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Abstract

Modern climate projections lack adequate spatial and temporal resolution due to
computational constraints. A consequence is inaccurate and imprecise predictions
of critical processes such as storms. Hybrid methods that combine physics with
machine learning (ML) have introduced a new generation of higher fidelity climate
simulators that can sidestep Moore’s Law by outsourcing compute-hungry, short,
high-resolution simulations to ML emulators. However, this hybrid ML-physics
simulation approach requires domain-specific treatment and has been inaccessible
to ML experts because of lack of training data and relevant, easy-to-use workflows.
We present ClimSim, the largest-ever dataset designed for hybrid ML-physics re-
search. It comprises multi-scale climate simulations, developed by a consortium of
climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate
input and output vectors that isolate the influence of locally-nested, high-resolution,
high-fidelity physics on a host climate simulator’s macro-scale physical state.
The dataset is global in coverage, spans multiple years at high sampling frequency,
and is designed such that resulting emulators are compatible with downstream cou-
pling into operational climate simulators. We implement a range of deterministic
and stochastic regression baselines to highlight the ML challenges and their scoring.
The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res2)
and code (https://leap-stc.github.io/ClimSim) are released openly to sup-
port the development of hybrid ML-physics and high-fidelity climate simulations
for the benefit of science and society.

∗Corresponding author: sungduk@uci.edu
2Also available in a low-resolution version (https://huggingface.co/datasets/LEAP/ClimSim_

low-res) and an aquaplanet version (https://huggingface.co/datasets/LEAP/ClimSim_low-res_
aqua-planet).
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1 Introduction

1.1 Overview

Predictions from numerical physical simulations are the primary tool informing policy on climate
change. However, current climate simulators poorly represent cloud and extreme rainfall physics
[1, 2] despite stretching the limits of the world’s most powerful supercomputers. The complexity
of the Earth system imposes significant restrictions on the spatial resolution we can use in these
simulations [3]. Physics occurring on scales smaller than the temporal and/or spatial resolutions of
climate simulations are commonly represented using empirical mathematical representations called
“parameterizations”. Unfortunately, assumptions in these parameterizations often lead to errors that
can grow into inaccuracies in the future predicted climate.

Machine learning (ML) is an attractive approach to emulate the complex nonlinear sub-resolution
physics—processes occurring on scales smaller than the resolution of the climate simulator—at a
lower computational complexity. Their implementation has the exciting possibility of resulting in
climate simulations that are both cheaper and more accurate than they currently are [4, 5]. Current
climate simulators have a typical smallest resolvable scale of 80–200 km, equivalent to the size of a
typical U.S. county. However, accurately representing cloud formation requires a resolution of 100
m or finer, demanding six orders of magnitude increase in computational intensity. Exploiting ML
remains a conceivable solution to sidestep the limitations of classical computing [5]: resulting hybrid-
ML climate simulators combine traditional numerical methods—which solve the equations governing
large-scale fluid motions of Earth’s atmosphere—with ML emulators of the macro-scale effects of
small-scale physics. Instead of relying on heuristic assumptions about these small-scale processes, the
emulators learn directly from data generated by short-duration, high-resolution simulations [4, 6–18].
The task is essentially a regression problem: in the climate simulation, an ML parameterization
emulator returns the large-scale outputs—changes in wind, moisture, or temperature—that occur due
to unresolved small-scale (sub-resolution) physics, given large-scale resolved inputs (e.g., temperature,
wind velocity; see Section 4).

While several proofs of concept have emerged in recent years, hybrid-ML climate simulators have yet
to be advanced to operational use. Obtaining sufficient training data is a major challenge impeding
interest from the ML community. This data must contain all macro-scale variables that regulate
the behavior of sub-resolution physics and be compatible with downstream hybrid ML-climate
simulations. Addressing this using training data from uniformly high-resolution simulations has
proven to be very expensive and can lead to issues when coupled to a host climate simulation.

A promising solution is to utilize multi-scale climate simulation methods to generate training data.
Crucially, these provide a clean interface between the emulated high-resolution physics and the host
climate simulator’s planetary-scale dynamics [19]. In theory, this makes downstream hybrid coupled
simulation approachable and tractable. In practice, the full potential of multi-scale methods remains
largely untapped due to a scarcity of existing datasets, exacerbated by the combination of operational
simulation code complexity and the need for domain expertise in choosing variables.

We introduce ClimSim, the largest and most physically comprehensive dataset for training ML
emulators of atmospheric storms, clouds, turbulence, rainfall, and radiation for use in hybrid-ML
climate simulations. ClimSim is a comprehensive collection of inputs and outputs from physical
climate simulations using the multi-scale method. ClimSim was prepared by atmospheric scientists
and climate simulator developers to lower the barriers to entry for ML experts on this important
problem. Our benchmark dataset serves as a foundation for developing robust frameworks that
emulate parameterizations for cloud and extreme rainfall physics, and their interaction with other
sub-resolution processes. These frameworks enable online coupling within the host coarse-resolution
climate simulator, ultimately improving the performance and accuracy of climate simulators used for
long-term projections.

1.2 Concepts and Terminology from Earth Science

Convective Parameterization: In atmospheric science, “convection” refers to storm cloud and
rain development, as well as the associated turbulent air motions. Convective parameterizations
represent the integrated effects of these processes, such as the vertical transport of heat, moisture, and
momentum within the atmosphere, and condensational heating and drying, on the temporal and spatial
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scale of the host climate simulator [20–22]. Stochastic parameterizations represent sub-resolution
(“sub-grid scale” in the terminology of Earth science) effects as stochastic processes, dependent on
grid-scale variable inputs [23, 24] to capture variations arising from sub-grid scale dynamics.

Multi-Scale Climate Simulators: Multi-scale climate simulation is a technique that represents
convection without a convective parameterization, by deploying a smaller-scale, high-resolution
cloud-resolving simulator nested within each host grid column of a climate simulator [25–29]. The
smaller-scale simulator explicitly resolves the detailed behavior of clouds and their turbulent motions
at both a higher spatial and temporal resolution (but with a smaller domain) than the host simulator.
This improves the accuracy of the host simulations, but comes at a high computational cost [30, 31].
The time-integrated and horizontally averaged influence of the resolved convection is fed upscale to
the host climate simulator, and is the target of hybrid ML-climate simulation approaches.

Significance of Precipitation Processes for Climate Impacts: In climate simulations, changes in
precipitation with warming is a particularly important issue. The frequency of extreme precipitation
events increases with warming [32–34], with corresponding societal impacts [35]. Current climate
simulators agree on the direction of this change, but exhibit large spread in the quantitative rate of
increase with warming [36, 37].

2 Related Work

There have been several recent efforts to produce hybrid-ML emulators using multi-scale climate
simulations, analogous to ClimSim [4, 10–16, 38]. Most of these focused on simple aquaplanets
[4, 10–13, 16, 38] and those that included real geography [14, 15] did not include enough variables
for complete land-surface coupling, to our knowledge. Most examine simple multi-layer perceptrons
except for [12, 15], who used a ResNet architecture, and [39] who used a variational encoder-decoder
that accounts for stochasticity. Although downstream hybrid testing in real-geography settings
is error-prone, [15] demonstrates some hybrid stability. Compressing input data to avoid causal
confounders may improve downstream accuracy [16], and methods have been proven to enforce
physical constraints [40, 41].

Compared to the training data used above, ClimSim’s comprehensive variable coverage is unprece-
dented, including all variables needed to couple to and from a land system simulator and enforce
physical constraints. Its availability across coarse-resolution, high-resolution, aquaplanet and real-
geography use cases is also new to the community. Successful ML innovations with ClimSim can
have a downstream impact since it is based on a state-of-the-art multi-scale climate simulator that is
actively supported by a mission agency (U.S. Department of Energy).

In non-multi-scale settings, an important body of related work [6–9] has made exciting progress on
using analogous hybrid ML approaches to reduce biases in uniform resolution climate simulations,
including in an operational climate code with land coupling and downstream hybrid stability [17, 18]
(see Supplementary Information; SI). Other related work includes full model emulation (FME) for
short-term weather prediction [42–44]. Whether this approach is possible for climate simulation
using the high-frequency output of its state variables remains an open question. For instance, it
has recently been shown that incorporating spherical geometry and resolution invariance through
spherical Fourier neural operators leads to stability of long rollouts [43]. While ClimSim is focused
on hybrid-ML climate simulation and we do not demonstrate FME baselines, ClimSim contains full
atmospheric state variable sampling well suited for the task.

3 ClimSim Dataset Construction

Experiment Outline: ClimSim presents a regression problem with mapping from a multivariate
input vector, with inputs x ∈ Rdi of size di = 124 and targets y ∈ Rdo of size do =128 (Figure
1). The input represents the local vertical structure (in horizontal location and time) of macro-scale
state variables in a multi-scale physical climate simulator before any adjustments from sub-grid
scale convection and radiation are made. The input also includes concatenated scalars containing
boundary conditions of incoming radiation at the top of the atmospheric column, and land surface
model constraints at its base. The target vector contains the tendencies of the same state variables
representing the redistribution of mass and water, microphysical water species conversions, and
radiative heating feedbacks associated with explicitly resolved convection. This brackets the change
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Figure 1: The spatially-local version of ClimSim that our baselines are scored on. A spatially-global
version of the problem that expands to the full list of variables would be useful to try.

in atmospheric state after tens of thousands of computationally intensive, spatially nested simulators
of explicit cloud physics have completed a temporally-nested integration. The ultimate goal is to
outsource these physics to ML by mapping inputs to targets at comparable fidelity. The target vector
includes scalar fields and fluxes from the bottom of the atmospheric column expected by the land
surface model component that it must couple to; land-atmosphere coupling is important to predicting
regional water cycle dynamics [45, 46]. Importantly, ClimSim also includes the option for expanded
inputs x ∈ Rdi of size di = 617 and targets y ∈ Rdo of size do = 368, which we demonstrate in one
of our experiments.

Locality vs. Nonlocality: A spatially-global version of the problem could be of practical use for
improving ML via helpful spatial context [47, 48]. In such a case, the problem becomes 2D →
2D regression, and would encompass inputs x ∈ Rdi of maximum size di = 617 × 21,600 (grid
columns) and targets, y ∈ Rdo , of maximum size do = 368× 21,600. Here the second dimension
represents the unstructured "cube-sphere" computational mesh used by the climate model, which is a
list of grid cell locations that span the surface of the sphere [49]. In contrast to typical image-to-image
translation or spatio-temporal prediction problems in ML that involve data on a structured grid (i.e.
rectilinear), the task at hand is of lower dimensionality. Further details about the climate simulator
configuration, simulations, and data, including complete variable lists, can be found in SI.

Dataset Collection: We ran the E3SM-MMF multi-scale climate simulator [28, 29, 49, 50], using
multiple NVIDIA A100 GPUs for a total of ∼ 9,800 GPU-hours. We saved global instantaneous
values of the atmospheric state before and after high-resolution calculations occurred, isolating state
updates due to explicitly-resolved moist convection, boundary layer turbulence, and radiation; details
of the climate simulator configuration can be found in SI. These data were saved at 20-minute intervals
(i.e. the time step of the climate model) for 10 simulated years, resulting in 5.7 billion samples for
the high-resolution simulation that uses an unstructured “cube-sphere" horizontal grid with 21,600
grid columns spanning the globe. This grid yields an approximate horizontal grid spacing of 1.5◦,
but unlike a traditional climate model that maps points across the sphere using two dimensions
aligned with cardinal north/south and east/west directions, unstructured grids use a single dimension
to organize the horizontal location of points. The atmospheric columns at each location and time are
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treated as independent samples. Thus, the total number of samples can be understood by considering
that atmospheric columns at each location and time are treated as independent samples, such that
5.7 billion ≈ 21,600 horizontal locations per time step × 72-time steps per simulated day × 3,650
simulated days). It is important to note that each sample retains a 1D structure corresponding to
the vertical variation across 60 levels. We also ran two additional simulations with approximately
ten times less horizontal resolution, with only 384 grid columns spanning the globe, resulting in
100 million samples for each simulation. These low-resolution options allow for fast prototyping
of ML models, due to smaller training data volumes and less geographic complexity. One low-
resolution simulation uses an “aquaplanet” configuration, i.e., a lower boundary condition of specified
sea surface temperature, invariant in the longitudinal dimension with no seasonal cycle. This is
the simplest prototyping dataset, removing variance associated with continents and time-varying
boundary conditions. The total data volume is 41.2TB for the high-resolution dataset and 744GB for
each of the low-resolution datasets.

Dataset Interface: Raw model outputs emerge from the climate simulator as standard NetCDF files
which can be easily parsed in any language. Each timestep yields files containing input and target
vectors separately, resulting in a total of 525,600 files for each of the three datasets. To prevent
redundancy, variable metadata and grid information was saved separately.

The raw tensors from the climate simulations are initially either 2D or 3D, depending on the variable.
For 2D tensors, the dimensions represent time and horizontal location. While these variables actually
depend on three physical dimensions (time and 2D space), since each location on the sphere is
indexed along a single axis due to the climate model’s unstructured horizontal grid, the apparent
dimensionality is lower. Such variables include solar insolation, snow depth over land, surface energy
fluxes, and surface precipitation rate. 3D tensors include the additional dimension representing
altitude relative to the Earth’s surface, for height-varying state variables like temperature, humidity,
and wind vector components. Separate files are used to store each timestep and variable. ClimSim
includes a total of 24 2D variables and 10 3D variables (see Table 1 in SI).

Dataset Split: The 10-year datasets are divided into: (a) a training and validation spanning the
first 8 years (0001-02 to 0009-01; YYYY-MM), excluding the first simulated month for numerical
spin-up, and (b) a test set spanning the remaining two years (i.e., 0009-03 to 0011-02). A one-month
gap is intentionally introduced between the two sets to prevent test set contamination via temporal
correlation. Both sets are stored separately in our data repositories.

Energy use: The computing and energy costs of generating ClimSim could be viewed as wasteful and
having a negative consequence for society through associated emissions. We emphasize that while it
can appear large, the compute used is actually orders of magnitude less than what is consumed by
operational climate prediction. Associated emissions are minimized given that our integrations were
performed on energy-efficient GPU hardware. The cost must also be weighed against the potential
social benefit of mitigating future energy consumption by eliminating end users’ need for costly
physics-based MMF simulations. Meanwhile, a large consortium of interested parties have helped
agree on this dataset, to help ensure it is not wasted.

4 Experiments

To guide ML practitioners using ClimSim, we provide an example ML workflow using the low-
resolution, real-geography dataset for the task described in Section 1. All but one of our baselines
focuses on emulating the subset of total available input and target variables illustrated in Figure 1,
with the following inputs x ∈ Rdi of size di = 124, and targets y ∈ Rdo of size do = 128 (Figure 1,
Table 1), chosen for its similarity to recent attempts in the literature.

Training/Validation Split: We divide the 8-year training/validation set into the first 7 years (i.e.,
0001-02 to 0008-01 in the raw filenames’ “year-month” notation) for training and the subsequent 1
year (0008-02 to 0009-01) for validation.

Preprocessing Workflow: Our preprocessing steps were (1) downsample in time by using every
7th sample, (2) collapse horizontal location and time into a single sample dimension, (3) normalize
variables by subtracting the mean and dividing by the range, with these statistics calculated separately
at each of the 60 vertical levels for the four variables with vertical dependence, and (4) concatenate
variables into multi-variate input and output vectors for each sample (Figure 1). The heating tendency
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Input Size Target Size

Temperature [K] 60 Heating tendency, dT/dt [K/s] 60
Specific humidity [kg/kg] 60 Moistening tendency, dq/dt [kg/kg/s] 60
Surface pressure [Pa] 1 Net surface shortwave flux, NETSW [W/m2] 1
Insolation [W/m2] 1 Downward surface longwave flux, FLWDS [W/m2] 1
Surface latent heat flux [W/m2] 1 Snow rate, PRECSC [m/s] 1
Surface sensible heat flux [W/m2] 1 Rain rate, PRECC [m/s] 1

Visible direct solar flux, SOLS [W/m2] 1
Near-IR direct solar flux, SOLL [W/m2] 1
Visible diffused solar flux, SOLSD [W/m2] 1
Near-IR diffused solar flux, SOLLD [W/m2] 1

Table 1: The subset of input and target variables used in most of our experiments (Figure 1).
Dimension length 60 corresponds to the total number of vertical levels (discretized altitudes) of the

climate simulator.

target dT/dt (i.e., time rate of temperature T ) was calculated from the raw climate simulator
output as (Tafter − Tbefore)/∆t, where ∆t = 1200 s) is the climate simulator’s known macro-scale
timestep. Likewise, the moisture tendency was calculated via taking the difference of humidity state
variables recorded before versus after the convection and radiation calculations. This target variable
transformation is done so that we can compare the performance of our baseline models to that of
previously published models that reported errors of emulated tendencies [14, 39]. Additionally, this
transformation implicitly normalizes the target variables leading to better convergence properties for
ML algorithms. Given the domain-specific nature of the preprocessing workflow, we provide scripts
in the GitHub repository for workflow reproduction.

4.1 Baseline Architectures

Six baseline models used in our experiment are briefly described here. Refer to SI for further details.

Convolutional Neural Network (CNN) uses a 1D ResNet-style network. Each ResNet block
contains two 1D convolutional layers and a skip connection. CNNs can learn spatial structure and
have outperformed MLP and graph-based networks in [51]. The inputs and outputs for the CNN are
stacked in the channel dimensions, such that the mapping is 60 × 6 → 60 × 10. Accordingly, global
variables have been repeated along the vertical dimension.

Encoder-Decoder (ED) consists of an Encoder and a Decoder with 6 fully-connected hidden layers
each [39]. The Encoder of ED condenses the original dimensionality of the input variables down to
only 5 nodes inside the latent space. This enhances the interpretability of ED and makes the model
beneficial for advanced postprocessing of multivariate climate data [39].

Heteroskedastic Regression (HSR) [52] predicts a separate mean and standard deviation for each
output variable, using a regularized MLP.

Multi-layer Perceptron (MLP) is a fully connected, feed-forward neural network. The MLP
architecture used for our experiments is optimized via an extensive hyperparameter search with 8,257
trials.

Randomized Prior Network (RPN) is an ensemble model [53]. Each member of the RPN is built
as the sum of a trainable and a non-trainable (so-called “prior”) surrogate model; we used MLP for
simplicity. Multiple replicas of the networks are constructed by independent and random sampling of
both trainable and non-trainable parameters [54, 55]. RPNs also resort to data bootstrapping (e.g.,
subsampling and randomization) in order to mitigate the uncertainty collapse of the ensemble method
when tested beyond the training data points [55].

Conditional Variational Autoencoder (cVAE) uses amortized variational inference to fit a deep
generative model that is conditioned on the input and can produce samples from a complex predictive
distribution.
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Variable MAE [W/m2] R2

CNN ED HSR MLP RPN cVAE CNN ED HSR MLP RPN cVAE

dT/dt 2.585 2.864 2.845 2.683 2.685 2.732 0.627 0.542 0.568 0.589 0.617 0.590
dq/dt 4.401 4.673 4.784 4.495 4.592 4.680 – – – – – –
NETSW 18.85 14.968 19.82 13.36 18.88 19.73 0.944 0.980 0.959 0.983 0.968 0.957
FLWDS 8.598 6.894 6.267 5.224 6.018 6.588 0.828 0.802 0.904 0.924 0.912 0.883
PRECSC 3.364 3.046 3.511 2.684 3.328 3.322 – – – – – –
PRECC 37.83 37.250 42.38 34.33 37.46 38.81 0.077 -17.909 -68.35 -38.69 -67.94 -0.926
SOLS 10.83 8.554 11.31 7.971 10.36 10.94 0.927 0.960 0.929 0.961 0.943 0.929
SOLL 13.15 10.924 13.60 10.30 12.96 13.46 0.916 0.945 0.916 0.948 0.928 0.915
SOLSD 5.817 5.075 6.331 4.533 5.846 6.159 0.927 0.951 0.923 0.956 0.940 0.921
SOLLD 5.679 5.136 6.215 4.806 5.702 6.066 0.813 0.857 0.797 0.866 0.837 0.796

Table 2: MAE and R2 for target variables averaged globally and temporally (from 0009-03 to
0011-02). Variables include heating tendency (dT/dt), moistening tendency (dq/dt), net surface

shortwave flux (NETSW), downward surface longwave flux (FLWDS), snow rate (PRECSC), rain
rate (PRECC), visible direct solar flux (SOLS), near-IR direct solar flux (SOLL), visible diffused

solar flux (SOLSD), and near-IR diffused solar flux (SOLLD). Units of non-energy flux variables are
converted to a common energy unit, W/m2. Best model performance for each variable is bolded.

4.2 Skill Boost from Expanding Features and Targets

We performed an ablation of our best performing MLP baseline to demonstrate the added value
of the expanded inputs and targets available in ClimSim, i.e. using inputs x of size di = 617 and
targets y ∈ Rdo of size do = 368; see Table 1 in SI for the full list of variables. We use the same
transformation described in our preprocessing workflow to compute and add condensate (cloud liquid
and cloud ice) and momentum (zonal and meridional winds) tendencies to the target vector. We
conducted this ablation study with both the low-resolution and the high-resolution datasets (see
Section 3.1 in SI for further details regarding these MLP variants). For common elements of the target
vector, using all available variables leads to a uniform improvement in prediction accuracy, especially
for precipitation, in both resolutions (Figures SI7, SI8 and Table SI4). The larger errors (e.g., MAE
and RMSE) observed in the high-resolution emulators are anticipated due to the increased variance
of higher-resolution data. Nevertheless, the similarity of their R2 values to those of the corresponding
low-resolution emulators confirms their adequate performance.

4.3 Evaluation Metrics

Our evaluation metrics are computed separately for each variable in the output vector. Mean absolute
error (MAE) and the coefficient of determination (R2) are calculated independently at each horizontal
and vertical location, and then averaged horizontally and vertically to produce the summary statistics
in Figure 2. For the vertically-varying fields, we first form a mass-weighting and then convert
moistening and heating tendencies into common energy units in Watts per square meter as in [56].
We also report continuous ranked probability scores (CRPS) for all considered models in SI.

4.4 Baseline Model Results

Figure 2 summarizes the error characteristics. Whereas heating and moistening rates have comparable
global mean MAE, behind a common background vertical structure (Figure 2 b,c) the coefficient
of determination R2 (d,e) reveals that certain architectures (RPN, HSR, cVAE, CNN) consistently
perform better in the upper atmosphere (model level < 30) whereas the highly optimized MLP model
outperforms in the lower atmosphere (model level > 30) and therefore the global mean (Table 2). For
the global mean MAE we see the largest averaged errors for PRECC and NETSW (mean MAE >
15 W/m², Figure 2 and Table 2), where MLP clearly has the best the best skill compared to all other
benchmark models. For the other variables, the global mean MAE is considerably smaller and the
skill of the benchmarks model appears to be more similar in absolute numbers. While for the global
mean R2 we find the lowest measurable performance for dT/dt and PRECC (mean R2 < 0.7) and
in these cases, CNN gives the most skillful predictions. The other variables have larger R2 of order
0.8 or higher, which suggests that these quantities are easier to deep-learn (Table 2). For dq/dt and
PRECSC global mean R2 is not an ideal evaluation metric due to negligible variability in dq/dt in the
upper atmosphere and for PRECSC in the tropics in the dataset (Table 2).
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Additional tables and figures that reveal the geographic and vertical structure of these errors, fit
quality, and analysis of stochastic metrics, are included in SI (Sections 4.3, 8.1, and 8.2 in SI).
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Figure 2: (a) Summary, where dT/dt and dq/dt are the tendencies of temperature and specific
humidity, respectively, and were vertically integrated with mass weighting. (b,c) retain the vertical
structure of MAE and (d,e) R2. Error bars and grey shadings show the the 5- to 95-percentile range

of MLP. Refer to Table 1 for variable definitions.

4.5 Physics-Informed Guidance to Improve Generalizability and Coupled Performance

Physical Constraints: Mass and energy conservation are important criteria for Earth system simula-
tion. If these terms are not conserved, errors in estimating sea level rise or temperature change over
time may become as large as the signals we hope to measure. Enforcing conservation on emulated
results helps constrain results to be physically plausible and reduce the potential for errors accumu-
lating over long time scales. We discuss how to do this and enforce additional constraints, such as
non-negativity for precipitation, condensate, and moisture variables in the Supporting Information.

Stochasticity and Memory: The results of the embedded convection calculations regulating do
are chaotic, and thus worthy of stochastic architectures, as in our RPN, HSR, and cVAE baselines.
These solutions are likewise sensitive to sub-grid initial state variables from an interior nested spatial
dimension that has not been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input vector
inflation could be beneficial as it captures some information about this convective memory and
utilizes temporal autocorrelations present in atmospheric data.

Causal Pruning: A systematic and quantitative pruning of the input vector based on objectively
assessed causal relationships to subsets of the target vector has been proposed as an attractive
preprocessing strategy, as it helps remove spurious correlations due to confounding variables and
optimize the ML algorithm [16].

Normalization: Normalization that goes beyond removing vertical structure could be strategic,
such as removing the geographic mean (e.g., latitudinal, land/sea structure) or composite seasonal
variances (e.g., local smoothed annual cycle) present in the data. For variables exhibiting exponential
variation and approaching zero at the highest level (e.g., metrics of moisture), log-normalization
might be beneficial.
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Expanded Resolution and Complete Inputs and Outputs: Our baseline models have focused on
the low-resolution dataset, for ease of data volume, and using only a subset of the available inputs
and outputs. This illustrates the essence of the ML challenge. However, we show in our ablation
study, using MLPs, that including all input variables yields generally an improved reproduction of the
target variables in both the low-resolution and the high-resolution dataset (Figures SI7 and SI8 and
Table SI4). Accordingly, we encourage users who discover competitive fits in this approachable limit
to expand to all inputs/outputs in the high-resolution, real-geography dataset, for which successful
fits become operationally relevant.

Further ML Approaches: Recent methods to capture multi-scale processes using neural operators
that learn in a discretization-invariant manner and can predict at higher resolutions than available
during training time [57] may be attractive. Their performance can be further enhanced by incorpo-
rating physics-informed losses at a higher resolution than available training data [58]. Ideas on ML
modeling for sub-grid closures from adjacent fields like turbulent flow physics and reactive flows can
also be leveraged for developing architectures with an inductive bias for known priors [59], easing
prediction of stiff non-linear behavior [60–62], generative modeling with physical constraints [63, 64]
and for interpretability of the final trained models [60].

5 Limitations and Other Applications

Idealizations: A limitation of the multi-scale climate simulator used to produce ClimSim (E3SM-
MMF) is that it assumes scale separation, i.e., that convection can be represented as laterally periodic
within the grid size of the host simulator, and neglects sub-grid scale representations of topographic
and land-surface variability. Despite these simplifications, the data adequately captures many essential
aspects of the ML problem, such as stochasticity, and interactions across radiation, microphysics, and
turbulence.

Hybrid testing: Inclusion of a natural path for downstream testing of learned physics emulators as
fully coupled components of a hybrid-ML climate simulator is vital. However, such a workflow is not
yet included in ClimSim, since there is no easy way for the ML community to run many hybridized
variants of the E3SM-MMF in a distributed high-performance GPU computing infrastructure via a
lightweight API. It is our eventual goal to tackle the software engineering needed to enable such a
protocol, since, in the long term, it is in this downstream environment where ML researchers should
expect to have their maximum impact on the field of hybrid-ML climate simulation. Meanwhile,
ClimSim provides the first step.

Stochasticity: One open problem that the dataset may allow assessing is understanding the role of
stochasticity in hybrid-ML simulation. While primarily used as a dataset for regression, it would be
also interesting to assess and understand the degree to which different variables are better modeled as
stochastic or deterministic, or if the dataset gives rise to heavy-tailed or even multi-modal conditional
distributions that are important to capture. To date, these questions have been raised based on
physical conjectures [e.g., 65] but remain to be addressed in the ML-based parameterization literature.
For instance, precipitation distributions have long tails that are projected to lengthen under global
warming [34, 66]—and will thus tend to generate out-of-sample extremes. ClimSim could help
construct optimal architectures to capture precipitation tails and other impactful climate variables
such as surface temperature.

Interpretability: This dataset could also be utilized to discover physically interpretable models for
atmospheric convection, radiation, and microphysics. A possible workflow would apply dimensional-
ity reduction techniques to identify dominant vertical variations, followed by symbolic regression to
recover analytic expressions [67, 68].

Generalizability: Although the impacts of global warming and inter-annual variability are absent
in this initial version of ClimSim, important questions surrounding climate-convection interactions
can begin to be addressed. One strategy would involve partitioning the data such that the emulator is
trained on cold columns, but validated on warm columns, where warmth could be measured by surface
temperatures, as in [56]. However, the results from this approach may also reflect the dependence
of convection on the geographical distribution of surface temperatures in the current climate and
should be interpreted with caution. To optimally engage ML researchers in solving the climate
generalization problem, a multi-climate extension of ClimSim should be developed that includes
physical simulations that samples future climate states and more internal variability.
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Relevance determination and active learning: While the climate simulator code offers data
generation flexibility, guidance on ideal regimes to target for improved learning would benefit the
domain scientists able to run it. This question can be addressed with the current data and metrics of
interest provided.

6 Conclusion and Future Work

We introduce ClimSim, the most physically comprehensive dataset yet published for training ML
emulators of atmospheric storms, clouds, turbulence, rainfall, and radiation for use in hybrid-ML
climate simulation. It contains all inputs and outputs necessary for downstream coupling in a full-
complexity multi-scale climate simulator. We conduct a series of experiments on a subset of these
variables that demonstrate the degree to which climate data scientists have been able to fit their
deterministic and stochastic components.

We hope ML community engagement in ClimSim will advance fundamental ML methodology and
clarify the path to producing increasingly skillful sub-grid physics emulators that can be reliably used
for operational climate simulation. To facilitate two-way commications between ML practitioners
and climate scientists, we incorporate many desired characteristics for an ideal benchmark dataset
suggeted in [69]. Such interdisciplinary collaboration will open up an exciting future in which the
computational limits that currently constrain climate simulation can be reconsidered.

We plan to soon extend ClimSim to include, first, a sampling of multiple future climate states. Second,
we aim to provide a protocol for downstream hybrid simulation testing. We hope lessons learned in
our chosen limit of multi-scale atmospheric simulation will have applicability in other sub-fields of
Earth System Science where computational constraints are currently a barrier to including explicit
representations of more systems of nested complexity.
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