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A Ablation Study about Text Dataset.1

We conduct more experiments on audio-image retrieval with training texts from different sources.2

Furthermore, we provide insights about selecting training data when employing our C-MCR to3

connect other MCRs. As discussed in Sec 4.1, our training texts are collected from three sources:4

image-text datasets (COCO [1] and CC3M [2]), video-text datasets (MSRVTT [3] and MAD [4]),5

and audio-text datasets (AudioCap [5] and Clotho [6]).6

Figure 1: Ablation studies about text datasets for
training.

Dataset AVE Flickr
A2I I2A A2I I2A

Full 4.11 4.13 4.57 4.92
w/o image-text 3.83 3.76 3.97 3.91
w/o video-text 4.04 4.05 4.41 4.78
w/o audio-text 4.07 3.88 4.31 4.59

In Table 1, we exclude the text data from image-7

text, video-text, and audio-text datasets, respec-8

tively. The results demonstrate that combining9

data from all three sources achieves the best per-10

formance. Furthermore, our findings suggest11

that the information in video-text datasets is rel-12

atively less important than in image-text and13

audio-text datasets. When applying our C-MCR14

to connect other MCRs, it is critical to collect15

overlapping modality data associated with in-16

formation from non-overlapping modalities to17

ensure robust connections. The data from the pre-training datasets used by MCRs could serve as18

an appropriate starting point. Combining the overlapping modality data from these sources ensures19

that the data used for constructing connections contains sufficient information from non-overlapping20

modalities. Additionally, this data is easily accessible and scalable, which greatly enhances the21

practicality of our C-MCR.22

B Downstream Task Details.23

B.1 Audio-Image Retrieval.24

We consider two datasets for this task: AVE [7] and Flickr-SoundNet [8], both of which consist of25

semantically matched image and audio pairs that were manually curated. To more comprehensively26

and stably reflect the retrieval capability of the model, we use all available data in these two datasets27

for evaluation, resulting in 4,095 samples for AVE and 5,000 samples for Flickr-SoundNet.28

B.2 Audio-Visual Source Localization.29

We conduct experiments on the VGGSS [9] and MUSIC [10] datasets. VGGSS is derived from30

VGGSound, and its test set comprises 5,158 audio-image pairs. MUSIC consists of 489 untrimmed31

videos of musical solos spanning 11 instrument categories for testing. It is worth noting that we use32

the category names from the COCO dataset as prompts to enable the open-vocabulary object detector33

GLIP [11] to extract object proposals.34
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B.3 Counterfactual Audio-Image Recognition.35

The Extended Flickr-SoundNet [12] and Extended VGGSS [12] are constructed by adding 25036

and 5,158 negative samples to the test sets of the original Flickr-SoundNet and VGGSS datasets,37

respectively. The prompts used for the object detector GLIP [11] are also the category names from38

the COCO dataset. We evaluate the counterfactual Audio-Image Recognition performance using the39

Maximum F1 (Max-F1) and Average Precision (AP) metrics, following [12]. During inference, for40

the i-th image-audio pair, the proposal with the highest matching score with the audio is considered41

the predicted object, and its matching score is considered the confidence score ci. The CIoU of the42

predicted object is denoted as IoUi. The ground-truth map is denoted as Gi, and the ground-truth43

maps of negative samples are ∅. Under these definitions, the true positives T P , false positives FP ,44

and false negatives FN are computed as:45

T P(γ, δ) = {i|Gi ̸= ∅, IoUi > γ, ci > δ}
FP(γ, δ) = {i|Gi ̸= ∅, IoUi ≤ γ, ci > δ} ∪ {i|Gi = ∅, ci > δ}
FN (γ, δ) = {i|Gi ̸= ∅, ci ≤ δ}

(1)

where γ is the threshold of IoU and δ is the threshold of confidence score. Following previous work,46

the γ is set as 0.5. The F1 score can be represented as:47

F1(γ, δ) =
2 ∗ Precision(γ, δ) ∗ Recall(γ, δ)
Precision(γ, δ) + Recall(γ, δ)

(2)

where48

Precision(γ, δ) =
|T P(γ, δ)|

|T P(γ, δ)|+ |FP(γ, δ)|
; Recall(γ, δ) =

|T P(γ, δ)|
|T P(γ, δ)|+ |FN (γ, δ)|

(3)

In accordance with [12], we calculate F1 scores for all values of δ and report the maximum F149

score (Max-F1). Average Precision (AP) is another commonly used metric in object detection, its50

computation is detailed in [1, 12].51

C Model Configurations.52

Table 1: Model configurations of projectors.

Module Block Cin Cout

Projector1

Linear 512 1024
BatchNorm1D 1024 1024

Relu - -
Linear 1024 512

BatchNorm1D 512 512
Relu - -

Projector2

Linear 512 1024
BatchNorm1D 1024 1024

Relu - -
Linear 1024 512

BatchNorm1D 512 512
Relu - -

The model configurations of our projectors are shown in Table 1.53

D Limitations and Future Work.54

While C-MCR offers an efficient and effective contrastive representation learning method for modal-55

ities that lack high-quality, large-scale paired data, it still necessitates an intermediate modality to56

associate these modalities. Exploring ways to reduce data requirements further while maintaining57

representation performance is an intriguing direction for future research.58
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E Social Impacts.59

Although C-MCR achieves outstanding performance in audio-visual learning by connecting CLIP60

and CLAP, further analysis of the capability boundary of this representation is necessary before61

applying it to additional modalities or deploying it in practice. C-MCR only requires unpaired62

unimodal data during training, significantly reducing the data requirements for learning a generalizable63

representation. However, this also means that unsuitable and harmful data in each modality are more64

likely to be used for training.65
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