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Abstract

Prior theoretical and empirical works have established that semi-supervised learning
algorithms can leverage the unlabeled data to improve over the labeled sample
complexity of supervised learning (SL) algorithms. However, existing theoretical
work focuses on regimes where the unlabeled data is sufficient to learn a good
decision boundary using unsupervised learning (UL) alone. This begs the question:
Can SSL algorithms simultaneously improve upon both UL and SL? To this end, we
derive a tight lower bound for 2-Gaussian mixture models that explicitly depends
on the labeled and the unlabeled dataset size as well as the signal-to-noise ratio
of the mixture distribution. Surprisingly, our result implies that no SSL algorithm
improves upon the minimax-optimal statistical error rates of SL or UL algorithms
for these distributions. Nevertheless, in our real-world experiments, SSL algorithms
can often outperform UL and SL algorithms. In summary, our work suggests that
while it is possible to prove the performance gains of SSL algorithms, this would
require careful tracking of constants in the theoretical analysis.1

1 Introduction

Semi-Supervised Learning (SSL) has recently garnered significant attention, often surpassing tradi-
tional supervised learning (SL) methods in practical applications [5, 10, 22]. Within this framework,
the learning algorithm leverages both labeled and unlabeled datasets sampled from the same distribu-
tion. Numerous empirical studies suggest that SSL can effectively harness the information from both
datasets, outperforming both SL and unsupervised learning (UL) approaches [21, 42, 17, 25]. This
observation prompts the question: how fundamental is the improvement of SSL over SL and UL? 2

Prior theoretical results do not provide a consensus on this topic. One line of work demonstrates that
under certain settings, SSL is capable of lowering the labeled sample complexity. In these settings,
the unlabeled data possesses a significant amount of information about the conditional distribution
(up to permutation). Some examples of this setting include distributions where unlabeled samples are
enough to obtain small estimation error in mixture models [30, 18] or when the data is clusterable [31].
Therefore, despite SSL performing provably better than SL in these settings, it is only as good as UL
(up to permutation). Another line of work challenges the above literature by identifying scenarios
where SSL achieves the same error rate as SL. In these scenarios, even oracle knowledge about the

1Please consult the arxiv version of the paper for an updated manuscript.
2By error of UL we mean the prediction error up to sign. We formalize this paradigm of using UL first and

then identifying the correct sign as UL+ in Section 2.2.
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marginal distribution fails to improve upon the error rates of SL algorithms since the marginal does
not carry any information about the labeling i.e. the conditional distribution. Therefore, these settings
do not allow SSL to improve upon SL but only upon UL.

In summary, the previous bounds do not provide a conclusive answer on the benefits of SSL;
the positive and negative results consider different regimes dependent on sample sizes and the
“compatibilibity” of the marginal distribution with the conditional distribution. In particular, they
either improve upon UL or upon SL, but never both simultaneously. In this paper, we provide a first
answer to the following question

Can semi-supervised classification algorithms simultaneously improve
over the minimax rates of both SL and UL?

Specifically, in Sections 2 and 3, we study this question in the context of linear classification for
symmetric 2-Gaussian mixture models (GMMs) as done in several works in this domain [30, 18, 2,
24, 39]. In this setting, we derive minimax error rates for semi-supervised learning that specifically
depend on the "regime", characterized by three quantities: the amount of available unlabeled data nu,
amount of available labeled data nl, and the inherent signal-to-noise ratio (SNR) that quantifies the
amount of information the marginal input distribution has about the conditional label distribution
(see 3 for more details). An SNR-dependent minimax rate allows us to analyze the whole spectrum
of problem difficulties for 2-GMMs. By contrasting the SSL minimax rates with established minimax
rates for SL and UL, we find that in no regime can SSL surpass the statistical rates of both SL and
UL. In conclusion, the optimal algorithm is the one that can adeptly switch between SL and UL
algorithms depending on the regime and hence, it never uses the available data fully.

Nevertheless, statistical rates may not offer a complete picture for explaining the practical benefits
of SSL algorithms. Several prevalent SSL algorithms, such as self-training, are more sophisticated
than UL approaches and use labeled data not only for determining the sign but also for learning the
decision boundary. In Section 4, we show that an SSL ensembling method and self-training [41, 7]
can indeed improve upon the best of SL and UL algorithms even in proof-of-concept experiments for
linear classification tasks on both synthetic and real-world datasets. Since the improvements cannot
be captured by statistical rates, our results highlight the significance of the constant factors in future
theoretical work that analyzes the advantage of SSL algorithms.

2 Problem setting and background

Before providing our main results, in this section, we first define the problem setting for our theoretical
analysis, the evaluation metrics and the types of learning algorithms that we compare. We then
describe how we compare the rates between SSL and supervised and unsupervised learning

2.1 Linear classification for 2-GMM data

Data distribution. We consider linear binary classification problems where the data is drawn from
a Gaussian Mixture Model consisting of two identical spherical Gaussians with identity covariance
and uniform mixing weights. The means of the two components θ∗,−θ∗ are symmetric with respect
to the origin but can have arbitrary non-zero norm. We denote this family of joint distributions
as P2-GMM := {P θ∗

XY : θ∗ ∈ Rd} that can be factorized so that the density reads p θ∗

XY (x, y) =

pθ
∗

X|Y (x|y)pY (y) with

PY = Unif{−1, 1} and P θ∗

X|Y = N (Y θ∗, Id). (1)

This family of distributions has often been considered in the context of analysing both SSL [30, 18]
and SL/UL [2, 24, 39] algorithms. For s ∈ (0,∞), we denote by P(s)

2-GMM ⊂ P2-GMM and Θ(s) ⊂ Rd

the set of distributions P θ∗

XY and the set of parameters with ∥θ∗∥ = s, respectively. With this
definition, we will be able to obtain refined bounds that depend explicitly on s. We consider
algorithms A that take as input a labeled dataset Dl ∼

(
P θ∗

XY

)nl of size nl, an unlabeled dataset
Du ∼

(
P θ∗

X

)nu of size nu, or both, and output an estimator θ̂ = A (Dl,Du) ∈ Rd. The estimator is

used to predict the label of a test point x as ŷ = sign
(
⟨θ̂, x⟩

)
.
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Learning paradigm Excess risk rate Estimation error rate

SL e−s2/2 d
snl

√
d
nl

UL(+) e−s2/2 d
s3nu

√
d

s2nu

Table 1: Known minimax rates of SL and UL for learning 2-GMMs [39, 24]. The minimax rates
for UL are up to choosing the correct sign. This rate is the same as for UL+ if nl ≥ log(nu). The
notation f(x) ≍ g(x) is equivalent to f = Θ(g).

Evaluation metrics In this work, we consider two natural error metrics for this class of problems:
prediction error and parameter estimation error3. For any vector θ, we define its

Prediction error: Rpred (θ,θ
∗) := P θ∗

XY (sign (⟨θ, X⟩) ̸= Y ) , and (2)
Estimation error: Restim (θ,θ∗) := ∥θ − θ∗∥2 . (3)

When the true θ∗ is clear from the context, we drop the second argument for simplicity. In our
discussions, we focus on the prediction error, but include a minimax rate for the estimation error for
completeness. In particular, we bound the excess risk of θ, defined as the distance between the risk
of θ and the Bayes optimal risk

Excess prediction error: E (θ,θ∗) := Rpred (θ,θ
∗)− inf

θ
Rpred (θ,θ

∗) .

where infθ Rpred (θ,θ
∗) is achieved at θ∗ but can be non-zero.

For the set of all classification algorithms, we study the minimax expected error over a set of
parameters Θ. This worst-case error over Θ indicates the limits of what is achievable with the
algorithm class. For instance, the minimax optimal expected excess error of the algorithm class over
Θ takes the form:

Minimax excess error: ϵ (nl, nu,Θ) := inf
A

sup
θ∗∈Θ

E [E (A(Dl,Du),θ
∗)] . (4)

2.2 Minimax optimal rates of supervised and unsupervised learning

We distinguish between three kinds of learning that can be used in the SSL setting to learn a decision
boundary θ̂ but are designed to leverage the available data differently. For simplification, our
discussion is tailored towards learning P2-GMM, though the ideas hold more generally.

1) Semi-supervised learning (SSL) SSL algorithms, denoted as ASSL, can utilize both labeled
Dl and unlabeled samples Du to learn the decision boundary and to produce an estimator θ̂SSL =
ASSL (Dl,Du). The promise of SSL is that by combining labeled and unlabeled data, SSL can reduce
both the labeled and unlabeled sample complexities compared to algorithms solely dependent on
either dataset.

2) Supervised learning (SL) SL algorithms, represented by ASL, can only use the labeled dataset
Dl to yield an estimator θ̂SL = ASL (Dl, ∅). The minimax rates of SL for distributions from P(s)

2-GMM

(see Table 1) are achieved by the mean estimator θ̂SL = 1
nl

∑nl

i=1 YiXi, for both excess risk and
estimation error.

3) Unsupervised learning (UL) Traditionally, UL algorithms are tailored to learning the generative
model for marginal distributions. For P2-GMM the marginal is governed by θ∗ and UL algorithms
output a set of estimators {θ̂UL,−θ̂UL} = AUL (∅,Du) one of which is guaranteed to be close to
the true θ∗. To evaluate prediction performance, we define the minimax rate of UL algorithms
as the minimax rate for the closer (to the true θ∗) of the two estimators. This minimax rate of
UL algorithms over P(s)

2-GMM is known for both the excess risk and the estimation error [24, 39]

(see Table 1). These rates are achieved by the unsupervised estimator θ̂UL =

√
(λ̂− 1)+v̂, where

(λ̂, v̂) is the leading eigenpair of the sample covariance matrix Σ̂ = 1
nu

∑nu

j=0XjX
T
j and we use the

notation (x)+ := max(0, x).
3For linear classification and a 2-GMM distribution from the family P2-GMM, a low estimation error implies

not only good predictive performance, but also good calibration under a logistic model [29].
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2.3 A "wasteful" type of SSL algorithm

Algorithm 1: UL+ algorithms AUL+

Input :Dl, Du

{θ̂UL,−θ̂UL} ← AUL(Du)

θ̂UL+ ← Select from {θ̂UL,−θ̂UL} using Dl

return θ̂UL+

Several SSL algorithms used in practice (e.g. Sim-
CLR [9], SwAV [8]) follow a two-stage procedure: i)
determine decision boundaries using only unlabeled
data; and ii) label decision regions using only labeled
data. We refer to this class of two-stage algorithms
as UL+ and denote them by AUL+. Early analyses of
semi-supervised learning focus, in fact, on algorithms
that fit the description of UL+ [30, 31].

For linear binary classification, the two-stage framework is depicted in Algorithm 1. The following
proposition upper bounds the excess risk and estimation error incurred by the UL+ estimator given by

θ̂UL+ = sign
(
θ̂⊤

SLθ̂UL

)
θ̂UL with θ̂SL = ASL (Dl) . (5)

Proposition 1 (Upper bounds for θ̂UL+ ). Let θ̂UL+ be the estimator defined in Equation (5). For any
s ∈ (0, 1] the following holds when nu ≥ (160/s)2d and d ≥ 2:

E
[
Rpred

(
θ̂UL+,θ

∗
)]

≲

√
d

s2nu
+ se

− 1
2nls

2
(
1−c0

√
d log(nu)

s2nu

)2

, and

E
[
E
(
θ̂UL+,θ

∗
)]

≲ e−
1
2 s

2 d

s3nu
+ e

− 1
2 s

2nl

(
1−c0

√
d log(nu)

s2nu

)2

.

Appendix A contains the complete statement of the proposition including logarithmic factors and
the proof. Note that for nl = o

(
1
s2 log (nu)

)
, the first term in the upper bound dominates, thereby

resulting in the same rate as the minimax rate of UL up to choosing the correct sign. We remark
that, while Algorithm 1 defines UL+ algorithms as only using the unlabeled dataset Du for the
unsupervised learning step, one can also use the labeled dataset Dl without labels in that step.
However, typically, in practice, UL+ style algorithms (e.g. SimCLR, SwAV) do not use the labeled
data in this way, as they operate in a regime where unlabeled data is far more numerous than labeled
data. Thus, we analyze Algorithm 1 in this work.

Why UL+ algorithms are “wasteful” As indicated in Algorithm 1, UL+ type algorithms follow
a precise structure where labeled data is used solely to select from the set of estimators output by
a UL algorithm. Intuitively, such algorithms do not take full advantage of the labeled data as it is
not used to refine the decision boundary. In prior empirical and theoretical studies, this inefficiency
has not been a problem since they have focused on the regime nu = ω(nl), where unlabeled
data is often orders of magnitude more abundant than labeled data. When nu = Θ(nl) or even
nu ≪ nl, however, Proposition 1 shows how this two-stage approach of UL+ can become strikingly
ineffective. For simplicity, consider the extreme scenario where nu is finite, but nl → ∞. The
error of a UL+ algorithm will, at best, mirror the error of a UL algorithm with the correct sign (e.g.
Θ(d/nu) for the excess risk). Thus, despite using both labeled and unlabeled data, UL+ algorithms
bear a close resemblance to UL algorithms that only use unlabeled data.

2.4 Brief overview of prior error bounds for SSL

In this section, we discuss prior theoretical works that aim to show benefits and limitations of SSL.

Upper bounds There are numerous known upper bounds on the excess risk of SSL algorithms
for P2-GMM distributions. However, despite showing better dependence on the labeled set size, these
earlier bounds primarily match the UL+ rates [30, 31] or exhibit slower rates than UL+ [18]. That is,
we cannot conclude from existing results that SSL algorithms can consistently outperform both SL
and UL+, which is the question we aim to address in this paper.

Lower bounds In contrast to the upper bounds that aim to demonstrate benefits of SSL, three
distinct minimax lower bounds for SSL have been proposed to show the limitations of SSL. Each
proves, in different settings, that there exists a distribution PXY where SSL cannot outperform the SL
minimax rate. Ben-David et al. [6] substantiate this claim for learning thresholds from univariate data
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sourced from a uniform distribution on [0, 1]. Göpfert et al. [20] expand upon this by considering
arbitrary marginal distributions PX and a “rich” set of realizable labeling functions, such that no
volume of unlabeled data can differentiate between possible hypotheses. Lastly, Tolstikhin and Lopez-
Paz [36] set a lower bound for scenarios with no implied association between the labeling function
and the marginal distribution, a condition recognized as being unfavorable for SSL improvements [32].
Each of the aforementioned results contends that a particular worst-case distribution PXY exists,
where the labeled sample complexity for SSL matches that of SL, even with limitless unlabeled data.

To summarize, the upper bounds show that SSL improves upon SL in settings where nu is significantly
larger than nl. In fact, for such large unlabeled sample size even UL+ can achieve small error. On the
other hand, the lower bounds prove the futility of SSL for distributions where even infinite unlabeled
data cannot help i.e. PX does not contain sufficient information about the conditional distribution.
However these works fail to answer the question: does there exist a relatively moderate nu regime
where SSL is better than both SL and UL+ ?

In the family of P2-GMM distributions, the above lower bounds translate to the hard setting where
nu ≪ 1/s. We now aim to prove a minimax lower bound for a fixed difficulty s > 0, that allows us to
answer the above question in different regimes in terms of nl, nu.

3 Minimax rates for SSL

In this section we provide tight minimax lower bounds for SSL algorithms and 2-GMM distributions
in P(s)

2-GMM. Our results indicate that it is, in fact, not possible for SSL algorithms to simultaneously
achieve faster minimax rates than both SL and UL+.

3.1 Minimax rate

We begin by introducing tight lower bounds on the excess risk (4) of a linear estimator obtained using
both labeled and unlabeled data. In addition, we also present tight lower bounds on estimation error (3)
for the means of class-conditional distributions obtained similarly using labelled and unlabelled data.
This is especially relevant when addressing linear classification of symmetric and spherical GMMs.
In this setting, a reduced estimation error points to not only a low excess risk but also suggests a
small calibration error under the assumption of a logistic noise model [29]. Both of these results are
presented in Theorem 1. We present short proof sketches here and relegate the formal conditions
required by the theorem to hold as well as the full proofs to Appendices B and C (for the estimation
error and excess risk, respectively).
Theorem 1 (SSL Minimax Rate for Excess Risk and Estimation Error). Assume the conditions
in Proposition 1 and additionally let nl > O( lognu

s2 ). Then for any s ∈ (0, 1], we have

inf
ASSL

sup
∥θ∗∥=s

E [E (ASSL (Dl,Du) ,θ
∗)] ≍ e−

s2/2 min

{
s,

d

snl + s3nu

}
, and

inf
ASSL

sup
∥θ∗∥=s

E [Restim(ASSL(Dl,Du),θ
∗)] ≍ min

{
s,

√
d

nl + s2nu

}
,

where the infimum is over all the possible SSL algorithms that have access to both unlabeled and
labeled data and the expectation is over Dl ∼

(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu .

In the rest of the section, we focus solely on the bound for excess risk; however, we note that
the discussion here transfers to estimation error as well. In Section 3.2, we discuss the new in-
sights that this bound provides. A direct implication of the result is that ϵSSL

(
nl, nu,Θ

(s)
)
≍

min
(
ϵSL
(
nl, 0,Θ

(s)
)
, ϵUL+

(
nl, nu,Θ

(s)
))

, that is, the minimax rate of SSL is the same as either
that of SL or UL+, depending on the value of s and the rate of growth of nu compared to nl. Therefore,
we can conclude that no SSL algorithm can simultaneously improve the rates of both SL and UL+ for
θ ∈ Θ(s).We provide a full discussion of the rate improvements in more detail in Section 3.2.

Proof sketch The proof of the lower bound for excess risk is presented in Appendix C. For this
proof, we adopt the packing construction in Li et al. [24] and apply Fano’s method. Since the
algorithms have access to both labeled and unlabeled datasets in the semi-supervised setting, KL
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divergences between both the marginal and the joint distributions appear in the lower bound after the
application of Fano’s method, which is the key difference from its SL and UL counterparts.

Algorithm 2: SSL-S algorithm
Input :Dl, Du, s, ASL, AUL+

Result: θ̂SSL-S
θ̂SL ← ASL(Dl)

θ̂UL+ ← AUL+(Du,Dl)

if s ≤ min

{√
d
nl
,
(

d
nu

)1/4
}

θ̂SSL-S = 0

else if min

{√
d
nl
,
(

d
nu

)1/4
}

< s ≤
√

nl
nu

θ̂SSL-S = θ̂SL

else
θ̂SSL-S = θ̂UL+

return θ̂SSL-S

We then show that the rate can be matched by the
SSL Switching Algorithm (SSL-S) in Algorithm 2
– an oracle algorithm that switches between using a
(minimax optimal) SL or UL+ algorithm based on
the values of s, nl, and nu. The upper bound then
follows as a corollary from Proposition 1 and the
upper bounds for supervised learning.

For the parameter estimation error lower bound, we
use Fano’s method with the packing construction in
Wu and Zhou [39], who have employed this method
to derive lower bounds in the context of unsuper-
vised learning. Similar to the excess risk analysis,
the lower bound reveals that the SSL rate is either
determined by the SL rate or the UL+ rate depend-
ing on s and the ratio of the sizes of the labeled
and unlabeled samples. Once again, the minimax er-
ror rate is matched by the SSL Switching algorithm
presented in Algorithm 2.

Discussion of the details of the theorem We note that the SSL-S algorithm chooses to output the
trivial estimator θ̂SSL-S = 0 if the SNR s is low. In the low-SNR regime, the trivial estimator θ̂ = 0

achieves a small excess risk of E (0,θ∗) = Φ (s) − Φ (0) ≃ e−s2/2s, where Φ is the CDF of the
standard normal distribution.

Moreover, the technical condition s ∈ (0, 1] is not overly restrictive as this range for the SNR is
already sufficient for seeing all the relevant regimes, e.g. SSL-S switches from using SL to UL+
within this range. Finally, while the rates of either SL or UL+ cannot be improved further using SSL
algorithms, it is nonetheless possible to improve the error by a constant factor, independent of nl and
nu. To see this, in Section 4 we describe an algorithm that uses both Dl and Du effectively and can
hence achieve a provable improvement in error over both SL and UL+.

3.2 Comparison of SSL with UL+ and SL in different regimes

To understand whether an SSL algorithm is using the labeled and unlabeled data effectively, we
compare the error rate of SSL algorithms to the minimax rates for SL and UL+ algorithms.

A gap in these rates for a certain SSL algorithm would indicate that the algorithm can obtain lower
error than both SL and UL+ when presented with the same amount of (large enough) data. We study
the improvement rates defined below, which capture the error ratio for the worst-case distributions
between the minimax rate for SSL and the minimax rate for SL or UL+ .

Definition 1 (SSL improvement rates). For a set of parameters Θ ⊆ Rd, we define the improvement
rates of SSL over SL and UL+ as hl and hu, respectively, where

hl(nl, nu,Θ) :=
infASSL supθ∗∈Θ E [E (ASSL (Dl,Du) ,θ

∗)]

infASL supθ∗∈Θ E [E (ASL (Dl, ∅) ,θ∗)]
, (6)

hu(nl, nu,Θ) :=
infASSL supθ∗∈Θ E [E (ASSL (Dl,Du) ,θ

∗)]

infAUL+ supθ∗∈Θ E [E (AUL+ (Dl,Du) ,θ∗)]
, (7)

where the expectations are over Dl ∼ (P θ∗

XY )
nl and Du ∼ (P θ∗

X )
nu .

To simplify notation, we denote the improvement rates of SL and UL+ over Θ(s) as hl(nl, nu, s) and
hu(nl, nu, s), respectively. A straightforward upper bound for these rates is hl, hu ≤ 1, achieved
when utilizing an SL and UL+ algorithm, respectively. SSL demonstrates an enhanced error rate over
SL and UL+, if both limnl,nu→∞ hl(nl, nu,Θ) = 0 and limnl,nu→∞ hu(nl, nu,Θ) = 0. If hl or hu
lies in (0, 1) without converging to zero as nl, nu → ∞, then SSL surpasses SL or UL+, respectively,
only by a constant factor.
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SNR Regime Rate of growth of nu vs nl hl(nl, nu, s) hu(nl, nu, s)

s = o
(√

1/nu

)
Any cSL 0

fixed s > 0
nu = o (nl) cSL 0
nu = ω(nl) 0 cUL

limnl,nu→∞
nu

nl
= c

(
1

1+cs2

)
cSL

(
s2c

1+s2c

)
cUL

Table 2: SSL improvement rates over SL and UL+ for different regimes of s, nl and nu, where hl
and hu are evaluated for limnl,nu→∞.

Given Theorem 1, we can directly derive the improvement rates of SSL in the following corollary.
Corollary 1. Assuming the setting of Theorem 1, the improvement rates of SSL can be written as:

Improvement rate over SL: hl (nl, nu, s) ≍
nl

nl + s2nu
.

Improvement rate over UL+: hu (nl, nu, s) ≍
s2nu

nl + s2nu
.

Based on this corollary, we now argue how no SSL algorithm can simultaneously improve the rates
of both SL and UL+ for any regime of s, nl and nu, as summarized in Table 2.

1. SSL rate is not faster than SL, but is faster than UL+ . For extremely low values of SNR (i.e.
s → 0 faster than

√
nu → ∞), we have that limnl,nu→∞ hl(nl, nu, s) = cSL > 0 and hence SSL

fails to improve the SL rates even with infinite unlabeled data. This setting has been the focus of
previous worst-case analyses for SSL [6, 36, 20]. Alternatively, the SSL rate is also not better than
the SL rate for a fixed SNR, when the labeled dataset is significantly larger than the unlabeled data,
i.e. nu = o(nl).

2. SSL rate is faster than SL, but not faster than UL+. As mentioned in Göpfert et al. [20], in
order for SSL to lead to a rate improvement compared to SL, it is necessary that the unlabeled set size
is at least a superlinear function of the labeled set size, i.e. nu = ω(nl). Corollary 1 shows that this
condition is, in fact, sufficient for 2-GMM distributions: for s > 0, as long as nu grows superlinearly
with respect to nl, hl(nl, nu, s) → 0, and hence, SSL can achieve faster rates than SL. Despite the
improvement over SL, for this setting, the asymptotic error ratio between SSL and UL+ does not
vanish, i.e. limnl,nu→∞ hu (nl, nu, s) = cUL > 0.

3. SSL rate is not faster than either SL or UL+. Finally, in the regime where the unlabeled
dataset size depends linearly on the size of the labeled set i.e. limnl,nu→∞

nu

nl
→ c for some constant

c > 0, neither of the improvement rates vanishes for nl, nu → ∞.

As explained in Section 2.2, prior UL+ algorithms that work well in practice do not use the labeled
data for the unsupervised learning step. Interestingly, for the case when both the labeled and unlabeled
data are used for the unsupervised step, the trends in Table 2 remain the same, with only one exception:
the improvement rates in the last line of the table (i.e. nu

nl
→ c ∈ (0,∞)) would only change by a

small constant. More importantly, the main takeaway from Table 2 remains the same: SSL cannot
achieve better rates than both UL+ and SL at the same time since there is no regime for which hl and
hu are simultaneously 0.

4 Empirical improvements over the rate-optimal SSL-S algorithm

Section 3 shows that the SSL minimax rates can be achieved with a simple algorithm that switches
between a minimax optimal SL and a minimax optimal UL+ algorithm. Despite being optimal in
terms of statistical rates, this SSL Switching algorithm does not make the most effective use of the
available data: SL algorithms solely uses the labeled data whereas UL+ learns the decision boundary
using just the unlabeled data and the labeled data is used to only label the different prediction regions.
Alternatively, one could use both labeled and unlabeled data to learn the decision boundary. In this
section, we investigate the following question: Is it possible to improve over the error of SSL-S even
though the rate would be, at best, as good as the ’wasteful’ SSL-S algorithm as per Section 3?
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In this section, we present experiments to show that, in fact, a remarkably simple algorithm (i.e.
a weighted ensemble of the SL and UL+ classifiers) can outperform the minimax optimal SSL-S
algorithm. We show that algorithms such as self-training, which have been shown to excel in practice
[40, 34, 22], can also improve over SSL-S. Consequently, it remains an exciting avenue for future
work to derive tight analyses that characterize the improvement of such algorithms over SL/UL+.

Algorithm 3: SSL-W algorithm
Input :Dl, Du, t
Result: θ̂SSL-W
θ̂SL ← ASL(Dl)

θ̂UL+ ← AUL+(Dl,Du)

θ̂SSL-W(t) = tθ̂SL + (1− t)θ̂UL+

return θ̂SSL-W(t)

A simple algorithm more effective than SSL-S A nat-
ural approach to improve upon the naive SSL-S algo-
rithm is to construct a weighted ensemble of an SL and
a UL+ estimator, trained on Dl and Du, respectively, with
a controllable weighting hyperparameter t. We call this
the SSL Weighted algorithm (SSL-W) shown in Algo-
rithm 3. With an appropriate choice of t, it is possible to
show that the SSL-W algorithm performs better (up to sign
permutation) than SSL-S. The formal statement of this re-
sult together with the proof are deferred to Appendix D. In practice, one can fix the sign permutation
of the θ̂SSL-W estimator using a small amount of labeled data. The intuition for this improvement
is that the ensemble estimator θ̂SSL-W achieves lower error than the constituent estimators of the
ensemble (i.e. θ̂SL and θ̂UL+), which, in turn, determine the error of the SSL-S algorithm.

4.1 Empirical improvements over the minimax optimal SSL-S algorithm

In this section we present linear classification experiments on synthetic and real-world data to show
that there indeed exist SSL algorithms that can improve over the error of the (minimax optimal) SSL
Switching Algorithm. For both synthetic and real-world data, we use θ̂SL = 1

nl

∑nl

i=1 YiXi as the SL
estimator and an Expectation-Maximization (EM) algorithm for the UL algorithm (see Appendix E
for details). The optimal switching point for SSL-S and the optimal weight for SSL-W, as well as the
optimal ℓ2 penalty for logistic regression are chosen using a validation set.

Synthetic data. We consider data drawn from a symmetric and isotropic 2-GMM distribution P θ∗

XY
over R2. The labeled and unlabeled set sizes are set to 20 and 2000, respectively. Figure 1a shows
the gap between SSL-W and SL or UL+ as a function of the SNR s (Figure 3 in Appendix F shows
the dependence of the error gap on nl). There are two main takeaways. First, for varying SNR values
s, SSL-W always outperforms SL and UL+, and hence, also SSL-S. Second, as argued in Section 3.2,
SSL-W improves more over UL+ for small values of the SNR s, and it improves more over SL for
large values of the SNR.

Real-world data. We consider 10 binary classification real-world datasets: five from the OpenML
repository [37] and five 2-class subsets of the MNIST dataset [13]. For the MNIST subsets, we
choose class pairs that have a linear Bayes error varying between 0.1% and 2.5%.4 We choose from
OpenML datasets that have a large enough number of samples compared to dimensionality (see
Appendix E for details on how we choose the datasets). The OpenML datasets span a range of Bayes
errors that varies between 3% and 34%.

In the absence of the exact data-generating process, we quantify the difficulty of SSL on real-world
datasets using a notion of compatibility, reminiscent of Balcan and Blum [4]. Specifically, we
consider the compatibility given by ρ−1 with ρ := 1

2
√
d

(
∆(θ∗

UL+,θ
∗
Bayes) +Rpred(θ

∗
Bayes)

)
, where

∆(θ∗
UL+,θ

∗
Bayes) :=

Rpred(θ
∗
UL+)−Rpred(θ

∗
Bayes)

Rpred(θ∗
Bayes)

, d is the dimension of the data, θ∗
Bayes is obtained via SL

on the entire dataset and θ∗
UL+ determines the predictor with optimal sign obtained via UL on the

entire dataset. Intuitively, this notion of compatibility captures both the Bayes error of a dataset, as
well as how compatible the 2-GMM parametric assumption actually is for the given data.

In addition to SSL-S (Algorithm 2) and SSL-W (Algorithm 3) we also evaluate the performance
of self-training, using a procedure similar to the one analyzed in Frei et al. [18]. We use a logistic
regression estimator for the pseudolabeling, and train logistic regression with a ridge penalty in the
second stage of the self-training procedure. Note that an ℓ2 penalty corresponds to input consistency
regularization [38] with respect to ℓ2 perturbations.

4We estimate the Bayes error of a dataset by training a linear classifier on the entire labeled dataset.
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Figure 1: Error gap between SL or UL+ and SSL-W for varying task difficulties. We assess problem
difficulty using the SNR (for 2-GMMs) or the compatibility ρ−1 (for real-world data). We see the
same trends for both synthetic and real-world data. Moreover, self-training also exhibits the same
trend as θ̂SSL-W.

Figure 1b shows the improvement in classification error of SSL algorithms (i.e. SSL-W and self-
training) compared to SL and UL+ . The positive values of the error gap indicate that SSL-W
outperforms both SL and UL+ even on real-world datasets. This finding suggests that the intuition
presented in this section carries over to more generic distributions beyond just 2-GMMs. Finally,
Figure 4 in Appendix F shows that SSL-W improves over the error of the minimax optimal SSL-S
algorithm, for varying values of nl. These findings provide some proof-of-concept evidence that
existing SSL algorithms may already be obtaining lower error than the minimax optimal SSL-S
algorithm. We hope this observation will encourage future research into characterizing this error gap
for practically relevant algorithms such as self-training.

5 Related work
Other theoretical analyses of SSL algorithms. Beyond the theoretical studies highlighted in Sec-
tion 2, there are a few others pertinent to our research. Specifically, Azizyan et al. [1], Singh et al.
[33] present upper bounds for semi-supervised regression, which are contingent on the degree to
which the marginal PX informs the labeling function. This is akin to the results we derive in this
work. However, obtaining a minimax lower bound for semi-supervised regression remains an exciting
direction for future work. We refer to [27] for an overview of prior theoretical results for SSL.

Balcan and Blum [4] introduced a compatibility score, denoted as χ(f, PX) ∈ [0, 1], which connects
the space of marginal distributions to the space of labeling functions. While their findings hint that
SSL may surpass the SL minimax rates, they offer no comparisons with UL/UL+. Moreover, the
paper does not discuss minimax optimality of the proposed SSL algorithms.

On another note, even though SSL does not enhance the rates of UL, Sula and Zheng [35] demonstrate
that labeled samples can bolster the convergence speed of Expectation-Maximization within the
context of our study.

To conclude, Schölkopf et al. [32] leveraged a causality framework to pinpoint scenarios where SSL
does not offer any advantage over SL. In essence, when the covariates, represented by X , act as
causal ancestors to the labels Y , the independent causal mechanism assumption dictates that the
marginal PX offers no insights about the labeling function.

Minimax rates for SL and UL. The proofs in this work rely on techniques used to derive minimax
rates for SL and UL algorithms. Most of these prior results consider the same distributional assump-
tions as our paper. Wu and Zhou [39] show a tight minimax lower bound for estimation error for
spherical 2-GMMs from P2-GMM. Moreover, Azizyan et al. [2], Li et al. [24] derive minimax rates
over P2-GMM for classification and clustering (up to permutation).

In addition to the SL and UL algorithms considered in Section 3, Expectation-Maximization (EM) is
another family of algorithms that is commonly analyzed for the same distributional setting considered
in our paper. For instance, Wu and Zhou [39] rely on techniques from several previous seminal
papers [12, 3, 14–16] to obtain upper bounds for EM-style algorithms.

9



6 Conclusions and limitations

In this paper, we establish a tight lower bound for semi-supervised classification within the class of
2-GMM distributions. Our findings demonstrate that SSL cannot simultaneously improve the error
rates of both SL and UL across all signal-to-noise ratios. However, empirical evidence suggests that
SSL can improve upon the error of minimax optimal SL or UL algorithms. This observation calls for
careful analyses of the error of SSL algorithms that also track constant factors, not only rates.

Our theoretical analysis focuses exclusively on isotropic and symmetric GMMs due to limitations in
the technical tools employed for the proofs. Similar constraints can be observed in recent analyses of
SL or UL algorithms [24, 39]. However, it is worth noting that whenever the bounds for SL and UL
can be extended to more general distributions in the future, these results can be seamlessly used to
also extend Theorem 1 to these settings.
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A Proof of Proposition 1

In this section we provide the formal statement of Proposition 1 and its proof.

Proposition 2 (Fixing the sign of θ̂UL). There exist universal constants c0, C1, C2, C3, C4 > 0 such
that for nu ≥ (160/s)2d, d ≥ 2 and s ∈ (0, 1], it holds that:

E
[
∥θ̂UL+ − θ∗∥

]
≤ C1

√
d

s2nu
+ C2se

− 1
2nls

2(1−c0
√

d log(nu)

s2nu
)2
, and

E
[
E(θ̂UL+)

]
≤ C3e

− 1
2 s

2 d log(dnu)

s3nu
+ C4e

− 1
2 s

2nl

(
1−c0

√
d log(nu)

s2nu

)2

.

Proof. Recall that we consider the UL+ estimator θ̂UL+ = sign
(
θ̂⊤

SLθ̂UL

)
θ̂UL and denote β̂ :=

sign
(
θ̂⊤

SLθ̂UL

)
. Now let β := sign(θ∗⊤θ̂UL) = argminβ̃∈{−1,+1}∥β̃θ̂UL − θ∗∥2.

Note that we can write the expected estimation error of θ̂UL+ as

E
[
∥θ̂UL+ − θ∗∥

]
= E

[
∥β̂θ̂UL − θ∗∥

]
= E

[
1{β̂=β}∥βθ̂UL − θ∗∥+ 1{β̂ ̸=β}∥βθ̂UL + θ∗∥

]
≤ E

[
1{β̂=β}∥βθ̂UL − θ∗∥

]
+ E

[
1{β̂ ̸=β}(∥βθ̂UL − θ∗∥+ 2∥θ∗∥)

]
≤ E

[
∥βθ̂UL − θ∗∥

]
+ 2sP(β̂ ̸= β). (8)

Next, we recall a result by Wu and Zhou [39] established for this particular UL estimator, namely

that E
[
∥βθ̂UL − θ∗∥

]
≲
√

d
s2nu

. Moreover, the probability of incorrectly estimating the sign
(permutation) can be written as

P(β̂ ̸= β) = P
(
sign

(
θ̂⊤

SLθ̂UL

)
̸= sign

(
θ∗⊤θ̂UL

))
, where θ̂SL ∼ N (θ∗,

1

nl
Id)

≤ P
(
sign(Z̃) ̸= sign

(
θ∗⊤θ̂UL

))
, where Z̃ ∼ N (θ̂⊤

ULθ
∗,

1

nl
(θ̂⊤

ULθ̂UL))

≤ P
(
Z ′ ≥ |θ̂⊤

ULθ
∗|
)

, where Z ′ ∼ N (0,
1

nl
(θ̂⊤

ULθ̂UL))

= P
(
Z ≥

√
nls2SC(θ̂UL,θ

∗)
)
,

where Z ∼ N (0, 1) and SC(θ̂UL,θ
∗) =

|θ̂⊤
ULθ

∗|
∥θ̂UL∥∥θ∗∥

Therefore, for any A we have:

P(β̂ ̸= β) ≤ P(Z ≥
√
nls2(1−A)) + P

(
SC(θ̂UL,θ

∗) ≤ 1−A
)

≤ e−
1
2nls

2(1−A)2 + P
(
SC(θ̂UL,θ

∗) ≤ 1−A
)
,

where we used the Chernoff bound in the last step. Finally, setting A = c0

√
d log(nu)

s2nu
as a corollary

of Proposition 6 in Azizyan et al. [2] for nu ≥ (160/s)2d we have P
(
SC(θ̂UL,θ

∗) ≤ 1−A
)
≤ d

nu
.

Therefore, for nu ≥ (160/s)2d, we have the following upper bound on estimating the sign incorrectly:

P(β̂ ̸= β) ≤ e
− 1

2nls
2
(
1−c0

√
d log(nu)

s2nu

)2

+
d

nu
. (9)
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Combining this result with Equation (8) finishes the proof of the estimation error bound in the
proposition, as we obtain that for some C1, C2 > 0, the following holds:

E
[
∥θ̂UL+ − θ∗∥

]
≤ C1

√
d

s2nu
+ C2se

− 1
4nls

2(1−c0
√

d log(nu)

s2nu
)2
.

Similarly, we can decompose the expected excess risk as follows:

E
[
E(θ̂UL+)

]
= E

[
E(β̂θ̂UL)

]
= E

[
1{β̂=β}E(β̂θ̂UL) + 1{β̂ ̸=β}E(β̂θ̂UL)

]
= E

[
1{β̂=β}E(βθ̂UL) + 1{β̂ ̸=β}E(−βθ̂UL)

]
≤ E

[
E(βθ̂UL) + 1{β̂ ̸=β}

]
(10)

= E
[
E(βθ̂UL)

]
+ P(β̂ ̸= β),

where in Equation (10) we upper bound the indicator function and the excess risk terms by 1. Finally,
combining Equation (9) with the upper bound in Li et al. [24] for E

[
E(βθ̂UL)

]
, we obtain the desired

result. More concretely, we get that for some C3, C4 > 0,

E
[
E(θ̂UL+)

]
≤ C3e

− 1
2 s

2 d log(dnu)

s3nu
+ C4e

− 1
2 s

2nl

(
1−c0

√
d log(nu)

s2nu

)2

.

B Proof of SSL Minimax Rate for Estimation Error in Theorem 1

In this section we provide the proofs for the lower and upper bounds on the estimation error presented
in Theorem 1. The proof for the excess risk rates can be found in Appendix C.

B.1 Proof of estimation error lower bound

We first prove the estimation error lower bound in Theorem 1. As discussed in Section 2, consider
the 2-GMM distributions from P(s)

2-GMM, with isotropic components and identical covariance matrices.

Consider an arbitrary set of predictors M = {θi}Mi=0. . We can apply Fano’s method [11] to obtain
that the following holds:

inf
ASSL

sup
∥θ∗∥=s

EDl,Du

[
Restim(ASSL(Dl,Du), P

θ∗

XY )
]

≥ 1

2
min

i,j∈[M ]
i̸=j

∥θi − θj∥

1−
1 + 1

M

∑M
i=1D

(
P θi

XY

nl
P θi

X

nu∥P θ0

XY

nl
P θ0

X

nu
)

log(M)


=

1

2
min

i,j∈[M ]
i̸=j

∥θi − θj∥

1−
1 + 1

M

∑M
i=1 nlD

(
P θi

XY ||P
θ0

XY

)
+ nuD

(
P θi

X ||P θ0

X

)
log(M)

 (11)

≥ 1

2
min

i,j∈[M ]
i̸=j

∥θi − θj∥

1−
1 + nl max

i∈[M ]
D
(
P θi

XY ||P
θ0

XY

)
+ nu max

i∈[M ]
D
(
P θi

X ||P θ0

X

)
log(M)

 ,

(12)
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where D (·||·) denotes the KL divergence. In Equation (11), we use the fact that the labeled and
unlabeled samples are drawn i.i.d. from PX and PXY and in Equation (12) we upper bound the
average with the maximum. The next step of the proof consists in choosing an appropriate packing
{θi}Mi=1 and θ0 on the sphere of radius s, i.e. 1

sθi ∈ Sd−1, that optimizes the trade-off between the
minimum and the maxima in Equation (12).

For the packing, we use the same construction that was employed by Wu and Zhou [39] for deriving
adaptive bounds for unsupervised learning. This construction has the advantage that it also leads to
a tight lower bound for the supervised setting. Let c0 and C0 be positive absolute constants and let
M̃ = {ψ1, ..., ψM} be a c0-net on the unit sphere Sd−2 such that we have |M̃| = M ≥ eC0d. For
an absolute constant α ∈ [0, 1] , we construct the following packing of the sphere of radius s in Rd:

M =

{
θi = s

[√
1− α2

αψi

]∣∣∣∣ψi ∈ M̃
}
,

and define θ0 = [s, 0, ..., 0]. Note that, by definition, ∥θi − θj∥ ≥ c0sα, for any distinct i, j ∈ [M ],
which lower bounds the first term in (12). Furthermore, ∥θi − θ0∥ ≤

√
2αs, for all i ∈ [M ].

In the next step, we upper bound the maxima in Equation (12). First, we write the KL divergence
between two GMMs with identity covariance matrices:

D
(
P θi

XY ||P
θ0

XY

)
=

1

2
∥θi − θ0∥22 ≤ α2s2, for all i = [M ]. (13)

Second, we can upper bound the KL divergence between marginal distributions, namely
D
(
P θi

X ||P θ0

X

)
, using Lemma 27 in Wu and Zhou [39], which implies that:

max
i∈[M ]

D
(
P θi

X ||P θ0

X

)
≤ C max

i∈[M ]
∥1
s
θi −

1

s
θ0∥2s4 ≤ 2Cα2s4. (14)

Plugging Equations (13) and (14) into Equation (12) we obtain the following lower bound for the
minimax error, which holds for any α ≤ 1:

inf
ASSL

sup
∥θ∗∥=s

EDl,Du [Restim(ASSL(Dl,Du),θ
∗)] ≥ 1

2
coαs

(
1− 1 + nls

2α2 + nuC1s
4α2

C0d

)
.

Minimizing over α yields the optimum value α = min
{
1,
√

C0d−1
3s2nl+3C1s4nu

}
, where the minimum

comes from how we have constructed the packing, which requires that α ≤ 1. Using this value for α
concludes the proof.

B.2 Proof of estimation error upper bound

We now prove the tightness of our lower bound by establishing the upper bound for the estimation
error of the SSL Switching algorithm presented in Algorithm 2. We choose the following minimax
optimal SL and UL+ estimators

θ̂SL =
1

nl

nl∑
i=1

YiXi (15)

θ̂UL+ = sign
(
θ̂⊤

SLθ̂UL

)
θ̂UL, with θ̂UL =

√
(λ̂− 1)+v̂, (16)

where (λ̂, v̂) is the leading eigenpair of the sample covariance matrix Σ̂ = 1
nu

∑nu

j=0XjX
T
j and we

use the notation (x)+ := max(0, x). It is known that this UL estimator is minimax optimal [39]. As
unsupervised learning can only obtain classifiers up to a sign permutation, it is necessary to endow
the UL+ algorithm with a means to discern between θ̂UL and −θ̂UL, as explained in Section 2.2. In
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the case of the estimator introduced in Equation (16), the sign is selected so as to obtain an estimator
that aligns better with the θ̂SL. The upper bound for the expected error incurred by the UL+ estimator
is given in Proposition 2.

For the SL estimator θ̂SL, we apply standard results for Gaussian distributions to upper bound the
estimation error that holds for any regime of n and d:

EDl

[
∥θ̂SL − θ∗∥

]
≤
√

d

nl
. (17)

Using Equation (17) and Proposition 2 and switching between θ̂SL and θ̂UL+ according to the
conditions in Algorithm 2 that pick the better performing of the two algorithms depending on the
regime, we can show that there exist universal constants C, c0 > 0 such that for 0 ≤ s ≤ 1, d ≥ 2
and nu ≥ (160/s)2d, it holds that

E
[
∥θ̂SSL-S − θ∗∥

]
≤ Cmin

{
s,

√
d

nl
,

√
d

s2nu
+ se

− 1
2nls

2
(
1−c0

√
d log(nu)

s2nu

)2
}
, (18)

where the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu .

Matching lower and upper bound. When nl > O( log(nu)
s2 ), the exponential term becomes

negligible and the first additive component dominates in the last term in the right-hand side of
Equation (18). Basic calculations then yield that the expected error of the switching algorithm is

upper bounded by C ′ min
{
s,
√

d
nl+s2nu

}
for some constant C ′, which concludes the proof of the

theorem.

C Proof of SSL Minimax Rate for Excess Risk in Theorem 1

In this section, we prove the minimax lower bound on excess risk for an algorithm that uses both
labeled and unlabeled data and a matching (up to logarithmic factors) upper bound.

C.1 Proof of excess risk lower bound

We first prove the excess error minimax lower bound in Theorem 1, namely we aim to show that
there exists a constant C0 > 0 such that for any s > 0, nu, nl ≥ 0 and d ≥ 4, we have

inf
ASSL

sup
∥θ∗∥=s

E [E (ASSL (Dl,Du) ,θ
∗)] ≥ C0e

−s2/2 min

{
d

snl + s3nu
, s

}
, (19)

where the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu . Our approach to proving this
lower bound is again to apply Fano’s method [19] using the excess risk as the evaluation method. The
reduction from estimation to testing usually hinges on the triangle inequality in a metric space. Since
the excess risk does not satisfy the metric axioms, we employ a technique introduced in Azizyan et al.
[2] to derive an alternative sufficient condition for applying Fano’s inequality.

Let θ1, . . . ,θM ∈ Θ, M ≥ 2, and γ > 0. If for all 1 ≤ i ̸= j ≤M and θ̂,

E
(
θ̂,θi

)
< γ implies E

(
θ̂,θj

)
≥ γ, (20)

then

inf
ASSL

max
i∈[0..M ]

E [E (ASSL(Dl,Du),θi)] (21)

≥ γ

1−
1 + nl max

i ̸=j
D
(
P θi

XY ||P
θj

XY

)
+ nu max

i ̸=j
D
(
P θi

X ||P θj

X

)
log(M)

 ,
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where the expectation is over Dl ∼
(
P θi

XY

)nl

and Du ∼
(
P θi

X

)nu

.

In order to get a lower bound, we again pick θi, . . . ,θM to be an appropriate packing, so that the
condition in Equation (20) can be satisfied. For this purpose, we can simply use the construction
from Li et al. [24], which was previously used to obtain tight bounds for supervised and unsupervised
settings. Let p = (d− 1)/6. By Lemma 4.10 in Massart [26], there exists a set M̃ = {ψ1, . . . , ψM},
such that ∥ψi∥0 = p, ψi ∈ {0, 1}d−1, the Hamming distance δ (ψi, ψj) > p/2 for all 1 ≤ i < j ≤
M = |M̃|, and logM ≥ p

5 log
d
p ≥ d log(6)/60 = c1d.

Define

M =

{
θi =

[√
s2 − pα2

αψi

]∣∣∣∣ψi ∈ M̃
}

for some absolute constant α. Note that since ∥θi∥ = s and ∥θi − θj∥2 = α2δ (ψi, ψj), we have

pα2

2
≤ ∥θi − θj∥2 ≤ 2pα2 (22)

and
s2 − pα2 ≤ θ⊤

i θj ≤ s2 − pα2/4. (23)

First, we show that the excess risk satisfies the condition in Equation (20). As in the proof of
Theorem 1 in Li et al. [24], we have that for any θ,

E(θ,θi) + E(θ,θj) ≥ 2c0e
−s2/2 pα

2

s
,

and thus, for all i and j ̸= i, it holds that

E(θ,θi) ≤ c0e
−s2/2 pα

2

s
=⇒ E(θ,θj) ≥ c0e

−s2/2 pα
2

s
. (24)

Then since the condition in Equation (20) is satisfied, we obtain

inf
ASSL

sup
∥θ∗∥=s

EDl,Du
[E (ASSL (Dl,Du) ,θ

∗)]

≥ inf
ASSL

max
i∈[0..M ]

E [E (ASSL(Dl,Du),θi)]

≥ c0e
−s2/2 pα

2

s

1−
1 + nl max

i ̸=j
D
(
P θi

XY ||P
θj

XY

)
+ nu max

i ̸=j
D
(
P θi

X ||P θj

X

)
log(M)

 .

(25)

Next, we bound the KL divergences between the two joint distributions and between the two marginals
that appear in Equation (25). For the joint distributions we have that:

D
(
P θi

XY ||P
θj

XY

)
=

1

2
∥θi − θj∥22 ≤ pα2, (26)

where the inequality follows from Equation (22). Using Proposition 24 in Azizyan et al. [2], we
bound the KL divergence between the two marginals

D
(
P θi

X ||P θj

X

)
≲ s4

(
1− θ⊤

i θj
∥θi∥∥θj∥

)
≤ ps2α2, (27)

where the inequality follows from (23). Plugging (26) and (27) into (25) and setting

α2 = c3 min

{
c1d− log 2

8(pnl + s2pnu)
,
s2

p

}
,

gives the desired result

inf
ASSL

sup
∥θ∗∥=s

EDl,Du [E (ASSL (Dl,Du) ,θ
∗)] ≳ e−s2/2 min

{
d

snl + s3nu
, s

}
.
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C.2 Proof of excess risk upper bound

Next, we prove the upper bound on the excess risk of the SSL switching estimator θ̂SSL-S output
by Algorithm 2 with the supervised and unsupervised estimators defined in Appendix B.2 to show
the tightness of the excess risk lower bound in Theorem 1. In particular, we show that there exist
universal constants C, c0 > 0 such that for 0 ≤ s ≤ 1, d ≥ 2 and for sufficiently large nu and nl,

E
[
E(θ̂SSL-S)

]
≤ Ce−

1
2 s

2

min

{
s,
d log(nl)

snl
,
d log(dnu)

s3nu
+ e

− 1
2 s

2

(
nl

(
1−c0

√
d log(nu)

s2nu

)2
−1

)}
,

where the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu .

The proof follows the same arguments as the proof presented in Appendix B.2 where we instead use
excess risk upper bounds for SL and UL from Li et al. [24].

In addition, we also use a result that follows from Proposition 2 to choose the sign of the UL+
estimator.

Note that the upper bound on the excess risk of θ̂SSL-S is matching the lower bound in Equation (19),
up to logarithmic factors. We conjecture that the logarithmic factors are an artifact of the analysis
and can be removed. For instance, it may be possible to extend results in Ratsaby and Venkatesh
[30] that bound the excess risk using the estimation error upper bound without incurring logarithmic
factors. However, their results are not directly applicable here because they are only valid under
the assumption that the estimation error is arbitrarily small and hence not enough for bounding the
expectation.

D Theoretical motivation for the SSL Weighted Algorithm

In this section, we show theoretically that the SSL-W procedure introduced in Section 4 can achieve
lower squared estimation error (up to sign permutation) compared to SSL-S. This result shows that it
is possible to improve the error of the naïve SSL-S algorithm by making effective use of all the data
that is available.

For the purpose of the theoretical analysis, we consider a slightly different SSL-W estimator compared
to the one introduced in Section 4. First, recall that for the classification problem we consider,
unsupervised learning produces a set of two feasible predictors {θ̂UL,−θ̂UL} and cannot discern
between them without access to a (small) labeled dataset. We denote by θ̂∗

UL the UL estimator with

correct sign, namely θ̂∗
UL := argminθ∈{θ̂UL,−θ̂UL} E

[
∥θ − θ∗∥2

]
. Here, the hat symbol indicates that

a finite sample is used to obtain the set of estimators {θ̂UL,−θ̂UL}, while the star symbol indicates
that oracle information is employed to choose the sign of the estimator.

In what follows, we study theoretically the error of the SSL-W estimator constructed using θ̂∗
UL, i.e.

θ̂∗
SSL-W(t) := tθ̂SL +(1− t)θ̂∗

UL. Therefore, our result characterizes the error of the SSL-W estimator
up to a sign permutation. To choose the correct sign, one needs only a small labeled dataset, similar in
size to what is prescribed by Proposition 2. While this step is not captured by Proposition 3, SSL-S is
unlikely to close the gap to SSL-W when provided with this small amount of additional labeled data.
Moreover, for a fairer comparison we also give the switching estimator access to the UL estimator
with correct sign and define θ̂∗

SSL-S := argminθ∈{θ̂SL,θ̂∗
UL}

E
[
∥θ − θ∗∥2

]
We can now state Proposition 3, which shows that there exists an optimal weight for which the SSL-W
predictor achieves lower estimation error than the SSL Switching predictor, θ̂∗

SSL-S.

Proposition 3. Consider a distribution P θ∗

XY ∈ P(s)
2-GMM and let d ≥ 2, and nl, nu > 0. Let θ̂∗

SSL-W(t
∗)

be the SSL-W estimator introduced above. Then there exists a t∗ ∈ (0, 1) for which

E

[∥∥∥θ̂∗
SSL-S − θ∗

∥∥∥2]− E

[∥∥∥θ̂∗
SSL-W(t

∗)− θ∗
∥∥∥2] = min

{
r,
1

r

}
E

[∥∥∥θ̂∗
SSL-W(t

∗)− θ∗
∥∥∥2] , (28)

where r =
E
[
∥θ̂∗

UL−θ∗∥2
]

E
[
∥θ̂SL−θ∗∥2

] , and the expectations are over Dl ∼
(
P θ∗

XY

)nl
,Du ∼

(
P θ∗

X

)nu .
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Figure 2: Estimation error gap between SSL-S and SSL-W as revealed by Proposition 3 for varying
SNR and nl (nu = 10000). The maximum gap is reached at the switching point, indicated by the
vertical dashed lines.

Since the RHS of Equation (28) is always positive, θ̂∗
SSL-W(t∗) always outperforms θ̂∗

SSL-S as long as
the conditions of Proposition 3 are satisfied. The magnitude of the error gap between SSL-S and
SSL-W depends on the gap between SL and UL+ (see Figure 2). The maximum gap is reached for

E

[∥∥∥θ̂∗
UL − θ∗

∥∥∥2] ≈ E

[∥∥∥θ̂SL − θ∗
∥∥∥2] when SSL-W obtains half the error of SSL-S.

D.1 Proof of Proposition 3

The first step in proving Proposition 3 is to express the estimation error of θ̂∗
SSL-W(t∗) in terms of the

estimation errors of θ̂SL and θ̂∗
UL which is captured by Lemma 1.

Lemma 1. Let θ̂1 and θ̂2 be two statistically independent estimators of θ∗ ∈ Rd and let θ̂1 be
unbiased, i.e. E

[
θ̂1

]
= θ∗. Then, the expected squared error of the weighted estimator θ̂t∗ =

t∗θ̂1 + (1− t∗)θ̂2 with t∗ =
E[∥θ̂2−θ∗∥2]

E[∥θ̂1−θ∗∥2]+E[∥θ̂2−θ∗∥2]
is given by

E
[
∥θ̂t∗ − θ∗∥2

]
=

 1

E
[
∥θ̂1 − θ∗∥2

] + 1

E
[
∥θ̂2 − θ∗∥2

]
−1

.

We can apply Lemma 1, since θ̂SL is unbiased and θ̂SL and θ̂∗
UL are trained on Dl and Du respectively,

and hence, are independent. The proof then follows from calculating the difference between the
harmonic mean and the minimum of estimation errors of θ̂SL and θ̂UL+. Let x, y ∈ R+ and w.l.o.g.
assume x ≤ y. Then we have:

x−
(
1

x
+

1

y

)−1

= x− xy

x+ y
=

x2

x+ y
=
x

y

xy

x+ y
.

Applying this identity concludes the proof after choosing t∗ =
E[∥θ̂2−θ∗∥2]

E[∥θ̂1−θ∗∥2]+E[∥θ̂2−θ∗∥2]
and for

x = min
{

E[∥θ̂∗
UL − θ∗∥2],E[∥θ̂SL − θ∗∥2]

}
and y = max

{
E[∥θ̂∗

UL − θ∗∥2],E[∥θ̂SL − θ∗∥2]
}

.

Remark. Note that this lemma holds for arbitrary distributions and estimators as long as they are
independent and one of them is unbiased. Therefore, future results that derive upper bounds for SL
and UL+ for other distributional assumptions and estimators can seamlessly be plugged into Lemma 1.
By the same argument, θ̂SSL-W obtained by other SL and UL+ estimators can also be expected to
improve over the respective SL and UL+ estimators, given that one of them is unbiased.

20



D.2 Proof of Lemma 1

By definition of θ̂t∗ , we have

E
[
∥θ̂t∗ − θ∗∥2

]
= E

[
∥t∗θ̂1 + (1− t∗)θ̂2 − θ∗∥2

]
= E

[
t∗2∥θ̂1 − θ∗∥2 + (1− t∗)

2∥θ̂2 − θ∗∥2 + 2t∗(1− t∗)(θ̂1 − θ∗)⊤(θ̂2 − θ∗)
]

= E
[
t∗2∥θ̂1 − θ∗∥2 + (1− t∗)

2∥θ̂2 − θ∗∥2
]
,

where the last equality holds due to the independence of θ̂1 and θ̂2 and the unbiasedness of θ̂1.

Plugging in t∗ = E∥θ̂2−θ∗∥2

E∥θ̂1−θ∗∥2+E∥θ̂2−θ∗∥2
, we get

E∥θ̂t∗ − θ∗∥2 =

(
E∥θ̂2 − θ∗∥2

E∥θ̂1 − θ∗∥2 + E∥θ̂2 − θ∗∥2

)2

E∥θ̂1 − θ∗∥2

+

(
E∥θ̂1 − θ∗∥2

E∥θ̂1 − θ∗∥2 + E∥θ̂2 − θ∗∥2

)2

E∥θ̂2 − θ∗∥2

=
E∥θ̂1 − θ∗∥2E∥θ̂2 − θ∗∥2

E∥θ̂1 − θ∗∥2 + E∥θ̂2 − θ∗∥2

=
1

1
E∥θ̂1−θ∗∥2

+ 1
E∥θ̂2−θ∗∥2

.

E Simulation details

E.1 Methodology

We split each dataset in a test set, a validation set and a training set. The unlabeled set size is fixed
to 5000 for the synthetic experiments and 4000 for the real-world datasets. The size of the labeled
set nl is varied in each experiment. For each dataset, we draw a different labeled subset 20 times
and report the average and the standard deviation of the error gap (or the error) over these runs. The
(unlabeled) validation set and the test set have 1000 labeled samples each.

We use logistic regression from Scikit-Learn [28] as the supervised algorithm. We use the validation
set to select the ridge penalty for SL. For the unsupervised algorithm, we use an implementation of
Expectation-Maximization from the Scikit-Learn library. We also use the self-training algorithm from
Scikit-Learn with a logistic regression estimator. The best confidence threshold for the pseudolabels
is selected using the validation set. Moreover, the optimal weight for SSL-W is also chosen with the
help of the validation set. Since we use an unlabeled validation set, we need to employ an appropriate
criterion for hyperparameter selection. Therefore, we select models that lead to a large (average)
margin measured on the unlabeled validation set. We give SSL-S the benefit of choosing the optimal
switching point between SL and UL+ by using the test set. Even with this important advantage,
SSL-W (and sometimes self-training) still manage to outperform SSL-S.

E.2 Details about the real-world datasets

Tabular data. We select tabular datasets from the OpenML repository [37] according to a number
of criteria. We focus on high-dimensional data with 100 ≤ d < 1000, where the two classes are
not suffering from extreme class imbalance, i.e. the imbalance ratio between the majority and the
minority class is at most 5. Moreover, we only consider datasets that have substantially more samples
than the number of features, i.e. n

d > 10. In the end, we are left with 5 datasets, that span a broad
range of application domains, from ecology to chemistry and finance.

To assess the difficulty of the datasets, we train logistic regression on the entire data that is available,
and report the training error. Since we train on substantially more samples than the number of
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dimensions, the predictor that we obtain is a good estimate of the linear Bayes classifier for each
dataset.

Furthermore, we measure the extent to which the data follows a GMM distribution with spherical
components. We fit a spherical Gaussian to data coming from each class and use linear discriminant
analysis (LDA) for prediction. We record the training error (of the best permutation). Intuitively, this
is a score of how much our assumption about the connection between the marginal PX and the labeling
function P (Y |X) is satisfied. For Figure 1 we take θ∗

Bayes to be the linear Bayes classifier and θ∗
UL the

LDA classifier described above.5 If the data is almost linearly separable (i.e. Rpred(θ
∗
Bayes) ≤ 0.01),

then we simply take the linear Bayes error as the compatibility.

Image data. In addition to the tabular data, we also consider a number of datasets that are subsets
of the MNIST dataset [23]. More specifically, we create binary classification problems by selecting
class pairs from MNIST. We choose 5 classification problems which vary in difficulty, as measured
by the Bayes error, from easier (e.g. digit 0 vs digit 1) to more difficult (e.g. digit 5 vs digit 9).
Table 3 presents the exact class pairs that we selected. To make the problem more amenable for linear
classification, we consider as covariates the 20 principle components of the MNIST images.

Dataset name d Linear classif. training error LDA w/ spherical GMM training error

mnist_0v1 784 0.001 0.009
mnist_1v7 784 0.006 0.036
madeline 259 0.344 0.381
philippine 308 0.240 0.318
vehicleNorm 100 0.141 0.177
mnist_5v9 784 0.024 0.045
mnist_5v6 784 0.024 0.042
a9a 123 0.150 0.216
mnist_3v8 784 0.042 0.105
musk 166 0.037 0.270

Table 3: Some characteristics of the datasets considered in our experimental study.

F More experiments

In this section we present further experiments that indicate that the SSL Weighted algorithm (SSL-W)
can indeed outperform the minimax optimal Switching algorithm (SSL-S). Figures 3 and 4 show
that there exists a positive error gap between SSL-S and SSL-W for a broad range of nl values, for
synthetic and real-world data, respectively. The extent of the error gap is determined by the nu

nl
ratio

as well as the signal-to-noise ratio that is specific to each data distribution. In addition, Figure 4 also
indicates that self-training can outperform SSL-W in some scenarios. It remains an exciting direction
for future work to provide a tight analysis of self-training that can indicate when it outperforms both
SL and UL+ simultaneously.
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Figure 3: Error gap between SSL-S and SSL-W on synthetic 2-GMM data with s = 0.1. The positive
gap indicates that SSL-W outperforms SSL-S (and hence, also SL and UL+).

5Note that we refer to the LDA estimator as UL since we use it as a proxy to assess how well unsupervised
learning can perform on each dataset.
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Figure 4: Error gap between SSL-S/self-training and SSL-W on real-world datasets. The positive gap
indicates that SSL-W (and, in turn, self-training) outperforms SSL-S (and hence, also SL and UL+)
for a broad range of nl values.
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