
A Voxelwise Scaling Laws
While results presented in the main text of the paper show scaling by averaging across cortex, we
can also examine scaling on a per-voxel basis. For a given voxel v we find the line of best fit
∆ρv ≈ mv log2 N , and then plot mv which denotes the constant amount by which the correlation at
v improves when N , the attribute being scaled, doubles. The flatmaps below show parametric and
data size scaling across our three subjects.

A.1 Parametric Scaling

Below are flatmaps showing voxelwise parametric scaling laws, that is, when N is the number of
parameters being used in the model used for feature extraction.

A.1.1 OPT Model Family
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Figure A.1: Parametric voxelwise scaling laws computed using the OPT language model family.
Flatmaps show the constant of proportionality of encoding performance for for model size scaling.
Model size increases in semantic models seem to be most beneficial for predicting amodal, post-
auditory cognitive areas such as prefrontal cortex.
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A.1.2 Whisper Model Family
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Figure A.2: Parametric voxelwise scaling laws computed using the Whisper audio model family.
Flatmaps show the constant of proportionality of encoding performance for for model size scaling.
Model size improvements are relatively smaller in auditory cortex, suggesting that the most useful
encoded audio features are already captured by the simplest models.
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A.2 Dataset Size Scaling

Below are flatmaps showing voxelwise dataset size scaling laws, that is, when N is the number of
stories being used to train the linear weights of the encoding model.

A.2.1 OPT-30B
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Figure A.3: Dataset size voxelwise scaling laws using OPT-30B. Flatmaps show the constant of
proportionality of encoding performance for for dataset size scaling. Dataset size increases in
semantic benefit most well-predicted regions without significant spatial preference.
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A.2.2 Whisper-637M
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Figure A.4: Dataset size voxelwise scaling laws using Whisper-637M. Flatmaps show the constant
of proportionality of encoding performance for for dataset size scaling. Dataset size increases in
semantic benefit most well-predicted regions. Certain portions of precuneus and auditory cortex
benefit somewhat less from dataset scaling than in OPT.
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B Scaling laws for speech audio encoding models
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Figure B.1: Performance of audio encoding models, averaged across all voxels in auditory cortex. (a)
performance for Whisper and WavLM models. (b) performance for HuBERT models.
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Figure B.2: Performance of HuBERT models, averaged across voxels in cortex. Refer to Figure 1 for
Whisper and WavLM models.
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C Scaling Improvements
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Figure C.1: Percent voxelwise improvements in encoding performance (CCabs) from the best OPT-
125M layer to the best OPT-30B layer for each of three subjects. We see overall improvement in most
areas, with especially large improvements in prefrontal cortex and parietal cortex.
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D Long context artifact effects
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Figure D.1: Long Context Artifact - An example of a long context artifact effect as measured on an
early layer from OPT-30B (Uncorrected - Corrected). The effect is highly localized to primary AC
and can lead to bias in encoding performance measurement if not considered.
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E Joint data-parameter scaling results
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Figure E.1: Comparison of raw encoding performance of the best layers of OPT-125M (transparent)
and OPT-30B (bold) for each of three subjects. We see that OPT-30B consistently outperforms its
smaller variant even in the low-data regime of a single story.

Figure E.2: Histogram showing the slopes of voxelwise scaling laws for two OPT model sizes, shown
for S03. As model size increases, the marginal benefit of additional data increases. The relationship
between data and parametric scaling suggests a conditioning effect in large-scale encoding models
resulting from insufficient amounts of data. Voxels are included if CCmax > 0.5.
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F Cross-subject results
Flatmaps presented in the main text only used one subject, S3. We present analogous flatmaps for the
other two subjects, S1 and S2, in this supplemental section.
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Figure F.1: Large Scale Encoding Models - S1 - Voxelwise correlations using the best OPT-30B layer.
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Figure F.2: Large Scale Encoding Models - S2 - Voxelwise correlations using the best OPT-30B layer.
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Figure F.3: Room for Improvement - S1 - A two channel flatmap showing which ROIs remain poorly
explained by an encoding model built from the best layer of OPT30B.
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Figure F.4: Room for Improvement - S2 - A two channel flatmap showing which ROIs remain poorly
explained by an encoding model built from the best layer of OPT30B.

Figure F.5: Stacked Regression - S1 - Improvement over LLaMA baseline using stacked regression
with Whisper models
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Figure F.6: Stacked Regression - S2 - Improvement over LLaMA baseline using stacked regression
with Whisper models
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G Maximum Correlation Coefficient
Flatmaps of the estimated optimal voxelwise model performance, CCmax for each of the three
subjects are given below. As these are plots of CCmax, we do not threhold by CCmax as in the other
flatmaps.

Estimated Max Correlation Coefficient
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Figure G.1: CCmax - S1
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Figure G.2: CCmax - S2
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Estimated Max Correlation Coefficient
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Figure G.3: CCmax - S3
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H Stacked Regression Center-of-Mass Attributions
Full flatmaps of the center-of-mass of the attribution weights C(αv,s) are given below (see 2.4).
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Figure H.1: C(αv,s) - S1
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Figure H.2: C(αv,s) - S2
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Figure H.3: C(αv,s) - S3
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I Extended Model Details

Table 2: Extended Model Details.
LANGUAGE MODELS

Family Layers Width Parameters Perplexitya # Tokens

OPT [38]

12 768 125M 35.91 180B
24 2048 1.3B 22.48 180B
40 5120 13B 18.17 180B
48 7168 30B 17.35 180B
64 9216 66B 16.56 180B
96 12288 175B DNC 180B

LLaMA [39]
60 6656 33B 10.21 1.4T
80 8192 66B 9.73 1.4T

aAs measured on podcast data. OPT-175B perplexity was not computed due to
computational constraints.
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