
Unexpected Improvements to Expected Improvement
for Bayesian Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Expected Improvement (EI) is arguably the most popular acquisition function1

in Bayesian optimization and has been applied successfully in practice, but its2

performance is often exceeded by that of more recent methods. However, EI and its3

variants, including for the parallel and multi-objective settings, are very challenging4

to optimize due to the fact that their acquisition values are numerically zero in5

many regions, resulting in inconsistencies in EI’s performance across the literature.6

This difficulty generally increases as the number of observations, dimensionality7

of the search space, or the number of constraints grow. We propose a new family8

of acquisition functions, LogEI, whose members either have identical or approxi-9

mately equal optima as their canonical counterparts, but are substantially easier10

to optimize numerically. We demonstrate that numerical pathologies manifest11

themselves in “classic” analytic EI, as well as its variants, including constrained12

EI, parallel EI, and expected hypervolume improvement, and propose correspond-13

ing reformulations that avoid these pathologies. Our empirical results show that14

members of the LogEI family of acquisition functions achieve substantially better15

performance than their canonical counterparts and surprisingly, are on par with or16

exceed the performance of recent state-of-the-art acquisition functions, highlighting17

the understated role of numerical optimization in the literature.18

1 Introduction19

Bayesian Optimization (BO) is a popular framework for sample-efficient black-box optimization20

of expensive-to-evaluate functions [15, 18]. BO leverages a probabilistic surrogate model in con-21

junction with an acquisition function to determine where to query the underlying objective function.22

Improvement-based acquisition functions, such as Expected Improvement (EI) and Probability Im-23

provement (PI), are among the earliest and most widely used acquisition functions for efficient global24

optimization of non-convex functions [30, 42]. EI has been extended to the constrained [17, 19],25

noisy [38], and multi-objective [13] setting, as well as their respective batch variants [2, 8, 60], and26

is a standard baseline in the BO literature [15, 50]. While much of the literature has focused on27

developing new sophisticated acquisition functions, subtle yet critical implementation details of28

foundational BO methods are often overlooked. Notably, the performance of EI and its variants can29

vary greatly from one implementation to another, leading to inconsistent results even for mathemati-30

cally identical formulations. To our knowledge, these inconsistencies have not been detailed in the31

literature, although the problem of optimizing EI effectively has been discussed in various works32

(e.g., [15, 21, 60]).33

In this work, we identify pathologies of several improvement-based acquisition functions and propose34

reformulations utilizing careful numerical implementations that lead to increases in the optimization35

performance of improvement-based acquisition functions which often match or exceed that of recent36

methods. Our main contributions are:37
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1. We introduce LogEI, a new family of acquisition functions whose members either have identical38

or approximately equal optima as their canonical counterparts, but are substantially easier to39

optimize numerically. Notably, the analytic variant of LogEI, which results in the same BO policy40

as EI (mathematically), empirically shows significantly improved optimization performance.41

2. We extend the ideas behind analytical LogEI to a number of other members of the EI family,42

including constrained EI (cEI), Expected Hypervolume Improvement (EHVI), as well as their43

respective batch variants for parallel BO, qEI and qEHVI, using smooth approximations of the44

acquisition utilities to obtain non-zero gradients.45

3. We demonstrate that our newly proposed acquisition functions substantially outperform their46

respective analogues on a broad range of benchmarks without incurring meaningful additional47

computational cost.48

While we focus on Expected Improvement, the same issues and similar solutions also apply to49

Probability of Improvement [35] and its variants (see Appendix A).50

Motivation51

Maximizing acquisition functions in BO is a challenging problem. The optimization surface is52

generally non-convex, and often contains many local maxima. While zeroth-order methods are53

sometimes used, on continuous domains gradient-based methods tend to be far more effective at54

optimizing acquisition functions, especially in higher dimensions.55

In addition to the challenges stemming from non-convexity that are shared across acquisition functions,56

improvement-based acquisition functions are particularly challenging to optimize because their value57

and gradient can be minuscule in large swaths of its domain. Although EI is never mathematically58

zero under a Gaussian posterior distribution (except at previously evaluated points in the case of59

noiseless observations), it often is exactly zero numerically due to floating point precision. The same60

applies to its gradient, making EI (and PI, see Appendix A) difficult to optimize via gradient-based61

methods. Figure 1 illustrates this behavior on a simple one-dimensional problem.62
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Figure 1: Values of EI and LogEI on a quadratic objec-
tive. For points at which the likelihood of improving
over the incumbent is small, EI takes on extremely small
values. Notably, EI is exactly zero numerically (in dou-
ble floating point precision) in a large part of the domain
(≈ [5, 13.5]). As Figure 2 to the right shows, this be-
havior gets worse as the dimension of the problem and
the number of observed data points grow, rendering
gradient-based optimization of EI futile.
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Figure 2: Empirical fraction of points ran-
domly sampled from the domain for which
the gradient of EI is approximately nu-
merically zero (< 10−10) as a function of
the number of (randomly generated) data
points n for different dimensions d on the
Ackley. As the model uncertainty shrinks
with more data, EI and its gradients be-
come numerically zero across most of the
domain.

To increase the chance of finding the global optimum of non-convex functions, gradient-based63

optimization is typically performed from multiple starting points [54]. A multi-start gradient-based64

approach can indeed help avoid getting stuck in local optima. However, for improvement-based65

acquisition functions, optimization becomes increasingly challenging as more data is collected and66

the likelihood of improving over the incumbent diminishes (see our theoretical results in Section 3 and67

the empirical illustration in Figure 2). As a result, gradient-based optimization with multiple random68
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starting points will eventually degenerate into random search when the gradients at the starting points69

are numerically zero. This problem is particularly acute in high dimensions and for objectives with a70

large range.71

Various initialization heuristics have been proposed to address this behavior by modifying the random-72

restart strategy. Rather than starting from random candidates, an alternative naïve approach would73

be to use initial conditions close to the best previously observed inputs. However, doing that alone74

inherently limits the initialization heuristic to a type of local search, which cannot have global75

guarantees. To attain such guarantees, it is necessary to use an asymptotically space-filling heuristic;76

even if not random, this will entail evaluating the acquisition function in regions where no prior77

observation lies. Ideally, these regions should permit gradient-based optimization of the objective for78

efficient acquisition function optimization, which necessitates the gradients to be non-zero. In this79

work, we show that this can be achieved for a number of improvement-based acquisition functions,80

and demonstrate empirically how this leads to substantially improved BO performance.81

2 Background82

We consider the problem of maximizing an expensive-to-evaluate black-box function ftrue : X 7→ RM83

over some feasible set X ⊂ Rd. Suppose we have collected data Dn = {(xi, yi)}ni=1, where xi ∈ X84

and yi = ftrue(xi) + vi(xi) with vi some noise corrupting the true function value ftrue(xi). The85

response ftrue may be multi-output (e.g. in the case of multiple objectives or black-box constraints),86

in which case yi, vi ∈ RM . We use Bayesian optimization (BO), which relies on a surrogate model87

f that for any batch x := {x1, . . . , xq} of candidate points provides a probability distribution over88

the outputs f(x) := (f(x1), . . . , f(xq)). The acquisition function α then utilizes this posterior89

prediction to assign an acquisition value to x that quantifies the value of evaluating the points in x,90

trading off exploration and exploitation.91

2.1 Gaussian Processes92

Gaussian Processes (GP) models [49] are the most widely used surrogates in BO, due to their high93

data efficiency and good uncertainty quantification. For our purposes, it suffices to consider a GP as a94

mapping that provides a multivariate Normal distribution over the outputs f(x) for any x:95

f(x) ∼ N (µ(x),Σ(x)), µ : Xq → RqM , Σ : Xq → SqM
+ . (1)

In the single-outcome (M = 1) setting, f(x) ∼ N (µ(x),Σ(x)) with µ : Xq → Rq and Σ :96

Xq → Sq
+. In the sequential (q = 1) case, this further reduces to a univariate Normal distribution:97

f(x) ∼ N (µ(x), σ2(x)) with µ : X → R and σ : X → R+.98

2.2 Expected Improvement and (some of) its variants99

Expected Improvement In the fully-sequential (q = 1), single-outcome (M = 1) setting, “classi-100

cal” EI [43] is defined as101

EIy∗(x) = Ef(x)

[
[f(x)− y∗]+

]
= σ(x) h

(
µ(x)− y∗

σ(x)

)
, (2)

where [·]+ denotes the max(0, ·) operation, y∗ is the incumbent (the best function value observed so102

far), h(z) = ϕ(z) + zΦ(z), and ϕ,Φ are the standard Normal density and distribution functions,103

respectively. This formulation is arguably the most widely used acquisition function in BO, and the104

default in many popular software packages.105
106

Constrained Expected Improvement The constrained BO setting involves one or more black-box107

constraints; the problem is typically formulated as finding maxx∈X ftrue,1(x) such that ftrue,i(x) ≤ 0108

for i ∈ {2, . . . ,M}. Feasibility-weighting the improvement [17, 19] is a natural way to formulate109

constrained EI:110

cEIy∗(x) = Ef(x)

[
[f1(x)− y∗]+ ΠM

i=21{fi(x) ≤ 0}
]
, (3)

where 1 is the indicator function. If the constraints are modeled as conditionally independent of the111

objective f1 this can be further simplified as the product of EI and the probability of feasibility.112
113
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Parallel Expected Improvement In many settings, one may evaluate ftrue on q > 1 candidates in114

parallel to increase throughput. The associated batch analogue of EI [20, 58] is given by115

qEIy∗(x) = E
[

max
j=1,...,q

{
[f(xj)− y∗]+

}]
. (4)

Unlike EI, qEI does not admit a closed-form expression and thus is typically computed using Monte116

Carlo sampling [2, 58]:117

qEIy∗(x) ≈
N∑
i=1

max
j=1,...,q

{
[ξij(x)− y∗]+

}
, (5)

where ξi(x) ∼ f(x) are random samples drawn from the (joint) model posterior at x.118
119

Expected Hypervolume Improvement In multi-objective optimization (MOO), there generally is120

no single best solution; instead the goal is to explore the Pareto Frontier between multiple competing121

objectives (the set of mutually-optimal objective vectors) . A common measure of the quality of a122

(finitely approximated) Pareto Frontier P between M objectives with respect to a specified reference123

point r ∈ RM is its hypervolume HV(P, r) := λ
(⋃|P|

i=1[r, yi]
)
, where [r, yi] denotes the hyper-124

rectangle bounded by vertices r and yi, and λ is the Lebesgue measure. Thus, a natural acquisition125

function to optimize is the expected hypervolume improvement (EHVI)126

EHVI(x) = E
[
HV(P ∪ f(x), r)]− HV(P, r)] (6)

from obtaining a set Y ∼ f(x) of new observations. If q = 1 and the objectives are modeled with127

independent GPs, EHVI can be expressed in closed form [63]. In the general case, Monte Carlo128

approximations are used (qEHVI) [8].129

2.3 Optimizing acquisition functions130

Optimizing an acquisition function (AF) is a challenging task that amounts to solving a non-convex131

optimization problem, to which multiple approaches and heuristics have been applied. These include132

gradient-free methods such as divided rectangles [29], evolutionary methods such as CMA-ES [22],133

first-order methods such as stochastic gradient ascent (see e.g., Daulton et al. [9], Wang et al. [58]),134

and (quasi-)second order methods [15] such as L-BFGS-B [6]. Multi-start optimization is commonly135

employed with gradient-based methods to mitigate the risk of getting stuck in local minima. Initial136

points for optimization are selected via various heuristics with different levels of complexity, ranging137

from simple uniform random selection to BoTorch’s initialization heuristic, which selects initial138

points by performing Boltzmann sampling on a set of random points according to their acquisition139

function value [2]. See Appendix B for a more complete account of initialization strategies and140

optimization procedures used by popular implementations. We focus on gradient-based optimization141

as often leveraging gradients results in faster and more performant optimization [8].142

Optimizing AFs for parallel BO that quantify the value of a batch of q > 1 points is more challenging143

than optimizing their sequential counterparts due to the higher dimensionality of the optimization144

problem (qd instead of d) and the more challenging optimization surface. A common approach145

to simplify the problem is to use a sequential greedy strategy that greedily solves a sequence of146

single point selection problems. For i = 1, . . . , q, candidate xi is selected by optimizing the AF (for147

q = 1) conditional on the previously selected designs x1, ..., xi−1 and their unknown observations148

(e.g. by fantasizing the values at those designs) [60]. For submodular AFs, including EI, PI, and149

EHVI, using a sequential greedy strategy will incur no more than 1/e regret compared to joint150

optimization, and previous works have found that sequential greedy optimization yields improved151

BO performance compared to joint optimization [8, 60]. Contrary to these findings, we show that152

with our reformulations joint batch optimization is indeed superior to the sequential greedy strategy.153

2.4 Related Work154

While there is a substantial body of work introducing a large variety of different AFs, much less focus155

has been on the question of how to effectively implement and optimize these AFs.156

Zhan and Xing [64] provide a comprehensive review of a large number of different variants of the157

EI family, but do not discuss any numerical or optimization challenges. Zhao et al. [65] propose to158

combine a variety of different initialization strategies to select initial conditions for optimization of159
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acquisition functions and show empirically that this improves optimization performance. However,160

they do not address any potential issues or degeneracies with the acquisition functions themselves.161

Recent works have considered effective gradient-based approaches for acquisition optimization.162

Wilson et al. [60] demonstrates how stochastic first-order methods can be leveraged for optimizing163

Monte Carlo acquisition functions. Balandat et al. [2] build on this work and propose to use a sample164

average approximation to MC acquisition functions that admits gradient-based optimization using165

deterministic higher-order optimizers such as L-BFGS-B.166

Another line of work proposes to switch from BO to local optimization based on some stopping167

criterion to achieve faster local convergence, using either zeroth order [44] or gradient-based [41]168

optimization. While McLeod et al. [41] are also concerned with numerical issues, we emphasize169

that those issues arise due to ill-conditioned covariance matrices and are orthogonal to the numerical170

pathologies of improvement-based acquisition functions.171

3 Theoretical Analysis of Expected Improvement’s Vanishing Gradients172

In this section, we shed light on the conditions on the objective function and surrogate model that173

give rise to the numerically vanishing gradients in EI, as seen in Figure 2. In particular, we show that174

as a BO algorithm closes the optimality gap f∗ − y∗n (here f∗ is the global maximum of the function175

ftrue) and the associated GP surrogate’s uncertainty decreases, it becomes exceedingly likely for EI to176

exhibit numerically vanishing gradients.177

Given a distribution Px over the inputs x, the probability that the argument (µ(x)− y∗)/σ(x) to h in178

Eq. (2) is smaller than a threshold B exceeds Px(f(x) < f∗ − ϵn), with high probability, where ϵn179

depends on the optimality gap f∗ − y∗n and the maximum posterior uncertainty maxx σn(x). This180

pertains to the problem of numerically vanishing values and gradients of EI, since the numerical181

support Sη(h) = {x : |h(x)| > η} of a naïve implementation of h in (2) is limited by a lower bound182

B(η) that depends on the floating point precision η. Formally, Sη(h) ⊂ [B(η),∞) even though183

S0(h) = R mathematically. As a consequence, the following result can be seen as a bound on the184

probability of encountering numerically vanishing values and gradients in EI using samples from the185

distribution Px to initialize the acquisition function optimization.186

Lemma 1. Suppose f is drawn from a Gaussian process prior Pf , y∗ ≤ f∗, µn, σn are the mean187

and standard deviation of the posterior Pf (f |Dn) and B ∈ R. Then with probability 1− δ,188

Px

(
µn(x)− y∗n

σn(x)
< B

)
≥ Px (f(x) < f∗ − ϵn) (7)

where ϵn = (f∗ − y∗n) +
(√

−2 log(2δ)−B
)
maxx σn(x).189

For any given – and especially early – iteration, ϵn does not have to be small, as both the optimality190

gap and the maximal posterior standard deviation can be large initially. Note that under certain191

technical conditions on the kernel function and the asymptotic distribution of the training data Dn,192

the maximum posterior variance vanishes guaranteeably as n increases, see [36, Corollary 3.2]. On193

its own, Lemma 1 gives insight into the non-asymptotic behavior by exposing a dependence to the194

distribution of objective values f . In particular, if the set of inputs that give rise to high objective195

values (≈ f∗) is concentrated, P (f(x) < f∗ − ϵ) will decay very slowly as ϵ increases, thereby196

maintaining a lower bound on the probability of close to 1. As an example, this is the case for the197

Ackley function, especially as the dimensionality increases, which explains the behavior in Figure 2.198

4 Improving Expected Improvement (and its cousins)199

In this section, we propose modifications to and re-formulations of analytic and MC-based200

improvement-based acquisition functions that render them significantly easier to optimize. In the201

following, we will use differing fonts, e.g. log and log, to differentiate between the mathematical202

functions and their numerical implementations.203

4.1 Analytic LogEI204

Implementations of “classic” analytic EI exhibit numerically zero values and gradients even though205

EI and its gradient are mathematically nonzero on the entire real line, except in the noiseless case206
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at the previously evaluated points. However, if implemented naïvely, h is numerically zero when207

(µ(x)−y∗)/σ(x) is small, which happens when the model has high confidence that little improvement208

can be achieved at x.209

We propose an implementation of log ◦h that can be accurately computed for a much larger range of210

inputs than a naïve implementation h or log ◦ h. Specifically, we compute analytic211

LogEIy∗(x) = log_h((µ(x)− y∗)/σ(x)) + log(σ(x)), (8)
where log_h is mathematically equivalent to log ◦h and can be stably and accurately computed by212

log_h(z) =
{
log(ϕ(z) + zΦ(z)) z > −1

−z2/2− c1 + log1mexp(logerfcx(−z/
√
2)|z|+ c2) z < −1

(9)

where c1 = log(2π)/2, and c2 = log(π/2)/2, and log1mexp, logerfcx are numerically stable213

implementations of log(1 − exp(x)) and log(exp(x2)erfc(x)), respectively (see Appendix A for214

details). Notably, the asymptotically quadratic behavior of log_h becomes apparent in the second215

case, making the function particularly amenable to gradient-based optimization. This has significant216

practical implications for BO using EI, as evidenced by the empirical results in Section 5. Numerically217

vanishing values and gradients affect – as far as we are aware – all public implementations of EI.218

4.2 Monte Carlo Parallel LogEI219

For Monte Carlo formulations of Parallel EI that perform differentiation on the level of MC samples,220

the situation is worse in that they exhibit not just numerically, but mathematically zero gradients for a221

significant proportion of practically relevant inputs. For qEI, the primary issue is taking the discrete222

maximum over the q outcomes for each MC sample in (5). In particular, the acquisition utility of223

expected improvement in Eq. 4 on a single sample ξi of f is maxj [ξi(xj)− y∗]+. Mathematically,224

we smoothly approximate the acquisition utility in two stages: 1) uij = softplusτ0(ξi(xj)− y∗) ≈225

[ξi(xj) − y∗]+ and 2) ∥ui·∥1/τmax
≈ maxj uij . Since the resulting quantities are strictly positive,226

they can be transformed to log-space permitting an implementation of qLogEI that is numerically227

stable and can be optimized effectively, similar to the analytic case. In particular,228

qLogEIy∗(x) = log

∫ (∑
j softplusτ0(f(xj)− y∗)1/τmax

)τmax

df

≈ logsumexpi(τmaxlogsumexpj(logsoftplusτ0(ξ
i(xj)− y∗))/τmax)),

(10)

where i is the index of the Monte Carlo draws from the GP posterior, j = 1, . . . , q is the index for229

the candidate in the batch, and logsoftplus is a numerically stable implementation of log(log(1 +230

exp(x))). See Appendix A for additional details.231

While the smoothing in (10) approximates the original qEI formulation, the following result shows232

that the resulting approximation error can be quantified and tightly bounded as a function of the233

temperature parameters τ0, τmax and the batch size q. See Appendix C for the proof.234

Lemma 2. [Approximation Guarantee] Given the temperature parameters τ0 and τmax, the approxi-235

mation error of qLogEI to qEI is bounded by236 ∣∣exp(qLogEI(x))− qEI(x)
∣∣ ≤ log(2) τ0 + qτmax − 1. (11)

In Appendix D, we show the importance of setting the temperatures sufficiently low for qLogEI to237

achieve good optimization characteristics, something that only becomes possible by transforming all238

involved computations to log-space. Otherwise, the smoothed approximation to the acquisition utility239

(e.g., using a regular softplus function) would similarly exhibit numerically vanishing gradients, as240

is the case mathematically for the discrete max operator.241

4.3 Constrained EI242

Both analytic and Monte Carlo variants of LogEI can be extended for optimization problems with243

black-box constraints. For analytic cEI with independent constraints of the form fi(x) ≤ 0, the244

constrained formulation in Eq. (3) simplifies to logcEI(x) = LogEI(x) +
∑

i log(P (fi(x) ≤ 0)),245

which can be readily and stably computed using LogEI in Eq. (8) and, if fi is modelled by a GP, a246

stable implementation of the Gaussian log cumulative distribution function. For the Monte Carlo247

variant, we apply a similar strategy as for Eq. (10) to the constraint indicators in Eq. (3): 1) a smooth248

approximation via a sigmoid and 2) an accurate and stable implementation of its log value (see249

Appendix A for details).250
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4.4 Monte Carlo Parallel LogEHVI251

The numerical difficulties of qEHVI in (6) are similar to those of qEI, and the basic ingredients of252

smoothing and log-transformations still apply, but the details are significantly more complex since253

qEHVI uses many operations that have mathematically zero gradients with respect to some of the254

inputs. Our implementation is based on the differentiable inclusion-exclusion formulation of the255

hypervolume improvement [8]. As a by-product, the implementation also readily allows for the256

differentiable computation of the expected log hypervolume, instead of the log expected hypervolume,257

note the order, which can be preferable in certain applications of multi-objective optimization [16].258

5 Empirical Results259

We compare standard versions of analytic EI (EI) and constrained EI (cEI), Monte Carlo parallel EI260

(qEI), as well as Monte Carlo EHVI (qEHVI). We also compare with other state-of-the-art baselines,261

namely lower-bound Max-Value Entropy Search (GIBBON) [45] and single- and multi-objective262

Joint Entropy Search (JES) [25, 55]. All experiments are implemented using BoTorch [2] and utilize263

multi-start optimization of the AF with scipy’s L-BFGS-B optimizer. In order to avoid conflating264

the effect of BoTorch’s default initialization strategy with those of our contributions, we use 16 initial265

points chosen uniformly at random from which to start the L-BFGS-B optimization (for a comparison266

with other initialization strategies, see the Appendix D). We run multiple replicates and report mean267

and error bars of ±2 standard errors of the mean. Additional details can be found in Appendix D.1.268

Single-objective, sequential BO We compare EI and LogEI on the 10-dimensional convex Sum-269

of-Squares (SoS) function f(x) =
∑10

i=1 (xi − 0.5)2, using 20 restarts seeded from 1024 pseudo-270

random samples through BoTorch’s default initialization heuristic. Figure 3 shows that due to271

vanishing gradients, EI is unable to make progress even on this trivial problem.272
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Figure 3: Regret and EI acquisition value for the candidates selected by maximizing EI and LogEI
on the convex Sum-of-Squares problem. Optimization stalls out for EI after about 75 observations
due to vanishing gradients (indicated by the jagged behavior of the acquisition value), while LogEI
continues to make steady progress.

In Figure 4, we compare performance on the Ackley and Michalewicz test functions [51]. Notably,273

LogEI substantially outperforms EI on Ackley as the dimensionality increases. Ackley is a challeng-274

ing multimodal function for which it is critical to trade off local exploitation with global exploration,275

a task made exceedingly difficult by the numerically vanishing gradients of EI in a large fraction of276

the search space. We see a similar albeit less pronounced behavior on Michalewicz, which reflects277

the fact that Michalewicz is a somewhat less challenging problem than Ackley.278

BO with Black Box Constraints Figure 5 shows results on four engineering design problems with279

black box constraints, where LogcEI massively outperforms the naive cEI implementation. Similar280

to the unconstrained problems, the performance gains of LogcEI over cEI grow with increasing281

dimensionality of the problems, as well as with the number of constraints. Notably, while running282

these benchmarks we found that for some problems, LogcEI in fact improved upon some of the best283

results quoted in the original literature that used up to almost three orders of magnitude more function284

evaluations (see Appendix D).285

Parallel Expected Improvement with qLogEI Figure 6 reports optimization performance of286

parallel BO on the 16-dimensional Ackley and Levy functions for both sequential greedy and joint287
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Figure 4: Best objective value as a function of iterations on the moderately and severely non-convex
Michalewicz and Ackley problems for varying numbers of input dimensions. LogEI substantially
outperforms both EI and GIBBON, and this gap widens as the problem dimensionality increases. JES
performs slightly better than LogEI on Ackley, but for some reason fails on Michalewicz. Notably,
JES is almost two orders of magnitude slower than the other acquisition functions (see Appendix D).
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Figure 5: Best feasible objective value as a function of number of function evaluations (iterations)
on four engineering design problems with black-box constraints after an initial 2d pseudo-random
evaluations.

batch optimization. Besides the apparent substantial advantages of qLogEI over qEI, they key288

observation here is that, in contrast to previous findings in the literature [60], jointly optimizing the289

candidates of batch acquisition functions can yield highly competitive optimization performance.290

Multi-Objective optimization with qLogEHVI Figure 7 compares qLogEHVI and qEHVI on 6291

different test problems with 2 or 3 objectives, and ranging from 2-30 dimensions. This includes 3 real292

world inspired problems: cell network design for optimizing coverage and capacity [12], laser plasma293

acceleration optimization [26], and vehicle design optimization [40, 52]. The results are consistent294

with our findings in the single-objective and constrained cases: qLogEHVI consistently outperforms295

qEHVI, and the gap is larger on higher dimensional problems. See the Appendix D for problem296

details.297

6 Conclusion298

Our results demonstrate that the problem of vanishing gradients is a major source of the difficulty299

of optimizing improvement-based acquisition functions and that we can mitigate this issue through300

careful reformulations and implementations. As a result, we see substantially improved optimization301

performance across a variety of modified EI variants across a broad range of problems. In partic-302

ular, contrary to previous findings, we demonstrate that joint batch optimization for parallel BO303

outperforms the sequential greedy approach typically used in practice (which also benefits from304

our modifications). Besides the convincing performance gains, one of the key advantages of our305
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Figure 7: Sequential (q = 1) optimization performance on multi-objective problems, as measured by
the hypervolume of the Pareto frontier across observed points.

modified acquisition functions is that they are much less dependent on heuristic (and potentially306

brittle) initialization strategies. Moreover, our proposed modifications do not meaningfully increase307

the computational complexity of the respective original acquisition function.308

While our contributions may not apply verbatim to other classes of acquisition functions, our key309

insights and strategies do translate and could help e.g. with improving information-based [24, 59],310

cost-aware [37, 50], and other types of acquisition functions that are prone to similar numerical311

challenges. Overall, we hope that our findings will increase awareness in the community for the312

importance of optimizing acquisition functions well, and for the required care that is needed regarding313

the involved numerics.314
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A Acquisition Function Details523

A.1 Analytic Expected Improvement524

Recall that the main challenge with computing analytic LogEI is to accurately compute log h, where525

h(z) = ϕ(z) + zΦ(z), with ϕ(z) = exp(−z2/2)/
√
2π and Φ(z) =

∫ z

−∞ ϕ(u)du. To express log h526

in a numerically stable form as z becomes increasingly negative, we first take the log and multiply ϕ527

out of the argument to the logarithm:528

log h(z) = z2/2− log(2π)/2 + log

(
1 + z

Φ(z)

ϕ(z)

)
. (12)

Fortunately, this form exposes the quadratic factor, and Φ(z)/ϕ(z) can be computed via standard529

implementations of the scaled complementary error function erfcx. However, even erfcx can give530

rise to numerical underflow (though after a significantly larger range than the original formulation).531

To further increase numerical stability, we instead compute the log(Φ(z)/ϕ(z)) using532

logerfcx(x) =
{
log(erfc(x)) + x2 x < 0

log(erfcx(x)) x ≥ 0
(13)

and afterward use533

log1mexp(x) =
{
log(−expm1(x)) − log 2 < x

log1p(−exp(x)) − log 2 ≥ x
(14)

to compute the last term of log h in Eq. (12). In particular, we compute534

log_h(z) =
{
log(ϕ(z) + zΦ(z)) z > −1

−z2/2− c1 + log1mexp(logerfcx(−z/
√
2)|z|+ c2) z < −1

(15)

where c1 = log(2π)/2, and c2 = log(π/2)/2.535

Figure 8 shows both the numerical failure mode of a naïve implementation of EI, which becomes536

exactly zero numerically for moderately small z, while the evaluation via log_h in Eq. (15) exhibits537

quadratic asymptotic behavior that is particularly amenable to numerical optimization routines.538

Figure 8: Plot of the log h, computed via log ◦ h and log_h in Eq. (15). Crucially, the naïve
implementation fails as z = (µ(x)− f∗)/σ(x) becomes increasingly negative, due to being exactly
numerically zero, while our proposed implementation exhibits quadratic asymptotic behavior.

15



A.2 Monte-Carlo Expected Improvement539

For Monte-Carlo, we cannot directly apply similar numerical improvements as for the analytical540

version, because the utility values (integrand of Eq. (4)) on the sample level are likely to be mathemat-541

ically zero. For this reason, we first smoothly approximate the acquisition utility and subsequently542

apply log transformations to the approximate acquisition function.543

To this end, a natural choice is softplusτ0(x) = τ0 log(1 + exp(x/τ0)) for smoothing the max(0, x),544

where τ0 is a temperature parameter governing the approximation error. Further, we approximate the545

maxi over the q candidates by the norm ∥ · ∥1/τmax
and note that the approximation error introduced546

by both smooth approximations can be bound tightly as a function of two “temperature” parameters547

τ0 and τmax, see Lemma 2.548

Importantly, the smoothing alone only solves the problem of having mathematically zero gradients,549

not that of having numerically vanishing gradients, as we have shown for the analytical case above.550

For this reason, we transform all smoothed computations to log space and thus need the following551

special implementation of log ◦ softplus that can be evaluated stably for a very large range of inputs:552

logsoftplusτ (x) =
{
[log ◦ softplusτ ](x) x/τ > l

x/τ + log(τ) x/τ ≤ l

where τ is a temperature parameter and l depends on the floating point precision used, around −35553

for double precision in our implementation.554

Note that the lower branch of logsoftplus is approximate. Using a Taylor expansion of log(1+z) =555

z − z2/2 +O(z3) around z = 0, we can see that the approximation error is O(z2), and therefore,556

log(log(1 + exp(x))) = x+O(exp(x)2), which converges to x exponentially quickly. l is chosen557

in our implementation so that no significant digit is lost in dropping the second order term from the558

lower branch.559

Having defined logsoftplus, we further note that560

log ∥x∥1/τmax
= log

(∑
i

x
1/τmax

i

)τmax

= τmax log

(∑
i

exp(log(xi)/τmax)

)
= τmaxlogsumexpi (log(xi)/τmax))

Therefore, we can express the logarithm of the smoothed acquisition utility per sample as561

τmaxlogsumexpi(logsoftplusτ0(zi)/τmax)

Applying another logsumexp to compute the logarithm of the mean of acquisition utilities over a set562

of Monte Carlo samples gives rise to the expression in Eq. (10).563

In particular for large batches (large q), this expression can still give rise to vanishing gradients for564

some candidates, which is due to the large dynamic range of the outputs of the logsoftplus when565

x << 0. To solve this problem, we propose a new class of smooth approximations to the “hard”566

non-linearities that decay as O(1/x2) as x → −∞ in the next section.567

A.3 A Class of Smooth Approximations with Fat Tails for Larger Batches568

A regular softplus(x) = log(1 + exp(x)) function smoothly approximates the ReLU non-linearity569

and – in conjunction with the log transformations – is sufficient to achieve good numerical behavior570

for small batches of the Monte Carlo acquisition functions. However, as more candidates are added,571

log softplus(x) = log(log(1 + exp(x))) is increasingly likely to have a high dynamic range as for572

x ≪ 0, log softplusτ (x) ∼ −x/τ . If τ > 0 is chosen to be small, (−x/τ) can vary orders of573

magnitude within a single batch. This becomes problematic when we approximate the maximum574

utility over the batch of candidates, since logsumexp only propagates numerically non-zero gradients575

to inputs that are no smaller than approximately (maxj xj − 700) in double precision, another source576

of vanishing gradients.577
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To solve this problem, we propose a new smooth approximation to the ReLU, maximum, and indicator578

functions that decay only polynomially as x → −∞, instead of exponentially, like the canonical579

softplus. The high level idea is to use (1 + x2)−1, which is proportional to the Cauchy density580

function (and is also known as a Lorentzian), in ways that maintain key properties of existing smooth581

approximations – convexity, positivity, etc – while changing the asymptotic behavior of the functions582

from exponential to O(1/x2) as x → −∞, also known as a “fat tail”. Further, we will show that583

the proposed smooth approximations satisfy similar maximum error bounds as their exponentially584

decaying counterparts, thereby permitting a similar approximation guarantee as Lemma 2 with minor585

adjusments to the involved constants.586

Fat Softplus We define587

φ+(x) = α(1 + x2)−1 + log(1 + exp(x)), (16)

for a positive scalar α. The following result shows that we can ensure the monotonicity and convexity588

– both important properties of the ReLU that we would like to maintain in our approximation – of g589

by carefully choosing α.590
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Figure 9: The fat softplus approximates
max(x, 0) similarly tightly as the regular softplus
and is also monotonic, convex, and positive. The
plot used a temperature of τ0 = 0.01.
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Figure 10: The fat softplus has an O(1/x2)
asymptotic decay, versus the O(exp(x)) decay
as x → −∞, moderating the dynamic range of
the quantities involved in parallel LogEI.

Lemma 3 (Monotonicity and Convexity). φ+(x) is positive, monotonically increasing, and strictly591

convex for α satisfying592

0 ≤ α <
e1/

√
3

2
(
1 + e1/

√
3
) .

Proof. Positivity follows due to α ≥ 0, and both sumands being positive. Monotonicity and convexity593

can be shown via canonical differential calculus and bounding relevant quantities.594

In particular, regarding monotonicity, we want to select α so that the first derivative is bounded below595

by zero:596

∂xφ+(x) =
ex

1 + ex
− α

2x

(1 + x2)2

First, we note that ∂xφ+(x) is positive for x < 0 and any α, since both terms are positive in this597

regime. For x ≥ 0, ex

1+ex = (1 + e−x)−1 ≥ 1/2, and −1/(1 + x2)2 ≥ −1/(1 + x2), so that598

∂xφ+(x) ≥
1

2
− α

2x

(1 + x2)

Forcing 1
2 − α 2x

(1+x2) > 0, and multiplying by (1 + x2)2 gives rise to a quadratic equation whose599

roots are x = 2α ±
√
4α2 − 1. Thus, there are no real roots for α < 1/2. Since the derivative is600

certainly positive for the negative reals and the guaranteed non-existence of roots implies that the601

derivative cannot cross zero elsewhere, 0 ≤ α < 1/2 is a sufficient condition for monotonicity of φ+.602
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Regarding convexity, our goal is to prove a similar condition on α that guarantees the positivity of603

the second derivative:604

∂2
xφ+(x) = α

6x2 − 2

(1 + x2)3
+

e−x

(1 + e−x)2

Note that 6x2−2
(1+x2)3 is symmetric around 0, is negative in (−

√
1/3,

√
1/3) and has a minimum of605

−2 at 0. e−x

(1+e−x)2 is symmetric around zero and decreasing away from zero. Since the rational606

polynomial is only negative in (−
√
1/3,

√
1/3), we can lower bound e−x

(1+e−x)2 > e−
√

1/3

(1+e−
√

1/3)2
in607

(−
√
1/3,

√
1/3). Therefore,608

∂2
xφ+(x) ≥

e−x

(1 + e−x)2
− 2α

Forcing e−
√

1/3

(1+e−
√

1/3)2
− 2α > 0 and rearranging yields the result. Since e−

√
1/3

(1+e−
√

1/3)2
/2 ∼ 0.115135,609

the convexity condition is stronger than the monotonicity condition and therefore subsumes it.610

Importantly φ decays only polynomially for increasingly negative inputs, and therefore logφ only log-611

arithmically, which keeps the range of φ constrained to values that are more manageable numerically.612

Similar to Lemma 5, one can show that613

|τφ+(x/τ)− ReLU(x)| ≤ (α+ log(2)) τ. (17)

There are a large number of approximations or variants of the ReLU that have been proposed as614

activation functions of artificial neural networks, but to our knowledge, none satisfy the properties615

that we seek here: (1) smoothness, (2) positivity, (3) monotonicity, (4) convexity, and (5) polynomial616

decay. For example, the leaky ReLU does not satisfy (1) and (2), and the ELU does not satisfy (5).617

Fat Maximum The canonical logsumexp approximation to maxi xi suffers from numerically618

vanishing gradients if maxi xi − minj xj is larger a moderate threshold, around 760 in double619

precision, depending on the floating point implementation. In particular, while elements close to the620

maximum receive numerically non-zero gradients, elements far away are increasingly likely to have a621

numerically zero gradient. To fix this behavior for the smooth maximum approximation, we propose622

φmax(x) = max
j

xj + τ log
∑
i

[
1 +

(
xi −maxj xj

τ

)2
]−1

. (18)

This approximation to the maximum has the same error bound to the true maximum as the logsumexp623

approximation:624

Lemma 4. Given τ > 0625

max
i

xi ≤ τϕmax(x/τ) ≤ max
i

xi + τ log(d). (19)

Proof. Regarding the lower bound, by definition there is an index i such that xi = maxj xj . For this626

index, the associated summand in (18) is 1. Since all sumands are positive, the entire sum is lower627

bounded by 1, hence628

τ log
∑
i

[
1 +

(
xi −maxj xj

τ

)2
]−1

> τ log(1) = 0

Adding maxj xj to the inequality finishes the proof for the lower bound.629

Regarding the upper bound, (18) can be maximized when xi = maxj xj for all i, in which case each630

(xi −maxj xj)
2 is minimized, and hence each summand is maximized. In this case,631

τ log
∑
i

[
1 +

(
xi −maxj xj

τ

)2
]−1

≤ τ log

(∑
i

1

)
= τ log(d).

Adding maxj xj to the inequality finishes the proof for the upper bound.632
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Figure 11: We construct the fat sigmoid ap-
proximation (purple) by splicing together two
Lorentzians (blue and teal) at one of their inflec-
tion points.
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Figure 12: The fat sigmoid approximation (τ =
0.01) decays as O(1/x2) instead of O(exp(x))
as x → −∞, minimizing the dynamic range of
the numerical quantities in constrained qLogEI.

Fat Sigmoid Notably, we encountered a similar problem with using regular (log)-sigmoids to633

smooth the constraint indicators for EI with black-box constraints. Here, we want the smooth634

approximation ι to satisfy 1) positivity, 2) monotonicity, 3) polynomial decay, and 4) ι(x) =635

1/2− ι(−x). Let γ =
√
1/3, then we define636

ι(x) =


2
3

(
1 + (x− γ)

2
)−1

x < 0,

1− 2
3

(
1 + (x+ γ)

2
)−1

x ≥ 0.

ι is monotonically increasing, satisfies ι(x) → 1 as x → ∞, ι(0) = 1/2, and ι(x) = O(1/x2)637

as x → −∞. Further, we note that the asymptotics are primarily important here, but that we638

can also make the approximation tighter by introducing a temperature parameter τ , and letting639

ιτ (x) = ι(x/τ). The approximation error of ιτ (x) to the Heaviside step function becomes tighter640

point-wise as τ → 0+, except for at the origin where ιτ (x) = 1/2, similar to the canonical sigmoid.641

A.4 Constrained Expected Improvement642

For the analytical case, many computational frameworks already provide a numerically stable imple-643

mentation of the logarithm of the Gaussian cummulative distribution function, in the case of PyTorch,644

torch.special.log_ndtr, which can be readily used in conjunction with our implementation of645

LogEI, as described in Sec. 4.3.646

For the case of Monte-Carlo parallel EI, we implemented the fat-tailed ι function from Sec. A.3 to647

approximate the constraint indicator and compute the per-candidate, per-sample acquisition utility648

using649

(logsoftplusτ0(ξi(xj)− y∗) +
∑
k

log ◦ ι

(
− ξ

(k)
i

τcons

)
,

where ξ(k)i is the ith sample of the kth constraint model, and τcons is the temperature parameter control-650

ling the approximation to the constraint indicator. While this functionality is in our implementation,651

our benchmark results use the analytical version.652

A.5 Parallel Expected Hypervolume Improvement653

The hypervolume improvement can be computed via the inclusion-exclusion principle, see [8] for654

details, we focus on the numerical issues concerning qEHVI here. To this end, we define655

z
(m)
k,i1,...,ij

= min
[
uk, f(xi1), . . . , f(xij )

]
,

where f is the vector-valued objective function, and uk is the vector of upper bounds of one of K656

hyper-rectangles that partition the non-Pareto-dominated space, see [8] for details on the partitioning.657
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Letting lk be the corresponding lower bounds of the hyper-rectangles, the hypervolume improvement658

can then be computed as659

HVI({f(xi)}qi=1 =

K∑
k=1

q∑
j=1

∑
Xj∈Xj

(−1)j+1
M∏

m=1

[z
(m)
k,Xj

− l
(m)
k ]+, (20)

where Xj = {Xj ⊂ Xcand : |Xj | = j} is the superset of all subsets of Xcand of size j and660

z
(m)
k,Xj

= z
(m)
k,i1,...,ij

for Xj = {xi1 , . . . ,xij}.661

To find a numerically stable formulation of the logarithm of this expression, we first re-purpose662

the φmax function to compute the minimum in the expression of z
(m)
k,i1,...,ij

, like so φmin(x) =663

−φmax(−x). Further, we use the φ+ function of Sec. A.3 as for the single objective case to664

approximate [z
(m)
k,Xj

− l
(m)
k ]+. We then have665

log

M∏
m=1

φ+[z
(m)
k,Xj

− l
(m)
k ] =

M∑
m=1

logφ+[z
(m)
k,Xj

− l
(m)
k ] (21)

Since we can only transform positive quantities to log space, we split the sum in Eq. (20) into666

positive and negative components, depending on the sign of (−1)j+1, and compute the result using a667

numerically stable implementation of log(exp(log of positive terms)− exp(log of negative terms).668

The remaining sums over k and q can be carried out by applying logsumexp to the resulting quantity.669

Finally, applying logsumexp to reduce over an additional Monte-Carlo sample dimension yields the670

formulation of qLogEHVI that we use in our multi-objective benchmarks.671

B Strategies for Optimizing Acquisition Functions672

As discussed in Section 2.3, a variety of different approaches and heuristics have been applied to673

the problem of optimizing acquisition functions. For the purpose of this work, we only consider674

continuous domains X. While discrete and/or mixed domains are also relevant in practice and have675

received substantial attention in recent years (see e.g. Baptista and Poloczek [3], Daulton et al.676

[9], Deshwal et al. [11], Kim et al. [32], Oh et al. [46], Wan et al. [57]), our work here on improving677

acquisition functions is largely orthogonal to this (though the largest gains should be expected when678

using gradient-based optimizers, as is done in mixed-variable BO when conditioning on discrete679

variables, or when performing discrete or mixed BO using continuous relaxations, probabilistic680

reparameterization, or straight-through estimators [9]).681

Arguably the simplest approach to optimizing acquisition functions is by grid search or random search.682

While variants of this combined with local descent can make sense in the context of optimizing over683

discrete or mixed spaces and when acquisition functions can be evaluated efficiently in batch (e.g. on684

GPUs), this clearly does not scale to higher-dimensional continuous domains due to the exponential685

growth of space to cover.686

Another relatively straightforward approach is to use zeroth-order methods such as DIRECT [29] (used687

e.g. by Dragonfly [31]) or the popular CMA-ES [22]. These approaches are easy implement as they688

avoid the need to compute gradients of acquisition functions. However, not relying on gradients is689

also what renders their optimization performance inferior to gradient based methods, especially for690

higher-dimensional problems and/or joint batch optimization in parallel Bayesian optimization.691

The most common approach to optimizing acquisition functions on continuous domains is using692

gradient descent-type algorithms. Gradients are either be computed based on analytically derived693

closed-form expressions, or via auto-differentiation capabilities of modern ML systems such as694

PyTorch [47], Tensorflow [1], or JAX [5].695

For analytic acquisition functions, a common choice of optimizer is L-BFGS-B [6], a quasi-second696

order method that uses gradient information to approximate the Hessian and supports box constraints.697

If other, more general constraints are imposed on the domain, other general purpose nonlinear698

optimizers such as SLSQP [34] or IPOPT [56] are used (e.g. by BoTorch). For Monte Carlo (MC)699

acquisition functions, Wilson et al. [60] proposes using stochastic gradient ascent (SGA) based on700

stochastic gradient estimates obtained via the reparameterization trick [33]. Stochastic first-order701
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algorithms are also used by others, including e.g. Wang et al. [58] and Daulton et al. [9]. Balandat702

et al. [2] build on the work by Wilson et al. [60] and show how sample average approximation (SAA)703

can be employed to obtain deterministic gradient estimates for MC acquisition functions, which has704

the advantage of being able to leverage the improved convergence rates of optimization algorithms705

designed for deterministic functions such as L-BFGS-B. This general approach has since been used706

for a variety of other acquisition functions, including e.g. Daulton et al. [8] and Jiang et al. [28].707

Very few implementations of Bayesian Optimization actually use higher-order derivative information,708

as this either requires complex derivations of analytical expressions and their custom implementation,709

or computation of second-order derivatives via automated differentiation, which is less well supported710

and computationally much more costly than computing only first-order derivatives. One notable711

exception is Cornell-MOE [61, 62], which supports Newton’s method (though this is limited to712

the acquisition functions implemented in C++ within the library and not easily extensible to other713

acquisition functions).714

B.1 Common initialization heuristics for multi-start gradient-descent715

One of the key issues to deal with gradient-based optimization in the context of optimizing acquisition716

functions is the optimizer getting stuck in local optima due to the generally highly non-convex717

objective. This is typically addressed by means of restarting the optimizer from a number of different718

initial conditions distributed across the domain.719

A variety of different heuristics have been proposed for this. The most basic one is to restart from720

random points uniformly sampled from the domain (for instance, scikit-optimize [23] uses this721

strategy). However, as we have argued in this paper, acquisition functions can be (numerically) zero in722

large parts of the domain, and so purely random restarts can become ineffective, especially in higher723

dimensions and with more data points. A common strategy is therefore to either augment or bias the724

restart point selection to include initial conditions that are closer to “promising points”. GPyOpt [53]725

augments random restarts with the best points observed so far, or alternatively points generated via726

Thompson sampling. Spearmint [50] initializes starting points based on Gaussian perturbations of727

the current best point. BoTorch [2] selects initial points by performing Boltzmann sampling on a set728

of random points according to their acquisition function value; the goal of this strategy is to achieve a729

biased random sampling across the domain that is likely to generate more points around regions with730

high acquisition value, but remains asymptotically space-filling. The initialization strategy used by731

Trieste [48] works similarly to the one in BoTorch, but instead of using soft-randomization via732

Boltzmann sampling, it simply selects the top-k points. Most recently, Gramacy et al. [21] proposed733

distributing initial conditions using a Delaunay triangulation of previously observed data points. This734

is an interesting approach that generalizes the idea of initializing “in between” observed points from735

the single-dimensional case. However, this approach does not scale well with the problem dimension736

and the number of observed data points due to the complexity of computing the triangulation (with737

wall time empirically found to be exponential in the dimension, see [21, Fig. 3] and worst-case738

quadratic in the number of observed points).739

However, while these initialization strategies can help substantially with better optimizing acquisition740

functions, they ultimately cannot resolve foundational issues with acquisition functions themselves.741

Ensuring that acquisition functions provides enough gradient information (not just mathematically but742

also numerically) is therefore key to be able to optimize it effectively, especially in higher dimensions743

and with more observed data points.744

C Proofs745

Lemma 1. Suppose f is drawn from a Gaussian process prior Pf , y∗ ≤ f∗, µn, σn are the mean746

and standard deviation of the posterior Pf (f |Dn) and B ∈ R. Then with probability 1− δ,747

Px

(
µn(x)− y∗n

σn(x)
< B

)
≥ Px (f(x) < f∗ − ϵn) (7)

where ϵn = (f∗ − y∗n) +
(√

−2 log(2δ)−B
)
maxx σn(x).748
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Proof.
µn(x)− y∗

σn(x)
=

µn(x)− f(x)

σn(x)
+

f(x)− f∗

σn(x)
(22)

We proceed by bounding the first term on the right hand side. Note that by assumption, f(x) ∼749

N (µn(x), σn(x)
2) and thus (µn(x)− f(x))/ σn(x) ∼ N (0, 1). For a positive C > 0 then, we use750

a standard bound on the Gaussian tail probability to attain751

P

(
µn(x)− f(x)

σn(x)
> C

)
≤ e−C2/2/2. (23)

Therefore, (µ(x)− f(x))/σn(x) < C with probability 1− δ if C =
√
−2 log(2δ).752

Using the bound just derived, and forcing the resulting upper bound to be less than B yields a753

sufficient condition to imply µn(x)− y∗n < Bσn(x):754

µn(x)− y∗

σn(x)
≤ C +

f(x)− y∗

σn(x)
< B (24)

Re-arranging and using y∗ = f∗ + (y∗ − f∗) we get with probability 1− δ,755

f(x) ≤ f∗ − (f∗ − y∗n)− (
√
−2 log(2δ)−B)σn(x). (25)

Thus, we get756

Px

(
µn(x)− y∗n

σn(x)
< B

)
≥ Px

(
f(x) ≤ f∗ − (f∗ − y∗n)− (

√
−2 log(2δ)−B)σn(x)

)
≥ Px

(
f(x) ≤ f∗ − (f∗ − y∗n)− (

√
−2 log(2δ)−B)max

x
σn(x)

)
.

(26)
Note that the last inequality gives a bound that is not direclty dependent on the evaluation of the757

posterior statistics of the surrogate at any specific x. Rather, it is dependent on the optimality758

gap f∗ − y∗n and the maximal posterior standard deviation, or a bound thereof. Letting ϵn =759

(f∗ − y∗n)− (
√
−2 log(2δ)−B)maxx σn(x) finishes the proof.760

Lemma 2. [Approximation Guarantee] Given the temperature parameters τ0 and τmax, the approxi-761

mation error of qLogEI to qEI is bounded by762 ∣∣exp(qLogEI(x))− qEI(x)
∣∣ ≤ log(2) τ0 + qτmax − 1. (11)

Proof. Let ziq = ξ(xq)− y∗, where i ∈ {1, ..., n}, and for brevity of notation, and let lse, lsp refer763

to the logsumexp and logsoftplus functions, respectively, and ReLU(x) = [x]+. We then bound764

n|eqLogEI(x) − qEI(x)| by765 ∣∣∣∣∣exp(lsei(τmaxlseq(lspτ0(ziq)/τmax)))−
∑
i

max
q

ReLU(ziq)

∣∣∣∣∣
≤
∑
i

∣∣∣∣exp(τmaxlseq(lspτ0(ziq)/τmax))−max
q

ReLU(ziq)
∣∣∣∣

=
∑
i

∣∣∣∣∥softplusτ0(zi·)∥1/τmax
−max

q
ReLU(ziq)

∣∣∣∣
≤
∑
i

∣∣∣∣∥softplusτ0(zi·)∥1/τmax
−max

q
softplusτ0(ziq)

∣∣∣∣
+

∣∣∣∣max
q

softplusτ0(ziq)−max
q

ReLU(ziq)
∣∣∣∣

(27)

First and second inequalities are due to the triangle inequality, where for the second we used766

|a− c| ≤ |a− b|+ |b− c| with b = maxq softplus(ziq).767
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To bound the first term in the sum, note that ∥x∥∞ ≤ ∥x∥q ≤ ∥x∥∞d1/q, thus |∥x∥q − ∥x∥∞| ≤768

d1/q − 1, and therefore769 ∣∣∣∣∥softplusτ0(zi·)∥1/τmax
−max

q
softplusτ0(ziq)

∣∣∣∣ ≤ dτmax − 1.

The second term in the sum can be bound due to |softplusτ0(x) − ReLU(x)| ≤ log(2)τ0 (see770

Lemma 5 below) and therefore,771 ∣∣∣∣max
q

softplusτ0(ziq)−max
q

ReLUτ0(ziq)
∣∣∣∣ ≤ log(2)τ0.

Dividing Eq. (27) by n to compute the sample mean finishes the proof for the Monte-Carlo approx-772

imations to the acquisition value. Taking n → ∞ further proves the result for the mathematical773

definitions of the parallel acquisition values, i.e. Eq. (4).774

Approximating the ReLU using the softplusτ (x) = τ log(1 + exp(x/τ)) function leads to an775

approximation error that is at most τ in the infinity norm, i.e. ∥softplusτ − ReLU∥∞ = log(2)τ .776

The following lemma formally proves this.777

Lemma 5. Given τ > 0, we have for all x ∈ R,778

|softplusτ (x)− ReLU(x)| ≤ log(2) τ. (28)

Proof. Taking the (sub-)derivative of softplusτ − ReLU , we get779

∂xsoftplusτ (x)− ReLU(x) = (1 + e−x/τ )−1 −
{
1 x > 0

0 x ≤ 0

which is positive for all x < 0 and negative for all x > 0, hence the extremum must be at780

x, at which point softplusτ (0) − ReLU(0) = log(2)τ . Analyzing the asymptotic behavior,781

limx→±∞(softplusτ (x)−ReLU(x)) = 0, and therefore softplusτ (x) > ReLU(x) for x ∈ R.782

D Additional Empirical Details and Results783

D.1 Experimental details784

All algorithms are implemented in BoTorch. The analytic EI, qEI, cEI utilize the standard BoTorch785

implementations. We utilize the original authors’ implementations of single objective JES [25],786

GIBBON [45], and multi-objective JES [55], which are all available in the main BoTorch repository.787

All simulations are ran with 32 replicates and error bars represent ±2 times the standard error of788

the mean. We use a Matern-5/2 kernel with automatic relevance determination (ARD), i.e. separate789

length-scales for each input dimension, and a top-hat prior on the length-scales in [0.01, 100]. The790

input spaces are normalized to the unit hyper-cube and the objective values are standardized during791

each optimization iteration.792

D.2 Combining LogEI with TuRBO for High-Dimensional Bayesian Optimization793

In the main text, we show how LogEI performs particularly well relative to other baselines in high794

dimensionsional spaces. Here, we show how LogEI can work synergistically with trust-region based795

methods for high-dimensional BO, such as TuRBO [14].796

Fig. 13 compares the performance of LogEI, TuRBO-1 + LogEI, TuRBO-1 + EI, as well as the797

original Thompson-sampling based implementation for the 50d Ackley test problem. Combining798

TuRBO-1 with LogEI results in substantially better performance than the baselines. Since we799

optimize batches of q = 50 candidates jointly, we also increase the number of Monte-Carlo samples800

from the Gaussian process from 128, the BoTorch default, to 512, and use the fat-tailed smooth801

approximations of Sec. A.3 to ensure a strong gradient signal to all candidates of the batch.802
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Figure 13: Combining LogEI with TuRBO on the high-dimensional on the 50d Ackley problem
yields significant improvement in sample complexity. Unlike qEI, no random restarts are necessary
to achieve good performance when performing joint optimization of the batch (q = 50). Notably,
LogEI without TuRBO is comparable to the performance of TuRBO with Thompson sampling.

D.3 Constrained Problems803

While running the benchmarks using cEI in section 5, we found that we in fact improved upon a best804

known result from the literature. We compare with the results in Coello and Montes [7], which are805

generated using 30 runs of 80,000 function evaluations each.806

• For the pressure vessel design problem, Coello and Montes [7] quote a best-case feasible objective807

of 6059.946341. Out of just 16 different runs, LogEI achieves a worst-case feasible objective808

of 5659.1108 after only 110 evaluations, and a best case of 5651.8862, a notable reduction in809

objective value using almost three orders of magnitude fewer function evaluations.810

• For the welded beam problem, Coello and Montes [7] quote 1.728226, whereas LogEI found a811

best case of 1.7496 after 110 evaluations, which is lightly worse, but we stress that this is using812

three orders of magnitude fewer evaluations.813

• For the tension-compression problem, LogEI found a feasible solution with value 0.0129 after814

110 evaluations compared to the 0.012681 reported in in [7].815

We emphasize that genetic algorithms and BO are generally concerned with distinct problem classes:816

BO focuses heavily on sample efficiency and the small-data regime, while genetic algorithms often817

utilize a substantially larger number of function evaluations. The results here show that in this case818

BO is competitive with and can even outperforms a genetic algorithm, using only a tiny fraction of819

the sample budget. Sample efficiency is particularly relevant for physical simulators whose evaluation820

takes significant computational effort, often rendering several tens of thousands of evaluations821

infeasible.822

D.4 Parallel Bayesian Optimization with cross-batch constraints823

In some parallel Bayesian optimization settings, batch optimization is subject to non-trivial constraints824

across the batch elements. A natural example for this are budget constraints. For instance, in the825

context of experimental material science, consider the case where each manufactured compound826

requires a certain amount of different materials (as described by its parameters), but there is only827

a fixed total amount of material available (e.g., because the stock is limited due to cost and/or828

storage capacity). In such a situation, batch generation will be subject to a budget constraint that829

is not separable across the elements of the batch. Importantly, in that case sequential greedy batch830
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Figure 14: Optimization results on the nanomaterial synthesis material science problem with cross-
batch constraints. While qLogEI outperforms qEI under the proper constrained (“batch-constrained
Qtot”) optimization, this is not the case for the the heuristic (“random Qtot”), demonstrating the
value of both joint batch optimization with constraints and LogEI.

generation is not an option since it is not able to incorporate the budget constraint. Therefore, joint831

batch optimization is required.832

Here we give one such example in the context of Bayesian Optimization for sequential experimental833

design. We consider the five-dimensional silver nanoparticle flow synthesis problem from Liang834

et al. [39]. In this problem, to goal is to optimize the absorbance spectrum score of the synthesized835

nanoparticles over five parameters: four flow rate ratios of different components (silver, silver nitrate,836

trisodium citrate, polyvinyl alcohol) and a total flow rate Qtot.837

The original problem was optimized over a discrete set of parameterizations. For our purposes we838

created a continuous surrogate model based on the experimental dataset (available from https:839

//github.com/PV-Lab/Benchmarking) by fitting an RBF interpolator (smoothing factor of 0.01)840

in scipy on the (negative) loss. We use the same search space as Liang et al. [39], but in addition841

to the box bounds on the parameters we also impose an additional constraint on the total flow rate842

Qmax
tot = 2000 µL/min across the batch:

∑q
i=1 Q

i
tot ≤ Qmax

tot (the maximum flow rate per syringe843

/ batch element is 1000µL/min). This constraint expresses the maximum throughput limit of the844

microfluidic experimentation setup. The result of this constraint is that we cannot consider the batch845

elements (in this case automated syringe pumps) have all elements of a batch of experiments operate846

in the high-flow regime at the same time.847

In our experiment, we use a batch size of q = 3 and start the optimization from 5 randomly sampled848

points from the domain. We run 75 replicates with random initial conditions (shared across the849

different methods), error bars show ± two times the standard error of the mean. Our baseline is850

uniform random sampling from the domain (we use a hit-and-run sampler to sample uniformly from851

the constraint polytope
∑q

i=1 Q
i
tot ≤ Qmax

tot ). We compare qEI vs. qLogEI, and for each of the852

two we evaluate (i) the version with the batch constraint imposed explicitly in the optimizer (the853

optimization in this case uses scipy’s SLSQP solver), and (ii) a heuristic that first samples the total854

flow rates {Qi
tot}

q
i=1 uniformly from the constraint set, and then optimizes the acquisition function855

with the flow rates fixed to the sampled values.856

The results in Figure 14 show that while both the heuristic (“random Qtot”) and the proper constrained857

optimization (“batch-constrained Qtot”) substantially outperform the purely random baseline, it858

requires uisng both LogEI and proper constraints to achieve additional performance gains over the859

other 3 combinations. Importantly, this approach is only possible by performing joint optimization of860

the batch, which underlines the importance of qLogEI and its siblings being able to achieve superior861

joint batch optimization in settings like this.862
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Figure 15: Sequential (q = 1) optimization performance on multi-objective problems, as measured by
the hypervolume of the Pareto frontier across observed points. This plot includes JES [55]. Similar to
the single-objective case, qLogEHVI significantly outperforms all baselines on all test problems.

D.5 Details on Multi-Objective Problems863

We consider a variety of multi-objective benchmark problems. We evaluate performance on three864

synthetic biobjective problems Branin-Currin (d = 2) [4], ZDT1 (d = 6) [66], and DTLZ2 (d = 6)865

[10]. As described in 5, we also evaluated performance on three real world inspired problems. For866

the laser plasma acceleration problem, we used the public data available at Irshad et al. [27] to fit867

an independent GP surrogate model to each objective. We only queried te surrogate at the highest868

fidelity to create a single fidelity benchmark.869

D.6 Effect of Temperature Parameter870

In Figure 16, we examine the effect of fixed τ for the softplus operator on optimization performance.871

We find that smaller values typically work better.872

D.7 Effect of the initialization strategy873

Packages and frameworks commonly utilize smart initialization heuristics to improve acquisition874

function optimization performance. In Figure 17, we compare simple random restart optimization,875

where initial points are selected uniformly at random, with BoTorch’s default initialization strategy,876

which evaluates the acquisition function on a large number of points selected from a scrambled Sobol877

sequence, and selects n points at random via Boltzman sampling (e.g., sampling using probabilities878

computed by taking a softmax over the acquisition values [2]. Here we consider 1024 initial879

candidates. We find that the BoTorch initialization strategy improves regret for all cases, and that880

qLogEI, followed by UCB show less sensitivity to the choice of initializations strategy. Figure18881

examines the sensitivity of qEI to the number of initial starting points when performing standard882

random restart optimization and jointly optimizing the q points in the batch. We find that, consistent883

with our empirical and theoretical results in the main text, qEI often gets stuck in local minima for884

the Ackley test function, and additional random restarts often improve results but do not compensate885

for the fundamental optimality gap. The performance of qLogEI also improves as the number of886

starting points increases.887
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Figure 16: Ablation study on the convergence characteristics of LogEI on Ackley and sum of squares
(SOS) problems in 2 and 16 dimensions. The study shows that it is important to choose a small
τ0 for the best convergence properties, which results in a very tight approximation to the original
ReLU non-linearity in the integrand. Critically, setting τ0 as low as 10−6 is only possible due to the
transformation of all computations into log-space. Otherwise, the smoothed acquisition utility would
exhibit similarly numerically vanishing gradients as the original ReLU non-linearity.

CELL NETWORK BRANIN-CURRIN DTLZ2 LASER PLASMA ZDT1 VEHICLE SAFETY

JES 21.6 (+/- 1.1) 89.6 (+/- 3.3) 33.6 (+/- 1.0) 57.3 (+/- 0.7) 72.7 (+/- 1.0) 47.0 (+/- 1.6)
QEHVI 0.6 (+/- 0.0) 0.7 (+/- 0.0) 1.0 (+/- 0.0) 3.0 (+/- 0.1) 0.6 (+/- 0.0) 0.6 (+/- 0.0)
QLOGEHVI 9.2 (+/- 0.8) 10.0 (+/- 0.4) 5.8 (+/- 0.2) 31.6 (+/- 1.7) 7.2 (+/- 0.7) 2.1 (+/- 0.1)
RAND 0.2 (+/- 0.0) 0.2 (+/- 0.0) 0.2 (+/- 0.0) 0.3 (+/- 0.0) 0.3 (+/- 0.0) 0.3 (+/- 0.0)

Table 1: Acquisition function optimization wall time in seconds on CPU (2x Intel Xeon E5-2680 v4
@ 2.40GHz) . We report the mean and ± 2 standard errors.

27



0 100 200
0

5

10

Ac
kl

ey
Be

st 
ob

se
rv

ed
 v

alu
e

2D

EI - Random Init.
LogEI - Random Init.
GIBBON - Random Init.
JES - Random Init.
UCB - Random Init.

EI - Boltzmann Init.
LogEI - Boltzmann Init.
GIBBON - Boltzmann Init.
JES - Boltzmann Init.
UCB - Boltzmann Init.

0 100 200

2
4
6
8

10
12
14
16 8D

0 100 200
2
4
6
8

10
12
14
16 16D

0 100 200
Function Evaluations

1.5

1.0

M
ich

ale
wi

cz
Be

st 
ob

se
rv

ed
 v

alu
e

0 100 200
Function Evaluations

6

4

2

0 100 200
Function Evaluations

8

7

6

5

4

Figure 17: Sensitivity to the initialization strategy. Random selects random restart points from
the design space uniformly at random, whereas Boltzmann initialization is the default BoTorch
initialization strategy which selects points with higher acquisition function values with a higher
probability via Boltzmann sampling.
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Figure 18: Sensitivity to number of starting points with multi-start optimization for the 16D Ackley
and Levy test problems. Note: We plot negative regret, so higher is better.
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