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Abstract

Large language models (LLMs) have shown promise in proving formal theorems
using proof assistants such as Lean. However, existing methods are difficult to
reproduce or build on, due to private code, data, and large compute requirements.
This has created substantial barriers to research on machine learning methods for
theorem proving. This paper removes these barriers by introducing LeanDojo:
an open-source Lean playground consisting of toolkits, data, models, and bench-
marks. LeanDojo extracts data from Lean and enables interaction with the proof
environment programmatically. It contains fine-grained annotations of premises in
proofs, providing valuable data for premise selection—a key bottleneck in theorem
proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): an
LLM-based prover augmented with retrieval for selecting premises from a vast
math library. It is inexpensive and needs only one GPU week of training. Our
retriever leverages LeanDojo’s program analysis capability to identify accessible
premises and hard negative examples, which makes retrieval much more effec-
tive. Furthermore, we construct a new benchmark consisting of 98,734 theorems
and proofs extracted from Lean’s math library. It features challenging data split
requiring the prover to generalize to theorems relying on novel premises that are
never used in training. We use this benchmark for training and evaluation, and
experimental results demonstrate the effectiveness of ReProver over non-retrieval
baselines and GPT-4. We thus provide the first set of open-source LLM-based
theorem provers without any proprietary datasets and release it under a permissive
MIT license to facilitate further research.

1 Introduction

Reasoning is a cornerstone of human intelligence and a fundamental goal of AI [3]. One prominent
task is automated theorem proving (ATP): automatically generating proofs for theorems expressed
in formal logic. ATP is useful for formal mathematics, producing mathematical proofs that can be
checked rigorously [4]. Furthermore, it underpins formal verification, which is essential for proving
the correctness and safety of high-stakes applications [5, 6].

ATP is challenging since the search space is prohibitively large. In many applications, it is impractical
to generate proofs fully automatically. Therefore, interactive theorem proving (ITP) has emerged as
an alternative paradigm. In ITP, proofs are constructed by human experts interacting with software
tools called proof assistants, such as Coq [7], Isabelle [8], and Lean [1]. Machine learning can
automate such interactive theorem proving, opening up a new avenue for theorem proving [9]. The
model can learn to interact with proof assistants, given data containing human-written proofs.
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prelude

import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-

t h e o r e m m o d _ s e l f ( n : n a t ) : n % n = 0 : =

b e g i n

r w [ m o d _ e q _ s u b _ m o d ( l e _ r e f l _ ) , n a t . s u b _ s e l f , z e r o _ m o d ]

e n d

-/

def gcd : nat → nat → nat

| 0 y := y

| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=

begin

cases n,

{ unfold gcd },

unfold gcd,

rewrite mod_self,

apply gcd_zero_left

end

end nat
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prelude

import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

theorem mod_self (n : nat) : n % n = 0 :=

begin

rw [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod]

end

def gcd : nat → nat → nat

| 0 y := y

| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=

begin

cases n,

{ unfold gcd },

unfold gcd,

rw mod_self,

apply gcd_zero_left

end

end nat
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LeanDojo Benchmark
• 98,734 theorems and proofs
• 217,776 tactics
• 129,243 premises
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prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
theorem mod_self (n : nat) : n % n = 0 :=
begin

rw [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod]
end
-/

def gcd : nat → nat → nat -- gcd z y
| 0 y := y -- Case 1: z == 0
| (x + 1) y := gcd (y % (x + 1)) (x + 1) -- Case 2: z > 0

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat
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... 33K on average
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Figure 1: Top right: LeanDojo extracts proofs in Lean [1] into datasets for training machine
learning models. It also enables the trained model to prove theorems by interacting with Lean’s proof
environment. Top left: The proof tree of a Lean theorem ∀n ∈ N, gcd n n = n, where gcd is the
greatest common divisor (details in Sec. 3). When proving the theorem, we start from the original
theorem as the initial state (the root) and repeatedly apply tactics (the edges) to decompose states
into simpler sub-states, until all states are solved (the leaf nodes). Tactics may rely on premises such
as mod_self and gcd_zero_left defined in a large math library. E.g., mod_self is an existing
theorem ∀n ∈ N, n % n = 0 used in the proof to simplify the goal. Bottom: Our ReProver model
(Sec. 5). Given a state, it retrieves premises from the math library, which are concatenated with the
state and fed into an encoder-decoder Transformer [2] to generate the next tactic.

Formal theorem proving serves as an important challenge for machine learning. From a computer
science perspective, formal proofs can be treated as programs [10]. But unlike conventional programs
in C++ or Python, the correctness of proofs can be verified using proof assistants. Therefore, theorem
proving may be considered a special form of code generation, with rigorous evaluation and no room
for the model to hallucinate. This can be consequential to current large language models (LLMs), as
they have demonstrated exceptional capability in code generation [11] but have flaws in factuality
and hallucination [12]. In addition, augmenting LLMs with external tools, such as proof assistants,
has shown promise in improving their various capabilities, including multi-step reasoning [13].

Current research on LLMs for theorem proving is facing many barriers. To our knowledge, none
of the existing LLM-based provers are open-source [14–21]. They all use private pretraining data,
and the compute requirements can reach thousands of GPU days [17]. Furthermore, some rely
on tailored infrastructure for distributed training and interaction with the proof assistant—both are
not possible to fully reproduce without open-source code [17, 19]. We change the status quo by
introducing LeanDojo: open-source toolkits, models, and benchmarks that give researchers access to
state-of-the-art LLM-based provers with modest computational costs.

Tools for Data Extraction and Interaction. We focus on Lean, a proof assistant popular among
mathematicians.2 Our framework LeanDojo provides two essential functions for learning-based
theorem proving (Fig. 1): extracting data and enabling models to interact with Lean programmatically.

For data extraction, LeanDojo extracts training data not directly visible in the raw Lean code (Fig. 2),
e.g., proof trees consisting of intermediate states between proof steps (Fig. 1 Top left). In addition,
LeanDojo is the first tool to locate premises in Lean proofs, enabling training machine learning
models for premise selection. For interaction, LeanDojo turns Lean into a gym-like interactive
environment [22]. Using LeanDojo, the model can observe proof states, change the state by executing

2“Lean” in our paper refers to Lean 3 by default. Lean 4 is not backward-compatible but is also supported by
LeanDojo. Our Lean 4 results are in Appendix D.
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proof steps (referred to as “tactics” in proof assistants), and receive feedback from Lean. LeanDojo
is the first tool capable of interacting with Lean reliably, reducing proof-checking errors in existing
tools [19] (correct proofs misjudged as incorrect) from 21.1% to 1.4%.

Retrieval-Augmented LLMs for Theorem Proving. LeanDojo addresses a key bottleneck in
theorem proving: premise selection [23, 24]. Existing LLM-based provers generate the next proof
step (tactic), taking only the current state as input. However, proving theorems depends critically on
the premises, such as lemmas and definitions, from a math library.

For example, Fig. 1 (Top left) illustrates the proof of “∀n ∈ N, gcd n n = n”, where gcd stands for
greatest common divisor. The proof starts from the original theorem as the initial state and repeatedly
applies tactics to decompose states into simpler sub-states, until all states are solved. Tactics may rely
on premises such as mod_self and gcd_zero_left defined in a large math library. E.g., mod_self
is an existing theorem “∀n ∈ N, n % n = 0” useful for simplifying the goal.

Incorporating all possible premises is too large to fit into LLMs’ input, given the limited context
window. Existing methods must learn to memorize the association between the proof state and the
name mod_self. It works if the premise has been used in the training data to solve similar goals, but
does not generalize to truly novel scenarios, e.g., theorems requiring lemmas unseen in training.

One potential solution is to complement memorization with explicit premise selection. LeanDojo
extracts premise data from Lean, including where they are defined and used. It enables us to tackle
premise selection by augmenting LLMs with retrieval. We introduce ReProver (Retrieval-Augmented
Prover) (Fig. 1 Bottom): Given the current state, it generates a tactic conditioning on a small number
of premises retrieved from Lean’s math library, mathlib [25].

We need to limit retrieval to a small number of premises for it to be effective, and ideally, they should
contain the ground truth premise. Our retriever builds upon Dense Passage Retriever (DPR) [26]
but incorporates two algorithmic innovations: First, not all premises are accessible when proving
a theorem (Sec. 3). LeanDojo can perform program analysis on Lean code to determine accessible
premises. On our data, that reduces the average number of premises from 128K to 33K, significantly
simplifying the retriever’s task. Second, DPR needs negative examples in training and benefits from
hard negatives, i.e., irrelevant premises that are hard to distinguish from ground truth ones. We
propose in-file negatives: a simple mechanism to find hard negatives in premise selection, which
samples negative premises defined in the same Lean source file as the ground truth premise.

LeanDojo Benchmark. Using LeanDojo, we construct a benchmark containing 98,734 theorem-
s/proofs extracted from mathlib. Our benchmark is one of the largest math-focused theorem-proving
datasets. We find that the common practice of splitting theorems randomly into training/testing has
led to an overestimated performance in the previous papers. LLMs can prove seemingly difficult
theorems simply by memorizing the proofs of similar theorems during training. In LeanDojo Bench-
mark, we mitigate this issue by designing challenging data split requiring the model to generalize to
theorems relying on novel premises that are never used in training.

We use LeanDojo Benchmark to train and evaluate ReProver. Training takes only five days on a single
GPU. In evaluation, ReProver can prove 51.2% theorems, outperforming a baseline that generates
tactics directly without retrieval (47.6%) and another baseline using GPT-4 [27] to generate tactics
in a zero-shot manner (29.0%). We also test ReProver on two existing datasets, MiniF2F [28] and
ProofNet [29]. It can prove 26.5% theorems in MiniF2F and 13.8% in ProofNet, which is competitive
with state-of-the-art methods without reinforcement learning [19], even though trained using far
fewer resources. Moreover, it can prove 65 theorems that currently do not have proofs in Lean. Thus,
our tool can also serve as an effective tool for augmenting existing math libraries in Lean.

Contributions. In summary, we make four main contributions: First, we introduce tools for
extracting data from and interacting with Lean. Second, we develop ReProver, the first retrieval-
augmented language model for theorem proving. Third, we construct a challenging benchmark for
learning-based theorem proving and use it to validate the effectiveness of ReProver. Finally, we
facilitate open research on LLMs for theorem proving by releasing our data, model, and code. Our
method does not rely on private datasets and can be trained on a single GPU within a week. We
believe this will significantly lower the barriers to academic research in this area and establish the first
accessible baselines for future work to build upon. Further, our method can be used to automatically
generate new Lean proofs without requiring human effort.
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2 Related Work

Theorem Proving. Classical provers express theorems in first-order logic and search for proofs
automatically in a large space [30, 31]. Even with data-driven search heuristics [32, 33], they fail to
scale to large formalization projects. Therefore, recent work on learning-based theorem proving has
focused on an alternative paradigm: automating the interaction with proof assistants.

The architecture of learning-based provers progressed from classical machine learning algorithms such
as KNN [34], to graph neural networks explicitly encoding the syntax of formal expressions [9, 35],
and now Transformer-based LLMs treating expressions as plain strings [14]. Besides the model
architecture, researchers have explored several complementary dimensions: proof search algorithms
for assembling model-generated steps into complete proofs [17, 21]; overcoming data scarcity
through reinforcement learning (RL) [17, 19, 36, 37] or synthetic/auxiliary data [16, 38–40]; as well
as outsourcing some proof goals to classical provers [18, 41–43]. Our base model without retrieval is
a combination of straightforward design choices. It generates tactics by finetuning an encoder-decoder
Transformer, ByT5 [44], via supervised learning without RL or auxiliary data. Then it searches for
proofs using best-first search. Our model’s algorithmic novelty lies in the retrieval.

Premise Selection. Selecting useful premises is recognized as a key challenge in theorem prov-
ing [23, 24, 45, 46]. Machine learning methods for premise selection have also progressed from
classical models [41, 47, 48], recurrent neural networks [24], graph neural networks [38], to Trans-
formers [49, 50]. However, existing methods either tackle premise selection in isolation without
theorem proving [24, 38, 48] or feed the premises to a symbolic prover [41, 47, 49]. To our knowl-
edge, we are the first to augment a learning-based formal theorem prover with retrieved premises so
that the prover can learn how to use them effectively. For example, it can decide whether to use an
explicitly retrieved premise or an implicitly memorized one.

Data and Tools for Theorem Proving. Tools for data extraction and interacting with proof
assistants have been crucial drivers of learning-based theorem proving. Existing tools and datasets
can be divided by proof assistants: Coq has GamePad [51], CoqGym [9], and PRISM [52]; Isabelle
has IsarStep [53] and PISA [15]; HOL Light has HOList [54] and HoLStep [55], and Lean has
LeanStep [16] and lean-gym [19]. MiniF2F [28] is the only cross-system dataset, with 488 theorems
for evaluation. However, it does not have training theorems and is restricted to the domain of math
olympiads.

Among available tools extracting data from proof assistants, LeanDojo is the only one that can extract
premises for retrieval-augmented theorem proving. A few existing datasets also have premises [49,
54], but their data extraction tools are not public, making it difficult to construct new datasets. In
addition, LeanDojo is the only tool that can interact with Lean robustly (Sec. 4) and can extract data
from Lean 4. See Appendix A.3 for a detailed comparison between LeanDojo and alternatives.

Mathematical Reasoning in Natural Language. We focus on proving theorems expressed in
formal logic, whereas researchers have also produced a plethora of work on mathematical reasoning
in natural language [56–63]. A particularly relevant task is autoformalization, translating natural
language texts into formal theorems and proofs [29, 64–72].

Retrieval-Augmented Language Models. Our ReProver is the first retrieval-augmented language
model for formal theorem proving, though similar architectures have been studied extensively in
NLP [73–81]. In addition, there have been many retrieval-augmented methods for code generation [82–
88]. Most of them retrieve from a corpus not directly related to the current file, e.g., GitHub or Stack
Overflow. In contrast, our retrieval corpus consists of premises accessible to the current file, which is
determined by program analysis using LeanDojo. This is similar to what CoCoMIC [88] does for
Python. However, their retrieval is based on heuristics, whereas ours is learned.

3 Background: Theorem Proving in Lean

At a high level, Lean is a programming language that allows you to write not only conventional
programs but also theorems and proofs. To that end, it provides two pieces of machinery: First,
it provides a unified language for defining programs, mathematical objects, theorems, and proofs,
based on functional programming with dependent types [89]. Second, it provides a tactic system for
constructing machine-checkable proofs semi-automatically.
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data/nat/gcd.lean

data/nat/lemmas.lean

prelude

import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

theorem mod_self (n : nat) : n % n = 0 :=

begin

rw [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod]

end

def gcd : nat → nat → nat

| 0 y := y

| (x + 1) y := have y % (x + 1) < x + 1, from mod_lt _ $ succ_pos _,

gcd (y % (x + 1)) (x + 1)

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=

begin

cases n,

{ unfold gcd },

unfold gcd,

rw mod_self,

apply gcd_zero_left

end

end nat

1
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-/
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prelude
import init.data.nat.lemmas init.meta.well_founded_tactics

namespace nat

/-
theorem mod_self (n : nat) : n % n = 0 :=
begin

rw [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod]
end
-/

def gcd : nat → nat → nat -- gcd z y
| 0 y := y -- Case 1: z == 0
| (x + 1) y := gcd (y % (x + 1)) (x + 1) -- Case 2: z > 0

theorem gcd_zero_left (x : nat) : gcd 0 x = x := begin simp [gcd] end

theorem gcd_self (n : nat) : gcd n n = n :=
begin

cases n,
{ unfold gcd },
unfold gcd,
rewrite mod_self,
apply gcd_zero_left

end

end nat

1

Import

Figure 2: Definition of greatest common divisor (gcd) in Lean and two related theorems. The proof
of gcd_self (between “begin” and “end”) relies on a premise mod_self imported from another
file in the math library. Lean can run this proof to produce the proof tree in Fig.1 (Top left).

We use a simple example in Fig. 2 to illustrate how theorems are formalized and proved in Lean.3
Here we want to formalize the greatest common divisor (gcd) of two natural numbers. First, we define
gcd as a recursive function, taking two natural numbers as parameters and returning their gcd via the
Euclidean algorithm. Then, we state a lemma named gcd_zero_left that ∀x ∈ N, gcd 0 x = x,
which can be proved simply by the definition of gcd. Finally, we state our main theorem gcd_self
that ∀n ∈ N, gcd n n = n, followed by its proof consisting of five tactics. In theorem proving, we
are only concerned with generating the proof, i.e., the part between “begin” and “end”; everything
before “begin” is known, including other files imported.

The syntax of tactics is quite expressive. They can take arguments and can be combined into
compound tactics. You can think of tactics as programs in a domain-specific language (DSL). Users
can extend the DSL by defining new tactics. This discrete, combinatorial, and unbounded action
space makes theorem proving challenging for machine learning.

Another challenge is premise selection. Premises are existing lemmas or definitions useful for proving
a theorem. They are used as arguments in tactics. For example, in Fig. 2 and Fig. 1 (Top left), the
tactic “rewrite mod_self” rewrites the goal using the premise mod_self, which is defined in
another file imported by the current file. Proofs cannot use premises that haven’t been defined. For
example, gcd_self cannot be used to prove gcd_zero_left. In addition, they cannot use premises
not imported to the current file. Still, premises come from a large math library containing hundreds
of thousands of existing definitions and theorems, making it hard, for humans and machines alike, to
select the right premises when generating a tactic. This is a key bottleneck in theorem proving and is
what we aim to address through retrieval-augmented LLMs.

4 LeanDojo: Toolkit and Benchmark

LeanDojo serves two essential needs of learning-based theorem proving in Lean. First, it extracts
training data from Lean, and we use this capability to construct a challenging theorem proving
benchmark. Second, it enables the model to interact with Lean programmatically.

Data Extraction. Lean repos (e.g., mathlib or lean-liquid) contain source code of human-
written theorems/proofs. However, the raw code is unsuitable for training the prover. It lacks runtime
information that humans can access when using Lean, such as intermediate states between proof
steps. Therefore, LeanDojo extracts the following information not directly visible in the code:

3The process is similar in many other proof assistants, though they may have different logical foundations.
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• File dependencies and abstract syntax trees (ASTs): LeanDojo processes the repo to produce
a directed acyclic graph whose nodes are files and edges are import relations between files. In
addition, LeanDojo produces the AST of each file. File dependencies and ASTs are useful for
program analysis, e.g., collecting theorems defined in a file or premises accessible to a theorem.

• States and tactics: LeanDojo extracts all tactics in proofs. For each tactic, it also extracts the states
before/after the tactic, which allows us to reconstruct the proof tree in Fig. 1 (Top left).

• Premises: For each premise, such as mod_self in Fig. 2, LeanDojo records where it is defined
(location in data/nat/lemma.lean) and where it is used (locations across many files). In addition,
premises have unique fully qualified names (e.g., nat.mod_self) but are often used by ambiguous
short names (mod_self), relying on Lean to perform name resolution. LeanDojo is capable of
recording their full names.

Lean has basic support for exporting dependencies, ASTs, states, and tactics. However, it cannot
resolve the premises’ full names and locate their definitions. Therefore, we modify Lean to record
this information (details in Appendix A.1). The modified Lean is used only for data extraction but
not for evaluation, so we do not risk accidentally breaking Lean’s logical soundness.

LeanDojo Benchmark. We construct a benchmark for premise selection and theorem proving,
named LeanDojo Benchmark. The data is extracted from mathlib,4 Lean’s centralized math library
covering diverse topics such as analysis, algebra, and geometry.5 LeanDojo Benchmark is one of
the largest math-focused theorem proving datasets, consisting of 98,734 theorems from 3,384 Lean
files. Unlike existing datasets in Lean [16], LeanDojo Benchmark also contains the definitions of
130,262 premises, including not only theorems but also other definitions that can be used as premises
(e.g., gcd in Fig. 2. Furthermore, the dataset has 217,776 tactics, 129,243 of them with at least one
premise. The average number of premises is 2.13 among tactics with premises. Appendix B contains
additional information on data format, datasheet [90], hosting, and licensing.

lemma conj_mul : (a * b).conj = b.conj * a.conj := begin

ext; simp; ring_exp

end

lemma conj_conj_mul : (a.conj * b).conj = b.conj * a := begin

rw [conj_mul, conj_conj]

end

lemma conj_mul_conj : (a * b.conj).conj = b * a.conj := begin

rw [conj_mul, conj_conj]

end

1

src/algebra/quaternion.lean

Figure 3: Similar theorems/proofs are common. If splitting them randomly into training/testing, the
model can prove testing theorems by memorization.

LeanDojo Benchmark has 94,734/2,000/2,000 theorems for training/validation/testing. It features
a challenging data split for testing the prover’s generalization in more realistic scenarios. Splitting
theorems randomly can overestimate the prover’s performance, by allowing it to prove many theorems
through memorization. In human-written Lean code, a common idiom is to have a block of similar
theorems/proofs for slightly different properties of the same math concept. For example, in Fig. 3,
the last two theorems not only look similar but have identical proofs. If one of them is in training,
the model can easily prove the other one by memorization. This shortcut enables the model to prove
seemingly nontrivial theorems, including those requiring premises to prove.

To mitigate this issue, besides the random split, we create a challenging data split named
novel_premises. It requires testing proofs to use at least one premise that has never been used in
training. For example, the last two theorems in Fig. 3 both use the premise conj_mul. If one theorem
is in the training set of the novel_premises split, the other one must also be in training.

4We use the commit 19c869efa56bbb8b500f2724c0b77261edbfa28c released on October 11, 2023.
5More details, statistics, and visualizations of mathlib can be found at https://leanprover-community.

github.io/mathlib_stats.html.

6

https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib/tree/19c869efa56bbb8b500f2724c0b77261edbfa28c
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover-community.github.io/mathlib_stats.html


Interacting with Lean. Another important function of LeanDojo is to interact with Lean program-
matically. It turns Lean into a gym-like environment [22], in which the prover can observe the proof
state, run tactics to change the state, and receive feedback on errors or on proof completion. This
environment is indispensable for evaluating/deploying the prover or training it through RL.

Below is LeanDojo’s main interface for interacting with Lean through tactics. Lean also supports
other proof styles not based on tactics. Although we only support tactic-style proofs, they are
sufficiently general since any proof can be converted to a tactic-style proof.6

• initialize(theorem): Given the theorem to prove, LeanDojo returns the initial state. A valid
state is a string representing current proof goals and local contexts (see the nodes in Fig. 1 Top left).
When there are multiple goals, their strings are concatenated.

• run_tac(state, tactic): Run a tactic on a given state and return the next state. The returned
state will be an error state if the tactic execution is not successful, e.g., due to timeout or inapplicable
tactic. If the input state is an error, the result can only be an error.

Building this environment is technically challenging, as Lean is designed for human users, not
machines. LeanDojo is the first tool that can interact with Lean reliably. Existing tool [19] is limited:
21.1% of the ground truth proofs are misjudged as incorrect, due to issues with how they construct
the proof environment, which distorts the reported performance and produces unreliable feedback
when used in reinforcement learning. In contrast, LeanDojo reduces the number of misjudgments to
1.4%. Details are in Appendix A.2.

5 ReProver: Retrieval-Augmented Theorem Prover

We develop the ReProver model that uses retrieval to select premises explicitly. At its core is a
retrieval-augmented tactic generator (Fig. 1 Bottom). Given the current proof state, it retrieves a
handful of potentially useful premises and generates a tactic conditioning on the concatenation of the
state and retrieved premises. When proving theorems, the model generates multiple tactic candidates
at each step, which are used in a standard best-first search algorithm to find proofs [16, 18, 19, 28].

Premise Retrieval. Our retriever is based on Dense Passage Retriever [26]. Given a state s as
the query and a library of candidate premises P = {pi}Ni=1, it retrieves a ranked list of m premises
{p′i}mi=1 from P . In DPR, s and pi are both raw texts but are embedded in a vector space, and we
retrieve the top m premises maximizing the cosine similarity between the state and the premise.

More formally, we have a function f parameterized by θ for embedding both the state and the
premises into a h-dimensional vector space: f(s, θ), f(pi, θ) ∈ Rh. We retrieve premises maximizing
f(s, θ)T f(pi, θ)/(∥f(s, θ)∥2∥f(pi, θ)∥2). We choose f to be a Transformer encoder [2] followed
by average pooling: f(·, θ) = AvgPool(Enc(·, θ)).
The retrieval is efficient. The premise embeddings f(pi, θ) can be pre-computed, and we only
need one forward pass to compute f(s, θ). We do not rerank the retrieved premises as in Mag-
nushammer [49], which is more costly since it requires a separate forward pass for each retrieved
premise.

Similar to DPR, we train the retriever by minimizing a contrastive loss between positive premises
and in-batch negative premises. Specifically, suppose we have a batch of b states. For each state, we
sample a positive premise from the ground truth and n negative premises from P .7 They are called
“in-batch” negatives because they are shared by all states in the batch—Every state is associated with
all b · (n+ 1) premises; at least 1 of them is positive. Let lij ∈ {0, 1} denote whether a state-premise
pair (si, pj) is positive. We minimize the mean squared loss:

L(θ) =
b∑

i=1

b·(n+1)∑
j=1

∣∣∣lij − f(si, θ)
T f(pj , θ)

∥f(si, θ)∥2∥f(pj , θ)∥2

∣∣∣2. (1)

6Another common type of proofs is “term-style proofs”. Any term-style proof “X” can always be converted
into an equivalent tactic-style proof “exact X”, though such conversion may lead to unidiomatic proofs.

7When training the retriever, we ignore proof states followed by tactics without using any premise.
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Retrieving from Accessible Premises. We incorporate into DPR two insights tailored to premise
selection. First, instead of retrieving from all premises in the math library, we restrict to premises
accessible to the current theorem. They include premises defined in the same file before the theorem,
as well as those imported from other files. We compute accessible premises for each theorem, relying
on LeanDojo’s capability in program analysis (Sec. 4). Focusing on accessible premises makes P
much smaller. LeanDojo Benchmark contains 130,262 premises in total, but the average number of
accessible premises is only 33,160.

In-file Negative Examples. DPR’s performance depends critically on the quality of negative
examples [91, 92]. In early experiments, we sampled all n negative premises randomly, and the
model often mistakenly retrieved other premises from the same file as the positive one. Therefore, we
propose a scheme that samples k in-file negatives and n− k random negatives for training.

Tactic Generation. As in Fig. 1 (Bottom), retrieved premises are concatenated with the state.8
Then an encoder-decoder Transformer, ByT5 [44], takes them as input and generates the tactic. The
model is trained to minimize the cross entropy loss w.r.t. human-written tactics.

Training ReProver takes substantially less compute than prior methods (120 GPU hours vs. more
than 1000 hours [16, 17]). All existing LLM-based provers pretrain on datasets specific to math and
coding [14–20]. The pretraining is computationally expensive, and the datasets are kept private. In
contrast, we choose to avoid domain-specific pretraining and build upon google/byt5-small—a
model checkpoint that is generic, publicly available, and relatively small (299M parameters vs.
837M [16] or 600M [17]). We could see further benefits from domain-specific pretraining, as in
Minerva [57], or stronger LLMs like LLaMA [93] or StarCoder [94], but that is beyond our scope. In
addition, our model is finetuned on human-written tactics only, without auxiliary data [16] or data
collected through online interaction with Lean [17, 19]. These orthogonal directions are valuable but
will significantly increase the method’s complexity and compute requirements.

6 Experiments

We evaluate ReProver on LeanDojo Benchmark. It outperforms baselines on premise selection and
theorem proving, demonstrating the promise of theorem proving with retrieval-augmented language
models. Experimental details and hyperparameters are in Appendix C.1.

Premise Selection. For premise selection, we only use tactics in LeanDojo Benchmark that have at
least one premise. The model, based on a ByT5 encoder, uses the state before a tactic as the query to
retrieve 100 premises. Then, we calculate standard metrics in information retrieval: R@k (recall for
the top k retrieved premises) and MRR (mean reciprocal rank).

Our first baseline is a classical BM25 retriever [95] without machine learning. Results in Table 1
show that our method outperforms BM25 significantly across the board. However, it exhibits a large
performance degradation on the challenging data split (comparing novel_premises to random).
This is consistent with the general observation that machine learning can be brittle in the presence
of distribution shifts. In addition, we compare with two ablations: one retrieving from all premises
(instead of accessible premises only) and the other without in-file negatives. They perform worse
than our method, demonstrating the effectiveness of our two improvements upon DPR.

Theorem Proving Experimental Setup. Then we evaluate ReProver on theorem proving. The
training has two stages: First, we train the retriever and use it to retrieve 100 premises for all
proof states in LeanDojo Benchmark. Second, we train the tactic generator, taking as input the
concatenation of the state and retrieved premises (truncated to a length limit). During evaluation, the
tactic generator is combined with best-first search to prove theorems. We evaluate the Pass@1 metric:
The prover is given only one attempt and must find the proof within a wall time limit of 10 minutes.
Training takes five days on a single NVIDIA A100 GPU with 80GB memory, and evaluation takes
two days on eight V100 GPUs. Please see Appendix C.1 for details.

Baselines. Following prior work [16, 28], we include tidy as a baseline. It is a tactic in mathlib
that tries to complete the proof using heuristics (without machine learning). We apply tidy directly

8We retrieve 100 premises, concatenate them with the state, and truncate the concatenation to a fixed length.
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Table 1: Premise selection testing performance. For each method, we train and evaluate two models
independently using different data splits (random and novel_premises; see Sec. 4). R@k is the
recall for the top k retrieved premises, and MRR is the mean reciprocal rank metric (higher is better).
Our retriever outperforms BM25 and ablations. Results for Lean 4 are in Appendix D.

Method random novel_premises

R@1 R@10 MRR R@1 R@10 MRR

BM25 6.7 17.2 0.15 5.9 15.5 0.14
w/ all premises 1.9 11.9 0.08 2.1 12.4 0.08

Ours 13.5 38.4 0.31 9.1 27.6 0.24
w/ all premises 11.7 36.2 0.27 7.1 23.1 0.20
w/o in-file negatives 10.8 33.1 0.25 7.9 25.7 0.22

to the original theorem and see if it can succeed within the wall time limit. Another baseline uses
GPT-4 as the tactic generator. Given a state, it queries GPT-4 to generate 35 tactics in zero-shot. After
removing invalid ones, the remaining tactics are combined with best-first search to find proofs. Data
contamination is possible: Many proofs had been publicly available on GitHub before GPT-4’s data
cutoff date (September 2021). See Appendix C.2 for details.

Unfortunately, it is not feasible to compare with existing LLM-based provers in Lean [16, 17, 19].
None of them are open-source or can be reproduced with reasonable effort. Furthermore, we cannot
compare directly with the numbers reported in their papers, due to differences in data, infrastructure,
and training procedures (details in Appendix C.3). Many difficulties are due to the private nature
of existing methods. By releasing our code and models, we hope to create accessible baselines for
future work to build upon.

Table 2: Theorem proving Pass@1 (%) on the testing data of LeanDojo Benchmark. Our ReProver
model outperforms tidy, GPT-4, and a baseline that generates tactics directly without retrieval.
Results for Lean 4 are in Appendix D.

Method random novel_premises

tidy 23.8 5.3
GPT-4 29.0 7.4
ReProver (ours) 51.2 26.3

w/o retrieval 47.6 23.2

Results. Table 2 shows the results on the testing data of LeanDojo Benchmark. ReProver outper-
forms all baselines on two different data splits, demonstrating the effectiveness of retrieval-augmented
theorem proving. GPT-4 performs substantially worse than our method, even though it may have
seen the ground truth proofs due to data contamination. The task cannot be solved out of the box by
state-of-the-art LLMs, calling for algorithmic innovations to make further progress.

Testing theorems in novel_premises are indeed much more challenging. All methods in Table 2
perform substantially worse on novel_premises than the random split. We argue that performance
on challenging splits is more indicative of the prover’s capability and should be emphasized in the
future development of theorem proving.

Evaluation on MiniF2F and ProofNet. We run ReProver to prove theorems in MiniF2F [28] and
ProofNet [29]. These two datasets are for testing only and do not have training theorems, which makes
them challenging since the distribution of theorems is quite different from mathlib used to train
ReProver. MiniF2F focuses on math olympiads, and ProofNet focuses on exercises in undergraduate
math textbooks. On MiniF2F’s test set in Lean, ReProver achieves a Pass@1 of 26.5%, which is
competitive with state-of-the-art methods without RL (25.9% in Polu et al. [19]). On ProofNet, our
Pass@1 is 13.8%, which is the first reported theorem proving result on this dataset. Further, many
theorems do not have ground truth proofs in Lean. Our prover discovers 33 proofs in MiniF2F and
39 proofs in ProofNet that currently do not have Lean proofs. Please see Appendix C.4 for details,
examples, and caveats.
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7 Conclusion

We have introduced LeanDojo: an open-source playground for learning-based theorem proving in
Lean, consisting of toolkits, models, and benchmarks. It extracts data from Lean and enables the
model to interact with Lean programmatically. We have developed ReProver, the first retrieval-
augmented LLM for theorem proving. Limitations and future work are discussed in Appendix F.

We have released our code, data, models, and documentation to facilitate future research:

• LeanDojo’s codebase for data extraction and interaction with Lean: https://github.
com/lean-dojo/LeanDojo

• LeanDojo’s documentation: https://leandojo.readthedocs.io
• Datasets: (1) LeanDojo Benchmark: https://doi.org/10.5281/zenodo.8016385

with DOI 10.5281/zenodo.8016385. (2) LeanDojo Benchmark 4 (Appendix D): https:
//doi.org/10.5281/zenodo.8040109 with DOI 10.5281/zenodo.8040109.

• ReProver’s code and models: https://github.com/lean-dojo/ReProver
• ChatGPT plugin (Appendix E): https://github.com/lean-dojo/LeanDojoChatGPT
• LeanDojo Website: https://leandojo.org
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A LeanDojo Technical Details

We provide more information on how LeanDojo extracts data from and interacts with Lean.9 For
further details, please check our open-source implementation.

A.1 Extracting Premise Information from Lean’s Elaborator

“Premises” in this paper belong to a category of Lean expressions called “constants.” In Lean,
definitions of constants are grouped into nested, hierarchical namespaces. Therefore, each premise
has a unique fully-qualified name. For example, mod_self in Fig. 2 is defined in the namespace nat;
therefore, its fully qualified name is nat.mod_self. However, it would be too verbose if premises
had to be referred to using full names. In practice, tactics often refer to premises using short names
such as mod_self. In case multiple premises share the same short name, Lean automatically infers
the correct one from the context through a process called “name resolution”. LeanDojo is able to
trace the input/output of Lean’s name resolution and thereby extract accurate premise information for
training the retriever.

Name resolution in Lean is implemented in a process called “elaboration,” which happens after
parsing but before the parsed expressions are checked by Lean’s trusted kernel. Elaboration takes
as input user-entered expressions (called “pre-expressions”) that are concise, partially specified,
and potentially ambiguous. It turns them into complete expressions ready to be checked by the
kernel. This is realized by inferring not only full names but also missing types, implicit arguments,
overloading, type coercion, etc. Please refer to de Moura et al. [96] for details on Lean’s elaboration
process. In LeanDojo, we modify Lean’s internal implementation, intercepting the elaborator to
record its input/output:

• Pre-expression: The input to Lean’s elaborator, including where premises are used in proofs.
• Expression: The output of the elaborator, including the premise’s full name and where it is defined.

Locations are spans in the source code, specified by the file name and the row/column numbers of its
start/end. Our modification takes the form of a Git patch that LeanDojo can automatically apply to
any version of Lean 3 after March 24, 2022.

A.2 Reliable Interaction with Lean

Polu et al. [19] introduced lean-gym. To our knowledge, it is the only mature, open-source tool
before LeanDojo for interacting with Lean programmatically. However, we found severe issues with
lean-gym: About 21.1% of the correct, human-written proofs are misjudged as incorrect, leading to
two problems: First, it underestimates the prover’s evaluation performance. Second, the results are
too noisy as feedback signals for reinforcement learning.

After carefully analyzing lean-gym’s implementation, we identified the root cause of the problem.
When proving a theorem, the environment used by lean-gym is subtly different from the original
environment used by humans. Specifically, lean-gym fails to handle namespaces correctly (illustrated
in Fig. A). As a result, name resolution fails unexpectedly when checking correct proofs.

For example, Fig. A compares the correct environment and the environment constructed by lean-
gym. The theorem should be inside the namespace “buffer”. However, in lean-gym, it merely
opens the namespace. These two scenarios are different when it comes to name resolution. Being
inside a namespace instructs Lean to favor constants defined in that namespace, whereas opening
a namespace does not have such an effect. In this example, the short name “read” is ambiguous:
We have “monad_reader.read” defined in “init/control/reader.lean” and “buffer.read”
defined in “data/buffer.lean”. In the correct environment, the “read” in “unfold read”
resolves to “buffer.read”. Whereas in lean-gym’s environment, it incorrectly resolved to
“monad_reader.read”. Lean complains that “read” is not an equational lemma, because it is
referring to a wrong “read”. LeanDojo does not suffer from this kind of error since it uses a different
mechanism for constructing the environment. Specifically, it wraps the interaction code as a Lean
tactic, which is inserted into the proof. Therefore, the environment is guaranteed to be correct.

9“Lean” in our paper refers to Lean 3 by default. Lean 4 is not backward-compatible but is also supported by
LeanDojo. Our Lean 4 results are in Appendix D.
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We quantitatively compare lean-gym and LeanDojo on the number of proof check-
ing errors. In this study, we use Lean v3.42.1 paired with mathlib version
6e5ca7d0097313e59f7533a42e3ea5197484c775 since they are supported by both tools. We
use LeanDojo to extract all tactic-style proofs and enter them into both tools. These proofs are all
correct, but lean-gym failed on 21.1% of them. In contrast, LeanDojo only failed on 1.4%, and its
failures are a subset of lean-gym’s. We include this study in our open-source repo and document
example proofs from the remaining 1.4% to provide transparency on LeanDojo’s limitations.10

import data.buffer

universe u

namespace buffer

theorem my_read_eq_read’ {a : Type u} [inhabited a]

(b : buffer a) (i : nat) (h : i < b.size) :

read b 〈i, h〉 = read’ b i := begin

cases b,

unfold read,

unfold read’,

simp [array.read_eq_read’]

end

end buffer

1

import data.buffer

universe u

open buffer

theorem my_read_eq_read’ {a : Type u} [inhabited a]

(b : buffer a) (i : nat) (h : i < b.size) :

read b 〈i, h〉 = read’ b i := begin

cases b,

unfold read,

unfold read’,

simp [array.read_eq_read’]

end

1

lean-gym’s environmentCorrect environment

ERROR: unfold tactic failed, `read` does not 
have equational lemmas nor is a projection

Figure A: An example of correct proofs misjudged as incorrect by lean-gym, adapted from the
theorem read_eq_read’ in “data/buffer.lean” of Lean’s standard library. The error message
is because lean-gym failed to resolve the short name “read” to the correct fully-qualified name.
The Lean code in this figure is only for illustrative purposes. It does not reflect the implementation
technique used by lean-gym to construct the environment. Instead of generating actual Lean code,
lean-gym uses Lean’s metaprogramming APIs to construct the environment.

A.3 Comparison with Existing Tools for Learning-Based Theorem Proving in Lean

To our knowledge, LeanStep [16]11 and lean-gym [19] are the only published tools for learning-based
theorem proving in Lean. There are a few unpublished prototypes, such as repl, lean-client-python,
and lean-gym for Lean 4, none of which is mature enough or is under active development. Therefore,
we only compare LeanDojo with LeanStep and lean-gym (summarized in Table A).

Functionality. LeanDojo supports both data extraction and interacting with Lean programmatically.
In contrast, LeanStep is only for data extraction, and lean-gym is only for interacting with Lean.
They are not actively maintained, so they do not support recent versions of mathlib (tested on
August 11, 2023, using mathlib commit 19c869efa56bbb8b500f2724c0b77261edbfa28c). Also,
neither of them support Lean 4 (Appendix D). LeanDojo fully supports recent mathlib and Lean 4.
Furthermore, LeanStep cannot extract premise information and is not applicable to repos other than
mathlib. Last, LeanDojo comes with comprehensive documentation and unit tests, whereas other
tools barely have any.

Implementation details. LeanStep and LeanDojo use different mechanisms to extract ASTs and
proof trees. LeanStep implements an ad-hoc parser in Python for parsing Lean code into ASTs. It
also intercepts Lean’s tactic system to insert logging code. Then the logs are used to reconstruct proof
trees. This implementation is brittle and does not work for the current versions of Lean/mathlib. In
contrast, LeanDojo relies on Lean’s built-in mechanisms for exporting ASTs and proof states (lean
––ast ––tsast ––tspp), which works robustly for recent Lean/mathlib. This mechanism was
developed after LeanStep.

10https://github.com/lean-dojo/LeanDojo/blob/main/tests/interaction/test_
unexpected_errors.py

11LeanStep is technically a dataset. We are referring to the lean_proof_recording tool for extracting it.
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Regarding interaction with Lean, both lean-gym and LeanDojo rely on Lean’s metaprogramming
APIs, and LeanDojo partially builds upon lean-gym’s code. However, lean-gym has a critical
issue in that it misjudges many correct proofs as incorrect (Appendix A.2). The main reason is that
lean-gym fails to distinguish two subtly different cases when constructing the proof environment:
(1) opening a namespace; (2) being inside a namespace. LeanDojo does not suffer from this issue.
Instead of operating as a standalone program in the IO monad, it wraps the interaction code into a
special tactic, which is inserted into the correct location in the proof. Therefore, the interaction code
is guaranteed to run in the same environment as the original human-written proof.

LeanStep [16] lean-gym [19] LeanDojo (ours)

Data extraction

Premise information ✗ N/A ✓
Lean 4 support ✗ N/A ✓

Recent mathlib ✗ N/A ✓
Repos other than mathlib ✗ N/A ✓

Interaction
Estimated errors N/A 21.1% 1.4%
Lean 4 support N/A ✗ ✓

Recent mathlib N/A ✗ ✓
Repos other than mathlib N/A ✓ ✓

Documentation & unit tests ✗ ✗ ✓

Table A: Comparing LeanDojo with existing tools for data extraction and interaction with Lean.

B LeanDojo Benchmark

B.1 Dataset Format

We describe the data format of LeanDojo Benchmark, which has the following directory structure:
/

corpus.jsonl.............All premises defined in mathlib and Lean’s standard library
metadata.json.........................................................Metadata
licenses

lean.....................................Attribution to Lean’s Apache 2.0 license
mathlib..............................Attribution to mathlib’s Apache 2.0 license
README.md.........Statement that LeanDojo Benchmark is released under CC BY 2.0

random.........................................Theorems/proofs of the random split
train.json...................................................94,734 theorems
val.json......................................................2,000 theorems
test.json.....................................................2,000 theorems

novel_premises.......................Theorems/proofs of the novel_premises split
train.json...................................................94,734 theorems
val.json......................................................2,000 theorems
test.json.....................................................2,000 theorems

Premise Definitions. corpus.jsonl contains the definition of premises. It has 3,280 lines. Each
line is in JSON format and corresponds to a Lean file. Below is an example for “init/con-
trol/functor.lean”, which directly imports three other files: “init/core.lean”, “init/func-
tion.lean”, and “init/meta/name.lean”. It defines two constants that can be used as premises:
“functor” and “functor.map_const_rev”. For each premise, we have access to its full name, the
source code, and its start/end location within the file.

"path": "_target/deps/lean/library/init/control/functor.lean",
"imports": [

"_target/deps/lean/library/init/core.lean",
"_target/deps/lean/library/init/function.lean",
"_target/deps/lean/library/init/meta/name.lean"

],
"premises": [
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{
"full_name": "functor",
"code": "class functor (f : Type u → Type v) : Type (max (

u+1) v) :=\n(map : Π {α β : Type u}, (α → β) → f α →
f β)\n(map_const : Π {α β : Type u}, α → f β → f α :=
λ α β, map ◦ const β)",

"start": [11, 1],
"end": [13, 70],
"kind": "class"

},
{

"full_name": "functor.map_const_rev",
"code": "@[reducible] def functor.map_const_rev {f : Type u

→ Type v} [functor f] {α β : Type u} : f β → α → f α
:=\nλ a b, b <$ a",

"start": [18, 1],
"end": [19, 14],
"kind": "definition"

}
]

Theorems and Tactics. Theorems in LeanDojo Benchmark are split into training/validation/testing
using two different strategies (Sec. 4). They are formatted in JSON, and below is an example
corresponding to the theorem “real.angle.to_real_pi_div_two”. LeanDojo has recorded two
tactics: “split” and “linarith [pi_pos]”. For each tactic, we have the proof states before/after
it. The “linarith [pi_pos]” tactic illustrates how premises are recorded: They are annotated
using HTML-like strings such as “linarith [<a>pi_pos</a>]”, followed by a “provenance list”.
Each element in the list corresponds to a premise in the tactic.

"url": "https:// github.com/leanprover -community/mathlib",
"commit": "19c869efa56bbb8b500f2724c0b77261edbfa28c",
"file_path": "src/analysis/special_functions/trigonometric/

angle.lean",
"full_name": "real.angle.to_real_pi_div_two",
"start": [512, 9],
"end": [513, 56],
"traced_tactics": [

{
"tactic": "split",
"annotated_tactic": ["split", []],
"state_before": "⊢ -π < π / 2 ∧ π / 2 ≤ π",
"state_after": "2 goals\n⊢ -π < π / 2\n\n⊢ π / 2 ≤ π"

},
{

"tactic": "linarith [pi_pos]",
"annotated_tactic": [

"linarith [<a>pi_pos </a>]",
[

{
"full_name": "real.pi_pos",
"def_path": "src/analysis/special_functions/

trigonometric/basic.lean",
"def_pos": [122, 7],

}
]

],
"state_before": "⊢ -π < π / 2",
"state_after": "no goals"

}
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]

Not all theorems have tactic-style proofs. For those without tactic-style proofs, concatenating the
tactics does not lead to a complete proof of the original theorem. However, this is not an issue when
using the data for theorem proving evaluation or for training tactic generators.

B.2 Datasheet

We present a datasheet [90] for documentation and responsible usage of LeanDojo Benchmark.

Motivation.

• For what purpose was the dataset created? It was created as a benchmark for learning-based
theorem proving in Lean.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? It was created by the authors of this paper.

• Who funded the creation of the dataset? See the acknowledgments in Sec. 7.

Composition.

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-
tries)? The dataset consists of formal definitions, theorems, and proofs written in Lean [1].

• How many instances are there in total (of each type, if appropriate)? The dataset has 98,734
theorems and their proofs, as well as 130,262 premises defined in 3,384 files.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? The dataset contains all theorems/proofs that LeanDojo can extract
from the commit 19c869efa56bbb8b500f2724c0b77261edbfa28c of mathlib released on
October 11, 2023.

• What data does each instance consist of? Theorems/proofs in the dataset are Lean code written by
programmers and mathematicians.

• Are relationships between individual instances made explicit? Definitions in the dataset are linked
to proofs using them as premises.

• Are there recommended data splits? Yes, we recommend two data splits: random and
novel_premises. Please see Sec. 4 for details.

• Are there any errors, sources of noise, or redundancies in the dataset? ASTs extracted by LeanDojo
contain a small number of errors due to potential flaws in Lean’s AST exporting mechanism.
However, they do not have a tangible impact on our work.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? The dataset is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)? No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? No.

Collection Process.

• How was the data associated with each instance acquired? The data is directly observable by
opening mathlib in VS Code with the Lean plugin. However, we had to instrument Lean to export
the data programmatically.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? The data was generated by
building a Lean repo using our modified Lean and postprocessing the exported data.
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• Who was involved in the data collection process (e.g., students, crowd workers, contractors), and
how were they compensated (e.g., how much were crowd workers paid)? No manual effort was
involved in the data collection process.

• Over what timeframe was the data collected? The final version of the dataset was generated in
October 2023.

Uses.

• Has the dataset been used for any tasks already? We have used the dataset for training and
evaluating machine learning models on the tasks of premise selection and theorem proving.

• Is there a repository that links to any or all papers or systems that use the dataset? Yes, https:
//leandojo.org.

Distribution.

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset is publicly available on
the Internet.

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset can be
downloaded as a tarball.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? The dataset is distributed under CC BY 2.0. The data
generation code is distributed under the MIT license. The dataset was extracted from mathlib,
which depends on lean. Both of them are distributed under the Apache 2.0 license. We include
their licenses in the dataset as attribution (Appendix B.1).

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

Maintenance.

• Who will be supporting/hosting/maintaining the dataset? The authors of this paper.
• How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Please

contact Kaiyu Yang at kaiyuy@caltech.edu.
• Is there an erratum? No.
• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?

Please check https://leandojo.org for any update.
• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them

to do so? Yes, they can use our data generation code, which is publicly available.

B.3 Data Hosting, Licensing, and Maintenance

LeanDojo Benchmark is distributed under the CC BY 2.0 license. The data is hosted on zenodo.org (a
long-term data repository operated by CERN). The LeanDojo tool for data extraction and interaction
with Lean is released at https://github.com/lean-dojo/LeanDojo under the MIT license. Our
model checkpoints are hosted on Hugging Face Hub. LeanDojo’s documentation is hosted on Read the
Docs at https://leandojo.readthedocs.io. LeanDojo’s website (https://leandojo.org)
is the entry point for everything related to it, including any future updates or maintenance.

C Experiments

C.1 Details and Hyperparameters

The premise retriever and tactic generator in ReProver are initialized by the google/byt5-small
checkpoint on Hugging Face. It is a T5-like [97] encoder-decoder Transformer that operates directly
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on UTF-8 bytes without tokenization. We choose ByT5 [44] instead of T5 because Lean code makes
extensive use of Unicode math symbols, which may cause problems to T5’s pretrained tokenizer. The
retriever uses the encoder only, whereas the generator uses both the encoder and the decoder.

In training, we use one NVIDIA A100 GPU with 80GB of memory. The code is implemented in
PyTorch and PyTorch Lightning, with bfloat16 mixed precision and DeepSpeed ZeRO Stage 2 [98].
Both the retriever and the generator are optimized using AdamW [99] with a batch size of 8. In the
first 2,000 steps, the learning rate warms up linearly from 0 to the maximum value. Then it decays to
0 following a cosine schedule. The maximum learning rate is 10−4 for the retriever and 5× 10−4 for
the generator. When training the retriever, we sample 3 negative premises for each example, including
1 in-file negative premise. When training the generator, we apply dropout to retrieved premises with
a dropout rate of 0.5. Then, we truncate the generator’s input to 2,300 tokens.

During evaluation, the tactic generator is combined with best-first search to find proofs. At each
search step, it produces 64 tactic candidates using beam search. Each tactic is associated with a
log-likelihood score. In best-first search, we prioritize the states by the sum of log-likelihoods of
tactics leading to that state.

C.2 The GPT-4 Baseline

Now we describe the GPT-4 [27] baseline in Sec. 6. Similar to ReProver, it is a tactic gen-
erator combined with best-first search. However, the tactic generator is based on GPT-4’s
capability to follow instructions in zero-shot. Specifically, given a proof state, we use the
following prompt to instruct GPT-4 to produce a list of tactics, each paired with a confidence score:

Prompt Template:
You are an expert in Lean3 theorem proofs. We are trying to solve the
Lean3 theorem ‘THEOREM_FULL_NAME ’ from the mathlib file ‘FILE_PATH ’.
The current tactic state is: ‘TACTIC_STATE ’. Suggest exactly 35 unique
tactics to progress in solving ‘THEOREM_FULL_NAME ’, along with their
confidence levels as a float between 0 and 1. Rank them in order of
effectiveness. Present the tactics and their confidence levels as comma-
separated tuples in this format: #(tactic_{1}, confidence_{1})#, #(tac-
tic_{2}, confidence_{2})#, ..., #(tactic_{35 }, confidence_{35 })#.

We adapted the prompt to a particular theorem and state by substituting the variables with the
appropriate values. Given the inherent variability in GPT-4’s outputs, we requested 35 and filtered
out invalid ones. We used a token length limit of 1,024 and kept all other API parameters at their
default values. Below are a few example prompts and GPT-4’s responses:

Example Prompt 1:
You are an expert in Lean3 theorem proofs. We are trying to solve the
Lean3 theorem ‘polynomial.chebyshev.aeval_U’ from the mathlib file
‘mathlib/src/analysis/special_functions/trigonometric/chebyshev.lean’.
The current tactic state is: ‘R : Type u_1, A : Type u_2, _inst_1
: comm_ring R, _inst_2 : comm_ring A, _inst_3 : algebra R A, x
: A, n : N ⊢ ⇑(aeval x) (chebyshev.U R n) = eval x (chebyshev.U A
n)’. Suggest exactly 35 unique tactics to progress in solving ‘polyno-
mial.chebyshev.aeval_U’, along with their confidence levels as a float
between 0 and 1. Rank them in order of effectiveness. Present the
tactics and their confidence levels as comma-separated tuples in this
format: #(tactic_{1}, confidence_{1})#, #(tactic_{2}, confidence_{2})#,
..., #(tactic_{35 }, confidence_{35 })#.
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Example Response 1:
#(rw chebyshev.U, 0.9)#, #(simp only [chebyshev.U], 0.9)#, #(simp_rw
chebyshev.U, 0.8)#, #(apply aeval_add, 0.75)#, #(apply aeval_mul,
0.75)#, #(apply aeval_sub, 0.75)#, #(apply aeval_X, 0.7)#, #(ap-
ply aeval_C, 0.7)#, #(apply aeval_pow, 0.7)#, #(rw \u2190aeval_pow,
0.65)#, #(rw 2̆190aeval_mul, 0.65)#, #(rw \u2190aeval_add, 0.65)#, #(rw
\u2190aeval_sub, 0.65)#, #(apply algebra_map_eq, 0.6)#, #(intro ae-
val_algebra_map_eq, 0.6)#, #(apply eval_map, 0.55)#, #(rw eval_map,
0.55)#, #(apply aeval_eq_eval, 0.55)#, #(rw_for_target aeval_eq_eval,
0.5)#, #(apply aeval_eq_eval’, 0.5)#, #(rw_for_target aeval_eq_eval’,
0.5)#, #(apply aeval_commutes, 0.45)#, #(rw aeval_commutes, 0.45)#, #(ap-
ply aeval_eq_of_is_scalar_tower, 0.4)#, #(rw is_scalar_tower.aeval_apply,
0.4)#, #(try_for 100 exact_mod_cast chebyshev.U_eq_refl, 0.35)#, #(simp
* at *, 0.3)#, #(simp int.coe_nat_ring_hom, 0.25)#, #(apply cheby-
shev.U_is_polynomial, 0.2)#, #(rw_algebra_map_eq_of_ring_hom, 0.15)#,
#(unfold chebyshev.U, 0.1)#, #(congr, 0.05)#, #(change (chebyshev.U R
n).eval x = chebyshev.U A n, 0.05)#, #(change (\u21d1(aeval x) (cheby-
shev.U R n) = chebyshev.U A n), 0.05)#, #(apply_fun aeval x, 0.05)#,
#(apply_fun eval x, 0.05)#, #(simp context_md := reducible [], 0.01)#

Example Prompt 2:
You are an expert in Lean3 theorem proofs. We are trying to solve
the Lean3 theorem ‘euler_sine.integral_cos_pow_pos’ from the math-
lib file ‘mathlib/src/analysis/special_functions/trigonometric
/euler_sine_prod.lean’. The current tactic state is: ‘n : N ⊢ 0 <∫

(x : R) in 0..π / 2, cos x ˆ n’. Suggest exactly 35 unique tactics
to progress in solving ‘euler_sine.integral_cos_pow_pos’, along with
their confidence levels as a float between 0 and 1. Rank them in or-
der of effectiveness. Present the tactics and their confidence levels
as comma-separated tuples in this format: #(tactic_1, confidence_1)#,
#(tactic_2, confidence_2)#, ..., #(tactic_35, confidence_35)#.

Example Response 2:
#(exact integral_pos_of_antimono_increasing_on cos.pow_antimono_ in-
creasing_on_cos_even_nnreal, 0.99)#, #(apply integral_pos_of_antimono_
increasing_on, 0.95)#, #(interval_integrable_integral_pos, 0.90)#, #(ex-
act integral_pos_pre, 0.85)#, #(interval_integ_timedout, 0.80)#, #(in-
terval_integrable_pos, 0.75)#, #(exact integral_pos_of_nonneg_dint_val,
0.70)#, #(exact interval_integrable_pos_left, 0.65)#, #(exact inter-
val_ integrable_pos_right, 0.60)#, #(exact integral_pos_of_nonneg_f,
0.55)#, #(rw integral_on_interval, 0.50)#, #(rw interval_integral_pos_
of_supporting, 0.45)#, #(rw integral_pos_of_interval_integrable_pos,
0.40)#, #(apply integral_ pos_of_antimono_increasing_on_cos_even_nnreal,
0.35)#, #(norm_cast apply_pos, 0.30)#, #(apply_pos_of_nonneg_pos,
0.25)#, #(rw interval_integral_pos_of_antimono, 0.20)#, #(use
cos_slow_mono_on_pos, 0.15)#, #(apply cos_slow_mono_on_pos, 0.10)#, #(ex-
act integral_pos_pre_cos_pow_even, 0.09)#, #(norm_cast apply_nonneg_pos,
0.08)#, #(rw integral_pos_of_ monotone_integrable, 0.07)#, #(use
cos_pos_constant_sequence, 0.06)#, #(apply cos_pos_constant_sequence,
0.05)#, #(use integral_pos_of_ascending_sequence, 0.04)#,
#(apply integral_pos_of_ascending_sequence, 0.03)#, #(inter-
val_integral_pos_of_antimono_increasing_on_pos, 0.02)#, #(norm_cast
apply_pos_of_nonzero_pos, 0.01)#, #(apply_pos_of_nonzero_pos, 0.005)#,
#(rw integral_pos_of_nonneg_f_monotone, 0.001)#
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Data contamination is possible. Our GPT-4 experiments were performed in 2023, but many theorems
and proofs in the dataset have been publicly available on GitHub before GPT-4’s data cutoff date
(September 2021).

C.3 Justifications for Not Comparing with Existing LLM-Based Provers

In Table 2, we do not empirically compare ReProver with any existing LLM-based prover. Unfor-
tunately, such a comparison is infeasible. Provers targeting different proof assistants are generally
not comparable, so we focus the discussion on the three existing provers in Lean [16, 17, 19]. Most
importantly, they are impossible to reproduce with reasonable effort, due to private code and pretrain-
ing data. Therefore, the only potential comparison is to evaluate ReProver under their experimental
settings and compare with the numbers reported in their papers. However, that is also impractical for
numerous reasons:

• The data is different. All existing methods used an outdated version of mathlib more than two
years ago. We cannot use LeanDojo to extract data from this version. As mentioned in Sec. 4,
LeanDojo only supports repos released after March 24, 2022. Also, we cannot use their dataset
directly, since it does not contain premise information required by ReProver.

• Lample et al. [17] trained on a synthetic dataset named Equations, which is not publicly available.
• All existing methods co-train the tactic generator on auxiliary tasks from the PACT dataset [16].

Co-training increases the data/compute requirements by an order of magnitude, which cannot
be afforded by us (or probably most academic labs). All existing methods were developed by
researchers in the industry.

• Polu et al. [19] and Lample et al. [17] further finetuned their models on new proofs collected
through online interaction with Lean, whereas our method is only trained on human-written proofs.

• The tool for interacting with Lean may impact the performance. Han et al. [16] and Polu et al. [19]
used lean-gym, which has severe limitations (Appendix A.2). Lample et al. [17] developed their
own private tool, which is not publicly available.

Most of these difficulties are due to the private nature of existing methods. By releasing our code and
models, we take a major step in establishing accessible baselines for future work to build upon.

C.4 Evaluation on MiniF2F and ProofNet

We evaluate our ReProver model on MiniF2F [28] and ProofNet [29] (Sec. 6) to test its capability
in proving theorems outside its training data distribution. We use the same hyperparameters and
evaluation setup as the previous experiments (Appendix C.1).

MiniF2F. We use the commit 5271ddec788677c815cf818a06f368ef6498a106 of Meta’s version of
MiniF2F [17]. ReProver achieves a Pass@1 of 26.5% on the test set, which is competitive with state-
of-the-art methods without reinforcement learning (25.9% in Polu et al. [19]). Moreover, ReProver
can prove 33 theorems that currently do not have Lean proofs (examples in Fig. B). For the complete
list of 33 new proofs, please see our pull request to MiniF2F.

There are caveats about quantitatively comparing ReProver with existing methods on MiniF2F. Many
difficulties in Appendix C.3 still apply, e.g., different tools for interacting with Lean may impact the
performance. Also, MiniF2F is a test-only dataset without training theorems, and existing methods
focus on reinforcement learning (RL) to learn from proofs collected via online interaction with the
proof assistant [17, 19]. In contrast, ReProver is trained via supervised learning on a static dataset, so
we only compare with the non-RL baseline in existing methods (Polu et al. [19] achieves a Pass@1 of
25.9% without RL and 29.6% with RL). Furthermore, we do not compare with Lample et al. [17] due
to differences in the evaluation metric. They use Pass@64, which requires running the prover on each
theorem 64 times. We use Pass@1, and it already takes one day for a single evaluation on MiniF2F’s
test set. Therefore, evaluating Pass@64 would be too computationally expensive for the resources we
have access to. Finally, MiniF2F is available in multiple proof assistants [18, 69, 70]. Results across
different proof assistants are not comparable, so we only compare with existing work in Lean.

ProofNet. We use the commit e8645aa830ce17c33a8b8482a8195f0f97d6a74a of ProofNet. Re-
Prover can prove 48 out of 349 theorems, achieving a Pass@1 of 13.8%, which is the first reported
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Figure B: Examples of new proofs discovered by ReProver on MiniF2F [28].

theorem proving result on ProofNet. Moreover, 39 out of the 48 proved theorems do not have existing
Lean proofs (examples in Fig. C), and 3 of them can only be proved with the help of premise retrieval
(Fig. D). We have contributed the 39 new proofs to ProofNet, which helped them reveal and fix
problems in the formalization of 7 theorems (details in our pull request).

D LeanDojo for Lean 4

Lean 3 and Lean 4 are two incompatible major versions of Lean,12 and both are widely used. Lean
3 was the latest stable version until recently (June 2023). Also, Lean 3 and Lean 4 have separate
versions of mathlib. The Lean/mathlib community has recently finished porting theorems and proofs
from mathlib 3 to mathlib 4 [100]. Therefore, Lean 3 will gradually become deprecated, and future
Lean projects will be using Lean 4. Therefore, it is important for LeanDojo to support Lean 4.

Since Lean 4 is relatively new, we are not aware of any existing work on learning-based theorem
proving in Lean 4. Furthermore, no existing tool is available for extracting data from Lean 4.
LeanDojo fills in this gap and fully supports Lean 4. Given any repo in Lean 4, LeanDojo can extract

12https://leanprover.github.io/lean4/doc/lean3changes.html
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Figure C: Examples of new proofs discovered by ReProver on ProofNet [29].

data, including file dependencies, ASTs, proof states, tactics, and premise information. In addition, it
enables the model to interact with Lean 4 through tactics, in the same way as Lean 3 (Sec. 4).

Similar to constructing the Lean 3 version of LeanDojo Benchmark, we extract data from the commit
3ce43c18f614b76e161f911b75a3e1ef641620ff of mathlib4 released on October 21, 2023. The
resulting dataset is named LeanDojo Benchmark 4. It is released under the CC BY 2.0 license and
hosted on zenodo.org with DOI “10.5281/zenodo.8040109”. LeanDojo Benchmark 4 consists
of 102,514 theorems/proofs, 213,067 tactics, and 152,695 premises. We use 2,000 theorems for
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Figure D: Three new proofs discovered by ReProver on ProofNet [29] that cannot be
found by a baseline without premise retrieval. All of the three proofs rely on premises:
“finite_field.prod_univ_units_id_eq_neg_one”

, “norm_add_sq_real”, “norm_sub_pow_two_real”, and “exists_countable_basis”.

validation, 2,000 theorems for testing, and the rest for training. LeanDojo Benchmark 4 also has two
different data splits: random and novel_premises.

We use LeanDojo Benchmark 4 to train and evaluate our method. The model architectures and
experimental details are the same as those in Sec. 6. Results on premise selection are in Table B, and
results on theorem proving are in Table C.

Table B: Premise selection testing performance on LeanDojo Benchmark 4 (Lean 3 results in
Table 1). We train and evaluate two models independently using different data splits (random and
novel_premises). R@k is the recall for the top k retrieved premises, and MRR is the mean
reciprocal rank metric.

Method random novel_premises

R@1 R@10 MRR R@1 R@10 MRR

Ours 12.8 34.7 0.29 9.8 32.1 0.24

Table C: Theorem proving Pass@1 (%) on the testing data of LeanDojo Benchmark 4 (Lean 3 results
in Table 2).

Method random novel_premises

ReProver 48.6 19.9
W/o retrieval 44.5 16.2

E ChatGPT Plugin for Theorem Proving

LeanDojo provides a general tool for interacting with Lean programmatically. As a demo of how it
might bridge LLMs and theorem proving, we build a ChatGPT plugin [101] enabling ChatGPT to
prove theorems by interacting with Lean through LeanDojo. Plugin developers can wrap any software
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as a web service and describe its APIs to ChatGPT. Then, ChatGPT can automatically call the APIs
and incorporate the results into the response to the user. Below is a summary of our API description
corresponding to the interface in Sec. 4.

Title: Lean

Description: Plugin for proving user -specified theorems
automatically by interacting with Lean. The user enters
information of how to find a theorem (e.g., theorem name
and file path). Based on the user ’s input, ChatGPT first
initializes the proof search with the given theorem as the
initial state. Then, ChatGPT will first explain the choice
for the next tactic step using LaTeX and run that tactic
step to the state. If the current state is not promising,
ChatGPT can backtrack to previous states by decrementing
the "state_id" parameter. If applying tactics to the
current state specified by the "state_id" parameter returns
an error message, ChatGPT should explain the error, and if
repetitive errors occur, ChatGPT should decrement the "

state_id" parameter and try a different approach on a
previous state. The theorem is successfully proved if there
are no unsolved goals in the current state.

Endpoints:
initialize_proof_search: Given the theorem name and file

path of a Lean theorem, initialize the proof search.
The response includes the initial state and its state
ID.

Args:
theorem_name (string): The name of the target theorem

to prove.
theorem_file_path (string): The file path of the target

theorem.

run_tactic: Run a tactic on a state (specified by its state
ID), assuming the proof search has been initialized

and some state is available. The response is either the
next state and its state ID or an error message, in

which ChatGPT should explain the error and consider
decrementing the "state_id ".

Args:
state_id (string): The ID of the state on which to run

the tactic.
tactic (string): The tactic to run on a state (

specified by its state ID), assuming the proof
search has been initialized.

After exposing the APIs to ChatGPT, we can ask it to prove theorems by specifying the theorem’s
name and path in any public Lean repo on GitHub. Fig. E–L show an example with the GPT-3.5
version of ChatGPT. And Fig. M–O are the same example with the GPT-4 version. The captions
provide detailed step-by-step explanations.

We highlight a few key strengths of ChatGPT observed in multiple examples we evaluated. First,
unlike specialized methods for theorem proving (this paper and its prior works), ChatGPT interleaved
informal mathematics with formal proof steps. This resembles how humans interact with proof
assistants and opens up new avenues for integrating natural language and formal theorem proving.
Second, ChatGPT demonstrated impressive capability in explaining error messages from Lean that
are quite opaque even to humans. It was able to incorporate the error message to refine its proof
strategy. Last, ChatGPT’s behavior is more steerable than specialized provers. In Fig. E, we simply
gave it the theorem to prove, but we could also provide more detailed instructions. For example, we
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could say: “Please describe a high-level proof plan before trying any tactic.” This kind of steerability
enables future research on prompt engineering for theorem proving, and we have already seen initial
benefits in an ongoing work named Sagredo.13

However, these strengths by no means imply ChatGPT can already solve theorem proving. In fact, it
failed to find a proof for most theorems we tried. Hallucination was common. In Fig. L, ChatGPT
falsely asserted the theorem was proved, while we knew it was not, by looking at LeanDojo’s response.
This demonstrates the value of theorem proving as a rigorous benchmark for addressing LLMs’
hallucination problem. Another key limitation of ChatGPT was its inability to search systematically
in a large space. We frequently found it stuck to an unpromising path when the correct solution could
be found by backtracking and exploring alternative paths. This behavior is consistent with the general
observation that LLMs are weak at search and planning. Addressing this weakness is an active area
of research [102].

We emphasize a few caveats about our study of theorem proving with ChatGPT. First, data con-
tamination is likely. Many theorems we evaluated have been publicly available on GitHub before
ChatGPT’s data cutoff date. Therefore, ChatGPT may have seen them in training. Second, our study
is exploratory. A more detailed and quantitative study is needed to characterize ChatGPT’s capability
in theorem proving. Such a study with ChatGPT plugins is challenging, as plugins currently only
support interaction through the browser. Also, OpenAI has taken measures to block automated access
by bots. Using humans may be an option, but that is beyond the scope of this paper.

Figure E: (ChatGPT-3.5, 1/8) After receiving the theorem to prove, ChatGPT first called
“initialize”, which returned the initial state. Then it tried to interpret the theorem in natural
language. Note that it made a mistake here. The theorem was about natural numbers (N), not complex
numbers (C).

13https://www.youtube.com/watch?v=CEwRMT0GpKo
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Figure F: (ChatGPT-3.5, 2/8) ChatGPT tried to rewrite the goal using the lemma “b + c = c + b”.
This was a reasonable but incorrect move. After receiving the error message from Lean, ChatGPT
explained the error in natural language. Here the explanation is quite accurate, which is impressive
given that the error message looks opaque to anyone not familiar with Lean.

F Limitations and Future Work

Our work is one step toward unlocking the potential of LLMs for generating verifiable formal proofs,
and we see abundant space for future exploration. A learning-based prover is a complex system
consisting of multiple components: data extraction, interaction with proof assistants, model training,
and proof search. While navigating the design space spanned by various components, we err on the
side of simplicity and efficiency, instead of pushing performance to the limit. This helps us deliver
a reliable, open, and accessible system, laying the foundation for further research. There are many
directions in which the system can be improved, and we discuss a few of them here.14

Stronger LLMs. Our backbone model, ByT5 [44], was published in 2021 and has 299M parameters,
which is not very large by today’s standard. Recently, there have been a plethora of open-source
LLMs demonstrating strong capabilities in writing code, e.g., CodeGen [103], StarCoder [94], and
CodeGeeX [104]. We are excited to see how they might impact theorem proving and, more generally,
how far we can go by pushing the limit of the model/data scale.

ByT5’s tokenizer-free nature helps us sidestep the difficulty with pretrained tokenizers that may
not work well for Lean’s Unicode-rich code. However, treating texts as raw bytes makes the
sequence length much longer than necessary. Long sequences harm efficiency, as Transformers scale
quadratically w.r.t. the sequence length, which may become a bigger problem when we further scale
up the model. To solve the issue, it might be helpful to pretrain a customized tokenizer or adopt more
advanced tokenizer-free models such as MegaByte [105].

Our ReProver model is based on the pretraining-finetuning paradigm. Recent work on instruction-
following LLMs such as GPT-4 [27] has led to successes in many applications by prompting the
model without any finetuning. Our preliminary results show that GPT-4 and ChatGPT (Appendix C.2

14Additional limitations: https://leandojo.readthedocs.io/en/latest/limitations.html
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Figure G: (ChatGPT-3.5, 3/8) Then it tried to prove the theorem using “ring”. This was another good
move. The ring tactic can prove this theorem, but Lean could not find it since it was not imported
into the current file. Again, ChatGPT was able to interpret the error message correctly and concluded
that ring was not available. Next, it tried another tactic but failed again.

and E) cannot solve theorem proving out of the box and are currently far behind finetuned models.
However, the way we prompt these models is quite naive, and better strategies, such as Tree of
Thoughts [102], may lead to further improvements. We consider theorem proving as a promising task
for studying LLMs’ capabilities in planning and search.

Improving Premise Retrieval. ReProver uses DPR [26] to retrieve premises and fuses them with
the current proof state by concatenation. This architecture is simple and effective but does not scale
to a large number of retrieved premises. With a length limit of 2,300 tokens, we can fit only 10–15
premises into the input of the tactic generator. To mitigate the problem, we may need an architecture
that fuses the retrieved premises in the hidden space, e.g., Fusion-in-Decoder [106].
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Figure H: (ChatGPT-3.5, 4/8) ChatGPT made another two failed attempts. Here, the second attempt
had the same problem as in Fig. E (“+” is left associative).

In addition, one can also switch from DPR to radically different retrieval architectures. For example,
generative retrieval [107–109] is a recent class of models performing retrieval by directly predicting
the document IDs, which could be the premise names in our task.

Limitations of Imitating Human-Written Proofs. Human-written proofs extracted by LeanDojo
provide valuable data for training the prover. However, we have also observed limitations of using
them as the sole training target:

First, they are relatively scarce for today’s data-hungry LLMs. LeanDojo Benchmark has 98,734
proofs, covering a large portion of available data in Lean (as of October 2023). The number of proofs
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Figure I: (ChatGPT-3.5, 5/8) ChatGPT tried to simplify the goal using the simp tactic but failed.
Then it tried the “rw add_comm a b” tactic, which successfully rewrote the goal from “a + b + c
= a + c + b” to “b + a + c = a + c + b”.

in other proof assistants has the same order of magnitude (tens or hundreds of thousands). Due to
limited data, we cannot constantly improve the performance simply by scaling up the model size.
Second, theorem proving in proof assistants is an interactive process, but the proof only captures the
final successful trajectory. Without the intermediate history of trial and error, it can be quite opaque
how final proofs are derived. Therefore, tactics in human-written proofs can be difficult for the model
to learn from. Third, models trained on proofs in one project often struggle to generalize to theorems
in new domains [9, 20], e.g., from mathlib to MiniF2F and ProofNet (Appendix C.4).
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Figure J: (ChatGPT-3.5, 6/8) Then it successfully performed another rewrite from “b + a + c = a
+ c + b” to “b + a + c = c + a + b”.

To overcome these limitations, existing work has explored learning from auxiliary data or data
collected via online interaction with the proof assistant. For example, Proof Artifact Co-Training
(PACT) co-trains the tactic generator on nine auxiliary tasks, such as predicting types and theorem
names [16]. MetaGen [38] trains a neural network to generate synthetic theorems/proofs as training
data in the Metamath proof assistant [110]. Polu et al. [19] and Lample et al. [17] improve the prover
by training it on successful proofs found by itself. Incorporating these techniques into our system
may lead to substantial improvements.
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Figure K: (ChatGPT-3.5, 7/8) Another rewrite tactic, transforming the goal to “a + b + c = c +
a + b”.

Figure L: (ChatGPT-3.5, 8/8) It performed one last rewrite, which brought the goal back to the
original goal “a + b + c = a + c + b”. At this point, ChatGPT went back to the starting point
without making meaningful progress. However, it asserted that the theorem had been successfully
proved, even though the response from LeanDojo clearly indicated “proof_finished: False”.
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Figure M: (ChatGPT-4, 1/3) The same theorem using the GPT-4 version of ChatGPT. Despite a minor
error when interpreting the theorem (natural numbers, not integers), it generated a sensible tactic,
rewriting the goal to “a + (b + c) = a + c + b”.

38



Figure N: (ChatGPT-4, 2/3) A good move, rewriting the goal to “a + (c + b) = a + c + b”.
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Figure O: (ChatGPT-4, 3/3) It tried the refl tactic but failed. refl requires the goal to be an equation
whose both sides are identical up to trivial transformations. However, “a + (c + b) = a + c +
b” is not trivial since “+” is left associative. ChatGPT was able to interpret this error accurately and
finish the proof using the correct premise “add_assoc”.
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