A Appendix

A.1 Message Passing in SyncTREE

As the message passing process in Figure 8, information from leaves, sub-branches, and the whole
402 global structure is first collected following the bottom-up propagation by GAT$_{bu}$. Then, the final node
403 representations of GAT$_{bu}$ are applied to each layer of GAT$_{td}$ to jointly update the node attributes of
404 the corresponding top-down tree with the node embeddings of its previous layer. As the example
405 shown in Figure 8, by designing this two-pass message-passing mechanism, the node features will
406 incorporate the information from different levels and become more expressive. Furthermore, in the
407 top-down tree, the root node can only be updated with synchronized h^L_{bu} since it doesn’t have any
408 incoming connection, it ensures that information injection at the source of the top-down tree is fixed
409 which can help to maintain differentiable feature embeddings without over-smoothing.

![Figure 8: Illustration of our two-pass message-passing mechanism.](image)

A.2 Synthetic and RISC-V Dataset Preparation

Our dataset is composed of artificially generated and practical RC trees and the golden timing results
410 at sinks (leaf nodes of each RC tree) obtained by SPICE simulation. On the one hand, we follow the
411 pipeline in Figure 9 to generate the synthetic dataset. To be specific, we first adopt Algorithm 1 to
412 generate RC-trees with random typologies and then convert them to artificial IC interconnects for
413 further SPICE timing measurement. On the other hand, we directly extract RC trees from practical
414 RISC-V circuit designs to compose the RISC-V dataset. The statistics of both datasets are shown in
415 Figure 10 and Figure 11.

Algorithm 1 Generate artificial RC-trees

Require: $v_d \in [v_{min}, v_{max}]$, $R \in [R_{min}, R_{max}]$, $C \in [C_{min}, C_{max}]$

Initialize voltage v_d of driving cell, edge type (rising or falling), depth D of RC tree

parent set = list[driving cell]

parent \leftarrow randomly pick one element from parent set

while depth $\leq D$
do

randomly choose R, C
generate child, add child into parent set

the R_{child} of the edge from child to the parent $\leftarrow R$

the C_{child} of child to the ground $\leftarrow C$

parent \leftarrow randomly pick one element from parent set

$D = D + 1$

end while
A.3 Baselines’s Implementation

The GNNs of all the baseline models are set with 32/128 hidden dimensions separately for the synthetic dataset/RISC-V dataset. For GraphTrans, the dimension of the feedforward full-connection layers in the Transformer of GraphTrans is set to 256 with 0.1 dropout probability between layers, the number of attention heads is set to 4, and the max input sequence length is set to the maximum circuit size. It should be noted that we only made a little modification to the GraphTrans model. GraphTrans is originally designed for node classification tasks, it takes CLS token from Transformer output as the representation of the whole graph and applies a linear module followed by softmax to implement prediction. In order to incorporate global information into node features, in our experiments, we concatenate the CLS token with node embeddings and then feed it into MLP to get the final output.

For NTREE, we set GAT as its basic block with a 0.2 dropout probability between layers. We follow the original junction-tree-based algorithm in [10] to compose H-trees from our RC circuits with the same radius setting for extracting subgraphs in the paper.

A.4 Analysis of TContrast Loss

Figure 12: The distribution of similarity pairs with training epochs.
To visualize the converging process during training, we plot the distribution of similarity pairs in space at different epochs in Figure 12. It obviously shows that our model approaches the optimization goal with a more concentrated similarity distribution after enough training with the guidance of TContrast loss. In Figure 13, we show the MAE difference of timing results obtained by vanilla SyncTREE and TC-loss guided SyncTREE. As shown in the results, after being combined with TC loss, our SyncTREE model has smaller errors for most types of RC trees which can effectively prove the validity of TC loss.