
MEX a principled approach with easier practical implementation. We conduct deep RL experiments
for MEX in Section 6 to demonstrate its power in complicated online problems.

S Examples of MEX Framework

In this section, we specify Algorithm 1 to model-based and model-free hypothesis classes for various
examples of MDPs of low GEC (Assumption 4.2), including MDPs with low witness rank [67], MDPs
with low Bellman eluder dimension [37], and MDPs of bilinear class [20]. For ease of presentation,
we assume that |H| < oo, but our result can be directly extended to infinite H using covering number
arguments [72, 37, 49]. All the proofs of the propositions in this section are in Appendix E.

We note that another important step in specifying Theorem 4.4 to concrete hypothesis classes is to
check Assumption 4.3 (supervised learning guarantee). It is worth highlighting that, in our analysis,
for both model-free and model-based hypotheses, we provide supervised learning guarantees in a
neat and unified manner, independent of specific MDP structures.

5.1 Model-free online RL in Markov Decision Processes

In this subsection, we specify Algorithm 1 for model-free hypothesis class  (Example 2.1). For a
model-free hypothesis class, we choose the discrepancy function £ as, given Dy, = (zp, ap, Thy Tht1),

o (FiDh) = (B (o [ (s Frgn)s D)) (5.1)



where the function I : H X Hp X Hpy1 X (S x A X R x §) — R satisfies Assumption 3.1. We
specify the choice of [ in concrete examples of MDPs later. In the following, we check and specify
Assumptions 4.2 and 4.3 in Section 4 for model-free hypothesis classes.

Proposition 5.1 (Generalization: model-free RL). We assume that H is finite, i.e., |H| < +oo. Then
under Assumption 3.1, with probability at least 1 — §, for any k € [K| and f € H, it holds that

H H k-1

SIS L) S D0 By (o) [re (£ 60)] + BE (H log(HEK /8) + log(|H])),

h=1 h=1s=1

where L and { are defined in (3.3) and (5.1) respectively. Here B; is specified in Assumption 3.1.

Proposition 5.1 specifies Assumption 4.3 for model-free hypothesis classes. For Assumption 4.2, we
need structural assumptions on the MDP. Given an MDP with generalized eluder dimension dggc,
we have the following corollary of our main theoretical result (Theorem 4.4).

Corollary 5.2 (Online regret of MEX: model-free hypothesis). Given an MDP with generalized eluder
coefficient dggc () and a finite model-free hypothesis class H with f* € H, under Assumption 3.1,
setting

_ \/ dapc(1/VHE)
! (H log(

, 5.2
HEK/5) + log(H))) - B - K 62
then the regret of Algorithm 1 after K episodes is upper bounded by

Regret(T) S By - \/danc(1/VHE) - (H log(HK/8) + log(|H])) - K, (5.3)

with probability at least 1 — 0. Here Bj is specified in Assumption 3.1.

Corollary 5.2 can be directly specified to MDPs with low GEC, including MDPs with low Bellman
eluder dimension [37] and MDPs of bilinear class [20]. See Appendix E.1 for a detailed discussion.

5.2 Model-based online RL in Markov Decision Processes

In this subsection, we specify Algorithm | for model-based hypothesis class H (Example 2.2). For
model-based hypothesis class, we choose the discrepancy function £ in Assumption 4.2 and 4.3 as the
hellinger distance. Given data Dy, = (zp, ap, Th, Trt1), We let

Ly (fsDn) = Du(Pr g (|n, an)[Ph, g (-lzn, an)), (5.4)
where Dy (+||-) denotes the Hellinger distance. We note that by (5.4), the discrepancy function ¢ does
not depend on the input f’ € . In the following, we check and specify Assumption 4.2 and 4.3.

Proposition 5.3 (Generalization: model-based RL). We assume that H is finite, i.e., |H| < +oo.
Then with probability at least 1 — 0, for any k € [K], f € H, it holds that

H H k-1

STLE) LN S =30 By oy [l (F:60)] + H log(H/5) + log(|H]),

h=1 h=1s=1
where L and ¢ are defined in (3.5) and (5.4) respectively.

Proposition 5.3 specifies Assumption 4.3 for model-based hypothesis classes. For Assumption 4.2,
we also need structural assumptions on the MDP. Given an MDP with generalized eluder dimension
dgrc, we have the following corollary of our main theoretical result (Theorem 4.4).

Corollary 5.4 (Online regret of MEX: model-based hypothesis). Given an MDP with generalized
eluder coefficient dgrc(-) and a finite model-based hypothesis class H with f* € H, by setting

. \/ dapc(1/VHE)
(

Hlog(H/d) +log(|H])) - K’
then the regret of Algorithm 1 after K episodes is upper bounded by, with probability at least 1 — 6,

Regret(K) < \/dasc(1/VIE) - (Hlog(H/6) +log(1H))) - K, 5.5)

Corollary 5.4 can be directly specified to MDPs with low GEC, including MDPs with low witness
rank [67]. We refer to Appendix E.2 for a detailed discussion.



6 Experiments

In this section, we aim to answer the following two questions: (a) What are the practical approaches
to implementing MEX in both model-based (MEX-MB) and model-free (MEX-MF) settings? (b) Can MEX
handle challenging exploration tasks, especially in sparse reward scenarios?

Experimental setups. We evaluate the effectiveness of MEX by assessing its performance in both
standard gym locomotion tasks and sparse reward locomotion and navigation tasks within the MuJoCo
[71] environment. For sparse reward tasks, we select cheetah-vel, walker-vel, hopper-vel,
ant-vel, and ant-goal adapted from Yu et al. [83], where the agent receives a reward only when it
successfully attains the desired velocity or goal. To adapt to deep RL settings, we consider infinite-
horizon vy-discounted MDPs and MEX variants. We report the results averaged over five random seeds.
The full experimental settings are in Appendix H.

Implementation details. For the model-based variant MEX-MB, we use the following objective:

max max E(z,a,m0)~8 08Py (z',7 |2, a)] + 1 - Epnor [V[P?; (z)], 6.1)
where we denote by o the initial state distribution, /3 the replay buffer, and n’ corresponds to 1/7 in the
previous theory sections. We leverage the score function to obtain the model value gradient V VP’;
in a similar way to likelihood ratio policy gradient [70], with the gradient of action log-likelihood
replaced by the gradient of state and reward log-likelihood in the model. Specifically,

Vo Eono [VIPZ; (z)] = Err [(r +AVE, () — QF, (=, a)) - VylogPy(a',r |z, a)} , 6.2)

where 77 is the trajectory under policy 7 and transition Py, starting from o. We refer the readers
to previous works [62, 76] for a derivation of (6.2). The model ¢ and policy 7 in (6.1) are updated
iteratively in a Dyna [68] style, where model-free policy updates are performed on model-generated
data. Particularly, we adopt SAC [30] to update the policy 7 and estimate the value Qfg,; by performing
temporal difference on the model data generated by ;. We also follow [62] to update the model
using mini-batches from /5 and normalize the advantage r, + Vg, — @, within each mini-batch.

For the model-free variant MEX-MF, we observe from (3.2) that adding a maximization bias term to
the standard TD error is sufficient for exploration. However, this may lead to instabilities as the bias
term only involves the state-action value function of the current policy, and thus the policy may be
ever-changing. To address this issue, we adopt a similar treatment as in CQL [42] by subtracting a
baseline state-action value from random policy p = Unif(.A) and obtain the following objective:

max max Eg [(T +7Qy(x',a") — Qg(x, a))Q} +1n'-Eg []EaNﬂQg(x, a) —EqupQo(z, a)]. (6.3)

We update 6 and 7 in (6.3) iteratively in an actor-critic fashion. Due to space limits, we refer the
readers to Appendix H for more implementation details of MEX-MF.

Results. We report the performance of MEX-MB and MEX-MF in Figures 1 and 2, respectively. We
compare MEX-MB with MBPO [34], where our method differs from MBPO only in the inclusion of the
value gradient in (6.2) during model updates. We find that MEX-MB offers an easy implementation
with minimal computational overhead and yet remains highly effective across sparse and standard
MuJoCo tasks. Notably, in the sparse reward settings, MEX-MB excels at achieving the goal velocity
and outperforms MBPO by a stable margin. In standard gym tasks, MEX-MB showcases greater sample
efficiency in challenging high-dimensional tasks with higher asymptotic returns.

We then compare MEX-MF with the model-free baseline TD3 [27]. We observe that TD3 fails in many
sparse reward tasks, while MEX-MF significantly boosts the performance. In standard MuJoCo gym
tasks, MEX-MF also steadily outperforms TD3 with faster convergence and higher final returns.

7 Conclusions

In this paper, we introduce a novel RL algorithm framework—~Maximize to Explore (MEX)—aimed at
striking a balance between exploration and exploitation in online learning scenarios. MEX is provably
sample-efficient under general function approximations and is easy to implement. Theoretically, we
prove that under mild structural assumptions (low generalized eluder coefficient (GEC)), MEX achieves
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Figure 1: Model-based MEX-MB in sparse and standard MuJoCo locomotion tasks.
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Figure 2: Model-free MEX-MF in sparse and standard MuJoCo locomotion tasks.

o (V'K )-online regret for MDPs. We further extend the definition of GEC and MEX framework to

two-player zero-sum Markov games (see Appendix C) and also prove the O(\/E )-online regret. In
practice, we adapt MEX to deep RL methods in both model-based and model-free styles and apply
them to sparse-reward MuJoCo environments, outperforming baselines significantly. We hope our
work can shed light on future research of designing both statistically efficient and practically effective
RL algorithms with powerful function approximation.
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A Limitations

Though MEX framework is very flexible and can even be adapted for handling POMDP with low GEC
[89], it remains unclear if we could adapt MEX to an offline setting where no well-explored dataset is
provided. The adaptation is non-trivial as we would face an issue of minimax optimization to apply
the pessimism principle as many existing works do [40, 78, 50, 28, 10].

B Additional Related Works

Relationship with reward-biased maximum likelihood estimation. Our work is also related
to a line of work in reward-biased maximum likelihood estimation. While [43] firstly proposed an
estimation criterion that biases maximum likelihood estimation (RBMLE) with the cost or value, their
algorithm is actually different from ours, by their Equation (6) and (8) in Section 3, their algorithm
performs the estimation of model and policy optimization separately, for which they only obtained
asymptotic convergence guarantees. Also, how well their decision rule explores remains unknown
in theory. In contrast, MEX adopts a single optimization objective that combines estimation with
policy optimization, which also ensures sample-efficient online exploration. [48, 33, 56, 55, 54]
study RBMLE in Multi-arm bandit [48], Linear Stochastic Bandits [33], tabular RL [56], and Linear
Quadratic Regulator settings (linear parameterized models of MDPs, [55, 54]) and also obtain the
theoretical guarantees. While these settings are special cases for our proposed algorithms, our proven
theoretical guarantee can also be generalized to these concrete cases. As we claim in this paper, our
main contribution is to address the exploration-exploitation trade-off issue under general function
approximation, which makes our work differ from these papers. [76] consider an algorithm similar to
MEX, but our theory differs from theirs in both techniques and results. Our theory is based upon
a unified framework of online RL with general function approximations, which covers their setup
for the model-based hypothesis with kernel function approximation (RKHS). More importantly,
they derived asymptotic regret of their algorithm based upon certain uniform boundedness and
asymptotic normality assumptions, which are relatively strong conditions. In contrast, we derive
finite sample regret upper bound for MEX, and the only fundamental assumption needed is a lower
Generalized Eluder Coefficient (GEC) MDP, which contains almost all known theoretically tractable
MDP classes (therefore covers their RKHS model). Finally, our paper further extends MEX to
two-player zero-sum Markov games where similar algorithms and theories are previously unknown to
the best of our knowledge. Moreover, the works mentioned above do not design experiments in deep
RL environments, while we propose deep RL implementations and demonstrate their effectiveness in
several MuJoco tasks.
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Exploration in DRL. There has also been a long line of research that studies the exploration-
exploitation trade-off from a practical perspective, where a prominent approach is referred to as the
curiosity-driven method [60]. Curiosity-driven method focuses on the intrinsic rewards [60] (to handle
the sparse extrinsic reward case) when making decisions, whose formulation can be largely grouped
into either encouraging the algorithm to explore “novel” states [9, 51] or encouraging the algorithm
to pick actions that reduce the uncertainty in its knowledge of the environment [31, 58, 64, 66]. These
methods share the same theoretical motivation as the OFU principle in principle. In particular, one
popular approach in this area is to use ensemble methods, which combine multiple neural networks
of the value function and (or) policy ( [75, 59, 14, 53, 44, 18, 45] and reference therein). For instance,
Chen et al. [14] leverage the idea of upper confidence bound by estimating the uncertainty via the
ensembles to improve the sample efficiency. However, the uncertainty estimation via ensembles is
more computationally inefficient as compared to the vanilla algorithm. Meanwhile, these methods
lack theoretical guarantees beyond the tabular and linear settings. It remains unknown in theory
whether they are provably sample-efficient in the context of general function approximations. There
is a rich body of literature, and we refer interested readers to Section 4 of Zha et al. [86] for a
comprehensive review.

Two-player zero-sum Markov game. There have been numerous works on designing provably
efficient algorithms for zero-sum Markov games (MGs). In the tabular case, Bai et al. [8], Bai and Jin
[7], Liu et al. [47] propose algorithms with regret guarantees polynomial in the number of states and
actions. Xie et al. [77], Chen et al. [16] then study the MGs in the linear function approximation case
and design algorithms with O(poly(d, H)v/K ) regret, where d is the dimension of the linear features.
These approaches are later extended to the general function approximation by Jin et al. [38], Huang
et al. [32], Xiong et al. [80], where the former two works studied OFU-based algorithms and the last
one studied posterior sampling. However, these works focused only on the model-free case.

C Extensions to Two-player Zero-sum Markov Games

C.1 Online Reinforcement Learning in Two-player Zero-sum Markov Games

Markov games (MGs) generalize the standard Markov decision process to the multi-agent setting.
We consider the episodic two-player zero-sum MG, which is denoted as (H, S, A, B,P,r). Here
S is the state space shared by both players, A and B are the action spaces of the two players
(referred to as the max-player and the min-player) respectively, H € N denotes the length of each
episode, P = {Pp}ne(p) with P, © S x A x B + A(S) the transition kernel of the next state
given the current state and two actions from the two players at timestep h, and r = {74 }cm) With
rp S x A x B [0, 1] the reward function at timestep h.

We consider online reinforcement learning in the episodic two-player zero-sum MG, where the two
players interact with the MG for K € N episodes through the following protocal. Each episode k
starts from an initial state 2¥. At each timestep h, two players observe the current state J;ﬁ, take joint
actions (aff, bY) individually, and observe the next state = | ~ Py, (- | 2}, aff, bf’). The k-th episode
ends after step H and then a new episode starts. Without loss of generality, we assume each episode
has a common fixed initial state ¥ = z;, which can be easily generalized to having ; sampled from
a fixed but unknown distribution.

Policies and value functions. We consider Markovian policies for both the max-player and the
min-player. A Markovian policy of the max-player is denoted by pu = {un = S = A(A)}nera-
Similarly, a Markovian policy of the min-player is denoted by v = {v}, : &' + A(B) }1,¢(m). Given
a joint policy w = (y,v), its state-value function V/*” : & — R and state-action value function
QY 8 x Ax B~ Ry attimestep h are defined as

H
VhUaV(,’L‘) = EP,(H,V) [Z Th (-rh'7a/h’abh’) T = ;L“| , (C])
h'=h
H
QY (x,a,b) :=Ep () [Z The (T ans by )| (Th, an, by) = (x,a,b)] ) (C2)
h=h
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where the expectations are taken over the randomness of the transition kernel and the policies. In the
zero-sum game, the max-player wants to maximize the value functions, while the min-layer aims at
minimizing the value functions.

Best response, Nash equilibrium, and Bellman equations. Given a max-player’s policy u, the
best response policy of the min-player, denoted by (1), is the policy that minimizes the total
rewards given that the max-player uses p. According to this definition, and for notational simplicity,
we denote

Vil(z) = V}f”ﬁ(”) (z) = inf V/*" (),
QZ’T(Z’, a,b) = Qg’yf(“)(a:, a,b) = inf Q)" (z, a,b), (C.3)

for any (x,a,b,h) € S x A x B x [H]. Similarly, given a min-player’s policy v, there is a best
response policy jif (v) for the max-player that maximizes the total rewards given . According to the
definition, we denote

Vi (2) = VO (2) = sup Vi (),
%

QL’V(x,a,b) = ZT(”)’V(%a,b) =sup Q)" (z,a,b), (C.4)
n

for any (z,a,b,h) € S x A x B x [H]. Furthermore, there exists a Nash equilibrium (NE) joint
policy (u*, v*) [22] such that both players are optimal against their best responses. That is,
V@) = sup VT (), VI (2) = inf VI (2), (C.5)
Iz v
for any (x, h) € S x [H]. For the NE joint policy, we have the following minimax equation,
sup inf V" (z) = V""" (x) = inf sup V" (). (C.6)
oY Vo

for any (z,h) € S x [H]. This shows that: i) the for two-player zero-sum MG, the sup and the inf
exchanges; ii) the NE policy has a unique state-value (state-action value) function, which we denote
as V* and Q* respectively. Finally, we introduce two sets of Bellman equations for best response
value functions and NE value functions. In specific, for the min-player’s best response value functions
given max-player policy 1, i.e., (C.3), we have the following Bellman equation,’

Q! (w,a,b) = (T Ql)) (. a,b)
= Th(l', a, b) + Em/wPh(<|x,a,b) Vl}flJrfl D(MLJrl,yh,Jrl)Qgil(l'/) s (C7)

for any (z,a,b,h) € S x A x B x [H|. We name T, as the min-player best response Bellman
operator given max-player policy u, and we define

gﬁ(Qha Qh—‘—l; xz,a, b) = Qh(xa a, b) - 77#Qh+1(xa a, b)a (C8)

as the min-player best response Bellman residual given max-player policy p at timestep h of any
functions (Qp, Qn+1). Also, for the NE value functions, i.e., (C.1), we also have the following NE
Bellman equation,

QTL(wv a, b) = (ENEQZJA)("E» a, b)

= rp(2,0,0) + Eyrip, (a,a,0) | SUP inf D(MH’%H)QZH(QC’) , (C.9)

Ph1 Vht1

for any (z,a,b,h) € S x A x B x [H]. We call T,NE the NE Bellman operator, and we define

gilL\IE(Qhu Qh+1; Z,a, b) = Qh(xa a, b) - ENEQ’rFl(x? a, b)7 (ClO)
as the NE Bellman residual at timestep h of any functions (Qp, Qpr+1).

3For simplicity, we define Dy, vn) = Eanpy, (-12),bovn (|2) [Q (T, @, b)] for any pup, vy, and function Q.
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Performance metric. We say a max-player’s policy y is e-close to Nash equilibrium if Vi*(z1) —

V{"T (z1) < €. The goal of this section is to design a sample-efficient online learning algorithm to
find such a max-player policy. The corresponding regret after K episodes is defined as,

K
k
Regretyq (K) =Y Vit (a1) = Vi T(a), (C.11)
k=1

where ;¥ is the policy used by the max-player for the k-th episode. Such a problem setting is also
studied by Jin et al. [38], Huang et al. [32], Xiong et al. [80]. Actually, the roles of the two players can
be exchanged, so that the goal turns to learning a min-player policy v e-close to the Nash equilibrium,
to which the our algorithm can also apply.

C.2 Function Approximation

Function Approximation. To handle two-player zero-sum MGs with large or even infinite state
spaces, we consider a function approximation approach. In specific, we have access to an abstract
hypothesis class H = H; X - - - X H g7, which can be specified to model-based and model-free settings
respectively. Also, we denote by II = M X N with M = M; x---xMpgand N =Nj x--- xNpg
as the space of Markovian joint policies. We specify this notation for model-free and model-based
hypotheses respectively in the following.

Example C.1 (Model-free hypothesis). For model-free hypothesis class, H contains state-actions
value functions of the MG, ie., Hp C {fn : S x A x B — R}. Specifically, for any f =
(f1,-+, fu) € H, we denote Qy = {Qn, s }nem) With Qn,y = fn. Also:

1. Given f € H, we denote the corresponding NE state-value function by Vy = {Vh,f}he[H] with
Vi,s(+) = max,em min,en Dy, 1) @n,f (-, -, ) and denote the corresponding NE max-player
policy by juiy = { i, f he ) with pun 5 (-) = argmax,, ey mingen Dy, 0, ) Qnp (55 -

2. Given the policy of the max-player 1 € M, we define Vf“’T = {th;j}he[H] as the state-value
function induced by Qy, 11, and its best response, i.e., V,f‘; = min,en Dy, 0)@n,r (- -, ), and
we denote the corresponding best response min-player policy as vy, = {Vh,f.,u}he[H]-

3. Finally, we denote the NE state-action value function under the true model Q* by f*.

Example C.2 (Model-based hypothesis). For model-based hypothesis class, H contains models of

the MG, i.e., transition kernel P. Specifically, we denote f =Py = (Py f,--- , Py ) € H. Also:

1. Forany (f,(p,v)) € H x IL we define Vi"" = {V}""'"}1,c () as the state-value function induced
by model Py and joint policy (u,v).

2. We define Vi = { Vit }h—c[m) as the NE state-value function induced by model Py, and we denote
the corresponding NE max-player policy as piy = {jin,f }he[m)-

3. Given the policy of the max-player i € M, we define Vf“ T = % ’;}he[ )] as the state-value
function induced by Py, i, and its best response, and we denote the corresponding best response

min-player policy as vy ;, = {Vn,f , }he(H)-
4. Finally, we denote the true model P of the MG as f*.

C.3 Algorithm Framework: Maximize to Explore MEX-MG)

In this section, we extend the Maximize to Explore framework (MEX, Algorithm 1) to the two-player
zero-sum MG setting, resulting in MEX-MG (Algorithm 2). MEX-MG controls the max-player and the
min-player in a centralized manner. The min-player is aimed at assisting the max-player to achieve
low regret. This kind of self-play algorithm framework has received considerable attention recently
in theoretical study of two-player zero-sum MGs [38, 32, 80].

We first give a generic algorithm framework and then instantiate it to model-free (Example C.1) and
model- based (Example C.2) hypotheses respectively.

C.3.1 Generic algorithm

MEX-MG leverages the asymmetric structure between the max-player and min-player to achieve sample-
efficient learning. In specific, it picks two different hypotheses for the two players respectively, so
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Algorithm 2 Maximize to Explore for two-player zero-sum Markov Game (MEX-MG)

1: Input: Hypothesis class #, parameter 7 > 0.
2: fork=1,--- ,Kdo
3:  Solve f* € H via

f* = argsup { Vi s (z1) ZLk L (C.12)
feH
4:  Set the max-player policy as ;i = u 7k
5:  Solve g* € H via
g = args?}[lp{ V{‘g’T (z1) — 7 - ZLW } (C.13)
ge

6:  Set the min-player pohcy as vk = e

7:  Execute 7% = (¥, %) to collect data Dk = {D}} e With DF = (xf, af, b, rf,ap,)).
8: end for

that the max-player is aimed at approximating the NE max-player policy and the min-player is aimed
at approximating the best response of the max-player, assisting its regret minimization.

Max-player. At each episode k € [K], MEX-MG first estimates a hypothesis f* € H for the max-
player using historical data {Ds}f;ll by maximizing objective (C.12). Parallel to MEX, to achieve the
goal of exploiting history knowledge while encouraging exploration, the composite objective (C.12)
sums: (a) the negative loss —Llffl (f) induced by the hypothesis f; (b) the Nash equilibrium value
associated with the current hypothesis, i.e., V1 . MEX-MG balances exploration and exploitation via
a tuning parameter > 0. With the hypothesis f*, MEX-MG sets the max-player’s policy u* as the
Nash equilibrium max-player policy associated with f*,i.e., st #h

Min-player. After obtaining the max-player policy 1*, MEX-MG goes to estimate another hypothesis
for the min-player in order to approximate the best response of the max-player. In specific, MEX-MG
estimates g¥ € H using historical data {D*}? ;11 by maximizing objective (C.13), which also sums
two objectives: (a) the negative loss —LfL Ml,c( ) induced by the hypothesis g. Here the loss function
depends on ¥ since we aim to approximate the best response of .*; (b) the negative best response
k

min-player value associated with the current hypothesis g and /¥, i.e., —Vl‘f g T, The negative sign
is due to the goal of min-player, i.e., minimization of the total rewards With gk, MEX-MG sets the
min-player’s policy v/* as the best response policy of 1* under ¢*, i.e., Vgh ik

Data collection. Finally, the two agents execute the joint policy 7% = (u*, v*) to collect new
data D = {(:c’,fb, ay, b, vy, af . )} | and update their loss functions L(-). The choice of the loss
functions varies between model-free and model-based hypotheses, which we specify in the following.

C.3.2 Model-free algorithm
For model-free hypothesis (Example C.1), the composite objectives (C.12) and (C.13) becomes

fF= aages?l_[lp {#bg& vllglih Dy )@, p(w1) — 7 - ZL’“ 1 } (C.14)
1 1
g = argés;p {— uliglt:h Dk ) @1g(®1) — 1 Z Li;}k (g)} . (C.15)
g h=1

In the model-free algorithm, we choose the loss functions as empirical estimates of squared Bellman
residuals. For the max-player who wants to approximate the NE max-player policy, we choose the
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loss function L’,i (f) as an estimation of the squared NE Bellman residual, given by

k
2
=" (Qus@i a3, bi) = 75 = Virr s (@hn)
s=1
k 2
— inf (Qh,f, (€5, a5,b8) — 15 — Vig1, f(xzﬂ)) . (C.16)
heHh’ s=1

For the min-player who aims at approximating the best response policy of ¥, we set the loss function
Lﬁ’ L (g) as an estimation of the squared best-response Bellman residual given max-player policy u,

k
2
Z (th Th, ap, b)) — T, — Vfﬁ,g(xislﬂ))
s=1
k

2
: s 5 18 2] s
_gillg?f_‘th 2 (Qhﬂ/(azh,ah,bh) Vh+1g(.7jh+1)> . (C17)

We remark again that the subtracted infimum term in both (C.16) and (C.17) is for handling the
variance terms in the estimation to achieve a fast theoretical rate, as we do for MEX with model-free
hypothesis in Section 3.

C.3.3 Model-based algorithm.

For model-based hypothesis (Example C.2), the composite objectives (C.12) and (C.13) becomes

f¥ = argsup < sup inf V% (z1) —n- L= (C.18)
fer | pemveN  BFY ) Z
k .
= - fV L C.19
g agg:;p{ inf Vig, (@) —n- Z } (C.19)

which can be understood as a joint optimization over model P and the joint policy policy 7 = (u, ).
In the model-based algorithm, we choose the loss function Lfl (f) as the negative log-likelihood loss,

k
Ly(f) = =) logPh p() 1|2, a3, bj).- (C.20)

s=1
Meanwhile, we choose the loss function Lk ( ) = L¥(g), i.e., (C.20), regardless of the max-player

policy . But we remark that despite L = L ot k and g* are still different since the exploitation
component in (C.18) and (C.19) are not the same due to the different targets of the two players.

C.4 Regret Analysis for MEX-MG Framework

In this section, we analyze the regret of the MEX-MG framework (Algorithm 2). Specifically, we give
an upper bound of its regret which holds for the both model-free (Example C.1) and model-based
(Example C.2) settings. We first present several key assumptions needed for the main result.

We first assume that the hypothesis class H is well-specified, containing certain true hypotheses.

Assumption C.3 (Realizablity). We make the following realizability assumptions for the model-free
and model-based hypotheses respectively:

e For model-free hypothesis (Example C.1), we assume that the true Nash equilibrium value f* € H.
Moreover, for any f € F, it holds that Q"+T € H.
e For model-based hypothesis (Example C.2), we assume that the true transition f* € H.

Also, we make the following completeness and boundedness assumption on .

Assumption C.4 (Completeness and Boundedness). For model-free hypothesis (Example C.1), we
assume that for any f,g € H, it holds that ’Th“fgh € Hp, for any timestep h € [H). Also, we assume
that there exists By > 1 such that for any f, € My, it holds that fy(z,a,b) € [0, By| for any
(z,a,b,h) € S x Ax B x [H].
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Assumptions C.3 and C.4 are standard assumptions in studying two-player zero-sum MGs [38, 32, 80].
Moreover, we make a structural assumption on the underlying MG to ensure sample-efficient online
RL. Inspired by the single-agent setting, we require the MG to have low Two-player Generalized
Eluder Coefficient (TGEC), which generalizes the GEC defined in Section 4. We provide specific
examples of MGs of low TGEC, either model-free or model-based, in Section C.5.

To define TGEC, we introduce two discrepancy functions

Lp(fin) HXHX(ESXAXRxS)—R, (C.21)

Lprw(fi6n)  HXNXHX (SXxAXxRxS)—R, (C.22)

which characterizes the error incurred by a hypothesis f € H on data §, = (p, an, Th, Thi1)-
Intuitively, £ aims at characterizing the NE Bellman residual (C.10) while £,, aims at characterizing

the best response Bellman residual given max-player p (C.8). Specific choices of ¢ are given in
Section C.5 for concrete model-free and model-based examples.

Assumption C.5 (Low Two-Player Generalized Eluder Coefficient (TGEC)). We assume that given an
€ > 0, there exists a finite d(€) € Ry, such that for any sequence of hypotheses {(f*, g")}reix) C H

and policies {m" = (Mfk,l/glc’ﬂfk )}reeri) C IL, it holds that

K H K k-1
S Vi -V < inf{ STNTS Byt [0 (£5560) +\/ HK+eHK}
k=1

>0
s h=1k=1s=1

and it also holds that
k—1

H K
, o /d
ZVl —VM T<;I;%{2§§S_1E£hwﬂ-k g°,uk (g fh + HK+6HK}

where pi, = pipr. We denote the smallest d(e) € R satisfying this condition as drgec (€).
Finally, we make a concentration-style assumption on loss functions, parallel to Assumption 4.3 for
MDPs. For ease of presentation, we also assume that the hypothesis class 7 is finite.

Assumption C.6 (Generalization). We assume that H is finite, i.e., |H| < +oo, and that with
probability at least 1 — §, for any episode k € [K| and hypotheses f, g € H, it holds that

H H k-1

DL LTS -0 Z Ee, wmr (s (3 60)] + B - (H log(HK /) + log(|H])).
h=1 h=1s=1

and, with x = Q“k’T for model-free hypothesis and x = f* for model-based hypothesis, it holds that
H H k—1

D L) = h0) = 303 Bevm s (600 + B (HI08(HE/5) + Tog([H),
h=1 s=1

h=1
Here B = BJ% for model-free hypothesis (see Assumption C.4) and B = 1 for model-based hypothesis.
As we show in Proposition C.8 and Proposition C.13, Assumption C.6 holds for both model-free and

model-based settings. With Assumptions C.3, C.4 (model-free only), C.5, and C.6, we can present
our main theoretical result.

Theorem C.7 (Online regret of MEX-MG (Algorithm 2)). Under Assumptions C.3, C.4 (model-free
only), C.5, and C.6, by setting

_ draec(1/VHK)
TN\ (Hiog(HK/5) + log([H]) - B- K

the regret of Algorithm 2 after K episodes is upper bounded by

Regret(K) S \/drane(1/VEK) - (H log(H/5) + loa([H])) - B K,
with probability at least 1 — §. Here drgrc(-) is given by Assumption C.5.

Proof of Theorem C.7. See Appendix D.2 for detailed proof. O
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C.5 Examples of MEX-MG Framework
C.5.1 Model-free online RL in Two-player Zero-sum Markov Games

In this subsection, we specify MEX-MG (Algorithm 2) for model-free hypothesis class (Example C.1).
In specific, we choose the discrepancy functions ¢ and ¢,, as, given &, = (zn, ap, bp, Th, Tht1),

2
Cyr(fi€n) = (Qh,f(xha an,bp) —rp — Ex;L+1~P;l(~|xh,ah,bh)[Vh+1,f(xh+l)]) ) (C.23)

2
Zf’,u(QJ gh) = (Qh,g(l'h, Gh, bh) —Th — ]E1)1+1N]Ph,("$h~,ah,7bh)[Vfﬁ‘y’-‘i‘l,g(xh‘i’l)]) . (C.24)

By (C.23) and (C.24), both £4/ and ¢4 ,, do not depend on the input f’. In the following, we check
and specify Assumptions C.5 and C.6 in Section C.4 for model-free hypothesis class.

Proposition C.8 (Generalization: model-free RL). We assume that H is finite, i.e., |H| < 4+o00. Then
with probability at least 1 — 0, for any k € [K| and f,g € H, it holds simultaneously that

H k-1

H
STLE) = L) S =D Bepmellye (F160)] + BF (Hlog(HEK /) + log(|H])),
h=1 h=1 s=1

H H k-1

_ A _
STLEAQ ) < Lk (9) S - 30N Eey oy (9:60)) + B3 (H log(HE /) + log([H])).
h=1 h=1 s=1

where L, L,,, £, and {,, are defined in (C.15), (C.16), (C.23), and (C.24), respectively.
Proof of Proposition C.8. See Appendix F.3 for a detailed proof. O

Proposition C.8 specifies Assumption C.6 for abstract model-free hypothesis. Now given a two-player
zero-sum MG with TGEC drggc, we have the following corollary of Theorem C.7.

Corollary C.9 (Online regret of MEX-MG: model-free hypothesis). Given a two-player zero-sum MG
with two-player generalized eluder coefficient drcrc(+) and a finite model-free hypothesis class H
satisfying Assumptions C.3 and C.4, by setting

n = drcec(l/VHK) (C.25)
(Hlog(HK/5) +log(|H]|)) - B} - K’ '
then the regret of Algorithm 2 after K episodes is upper bounded by
Regret(T) S By - \/drarc(1/vVHK) - (Hlog(HK/5) +log(IH])) - K. (C.26)

with probability at least 1 — 0. Here B is specified in Assumption C.4.

Linear two-player zero-sum Markov game. Next, we introduce the linear two-player zero-sum
MG [77] as a concrete model-free example, for which we can explicitly specify its TGEC. Linear
two-player zero-sum MG is a natural extension of linear MDPs [39] to the two-player zero-sum MG
setting, whose reward and transition kernels are modeled by linear functions.

Definition C.10 (Linear two-player zero-sum Markov game). A d-dimensional two-player zero-sum
linear Markov game satisfies that

ru(x,a,b) = én(z,a,b) Tan, Pu(z’'|z,a,b) = dn(x,a,b) ¢ (z'), (C.27)

for some known feature mapping ¢, (x, a,b) € R? and some unknown vector oy, € R* and unknown

function 1y, (x') € R? satisfying ||én(z,a,b)||2 < 1 and max{||ap||a, |5 (2")||2} < Vd for any
(z,a,b,x',h) € S x AXx B xS x [H].

For a linear two-player zero-sum MG, we choose the model-free hypothesis class as, for each h € [H],
Hi = {0n(o ) T0n: 10nll, < (H +1—h)Va}. (C.28)

The following proposition gives the TGEC of a linear two-player zero-sum MG with hypothesis class
(C.28).
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Proposition C.11 (TGEC of linear two-player zero-sum MG). For a linear two-player zero-sum MG,
with model-free hypothesis (C.28), it holds that

where N(H,1/K, | - ||s) denotes the 1/ K -covering number of H under || - || so-norm.

Proof of Proposition C.11. See Appendix F.1 for a detailed proof. O

A linear two-player zero-sum MG with the model-free hypothesis class (C.28) also satisfies the
realizability and completeness assumption (Assumptions C.3 and C.4), which are proved by Huang
et al. [32]. Then we can specify Theorem C.7 for linear two-player zero-sum MGs as follows.

Corollary C.12 (Online regret of MEX-MG: linear two-player zero-sum MG). Withn = @)(\ /1/H3K),
the regret of Algorithm 2 for linear two-player zero-sum MG after K episodes is upper bounded by

Regretyq (K) < dH32KY?log(HK d/$),

with probability at least 1 — §, where d is the dimension of the linear two-player zero-sum MG.

Proof of Corollary C.12. This is a corollary of Theorem C.7, Propositions C.8, C.11, together with a
covering number argument. O

C.5.2 Model-based online RL in Two-player Zero-sum Markov Games

In this subsection, we specify Algorithm 2 for model-based hypothesis class H (Example C.2).
In specific, we choose the discrepancy function ¢ as the Hellinger distance. Given data &, =
(h,an, by, Thy1), we let

Lpr(fién) =Ly u(f3én) = Dua(Pr, s (-lxn, an, bn) || P« (-|zh, an, br)), (C.30)

where Dy (+||-) denotes the Hellinger distance. We note that due to (C.30), the discrepancy function ¢
does not depend on the input f’ € H and the max-player policy x. In the following, we check and
specify Assumptions C.5 and C.6 in Section C.4 for model-based hypothesis classes.

Proposition C.13 (Generalization: model-based RL). We assume that H is finite, i.e., |H| < +oc.
Then with probability at least 1 — 9§, for any k € K|, f € H, it holds that

H H k-1
ML) = LN S =)0 Bepomellye (f:60)] + Hlog(H/S) +log(|H]),
h=1 h=1 s=1

where L and { are defined in (C.20) and (C.30) respectively.
Proof of Proposition C.13. This proposition follows from the same proof of Proposition 5.3. O

Since Lﬁ = Lﬁ’ ., and Ly = Ly, Proposition C.13 means that Assumption C.6 holds. Now given a
two-player zero-sum MG with TGEC drggc, we have the following corollary of Theorem C.7.

Corollary C.14 (Online regret of MEX-MG: model-based hypothesis). Given a two-player zero-sum
MG with two-player generalized eluder coefficient drgrc(-) and a finite model-based hypothesis
class H with f* € H, by setting

B drgec(1/VHK)
= (H log

, (C.31)
(HK/6) + log(|H])) - K
then the regret of Algorithm 2 after K episodes is upper bounded by
Regret(T) < \/drapc(1/VEK) - (H log(HK/8) + log([H])) - K, (C.32)

with probability at least 1 — 4.
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Linear mixture two-player zero-sum Markov game. In the following, we introduce the linear
mixture two-player zero-sum MG as a concrete model-based example, for which we can explicitly
specify its TGEC. Linear mixture MG is a natural extension of linear mixture MDPs [5, 57, 12] to
the two-player zero-sum MG setting, whose transition kernels are modeled by linear kernels. But just
as the single-agent setting, the linear mixture MG and the linear MG (Definition C.10) do not cover
each other as special cases [12].

Definition C.15 (Linear mixture two-player zero-sum Markov game). A d-dimensional two-player
zero-sum linear mixture Markov game satisfies that

Py (2’ | z,a,b) = ¢p(z,a,b,z') 67 (C.33)

for some known feature mapping ¢y (x, a,b,x") € R and some unknown vector 05, € RY satisfying
on(z,a,b,2")||2 < 1and |02 < Vd for any (z,a,b,2',h) € S x Ax B x S x [H].

Linear mixture two-player zero-sum MG also covers the tabular two-player zero-sum MG as a special
case. For a linear mixture two-player zero-sum MG, we choose the model-based hypothesis class as,
for each h,

Ha = {9n (1) T0n < 100, < V. (€34)

The following proposition gives the TGEC of a linear mixture two-player zero-sum MG.

Proposition C.16 (TGEC of linear mixture two-player zero-sum MG). For a linear mixture two-
player zero-sum MG, with model-free hypothesis (C.28), it holds that

drcec(1/VHK) < dH?log(HK), log (N(H,1/K,| - [|)) < dH log(dK). (C.35)
where N(H,1/K, | - ||«) denotes the 1/ K-covering number of H under || - || o-norm.

Proof of Proposition C.16. See Appendix F.2 for a detailed proof. O

Then we can specify Theorem C.7 for linear mixture two-player zero-sum MGs as follows.

Corollary C.17 (Online regret of MEX-MG: linear mixture two-player zero-sum MG). By setting

n = é(\/H/K), the regret of Algorithm 2 for linear mixture two-player zero-sum MG after K
episodes is upper bounded by

Regretyq (K) < dH32KY?log(HK d/$),

with probability at least 1 — 6§, where d is the dimension of the linear mixture two-player zero-sum
MG.

Proof of Corollary C.17. This is a corollary of Theorem C.7, Propositions C.13, C.16, together with
a covering number argument. O

D Proof of Main Theoretical Results

D.1 Proof of Theorem 4.4

Proof of Theorem 4.4. Consider the following decomposition of the regret,

K
Regret(K) = » Vi (z1) =V, 7" (1)
k=1
K K i
= Y Vi) = Vagelan) £ Y Ve (an) = V7 () (D.1)
k=1 k=1
Term (i) Term (ii)
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Term (i). Note that by our definition in both Example 2.2 and 2.1, we have that V;* = V; ¢«. Thus
we can rewrite the term (i) as

K

Term (i) = » Vi (21) — Vi s (21). (D.2)
k=1

Then by our choice of f* in (3.1) and the fact that f* € H, we have that for each k € [K],

H
Vi, = (1) nZLk L) (@) < Vige(a) — nZLk LR () (D.3)
h=1 h=1
By combining (D.2) and (D.3), we can derive that
K H
Term (i) <0y Y Ly '(f*) — Ly (%) (D.4)

k=1h=1

Now by applying Assumption 4.3 to (D.4), we can further derive that with probability at least 1 — 4,

K k-1 H
Term () < —cy -0 D> Y Beyomen o llr (F560)] + ¢y - nBE (H log(HK/5) + log(|H])).-
k=1s=1h=1 D3)
where c(;) > 0 is some absolute constant (recall the definition of ).
Term (ii). For term (ii) of (D.2), we apply Assumption 4.2 and obtain that, for any € > 0,
. L&E& dGEc( )
Term (i) < inf { Z Ee, o (79 [L s (ff: &) + derc(e)HK + eHK} .
#=0 h=1k=1 s=1
By taking j1/2 = c(;) - 1), we can further derive that,
.. T & & daec(e)
Term (i) < ¢y - nhz::l ; ;Eghwﬂexp(fs)[ﬁfa (f&n)] + dcom + Vderc(e)HK + eHK.

(D.6)

Combining Term (i) and Term (ii). Now by combining (D.5) and (D.6), we can obtain that with
probability at least 1 — 6,

Regret(T) = Term (i) 4+ Term (ii)

K k-1 H
< ey YIS Eepmon o[l (F¥5€0)] + oy - nBE (H log(HK /8) + log(|H])),
k=1 s=1 h=1
H K k-1 dG C
ey 1Y DY By (5l (FF5€0)] + =2 + Vidcec(e)HK + eHK
h=1k=1s=1
_ darc(e
= cg - nBK (H log(HK/5) + log(|H])) + + Vdaec(e) HK + eHK.

4C( )
(D.7)

By taking e = 1/VHK, n = \/dcrc(e)/(H log(HK /) + log(|H|)) - B - K), we can derive from
(D.7) that, with probability at least 1 — 4, it holds that

Regret(K) S \/dGEc(l/v HK) - (Hlog(HK/0)+ log(|H|)) - B - K. (D.8)
This finishes the proof of Theorem 4.4. O
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D.2 Proof of Theorem C.7

Proof of Theorem C.7. Consider the following decomposition of the regret,

Regret(K) = » V" (z1) — Vka’T(Il)

M=

K
k k k k k
Vi) = V7 (@) + )V (@) = VT ()

K
k=1 k=1
K

K
_ * WP T kot WP T
=3 V=V + > Vi =V +ZV“ ~ VY +ZV“ —v{‘gk,
k=1 k=1
Term (Max.1) Term (Max.ii) Term (Min.i) Term (Min.ii)
(D.9)

where in the last equality we omit the dependence on x; for simplicity.
Term (Max.i). Note that by our definition in both Example C.1 and Example C.2, we have that
V¥ = Vi, 5. Thus we can rewrite the term (Max.i) as

K
Term (Max.i) = Z Vi (1) = Vi _pr (1) (D.10)
k=1

Then by our choice of f* in (C.12) and the fact that f* € H, we have that for each k € [K],

Vi g (21) nZLk L) < Vi pe() nZL’c LR, (D.11)
h=1

By combining (D.10) and (D.11), we can derive that
K H
Term Max.i) <0y Y Ly~ (f*) = LE~H(F%). (D.12)
k=1h=1
Now applying Assumption C.6 to (D.12), we can further derive that with probability at least 1 — 4,
Term (Max.i) (D.13)
K k-1 H
< —Clmaxd) MY D> By omr[lps (f3€0)] + Cmax.s) - BK (H log(HK/6) +log(|H])),
k=1 s=1h=1

(D.14)

for some absolute constant c(max.i) > 0.
Term (Max.ii). For term (Max.ii), we apply Assumption C.5 and obtain that, for any € > 0,

>

k=1 s=1

k—1

d
Term (Max.if) < inf {gz Eg, omr [ (5 €0)] + TGEC ) 4 Jdrano(© HK+eHK}.

By taking (/2 = C(max.i) * 71> We can further derive that

H K k-1
3 d
Term (Max.ii) < c(maxs) 7 D D D Bey o [+ (F5160)] + 4CT(GEC " +Vdrcec(e)HK + eHK.
h=1k=1 s=1 max.1

(D.15)
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Term (Min.i). For either model-free or model-based hypothsis, by our definition in Example C.1
k k

and Example C.2 respectively, we both have that V}* = Vl‘f*’T. Here x = Q“k’T for model-free

hypothesis and « = f* for model-based hypothesis. Thus we can rewrite the term (Min.i) as®.

K
Term (Min.i) = Z Vl"‘s,’j(xl) - Vl“fT(xl) (D.16)
k=1

Then by our choice of ¥ in (C.13) and the fact that x € H (Assumption C.3), we have that for each
k€ [K],

H H

k k
VI @) —n Y L) < =V @) —n Y Ly k(d®) (D.17)
h=1 h=1

By combining (D.16) and (D.17), we can derive that

Term(M1n1)<nZZLk L) = Ly (g") (D.18)

k=1h=1
Now applying Assumption C.6 to (D.18), we can further derive that with probability at least 1 — 6,

K k-1 H

Term (Min.i) < —C(min.i) - 1 Z Z Z Ee, wrr [€ge 1+ (95 En)] + Cmin.i) - nBK(H log(HK/6) + log(|’H|)).
k=1s=1h=1

(D.19)

Term (Min.ii). For term (Min.ii), we apply Assumption C.5 and obtain that, for any € > 0,

H K k-1
d
Term (Min.ii) < inf { SN Bepomn [lge (971 €0)] + TGEC +\/dTGEc HK+6HK}

>0 h=1k=1s=1
By taking (/2 = c(min.i) - 77, We can further derive that

H K k-1

. d
Term (Max.ii) < C(min.i) " 7 thrvfr” g°,uF (g fh)] 4ZGEC n + v/ dTGEC HK +eHK.
h=1k=1 s=1 (min.i)

(D.20)

Combining Term (Max.i), Term (Max.ii), Term (Min.i), and Term (Min.ii). Now combining
(D.13), (D.15), (D.19), and (D.15), taking e = 1/+/ HK and

_ \/ dropc(1/VAR)
K (H log(

, D.21
HE/6) +log(H]) - B K (21
we can finally derive that with probability at least 1 — 26,

Regret(K) < \/dTGEc(l/\/HK) - (Hlog(HK/0) + log(|H|)) - B - K.
This finishes the proof of Theorem C.7. O

E Examples of Model-based and Model-free Online RL in MDPs

In this section, we specify Corollaries 5.2 and 5.4 to various examples of MDPs with low generalized
eluder coefficient (GEC [89]). Sections E.1 and E.2 consider model-free hypothesis and model-based
hypothesis, respectively. After, we give proof of the generalization guarantees involved in Section 5.
Section E.3 provides proof of Proposition 5.1 and Section E.4 provides proof of Proposition 5.3.

*We remark that this notation is well-defined, since Q“7*" € H for any f € H by Assumption 4.1.
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E.1 Examples of Model-free Online RL in MDPs

MDPs with low Bellman eluder dimension. In this part, we study MDPs with low Bellman eluder
(BE) dimension [37]. To introduce, we define the notion of e-independence between distributions and
the notion of distributional eluder dimension.

Definition E.1 (e-independence between distributions). Let G be a function class on the space X,
andlet v, 1, - - , by, be probability measures on X. We say v is e-independent of {1, - - - , i } with
respect to G if there exists a g € G such that \/y_.,_,(E,,[g])?> < € but |E, [g]| > e.

Definition E.2 (Distributional Eluder (DE) dimension). Let G be a function class on space X, and
let II be a family of probability measures on X. The distributional eluder dimension dimpg(G,I1, €)
is defined as the length of the longest sequence {p1,-- - , pn} C Il such that there exists € > € with
pi being €'-independent of {p1,- - , pi—1} for each i € [n].

The Bellman eluder dimension is based upon the notion of distributional eluder dimsntion. For a
model-free hypothesis class H, we the Bellman operator 7, defined in Section 2 becomes,

(771fh+1)(w7 CL) = Rh(‘r’ a) + Em’N]P’h('\E,a) [Vthl,f(xl)L (E.1)
for any f € H. Then we define the Q-type/V -type Bellman eluder dimension as the following.
Definition E.3 (Q-type Bellman eluder (BE) dimension [37, 89]). We define (I —Tp)H = {(z,a) —
(fn — Tnfne1)(x,a) : f € H} as the set of Bellman residuals induced by H at step h, and let
II = {II,}/L, be a collection of H families of probability measure over S x A. The Q-type
e-Bellman eluder dimension of H with respect to 11 is defined as

dimpg(H,II,€) = }{2?}31(] {dimpg (({ — Tn) H,p,€)}.

Definition E.4 (V-type Bellman eluder (BE) dimension [37, 89]). We define (I — Tp)Vy = {z —
(fn — Tafrne1) (@, p(x)) © f € H} as the set of V-type Bellman residuals induced by H at step
h, and let 11 = {Hh}hH:1 be a collection of H families of probability measure over S. The V -type
e-Bellman eluder dimension of H with respect to 11 is defined as

dimVBE(H, H, E) = }{Iel?g{(] {dimDE ((I — 771) V'H, Hh, 6)} .

For MDPs with low Bellman eluder dimension, we choose the function [ in Assumption 3.1 as

Ly ((fny fa41); Dn) = Qn,p(@n, an) — v — Vg, 5 (Th)- (E.2)
and we choose the operator P, = T}, defined in (E.1). One can check that such a choice satisfies
Assumption 3.1. By further choosing the exploration policy as 7exp, (f) = 7y for Q-type problems
and Texp(f) = 7y op, Unif(A) for V-type problems’, we can bound the GEC for MDPs with low
BE dimension by the following lemma.

Lemma E.5 (GEC for low Bellman eluder dimension, Lemma 3.16 in [89]). Let the discrepancy
{ function be chosen as (5.1) with | defined in (E.2). Define 11y as the distributions induced by
following some f € H greedily. For Q-type problems, by choosing Texp(f) = mg, we have that

dapc(e) < 2dimpg(H, Oy, €)H - log(K),
For V -type problems, by choosing Texp(f) = 7y o, Unif (A), we have that
dGEC(E) <2 dimVBE(H, 114, 6)|A H -log(K).

Proof of Lemma E.5. See Lemma 3.16 in [89] for a detailed proof. O

By combining Lemma E.5 and Corollary 5.2, we can obtain that for ()-type low Bellman eluder
dimension problem, it holds that with probability at least 1 — 9,

Regret(T) < B - \/dimBE(H, My, 1/VHK) -log(HK|H|/9) - H*K, (E.3)
and for V-type Bellman eluder dimension problem, it holds that with probability at least 1 — 4,

Regret(T) S B -/ dimvae(H, Ty, 1/VHK) - |A| - log(HK[H|/5) - H2K. ()

>The policy 7y o5, Unif(.4) means that when executing the exploration policy to collect data Dy, at timestep
h, the agent first executes policy 7y for the first A — 1 steps and then takes an action uniformly sampled from A
at timestep h.
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MDPs of bilinear class. In this part, we consider MDPs of bilinear class [20].

Definition E.6 (Bilinear class [20, 89]). Given an MDP, a model-free hypothesis class H, and a
function ly : H x H x (S x Ax R x 8) — R, we say the corresponding RL problem is in a bilinear
class if there exist functions Wy, : H — V and X}, : H — V for some Hilbert space V, such that for
all f,g € H and h € [H], we have that

|Ex; [Qn,(@h,an) = Ru(@ny an) = Vit g (@n1)]] < [(Wal(F) = Wa(f*), Xa(F)vl,
B s an~illf (95 €)]| = [(Wil(g) = Wi (), X (F))v]

where T is either ¢ for Q-type problems or 7, for V-type problems. Meanwhile, we make the
assumption that sup ey perm IWa(f)ll2 < 1and suppeqy pem 1 Xn(f)ll2 < L.

For MDPs of bilinear class, we choose the function [ as the function introduced in the definition
of bilinear class. By choosing the exploration policy as Tex,(f) = 7y for Q-type problems and
Texp(f) = 7f o, Unif(\A) for V-type problems, we can bound the generalized eluder coefficient
for MDPs of bilinear class using the following lemma. To simplify the notation, we define &}, =
{Xh<f) : f S H} CVand X = {Xh :he [H]}

Lemma E.7 (GEC for bilinear class, Lemma 3.22 in [89]). Let the discrepancy { function be chosen
as (5.1) with | defined in Definition E.6. Define the maximum information gain v (€, X) as

H

K
Vi (6, X) = Z max _ logdet <I() + %sz<$57 >v>

T1, TR €EXp
P! K EX

with T being the identity mapping. Then for Q-type problems, choosing Texp(f) = 7y, we have that
darc(e) < 2vk (e, X).
For V-type problems, by choosing Texp(f) = ¢ op, Unif (A), we have that
daec(e) < 2/ Ak (e, &X).

Proof of Lemma E.5. See Lemma 3.22 in [89] for a detailed proof. O

By combining Lemma E.7 and Corollary 5.2, we know that For ()-type bilinear class problem, it
holds that with probability at least 1 — ¢,

Regret(T) < \/vic(1/VHE, X) - log(HK[#|/6) - HE, E5)

and for V-type bilinear class problem, it holds that with probability at least 1 — J,

Regret(T) < \/’yK(l/\/HK,X) -|A|-log(HK|H|/d) - HK. (E.6)

E.2 [Examples of Model-based Online RL in MDPs

MDPs with low witness rank. We consider the example of MDPs with low witness rank [67, 2]. To
introduce, we define the function class V = {v : § x A x § — [0, 1]}.

Definition E.8 (Q-type/V-type witness rank [67, 2]). An MDP is called of witness rank d if for any
two models f, f' € H, there exists mappings X, : H — R% and Wy, : H — R? for each timestep h
such that,

I’L?Eal)}(Ethﬁf,ahw% [(EQTIN]P’;LJ/('Mmah,) - Ez/N]P’;L,f* (-\zh,ah)) [U(xh7ah>x/)]:| > <Wh(fl)>Xh(f)>7

Rwit * Eafh'\’ﬂ-faah""% [(Ew/NPh,f/('lwh@h) - ]Ewl"’]Ph,,f*('Iwh7ah)) [Vh-&-l,f’ (1'/>]} < <Wh(f/)7Xh(f)>,

where T is either 7y for Q-type problems or s for V-type problems and ki, € (0,1] is a constant.
Also, we let sup ey pegrn) [Wi ()| < 1 and supes e | Xn(F)] < 1.

By choosing the exploration policy as mexp(f) = 7 for Q-type problems and mex, (f) = 7y op

Unif(.A) for V-type problems, we can bound the generalized eluder coefficient by the following
lemma.
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Lemma E.9 (GEC for low witness rank, Lemma 3.22 in [89]). Lef the discrepancy function { be
chosen as (5.4). For Q-type problems, by choosing Tex,(f) = m¢, we have that

darc(e) < 4dH -log(1 + K/(eris))/Fe-
For V-type problems, by choosing Texp(f) = ms o, Unif (A), we have that
darc(e) < 4dJAJH -log(1 + K/(erg)) /R

Proof of Lemma E.9. See Lemma 3.22 in [89] for a detailed proof. O

By combining Lemma E.9 and Corollary 5.4, we know that For Q-type low witness rank problem, it
holds that with probability at least 1 — 9,

Regret(K) < \/4dH2K log(H|H|/8) - log(1 4+ HY/2K3/2 /K2.) /K2, (E.7)
and for V-type low witness rank problem, it holds that with probability at least 1 — 4,
Regret(K) < \/Ad|A|H2K - log(H[H|/6) - log(1 + HI2K3/2/k2,) [k2,.  (E8)

E.3 Proof of Proposition 5.1

Proof of Proposition 5.1. To prove Proposition 5.1, we define the random variables X }’j 7 as

X5 =L ((frs Fas1); DR = Ly ((Prfigts frs1); D), (E.9)

for any f € H, where the operator Py, is introduced in Assumption 3.1. We first show that X ’,f sisan
unbiased estimator of the discrepancy function £« (f). Consider that

L ((fns fran); DR
= (Lo ((fn Frr1)s DE) = Lpn((Prfuss fas1); DF) + lf’c((th’“rl’fh“);D’li))2

2
= (Em§+1~m>h(.|m,k;,a';) [+ ((Fhs Fn1); D))+ Lpx (P s far)s Di))

2
= (Exﬁ+l~Ph(-|x§,aﬁ [lfk((fh,fhﬂ);D’ﬁ)D + L (P fntas fna); D)’
+2B0p  p, (b ol U (P fran)s D)) - L (P fi, fusn); DR), (E.10)

where in the second equality we apply the generalized Bellman completeness condition in Assumption
3.1. By the generalized Bellman completeness condition again, we also have that in (E.10),

Bap  ~pulalab) [Ez,’g+1~u»h(-\w¢;,ag) [Lpx ((Frs Fa1)s DI - Lpr (P frs frr)s DZ)}

= Ex§+]~ﬂ]’h(~\ax§,a§) [lfk ((fh7 fh+1); DZ)] : EIZ+1~]P’;L(‘\$Z,@Z) [lfk ((thh+1a fh+1); Dl’i)]
=Eut wp, (ot .ab) Lt (Fh for1); D))

Em’fb+l~Ph(-|m§,a§) [lfk ((fha fh+1); D;CL) - Emﬁ+l~Ph(-|m’fb,a’fL)[lfk((fh, fh+1); Dﬁ)}]
—o. (E.11)

Thus by combining (E.10) and (E.11), we can derive that

2
Evt (ot .at) XK 5] = (E : ~]P’h(~\ac§,aﬁ)[lf’“((fh7fh+1)§DZ)]> = (e (f; D), (E12)

Tht1

Now for each timestep h, we define a filtration { F},, k}le, with

k H
Fnp =0 (U U Di) : (E.13)
s=1

h=1
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where D}, = {x}, a3, r},, 2} }. From previous arguments, we can derive that

ELXE f|Fnh-1] =B [Eup 2ot by X o]

Ty,

]:h,k—l} = B¢, mmeen () g (f360)]. (E.14)
and that

VIXp | Fnpe—1] SEUXE )| Fnp1] < ABPEIXF ¢ |Fnp-1] = 4B B, om0y [ (f5 6],
(E.15)

where B; is the upper bound of [ defined in Assumption 3.1. By applying Lemma G.2, (E.14), and
(E.15), we can obtain that with probability at least 1 — 6, for any (h, k) € [H] x [K], (fn, fa+1) €
Hu X Hina®,

k—1

Y Eeymra (o) e (f5 1)) Zth (E.16)

s=1
1 k—1
5 ZEéwwexp(f s (f; )] + 8B log(HK [Hp|[Hp1]/6). (E.17)
s=1

Rearranging terms in (E.16), we can further obtain that

k—1 k 1
=Y Xii S5 ZEgh~wcxp(f [£5+(f:6n)] + 8B7 log(H K |[Hp|[Hp+11/9)- (E.18)
s=1

Meanwhile, by the definition of X ,’f f in (E.9) and the loss function L in (3.3), we have that

k—1 k=1
Xi, = Zlfb ((frs Fnr1)s D) = Lpe((Prfnsrs fus), Dj)?
s—1 s=1

k—1

<ZMMMM%—ﬂZhh%MW

= L;j L. (E.19)
Thus by (E.18) and (E.19), we can derive that with probability at least 1 — 0, for any f € H, k € [K],
H 1 A k1
> L < —5 ZE&NMPU (05 (f;€n)] + 8HB? log (HK/8) + 16 B} log(|H)|).

(E.20)

Finally, we deal with the term Lﬁ_l (f*). To this end, we invoke the following lemma.

Lemma E.10. With probability at least 1 — 6, it holds that for each k € [K],

ZLk L(f*) < 8HB?log (HK|H|/8) + 16 B log(|H]).

Proof of Lemma E.10. To prove Lemma E.10, we define the random variables W,’f 7 as

Wllf,f = lf"‘((fh, f}?+1)§D1}§)2 - lf’“((fltv f;H);DZ)Q-

Using the same argument as (E.10) and (E.11), together with the condition Py, f;;,; = f in Assump-
tion 3.1, we can show that

2
E’m,+1~]P’h( |k, ah)[Wh f] (]E k NPh(»\wf;?aﬁ)[lfk((fhaf}j+1);ph)]> : (E21)

Tht1

SHere Lss ((fn, fn+1); Di) and £4s (f; €x) depend on f only through (fn, fat1).
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Under the filtration {}'h’ k}szl defined in the proof of Proposition 5.1, i.e, (E.13), one can derive that
EW} ¢ Frp—1] = E []Exf,;+l~u»h(-|x§,af;)[Wh,fk] fh,k—l]

. 2
= EDhNﬂ'cxp(fk) [(Exh+1~]}”h('\rh,ah)[lfk((ffufh+1)§Dh)D } , (E.22)

and that
VIWE (| Fn 1] < ABPE[XF ¢|Fpe—1]
. 2
= 4BIQEDhNTrcxp(fk) {(Emh+1~Ph(~|mh,ah)[lfk ((fh, fh+1); Dh>]) } . (E.23)

By applying Lemma G.2, (E.22), and (E.23), we obtain that with probability at least 1 — §, for any
(h,k) S [H] X [K] and (fh»chrl) € Hp X Hh+1,

k—1 k—1
s * 2
ZWhJ - ZEDhNWexp(f’“) [(EthNPh('lih,ah)Ufs<(fh’fh-‘rl);ph)]) } S
s=1 s=1
k—1
% 2
+ IOg(HK‘Hh”Hthl'/a) : ZED’LNﬂ-eXp(.fS) |:(]E$h+1NPh(‘|mh,yah,)[lfk((fh7fh+1);Dh)]) }
s=1

+ 4B7 log(HK | Hp|[Hn+1]/9).

Rearranging terms, we have that with probability at least 1 — §, for any f € H, (h, k) € [H| x [K],
k—1

- Wiy
s=1

5 4Bl2 IOg(HK|HhHHh+1|/6) - ZE'DhNﬂ'cxp(fs) |:( Thy1~PL(c|zn,an) [lf ((fh>fh+1) Dh)D }

k—1
+ IOg(HK|Hh||Hh+1|/6) : ZED;LNWexp(fS) |:(ETh+1NPh( |zh,an) [lf ((fhafh-i—l) Dh)]) ]

s=1

< 8B} log(HK|Hu||Hn+11/9),

where in the second inequality we use the inequality —z% + az < a?/4. Thus, with probability at
least 1 — 0, for any k € [K], it holds that

H H (k-1
ZLiil(f*) = Z <z:lf’c (fr> Frga)s D})? - mf Zlfk ((fns fns1); DF) )
h=1
H
= sup ~W; ; S 8HB] log(HK/8) + 16 B} log(|H]).
This finishes the proof of Lemma E.10. O

Finally, combining (E.20) and Lemma E.10, with probability at least 1 — ¢, for any f € H, k € [K],

H
YL LN
h=1
1 H ket
—5 22D By (7o) [0 (£:60)] + 16H B log (H K /8) + 327 log(H]).
h=1 s=1
This finishes the proof of Proposition 5.1. O
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E.4 Proof of Proposition 5.3

Proof of Proposition 5.3. For notational simplicity, given f € H, we denote the random variables
Xk as
1, f

Py e (xk |2k, al)

koo v\ L1 s G

Xfp=log | o ) (E.24)
h7f($h+1‘xh7ah)

Then by the definition of L’fL in (3.5), we have that,
H H k—1
DL LT ==Y Xy (B.25)
_ h=1 s=1
Now we define a filtration {F ; }<_, for each step h € [H] with

Fhrp=0 (0 @ ) (E.26)

Then by (E.24) we know that X}f,f € Fu for any (h, k) € [H| x [K]. Therefore, by applying
Lemma G.1, we have that with probability at least 1 — 4, for any (h, k) € [H| x [K] and f;, € Hp,

k— k—1

1 1

—3 E Xp s < E logE [exp {—QXfL,fH}"S_l} + log(H|Hr|/9). (E.27)
s=1 s=1

Meanwhile, we can calculate that in (E.27), the conditional expectation equals to

1
E {exp {_QXZ“’CH]:S_l]
& Ph,f(xiﬂlﬂfis’ ais) Fo
P’I/,f*(zh-i-l'xh?ah)

S S S

—E ) ™ — : Pu, () 41l25,, a3)
= g ap) ~Texp (F),2h P, px (2 a5, (7S s o5
i P, g (2]41 |25, af,)

= Eaf ) ~men (1) US \/]P’h,f(ziﬂ\xivai) P g (IZ+1|xZ7a}S¢>dfo+1:|

1 2
=1- §E(Iiaa;";)~ﬂexp(fs) {/5 (\/Ph,f(xfzﬂ‘xivai) - \/H"h,f*(xi+1\$i7ai)) dxhﬂ]
= 1= B ) rmoep(72) | Dt B g (L2, i) [P (Lo 07))], (E.25)

where the first equality uses the definition of X} . in (E.24), the second equality is due to the fact

that {§ ~ 7° and 7% € F,_1, and the last equality uses the definition of Hellinger distance Dy. Thus
by combining (E.27) and (E.28), we can derive that

k—1 k—1

1 1

Y X <Y E [exp {-3%ts} ]f} — 1+ log(H|HAl/9)
s=1 s

[
T =
I
—

= B(ag.a3)~menn (£9) [P (P g (|2, ap) [|Ph, g (-2, a3,))] + log(H[Hn|/6),

S

Il
_

where in the first inequality we use the fact that log(z) < x — 1. Finally, by plugging in the definition
of X} ,, summing over h € [H], we have that with probability at least 1 — §, for any f € H, any
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k € [K], it holds that

H H k-1
SLTN) LT =)0 Xi g
h=1 h=1 s=1
H k-1
<=2 0 Eagap)mmenn (o) [DuPh g (|25, af) P (L, a3)]
h=1 s=1
+2H log(H/8) + 21og(|H]),
H k-1

=23 N " Beyom (£l (f3€0)] + 2H log(H/6) + 2log(|H]). (E.29)
h=1s=1
This finishes the proof of Proposition 5.3. O

F Proofs for Model-free and Model-based Online RL in Two-player Zero-sum
MGs

F.1 Proof of Proposition C.11

Proof of Proposition C.11. To begin with, we need to introduce the performance difference lemma
in two-player zero-sum MG, which are presented in Lemma 1 and Lemma 2 in Xiong et al. [80].

Lemma F.1 (Value decomposition for the max-player). Let ;1 = puy and v be an arbitrary policy
taken by the min-player. It holds that

H
Vig(z1) — < Eeymuw) En(fns frgi €n)) (E1)
h=1

where max-player Bellman error En(f1, fn+1;&n) is defined as
En(fn, frr1:én) = Qu p(xn, an,bp) —rn — (PpVig1,p)(@h, an, bn), (F.2)
and &, = (xp, an, by, ry). (Actually, this coincides with the NE Bellman error defined in (C.10).)

Lemma F.2 (Value decomposition for the min-player). Suppose that . = vy is taken by the max-
player and g is the hypothesis selected by the min-player. Let v be the policy taken by the min-player.
Then, it holds that

VI (1) — V’” ZE@W#V) 1 (g, g1 6n)] (F.3)

where the min-player Bellman error £} (g, gn+1; &n) is defined as
1 (gns gna1; &) = QUl (s an, bw) — i — BV ) (@n, an, br), (F4)

and &, = (ﬂﬁh, ap, b, Th)-

We note that the value decomposition for the max-player is an inequality because of the property of
minimax formulation. Note also that the right side of (F.3) is a general version of the right side of
(F.1) when choosing ;1 = 1. Now we are ready to prove Proposition C.11. The lemmas suggest

that we only need to upper-bound the term Zszl Z,I;Izl |Enr (£ (gFs g4 15 En)]| for all admissible
max-player policy . To this end, we provide a more general result by the following proposition. For
simplicity, we denote by 7% = (u*, ).

Proposition E.3. For a d-dimensional two-player zero-sum Markov game, we assume that its expected
min-player bellman error can be decomposed as follows

Eﬁhfvﬂ's [g;j(gh7gh+1;§h)] = <Wh<ga:u’)aXh(g77rs7/j/)>> (FS)
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for some Wi(g, 1), Xn(g, 7, 1) € RY and the discrepancy function Ly ,,(g; &) can be lower
bounded as follows

|(Wilg, 1), Xn(g', 70, ) < Ee, o [lgr (91 €01, (F.6)

for all the admissible max-player policy p € M. Also, we assume that |Wy(-,")|l2 < Bw,
| Xnr(, -, )|le < Bx for some By, Bx > 0 and for all timestep h € [H|. Then it holds that

K H
SN [Bepanr [EL (R 913 60)] | (F7)

k=1h=1
k—1 N
> B [lge (9% 60)] + 2min{ HK, 2d(€)} + HK Byye,

for all admissible max-player policy p € M, e € [0,1], n > 0, and c?( ) == dlog(1 + K B%/(de)).

Proof of Proposition F.3. We prove this result following a similar procedure as in the proof of Lemma
3.20 in [89], where they prove that the low-GEC class contains the bilinear class. We denote by

k—1

Shi =ela+ > Xn(g® 7%, 1) Xn(g®, 7w 1) "
s=1

By Lemma F.3 in [20] and Lemma G.3, we first have the following equality,
k ~
Y min { | Xn(g", 7% )]s 1} < 2d(e), (F38)
s=1 *

for all € € [0,1]. Here d(e) is defined in Proposition F.3. Now, since the reward is bounded by [0, 1],
we have the following inequalities,

M=
M=

|]E1'r’"' [5;};(95,95+17£h)] |

>
Il
Ja
>
Il
—

I
M=
M=

min{L, (Wi(g", 1), Xn(g*, 7, i) 1 { I Xn(o" 75 )l <1}

E
Il
-
>
I
-

H
£33 min{L (Walg*. ). Xu(g" w* i) {1 (" m )lsy > 1]

h=1

IN

1= T

(Wi(g", 1), X (9", 7 i) {1 (", 7, )y, < 1)+ mind HE, d(e)}

M= IM= 1]M=

IWalg* 1), min {1 X (6", 7%, )1, 1,1+ min{ HE, d(©)}, (F9)

Ak

=~
Il
—
>
Il
—

where the first equality relies on the assumption in Proposition F.3, the second inequality comes from
(F.8), and the last inequality is based on Cauchy Schwarz inequality. Now we expand term (A)y, j in
(F.9) as follows.

b1 1/2
> {Wilg, 1), Xn(g®, ﬂ,u)>|1 ,

s=1

IWh(g"®, 1)lls,.. < VeBw +
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where we use the fact that ||}, (g", i1)||2 < Byw . Thus we have that

K H
3 A (F.10)
k=1h=1
K H k-1 1/2
<> > | VeBw + Z<Wh(g’“,u)7Xh(gS,7rS,u)>I21 min {[|Xu(g", 7, )l 1,1}
k=1h=1 s=1

1/2 K H i
, [szm@Xh(g’“m’“vu>||zh;vl}]

IA
M=
M=
S
o8|
=

k=1h=1 k=1h=1
K H k-1 12 r g m 1/2
+1>°> I(Wh(g’f,u%Xh(gs,W‘g,u)>l21 -lzZmin{lth(g'“nrk,u)llzh;a1}]
k=1h=1 s=1 k=1h=1 '

K H

2d(e) Y Y

k=1h=1 s=1
H
2

\/HBWKe min{2d(e), HK} +

IN

1/2
{(Wh(g", 1), Xn(g®, m*, 1)) ]

K

QdZ

< \/HKBWG mln{Zd( ), HK} +

1/2
E¢) moms [Kgs,u<gk;£h)]] )
s=1

where the second inequality is the result of Cauchy-SchwaIz inequality, the third inequality comes
from (F.8) and the last inequality is derived from (F.6). Back to the analysis for (F.9), we have that

Z ghagh+17£h)] |

k=1h=1

< \/ HK Bye-min{2d(e), HK}

1/2
+ min{HK, 2d(e)}

K H k-1

267(6) Z Z Z Eg)nmes [ng,u(gk; &n)]

k=1h=1s=1

+

1/2

E

-1

E Ep TS [ng,u(gk§ gh)]
1

M=

+ 2min{HK, 2d(e)} + HK Bye

< |20

k=1h

1s
H k-1 _

SN Eepme [lgen(g":€0)] + 2min{ HK, 2d(e)} + HK Bye,
=1h=1s=1

+

N3
]~

_d©
— 4dn

=

where the second inequality comes from the AM-GM inequality and the last inequality uses the
basic inequality 2ab < a? + b2. Here 1 > 0 can be arbitrarily chosen. Then we finish our proof to
Proposition F.3. O

Back to our proof of Proposition C.11, we first check the conditions of Proposition F.3 for linear
two-player zero-sum MGs. By Definition C.10 and the choice of model-free hypothesis class (C.28),
we know that for any g € H and p € N, it holds that

Qng(,a,b) = (2, 0,b) — (P VY, (@, a,b)

= ¢p(x,a, b) (9h7g —ap — / oy (z V}ijl g( /)dx/) ,

where 0}, , denotes the parameter of ()1, 4 and «j, is the reward parameter (see Definition C.10). Thus
we can define X, (g, 7, 1) = Ex[¢én(zx, a,b)] and

Wilg 1) = Ong = oo = [ 07V (o)

This specifies condition (F.5) of Proposition F.3. By Jansen inequality and the definition of ¢,, in
(C.24), it is obvious that the condition (F.6) of Proposition F.3 holds. By the assumptions of linear
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two-player zero-sum MGs in Definition C.10, we have Bx < 1 and By < 4H+/d. Thus by applying
Proposition F.3, we have that

K K H
SV @) = VI ) < 305 [Bey et [E1 (08 01 1:60)] |
k=1 k=1 h=1
gé) n K H k-1
<4 13 D DD Bemsllys u(g":6n)]

with d(e€) = dlog(1 + K/de) and any n > 0. This proves the second inequality of Assumption C.5.
For the first inequality in Assumption C.5, we take ¢* = f*, u = pu ¢k, and we can then similarly
prove that

K K H
> Vige(ar) - Vi () < 52+ gzz Eg, s [Cgs (F*560)]
k=1

+ 2min{HK, 2d(e)} + 4VdH?Ke,

with d(e) = dlog(1 4+ K/de) and any n > 0. This proves that drgrc(€) < d(e).

As for the analysis for covering number, we apply the standard analysis for the covering number of
R?-ball to obtain that

3 Vol(H
log N (M, €, || - ||oc) < dlog () + dlog (V(Z((Bd))) |

for all € < 1 and the unit ball B4 in R? space. Selecting ¢ = 1/K, we finish the proof of Proposition
C.11. O

F.2 Proof of Proposition C.16

Proof of Proposition C.16. Similar to the proof of Proposition C.11, we can apply Lemma F.1,
Lemma F.2, and Proposition F.3 to obtain the upper bound of TGEC for linear mixture two-player
zero-sum MGs. First we need to check the conditions of Proposition F.3. Note that

Z:; (z,a,0) =) — (thfﬁﬁl,g)(xv a,b) = (Phygviﬁfl,g)(x’ a,b) — (thfﬁi’g)(l‘a a,b)

= (Ohg — HZ)T (/ on(x,a,b, ac’)fong(x’)dx) ,
S
(F11)

where the first equality comes from the Bellman equation, and the second equality is derived from
the definition of linear mixture two-player zero-sum MG (Definition C.15). Here 6}, , denotes the
parameter of P, ,. Hence we can define X}, and W7, as

Xn(g, ™ p) = Ex [/ on(z,a,b, x’)V;le,g(x’)dx’} » Wilg,p) := Oy — 0. (F.12)
S

This specifies condition (F.5) of Proposition F.3. By the assumptions of linear mixture two-player
zero-sum MGs in Definition C.15, we can obtain that Bx < 1 and By, < 4H+/d. As for condition
(F.6), different from the proof of Proposition C.11, since we use Hellinger distance as the discrepancy
function /¢ for the model-based hypothesis, we propose to connect it to the model-free discrepancy
function (C.24). Notice that

2 2
(Q’g;;(x7a, b) — i — (PV ) (@, a, b)) - ((Ph’th”ﬂLg)(x, a,b) — BV ) a, b))
<AV SOl - Drv(Bhg(- |2, a,b)[Pa(- |, a,))?
< 2H?Du(Py 4(-| 2, a,0)||Pp(- |, a,b))?

< 2H?Dy(Pp, 4(- |, a,b)||Py(- | 2, a, b)), (F.13)
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where the second equality comes from Holder inequality and the fact that the TV distance
Drv(pllg) = ||p — ql|1/2 for any two distributions p and g, the third inequality follows from the fact

that Drv(p|lq) < \/iDn(qu), and the last inequality follows from the fact that Dy (p||q) < 1. This
shows that the model-based discrepancy function defined in (C.30) upper-bounds the model-free
discrepancy function up to a factor 2H2, that is,

EﬁhNﬂ'[zg';H(g; fh)] = E¢,nr [DH(Ph,g('|.'L‘h, ap, bh)||Ph('|$h, an, bh))}
1 2
> 2H2E§h~ﬂ' [(QZ:;(Ih,ah,bh) — T — (IP’hV}ffl g)(xh,ah,bH)) }

= [(Wi(g, ), Xn(g, 7, ). (E14)
Thus by applying Proposition F.3, we have that

K ,.rk ot K H P
Z Vl o Vl,g’; g Z Z |th~ﬂ'k [gh (ghagh+1;€h)] |
k=1

k=1h=1

K H k—1
- 477 4H2 ZZZE&LNW [Cge (9" €0)]
k=1 h=

1 1s=1
+2 min{HK, 2d(€)} +4VdH?Ke
1

K H k—
77 ZZZEE’”LN‘"& g8, g gh)]

k=1h=1s=1
+2min{HK,2d(e)} + 4VdH?Ke,

with d(e) = 2H2d(e) = 2H2dlog(1 + K/de) and any > 0 and 1/ = n/(2H?2). This proves the
second inequality of Assumption C.5. For the first inequality in Assumption C.5, we take g* = f*
and let y1 = pi 4%, and we can then also similarly prove that

K ,
. d _
SVip - < 4(;, + 7. Z ZE&MS [Crs (f*5€1)] + 2min{ HK, 2d(e)} + 4VdH?*Ke.

This proves that drgrc(€) < J(e). As for the analysis of the covering number, it suffices to repeat
the same as the proof of Proposition C.11. This finishes the proof of Proposition C.16. O

F.3 Proof of Proposition C.8

Proof of Proposition C.8. We first prove the first inequality of Proposition C.8. To this end, we define
the random vairable X}  as

) ) 2
X5 p = (Qns(ah,ap, by) — vk = Vi s (25 41))
2
- (Vh+1,f($§+1) —Exmwh(.\xﬁ,a';,bg)[Vh+1,f($h+1)]) : (E.15)
After a calculation similar to (E.10) and (E.11), we can derive that

2
Egk byt .ok o) [ Xh gl = (Qh,f(xﬁv ag, biy) —h — Ezh,+1~]}°h(-|m§,a’fb,b’}‘;)[Vh+17f(xh+1)]> :

Now for each timestep h, we define a filtration {Fj, .}, with

k H
Fhp =0 (U U Di) : (F.16)

s=1h=1

s __ s S S S S 1 1 1
where Dj = {z}, aj,, b}, 5, 2}, . With previous arguments, we can derive that

E[Xp | Fnp-1] = E [IE : NW.\Iz,;,a;;,br,;)[Xh,fk]|fh,k_1} =Ee, onr[lpr(f3€0)],  (E17)

Tht1
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and that
VIXE ¢ Fnr—1] SE(XE ) Fnp-1] < ABFEIXE 1| Fng-1] = 4BFEe, wnr[lpr (f;En)],
(F.18)

where B is the upper bound of hypothesis in H by Assumption C.4. By applying Lemma G.2,
(F.17), and (F.18), we can obtain that with probability at least 1 — 4, for any (h, k) € [H] x [K] and
(fh;fh+1) € Hn X Hpt1,

ZEsww [£rs(f58n)] ZXﬁf ZE@LW [£5+(f5€n)] + 8BF log(H K [Hp|[Hnt1/96).

s=1 sl

(F.19)

Rearranging terms in (F.19), we can further obtain that
=

k—1
- XisS -5 ZEW:' [0+ (f;€n)) + 8BF log(HK [MHp|[Hni1]/0).  (F20)
s=1

Meanwhile, by the definition of X, ; in (F.15) and the loss function L in (C.15), we have that

k—1
> Xis
s=1

k-1
S S S S S 2
= (Qh,f(l’ha ay,,bp) —rh — Vh+1,f(517h+1))
s=1
k—1 2
- (Vh+1,f($i+1) - Exh+1~m,<-\z;,a;,b;)[Vh+1,f($h+1)])
s=1
k-1 ,
= > (Qnlxr, a5, b5) =5 = Vigr p (5 41))
s=1
k—1 ,
(ﬁtf(xha ap,by) —Th — Vh+1,f(332+1))
s=1
k—1 ,
Z Qn,f(h, ap,bp) — 1), — Vh+1,f($i+1))
s=1
k—1 ,
— iof (Qnr (@hs @i, 0%) = 75 = Vi1, 5 (2541))
nEHR 1
= L¥L(f). (E21)

where the last inequality follows from the completeness assumption (Assumption C.4). Combining
(F.20) and (F.21), we can derive that with probability at least 1 — §, for any f € H, k € [K],

H k-1

H
I S g D0 By 6 (F560)] + SHB] log(HK/5) + 1633 (M),
= h=1 s=1

(F22)
Finally, we deal with the term L% (f*). To this end, we invoke the following lemma.

Lemma F.4. With probability at least 1 — §, it holds that for each k € [K],
H
> LiN(f*) £ 8H B} log(HK /) + 16 B} log([H)).
h=1

Proof of Lemma F.4. To prove Lemma F.4, we define the random variable W}, ; as

k k k 1k k k 2 k k 1k k k 2
Wh,f = (Qh,f(xhvah» bp) — T — Vh+1,f*(xh+1)) - (Qh,f*(xhv ap,bp) =1 — Vh+1,f*(ffh+1)) .
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Using the Bellman equation for Q- i.e.,
Qg+ (h, @, b1) = 75 + By by ok ot o) Vit g (@h41)]
we can calculate that
) 2
Ept (ot ab o) (Wi f] = (Qn,p (2}, aff, ) — Qng- (2, af, 03)) (F23)
Under the filtration {F; h, k}le defined in the proof of Proposition C.8, i.e, (F.16), one can derive that

EWE (| Fpsa] =E [E B (e a [Whyfk]\fh,k_l]

xﬁ+1
=E¢,nk [(Qh,f(fvm an,br) — Qn, g (xn, an, bh))z} ; (F.24)
where &, = (xp, ap, bp, Th, Thi1), and that

VIWE §1Fi 1] < ABFE(XE (i) = 4B3E¢, o | (Qns(@hs ansbn) = Qng-(ons an, b))
(F.25)

By applying Lemma G.2, (F.24), and (F.25), we can obtain that with probability at least 1 — §, for
any f € H, (h, k) € [H] x [K],

k-1 k-1
S Wi =D Eepmr [(Qh,f(l‘ha anybn) = Qn, g+ (Th, an, bh))z} < 4B} log(HK|Hp|[Hp1]/0)
s=1 s=1
k-1
+ | log(H K |Hn|[Hny1|/6) - ZE5h~ns [(Qh,f($h7ahabh) — Qh,f*(fﬂh,ah,bh))z]-
s=1

Rearranging terms, we have that with probability at least 1 — §, for any (f3, fr+1) € H X Hpt1,
(h,k) € [H] x [K],

k—1 k—1
=3 Wity S ABI0g(H K [Hal[Hn411/6) = Y Bepms [ (Qnoy (@ ansbn) = Qg (wns an, b))’

s=1 s=1

k—1
+ | B (H K [Hal Hns11/8) - D Beymme |(@n(@ns ansbn) = Qnge (wn ans bn)’|

s=1

S 83]20 log(HK [Hn|[Hn+1|/0),

where in the second inequality we use the fact that —22 + ax < a?/4. Thus, with probability at least
1 — 6, for any k € [K], it holds that

H H k—1
ST =Y (Z (Qu- (2503 B3) = 77— Vi - (wh1))
h=1 h=1

k—1

. S S S S S 2
— inf (Qh,f(xh’ Qps bh) —Tp = Vh+1,f*(5ch+1)) )

H
=) sup ~W; ; S 8HB}log(HK/S) + 1657 log([H]).

This finishes the proof of Lemma F.4. O

Finally, combining (F.22) and Lemma F.4, we have, with probability at least 1 — , for any f € H,
k € [K],

H H
SIS g D0 Bepmmallr (£ 60)] + 16H B} log(HK/8) + 327 los([ ).
h=1
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This finishes the proof of the first inequality in Proposition C.8. In the following, we prove the second
inequality in Proposition C.8. To this end, we define the following random variable, for any f, g € H
and policy py,

. ot 2
Xy = (@nolehaf.bh) —rk =V (ah )

2
T .t
(foﬁﬁ o(@hin) — B i P -2k 0k bF) [Vh”ll,g(xhﬂ)]) : (F.26)
After a calculation similar to (E.10) and (E.11), we can derive that

2
k k k 1k k wg,T
Ex’}j+1~Ph(-|m§,a’fL,bﬁ)[Xh,g,,uf] = (thg(xh’ Qp, bh) —Th — Exh+1~]P’h(-\z’fb,a’fL,b§)[Vh-lj-cl,g(xh-‘rl)]) .

Following the same argument as in the previous proof of the first inequality of Proposition C.8 (see
(F.17) and (F.18)), using the definition of ¢, in (C.24), we can derive that, under filtration defined in
(E.16),

E[X]fj,fu:h,k—l] = E§h~ﬂ"€ [Eg’C T (%fh)]v V[X}If,flfh,k—l] < 4B]2”E£h~7rk [gg’“ T (g§§h)]'
(E27)

Using (F.27) and Lemma G.2, we can obtain that with probability at least 1 — 0, for any (h, k) €
[H] x [K] and (gn, gh+1, fat1) € Hi X Hpg1 X Hpgr',

ZEshws 9oy (95En)] ZthM (F.28)
s=1

Lk

EZ th‘rrs[é ,,uf(g gh)]‘FIGBf IOg(HK‘th‘ |Hh+1|/6) (F.29)

Rearranging terms in (F.28), we can further obtain that

k 1

- ZXZ&W > Z]Eér ~me[lgeay (93 €0)] + 163f log(H K| Hn|*|Hns1]/6). (F.30)
s=1

Meanwhile, by the definition of X}, ; in (F.26) and the loss function L in (C.15), we have that

k—1

S
Z Xhagﬁtf
s=1

k—1
2
= > (Quolah,ai Bi) = = Vi (k) E31)
s=1
Wy, T wgsT 2
Z (Vh+1 o(Thar) = Exhﬂw,xwx;,az,b;)[Vh+i,g(fﬂh+1)]>
k—1 ; )
=3 (Qualataibi) = i = Vi, (@)
s=1
k—1 i )
=X (T gtwhaibi) = i = Vi (@)
s=1
k—1 ; )
< (thg(“"fv ay,b,) — i = Vil g(xi+1)> (F32)
s=1
k—1 ; 9
; s 8 1S 1
-y (@ug it b3) = i = VI (h))
= Ly, (F)- (F33)

"Note that Lys 1, (g;€n) and th4{1 , depend on f only through fp41.
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where the last inequality follows from the completeness assumption (Assumption C.4). Combining
(F.30) and (F.31), we can derive that with probability at least 1 — 9, for any f,g € H, k € [K],

H k-1

_Z ’Mf 5 izzEShNﬂ'*[&J Mf(g Eh)]+16H3210g(HK/6)+48Bf10g(|7'[|)
h=1 s=1

(F.34)

Especially, we take f = f*, we can obtain that with probability at least 1 — §, for any g € H,
k€ [K],

H
=2 Lk (DS
h=1

k—1
Eep, s [Lgs ux (95 En)] + 16HBf log(HK|H|/0) +4SBf log(|H]).
1

H
h=1

w\)—*

S=

(F.35)

Finally, we deal with the term L% (f*). To this end, we invoke the following lemma.

Lemma F.5. With probability at least 1 — §, it holds that for each k € [K],

H
3 L=l Q"1 < 16H B} log(H K /6) + 48B7 log(|H|).
h=1

Proof of Lemma F.5. To prove Lemma F.5, we define the following random variable,

2 2
Wik gy = (Qualahsab,bh) =k = Vi @hi)) = (@4 Gk, abobh) — vk = Vit @hi))

for any f, g € H. Using the Bellman equation for Q"+, i.e.,

)T n
Zf (zhvahvb )= 7"5 +E. ~Pa |2k ak bk) [V;m (Th+1)]

we can calculate that
k kE _k 1k dok ko)
Evt i Claab ) Wiigu,] = (thg(xhv ay,, by) — Q)" (w, ay, bh)) : (F.36)

Under the filtration {]:h, k}szl defined in the proof of Proposition C.8, i.e, (F.16), we can derive that
2
EW} g 1 Frk—1] = Eg, om {(Qh,g(zha an,by) — Qv (@n, an, bh)) } ; (E37)

2
V[Wf]f,g,uf|fh,k—1] < 4B7E¢, i [(Qh,g(xh,ambh) - Ql;ff’T($h7ah7bh)) } . (F.38)

Using Lemma G.2, (F.37), (F.38), we have that, with probability at least 1 — §, for any (h, k) €
(H] x (K], (gh, Ght1, fro fne1) € Hia X Higr X Ha X Higas

k—1

k—1 9
ZWI’f,g,uf - ZEﬁhNﬂ'k |:(Qh;g(xh7ahabh) - Q,]:f7T(xhaahabh)> :|
s=1

< 8BFlog(HK [Hp|*Hnsa|?/0)

k—1 2
o\ TORCHR 3 2 1 2/8) - 3 e | (@ngfamoanota) = QG onon ).

Rearranging terms, we have that with probability at least 1 — 9,

k—1 2
=Y Wi, S 8B og(HK M Hysr/0) = 3 Eeym [(Qh,gm, an.bu) = Q1" (@n an, bn) }

s=1

k—1

2
+ \[og(HK [Hu2[Hni1[2/8) - Y Eeyms [(Qh,g($h7ah7bh) - sz’T(xh,a}ubh)) }
s=1

< 1687 log(HK|Hau|*[Hntal?/9),
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where in the second inequality we use the fact that —22 4+ azx < a? /4. Now we take f = f k which
gives that with probability at least 1 — §, for any k € [K], it holds that
2

H k—1
§ puk T § ’ E : Iz s
Lhu Q Qh Qukw‘ xhaahabh) Vh+1 Qn k¢ (xh—kl)
h=1 [ s=1 \—,—/
*Q‘}t T(w5.a5.05) :V:+£T(Ii+1)
2
k—1
— inf x5, a5, by oyt 3
gn €M), On.o(ai, a, 0) = h+1,Q1"* ot (@het)
s= —_—————
:Vﬁlff(mi-u)
H k—1

= sup » ~Wp . <16HB}log(HK/S) + 6487 log(|H]).
h= lgheHhS 1

This finishes the proof of Lemma E.5. O

Finally, combining (F.35) and Lemma F.5, we have, with probability at least 1 — §, for any g € H,
k€ [K],

H
Z LZ ,,1 (QH T) h,uk (g)
h=1
| H okt
-3 DD Bepmmsllye (93 60)] + 32H B log(HK|H]/6) + 1128} log(|H]).
h=1 s=1
This finishes the proof of the second inequality in Proposition C.8 and completes the proof of
Proposition C.8. O

G Technical Lemmas

Lemma G.1 (Martingale exponential inequality). For a sequence of real-valued random variables
{Xi}i<r adapted to a filtration {F; } <1 , the following holds with probability at least 1 — 6, for
any t € [T,

~3X, <3 log Elexp(—X,) | Fo 1] + log(1/9).

Proof of Lemma G.1. See e.g., Theorem 13.2 of Zhang [88] for a detailed proof. O

Lemma G.2 (Freedman’s inequality). Let {X,;},<r be a real-valued martingale difference sequence
adapted to filtration {Fy }i<7. If | Xi| < R almost surely, then for any n € (0,1/R) it holds that
with probability at least 1 — 6,

T T
2 log(1/9)
;Xt <0 (H;E[Xt | Feo1] + . ) )

Proof of Lemma G.2. See Freedman [26] for detailed proof. O

Lemma G.3 (Elliptical potential). Let {z;}c[x] be a sequence of vectors with x; € V for some
Hilbert space V. Let Ag be a positive definite matrix and define A, = Ay + Z _yxix; . Then it

holds that
K
. det(AK+1)
Zmln{l,”xiHA;l} SQ]Og (det(/\l) .
i=1
Proof of Lemma G.3. See Lemma 11 of Abbasi-Yadkori et al. [1] for a detailed proof. O
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H Experimental Settings

Our experiments utilize 8 NVIDIA GeForce 1080Ti GPUs and 4 NVIDIA A6000 GPUs. Each result
is averaged over five random seeds.

H.1 Environment Setup

In sparse-reward tasks, the agent only receives a reward when it achieves the desired velocity or
position. Regarding the model-based sparse-reward experiments, we assign a target value of 1 to
the vel parameter for the walker-vel task and 1.5 for the hopper-vel, cheetah-vel, ant-vel
tasks. For the model-free sparse-reward experiments, we set the target vel to 3 for the hopper-vel,
walker-vel, cheetah-vel tasks, and the target goal to (2, 0) for the ant-goal task.

H.2 Implementation Details of MEX-MF

Below, we describe the detailed implementation of the model-free algorithm MEX-MF. We adopt a
similar entropy regularization (1) over p as in CQL [42]. By incorporating such a regularization,
we obtain the following soft constrained variant of MEX-MF, i.e.

a5 [(7-+9Q0 (&', ") = Qo) |11 B [ EunQoli.) oz 3 exp (ol ).
acA

We select 77’ to be 1e — 3 for sparse-reward tasks and 5e — 4 for standard gym tasks since dense
reward tasks require less exploration. Other parameters are kept the same with the baseline [27]
across all domains and are summarized as in Table 1.

H.3 Implementation Details of MEX-MB

When employing the model-based algorithm MEX-MB, we configured the parameter 7" as 1e — 4 for
the Hopper-v2 and hopper-vel tasks, and 1e — 3 for all other tasks. The hyper-parameters are kept
the same with the MBPO baseline [34] across all domains and are summarized as in Table 2.

Hyperparameter Value Hyperparameter Value
Optimizer Adam Optimizer Adam
Critic learning rate 3e-4 Critic learning rate 3e-4
Actor learning rate 3e-4 Actor learning rate 3e-4
Mini-batch size 256 Model learning rate le-3
Discount factor 0.99 Mini-batch size 256
Target update rate Se-3 Discount factor 0.99
Policy noise 0.2 Target update rate Se-3
Policy noise clipping (-0.5,0.5) SAC updates per step 40
TD3+BC parameter « 2.5 Architecture Value

Architecture Value Critic hidden layers 3
Critic hidden dim 256 Critic activation function =~ ReLU
Critic hidden layers 2 Actor hidden layers 2
Critic activation function ReLU Actor activation function =~ ReLU
Actor hidden dim 256 Model hidden dim 200
Actor hidden layers 2 Model hidden layers 4
Actor activation function ReLU Model activation function = SiLU

Table 1: Hyper-parameters sheet of MEX-MF. Table 2: Hyper-parameters sheet of MEX-MB.

H.4 Tabular Experiments

We also conduct experiments in tabular MDPs. Specifically, we evaluate MEX-MB and MnM [21] in a
10x10 gridworld with stochastic dynamics and sparse reward functions. As illustrated in Figure 3,
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the stochastic gridworld environment is associated with a navigation task to reach the red star from
the initial upper left cell position. The action space contains four discrete actions, corresponding to
moving to the four adjacent cells. The transition noise moves the agent to neighbor states with equal
probability. The black region represents the obstacle that the agent cannot enter. The agent receives
a +0.001 reward at every timestep and a +10 when reaching the goal state. Each episode has 200
timesteps. The performance results are shown in Figure 4.

& *

Figure 3: Illustration of the stochastic
griworld environment [21].

Stochastic Gridworld

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations le3

Figure 4: Model-based MEX-MB in the stochastic grid-
world environment.
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