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Abstract

Since developing a new Vision-Language LLM (VL-LLM) by pre-training on1

tremendous image-text pairs from scratch can be exceedingly resource-consuming,2

connecting an existing LLM with a comparatively lightweight visual prompt gen-3

erator (VPG) becomes a feasible paradigm. However, further tuning the VPG4

component of the VL-LLM still incurs significant computational costs, such as5

thousands of GPU hours and millions of training data points. An alternative so-6

lution is transferring an existing VPG from one VL-LLM to the target VL-LLM.7

In this work, we investigate VPG transferability across LLMs for the first time,8

aiming to reduce the cost of VPG transfer. Specifically, we explore VPG transfer9

across different LLM sizes (e.g., small-to-large) and types. We identify key factors10

to maximize transfer efficiency, based on which we develop a simple yet highly11

effective two-stage transfer framework, called VPGTrans. Notably, it enables12

VPG transfer from BLIP-2 OPT2.7B to BLIP-2 OPT6.7B with less than 10% of the13

GPU hours using only 10.7% of the training data compared to training a VPG for14

OPT6.7B from scratch. Furthermore, we provide a series of intriguing findings and15

discuss potential explanations behind them. Finally, we showcase the practical16

value of our VPGTrans approach, by customizing two novel VL-LLMs, including17

VL-LLaMA and VL-Vicuna, with recently released LLaMA and Vicuna LLMs.18
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Figure 1: (a) The general architecture of VL-LLMs, e.g., BLIP-2 [26] and PaLM-E [15], including
a visual prompt generator (VPG), a linear projector and a backbone LLM. Typically, to tune the
VL-LLM, only the VPG and the projector are updated, while the LLM is kept frozen. (b) This work
investigates the VPG transferability across LLMs, including different LLM sizes and LLM types.

1 Introduction19

Background. Recent years have witnessed a great rise in large-scale language models (LLMs) in20

ushering the human-like artificial intelligence. Text-based LLMs [35, 7, 37] are further enhanced by21

associating with other modalities such as vision, leading to the vision-language LLMs (VL-LLMs),22

e.g., BLIP-2 [26], Flamingo [2], GPT-4 [8] for multimodal dialog system, and PaLM-E [15] for23

embodied AI system. To construct a VL-LLM, a visual prompt generator (VPG) module (cf. Fig. 1(a))24
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that produces soft prompts for the input images/videos is added1 for bridging the gap between vision25

and language modalities. Currently, such architecture has been frequently adopted by many popular26

VL-LLMs. For example, BLIP-2 pre-trains a CLIP-ViT [36] combined with a Q-Former as VPG. To27

obtain the final VL-LLM, the VPG needs to be tuned. Ideally, the vast LLM backbone can remain28

untouched, leaving only the relatively lightweight VPG module to be fully or partially updated.229

Motivation. However, building a VL-LLM is inevitably computation-expensive, due to the huge30

overhead brought by the LLM. For example, training a BLIP-2 FlanT5XXL needs over 600 A100-GPU31

hours on over 100 million image-text pairs. Hopefully, transferring a pre-trained VPG (which is the32

main body of trainable parts) from an existing VL-LLM to a novel LLM instead of training from33

scratch,3 offers a promising solution. Intuitively, all the VL-LLMs literally can share the same VPG34

infrastructure and utility,4 which makes the VPG transfer theoretically feasible. In this work, we thus35

investigate the potential of transferring VPG across LLMs.36

Proposal. Specifically, this paper examines the transferability of VPG across LLMs 1) with different37

sizes (in the same type), i.e. , transfer across LLM sizes, and 2) across different LLM types, i.e. ,38

transfer across LLM type, as illustrated in Fig. 1(b).39

• [Transfer across LLM Sizes (TaS)]. It has been a typical practice for LLM-related research [8]40

to validate the training strategy and the hyperparameter on smaller models (e.g., OPT2.7B) and41

then scale up to larger ones (e.g., OPT6.7B). It thus is worth exploring whether a VPG trained on42

a smaller LLM can be transferred to a larger LLM, resulting in reduced computational costs &43

data, and maintaining comparable performance.44

• [Transfer across LLM Types (TaT)]. With a well-tuned VPG for a type of LLM, it is interesting45

to see if the VPG can be transferred to other types of LLMs even with different architectures46

(e.g., decoder v.s. encoder-decoder). If the transfer can be achieved, how to make it more47

efficient?48

We conduct a series of exploratory analyses (cf. §3.1) to identify the key factors for transfer efficiency.49

Based on our empirical study, we design a two-stage transfer learning framework (cf. §3.2), namely50

VPGTrans, that includes a projector warm-up (stage-1) and vanilla fine-tuning (stage-2). For stage-1,51

we find that the warming up projector before VPG tuning can effectively reduce the training step for52

adapting a pre-trained VPG to a new LLM, and avoid potential performance drop in the adaptation. To53

achieve an efficient warm-up, the projector will be well-initialized and then trained with an extremely54

large learning rate (5× lr). For stage-2, there is a vanilla fine-tuning of both the VPG and projector.55

Despite its simplicity, VPGTrans is able to significantly speed up the VPG-transfer process without56

harming performance.57

Results and Findings. Via extensive experiments on the transfer across LLM sizes and types (cf.58

§4 & §5), we gain the following key observations:59

• VPGTrans helps avoid the performance drop caused by direct inheriting the VPG and achieves60

at most 10 times acceleration for the small-to-large transfer across LLMs in the same type.61

• VPGTrans can also achieve comparable or better performance than training from scratch and62

achieve at most 5 times acceleration for the transfers between different model types.63

• Notably, our VPGTrans helps achieve a BLIP-2 ViT-G OPT2.7B→6.7B transfer with less than64

10% of the GPU hours and 10.7% training data required for the original model training.65

• Furthermore, our framework can even outperform the original BLIP-2 OPT6.7B on most of the66

evaluated datasets, with a +2.9 improvement on VQAv2 and a +3.4 improvement on OKVQA.67

Our investigation further reveals some intriguing findings, for which we provide possible explanations:68

• When conducting TaS from LLMsrc to LLMtgt, the size of LLMsrc is not the larger the better.69

The transfer sometimes even follows a counterintuitive principle of “the smaller LLMsrc’s size70

the more speed-up and better performance” (cf. §4.2).71

1Also including a linear projector for dimension matching.
2Note that Flamingo also inserts some tunable parameters into the LLM part, but recent works [26, 15] found

that freezing LLM can be more efficient.
3It is not a rigorous expression, because the VPG is typically a pre-trained model, like CLIP [36]. We use it

for simplicity in this paper.
4while the projector can not be shared due to the dimension mismatch.
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Figure 2: Comparing the cost between training VPG from scratch vs. transferring VPG via our
VPGTrans strategy. Note the LLM via VPGTrans is FlanT5XL→XXL and OPT2.7B→6.7B, respectively.

• When conducting TaT, efficient VPG transfer can not be achieved between two small LLMs72

with our VPGTrans, due to the large gap between small LLMs’ embedding space (cf. §5.2).73

Contributions. In this study, we for the first time show that effective VPG transfer across LLMs74

can be achieved under most conditions, suggesting that it is possible to build a new VL-LLM with75

considerably lower computational cost, as seen in Fig. 2. To summarize, we make the following key76

contributions:77

• Effective approach. We investigate the key factors for VPG-transfer efficiency and propose a78

two-stage transfer framework VPGTrans. The approach helps achieve highly-efficient VPG79

transfer across LLMs meanwhile with less training data and even task improvements.80

• Intriguing findings. By exploring the VPG transfer across LLMs, we reveal several intriguing81

findings and provide potential explanations that will shed light on further research.82

• Open source. We showcase how to customize a novel GPT-4-like VL-LLM with our VPGTrans83

(cf. §6), and release two multimodal-version VL-LLMs: VL-LLaMA and VL-Vicuna. All codes84

and models will be released later.85

2 Preliminary86

This section will first give a briefing on the existing prevailing VL-LLMs, and then elaborate on the87

settings of the exploratory analyses of these VL-LLMs.88

2.1 VL-LLM89

Architecture. As illustrated in Fig. 1(a), current VL-LLMs mostly adopt a common architecture,90

including a visual prompt generator (VPG), a projector, and a backbone LLM. Typically, VPG takes91

images/videos as inputs, and encodes the visual input into a fixed length of soft prompts. Then,92

a linear projector is employed to align the soft prompt’s dimension to LLM’s word embedding93

dimension. Finally, the LLM will generate sentences based on the information from the soft prompt.94

We list some of the recent representative VL-LLMs in Table 1.95

Table 1: VL-LLMs architectures and pre-training paradigm. †: it is a GPT-2-like LLM with relative
position embeddings.

VL-LLMs VPG VPG Trainable LLM LLM Trainable
KOSMOS-1 [17] CLIP [36] All Rand. Init. LM All
Frozen [47] NF-ResNet-50 [6] NF-ResNet-50 GPT-2-like† [35] No
Flamingo [2] NFNet-F6 [6]+Resampler [19] Resampler Chinchilla [16] Xattn-Dense
PaLM-E [15] ViT [14] / OSRT [42] All PaLM [11] No
BLIP-2 [26] EVA-CLIP [45] + Q-Former [26] Q-Former OPT [52] / Flan-T5 [12] No

Training Paradigm. Given a VL-LLM, typically the VPG and linear projector will be trained, fully96

or partially. For example, PaLM-E updates all of the parameters of VPG in the pre-training stage,97

while BLIP-2 and Flamingo freeze the ViTs and tune their Q-Former and Resampler, respectively.98

As the main part of the whole architecture, the LLM is usually frozen during the training or tuned99

only a small portion (e.g., 10B for Flamingo-80B). KOSMOS-1 is an exception, which does not use100

a pre-trained LLM but trains the LLM from scratch. Such a training paradigm typically results in101

much longer training time and data (both multimodal and pure text corpus). Recent works [26, 15]102

show that adopting an existing LLM and freezing all of its parameters can also achieve excellent103

performance with significantly reduced computational cost, which leads to the trend into frozen104

pre-trained LLM. For example, BLIP-2 FlanT5XXL (12.1B) can achieve better zero-shot VQAv2105
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Figure 3: Comparisons between i) inheriting VPG from OPT125M and training it with randomly
initialized projector for OPT350M and ii) training VPG and randomly initialized projector for OPT350M
from scratch.

performance (65.0% in Acc.) compared with KOSMOS-1 (51.0% in Acc.) and Flamingo-80B (56.3%106

in Acc.). Thus, in this paper, we mainly focus on VPG transfer across frozen LLMs.107

2.2 Experiment Settings108

Architecture. We adopt BLIP-2’s architecture and training paradigm. In our exploration experi-109

ments, we consider using the VPG that consists of a CLIP ViT-L/14 [36], and a Q-Former that has110

already undergone a BLIP-like pre-training (the 1st stage pre-training in BLIP-2’s paper [26]).111

Training Data. For all of the exploration experiments, we adopt human-annotated COCO caption112

dataset [28] and web image-text pairs SBU dataset [33], which results in 1.4 million image-text pairs.113

Transfer Direction. For the small-to-large model transfer among the same type LLMs, we investi-114

gate: 1) OPT [52] (decoder-only) series including 125M, 350M, 1.3B, and 2.7B, and 2) FlanT5 [12]115

(encoder-decoder) ranging base, large, and XL. For the transfer across different types of LLMs, we116

consider the ones of OPT and FlanT5 with similar sizes.117

Evaluation. To evaluate the performance of VL-LLMs, we choose two caption datasets: (1) COCO118

caption [28] (2) NoCaps [1], and three VQA datasets: (3) VQAv2 [4] (4) GQA [18] (5) OKVQA [30].119

We make evaluations after the pre-training without task-specific fine-tuning and report the CIDEr [48]120

for all caption tasks and accuracy for all VQA tasks.121

Implementation Details. We follow the same implementation details of BLIP-2, via the open122

code.5 Concretely, we use FP16 and BFloat16 for OPT and FlanT5 respectively in the model training.123

For the learning rate, we first conduct a linear warm-up from 1e-6 to 1e-4, and then use a cosine124

learning rate schedule with the minimal lr=1e-5 for 10 epochs. Due to the limited data amount, we125

slightly decrease the batch size, which we find beneficial for the final performance. Specifically, we126

set the batch size of 1,728 and 1,152 for OPT and FlanT5-based models, respectively.127

3 Maximizing the Transfer Efficiency with a Two-stage Transfer Strategy128

In this section, we first identify the key factors for maximizing transfer efficiency, based on which we129

then motivate our solution for better transfer.130

3.1 Exploratory Analysis: Identifying Key Factors for VPG Transfer131

Via selected experiments of small-to-large transfer among OPT models, we can obtain the following132

key observations. More systematical comparisons are conducted in the later section (cf. §4).133

• Inheriting the trained VPG can accelerate training. To demonstrate this, we compare the134

convergence rates of VPG training on OPT350M from scratch, and inheriting VPG trained on OPT125M.135

The patterns are shown in Fig. 3. Overall, we find that inheriting VPG trained on OPT125M accelerates136

convergence, particularly for two caption tasks. However, for datasets requiring fine-grained visual137

perception such as VQAv2 and GQA, directly conduct continue training with an inherited VPG will138

harm the performance. We hypothesize that tuning VPG with a randomly initialized projector will139

compromise the existing fine-grained visual perception ability of VPG. The possible reason can140

be that, the VPG is typically a pre-trained model with powerful visual perception ability, and thus141

updating based on the gradient passed through a random projector will mislead the VPG at the initial142

steps [2, 27, 21].143

5https://github.com/salesforce/lavis
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• Warming up the linear projector can prevent144

performance drop and expedite VPG training.145

To verify this, we first conduct a warm-up training146

of the linear projector for 3 epochs, during which147

both VPG and LLM are frozen. Subsequently, we148

jointly train VPG and the projector and plot the perfor-149

mance curve in Fig. 4 (the warm-up process is not150

included in this figure). The results show that the151

performance drop observed in Fig.3 can be avoided152

in Fig. 4. Additionally, we observe that the warm-153

up training leads to fewer training steps required for154

VPG and projector joint training. However, we must emphasize that warming up is a costly step. In155

the case of a large LLM, such as 6.7B, the trainable parameters of BLIP-2’s VPG will account for156

less than 10% of the total parameters, where freezing VPG can only lead to a reduction of 5.4% A100157

hours (36.9 out of 684.0 A100 hours). We will elaborate on how to accelerate the linear projector158

warm-up in our later discussion (cf. 3.1).159

• Initializing LLMtgt’s projector with the help of the word converter can accelerate the linear160

projector warm-up. In fact, the VPG and projector trained on LLMsrc have already learned how to161

map the visual content to LLMsrc’s understandable soft prompt [32]. If we can convert the LLMsrc’s162

soft prompt to LLMtgt’s soft prompt, we can directly get a VPG suitable for LLMtgt. One natural163

idea is to leverage the word embeddings of both models as a proxy for the soft prompt [23]. The164

intuition behind the scene is that, the soft prompt works in the same format as normal words.165

To validate our hypothesis, we conduct an experiment on the transfer from OPT125M to OPT1.3B.166

After training a linear word embedding converter (cf. §3.2(b)), we initialize the projector for OPT1.3B167

with the merged linear operation of the projector for OPT125M and converter. As shown in Table 2,168

we observe that the initialization can reduce the 3 epochs’ warm-up to 2 epochs.169

Table 2: Comparison between lin-
ear projector warm-up with/without
word embedding initialization. The
metric is COCO caption’s CIDEr.

Epoch w/ init. w/o init.

1 130.2 126.1
2 132.7 131.6
3 133.4 132.8

• Linear projector warm-up enables faster convergence170

with an extremely large learning rate. To determine the171

most efficient transfer practice, we experiment with training the172

projector using different learning rates. Surprisingly, we find173

that the linear projector enables fast and stable convergence174

with an extremely large learning rate. Specifically, by setting175

the learning rate to 5 times of the original value, the COCO176

caption’s CIDEr score can reach 133.1 with 1 epoch training,177

which is higher than the 3 epochs results of w/o init. as shown178

in Table 2.179

3.2 A Two-stage VPG Transfer Framework180

By connecting all the dots as discussed above in §3.1, we now design our two-stage VPGTrans181

framework for more efficient VPG transfer. As shown in Fig. 5, the stage-1 of VPGTrans performs182

projector warm-up and the stage-2 carries out a vanilla fine-tuning. Our results demonstrate that the183

VPGTrans is simple yet effective that can significantly speed up the transfer without compromising184

performance. Detailed results are given in the later sections (cf. §4 & 5).185

▶ Stage-1: Projector Warm-up.186

(a) Inherit VPG. We first initialize the VPG for LLMtgt with the VPG trained on LLMsrc.187

(b) Projector Initialization. Then, we initialize the projector for LLMtgt merged from the188

projector of LLMsrc and a linear word converter. Formally, we define the linear projector of LLMsrc189

as fs(x) = Wsx+ bs, the linear projector for LLMtgt as ft(x) = Wtx+ bt, and the word converter190

as gc(x) = Wcx+ bc.191

The word converter is a linear layer trained with text-only caption data to convert the LLMsrc’s word192

embeddings to LLMtgt’s word embeddings. We experiment with optimizing losses based on cosine193

similarity or Euclidean distance, and observe no significant difference between the two losses. Thus194

we simply use cosine similarity in our experiments. In cases where LLMsrc and LLMtgt use different195

tokenization methods, we optimize based on the overlapped tokens. Formally, for every given token196

k, we denote its word embeddings of LLMsrc and LLMtgt as xs and xt. Then, we minimize the loss:197

L = 1− sim(gc(xs), xt) . (1)
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Once we obtain the word converter gc(·), we can easily merge it with the projector of LLMsrc as:198

ft(x) = fs(gc(x)) = Ws(Wcx+ bc) + bs , (2)

resulting in ft’s weight and bias as Wt = WsWc and bt = Wsbc + bs.199

(c) Warm-up Training. Then, we only train the projector in this stage with a frozen VPG and200

LLM. Specifically, we train the projector for 1 epoch with 5 times of the normal learning rate.201

▶ Stage-2: Vanilla Fine-tuning.202

(d) Vanilla Fine-tuning. In the final step, we conduct a joint training of VPG and projector for n203

epochs with a normal learning rate.204

4 Exp-I: Transfer across Different Model Sizes205

In this section, we conduct experiments to systematically illustrate the effectiveness of our VPGTrans206

and analyze the relationship between transfer efficiency and model size. For simplicity, we use TaS207

to represent the transfer across different model sizes.208

4.1 Experimental Settings209

In this part, we introduce baselines and transfer variants. For details about training data and imple-210

mentation details, please refer to the experiment settings in the Preliminary (cf. 2.2).211

Baselines. We mainly compare our VPGTrans with training from scratch (TFS) and VPG inheri-212

tance (VPG Inherit), where we report their performance on the aforementioned 5 tasks without further213

task-specific fine-tuning. For our VPGTrans, the word converter training only requires updating a214

linear layer on tokenized text data and typically takes less than 10 minutes on 1 A100 GPU with less215

than 15G GPU memory. Meanwhile, freezing the VPG can lead to at least 14 A100 minutes speed-up216

per epoch. Therefore, we consider the whole stage-1 training as the 1st epoch for simplicity.217

Transfer Variants. We conducted experiments on transfer learning using 1) the OPT model across218

four different sizes: 125M, 350M, 1.3B, and 2.7B, and 2) the FlanT5 model across three sizes: base,219

large, and XL. However, we encountered significant instability during training with FlanT5large. As a220

result, we mainly present the transfer results between FlanT5base and FlanT5XL.221

4.2 VPGTrans Enabling Faster Convergence without Performance Drop under TaS222

First of all, as shown in Fig. 6, our VPGTrans can consistently accelerate the model convergence. For223

COCO caption and NoCaps that require more training steps to converge, our VPGTrans (green line)224

can be higher than the other two lines (blue and orange lines). To give a quantitative evaluation of the225

speed-up rate, we show the speed-up rate in Table 3. The speed-up rate is calculated by considering226

the number of epochs reduced to achieve the best TFS performance on a particular dataset. Formally,227

given a dataset D, TFS obtains the best performance p on D at epoch etfs, whereas VPGTrans228

first achieves a better performance than p at epoch evt. The speed-up rate on D is given by etfs
evt

.229

According to Table 3, our VPGTrans can achieve at least 4 times speed-up on 40% of Transfer-Task230
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Figure 6: Comparison between different methods across 3 TaS variants on 5 tasks. Note that the
model is directly evaluated after pre-training without further fine-tuning. Please refer to Appendix§C
for other transfer variants.

Table 3: The speed-up rate of our VPGTrans compared with training from scratch (TFS). The symbol
"-" means VPGTrans can not achieve better performance than TFS.

Transfer COCO Caption NoCaps VQAv2 GQA OKVQA

OPT125M→350M 1.7 3.0 1.0 5.0 5.0
OPT125M→1.3B 9.0 10.0 9.0 - 2.0
OPT350M→1.3B 4.5 5.0 9.0 2.0 2.0
OPT125M→2.7B 10.0 10.0 2.0 2.0 3.0
OPT350M→2.7B 10.0 10.0 2.0 - 3.0
OPT1.3B→2.7B 3.3 3.3 2.0 - 1.5
FlanT5base→XL 1.0 1.1 3.0 4.0 2.0

FlanT5XL → OPT2.7B 5.0 5.0 2.0 2.0 3.0
OPT2.7B → FlanT5XL 1.7 2.0 - 2.0 -

variants. Furthermore, for the two caption datasets, which take a long time to converge, our VPGTrans231

OPT125M→2.7B delivers a 10 times speed-up.232

Moreover, when compared with the VPG inherit in Fig. 6, our VPGTrans can achieve a higher233

speed-up rate on all of the variants on caption tasks, and achieve better performance on most variants234

except for OPT1.3B→2.7B. We refer the readers to Appendix§C.3 for more comparisons.235

We provide interesting findings with respect to the efficiency transfer by VPGTrans in the following.236

• The smaller size of LLMsrc, the easier the transfer. In our OPT based experiments, we notice an237

interesting phenomenon: when transferring to a given LLMtgt, both the convergence rate and optimal238

performance are roughly inversely proportional to the size of LLMsrc. For example, as shown in239

Table 3, the OPT125M→2.7B and OPT350M→2.7B have much higher speed-up rate than OPT1.3B→2.7B on240

all of the datasets. Meanwhile, as demonstrated in Fig. 6, the optimal performance of OPT125M→2.7B241

is better than OPT1.3B→2.7B on 3 VQA tasks.242

We hypothesize that training VPG on larger OPT will have a worse influence on VPG’s existing243

fine-grained perception ability, which might be caused by the enlarging embedding dimensions. To244

validate our hypothesis, we fix the VPG weight and only tune linear projectors to test VPGs trained245

on different LLMsrc through cross-size transfer. The SPICE [3] metric on COCO caption is used to246

evaluate the VPG’s visual perception ability, where SPICE is specifically designed for visual concept247

perception in captions. As shown in Fig. 7, for each row, given the LLMtar, the performance of248
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Table 4: Comparison between models built with our VPGTrans and the original BLIP-2 ViT-G
OPT6.7B and BLIP-2 ViT-G FlanT5XXL.

Models VQAv2 GQA OKVQA GPU hours training dataval test-dev test

BLIP-2 ViT-G OPT6.7B 54.3 36.4 36.4 631.5 129M
BLIP-2 ViT-G OPT2.7B→6.7B (ours) 57.2 36.2 39.8 59.0 13.8M
VL-LLaMA7B (ours) 58.1 37.5 37.4 67.1 13.8M

BLIP-2 ViT-G FlanT5XXL 65.2 44.7 45.9 684.0 121.6M
BLIP-2 ViT-G FlanT5XL→XXL (ours) 65.2 45.0 45.0 32.4 5.3M

1 2 3 4 5 6 7 8 9 10
epochs

0

20

40

60

80

100

120

C
ID

Er

COCO Caption
OPT350M  FlanT5base

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

0

20

40

60

80

C
ID

Er
NoCaps

OPT350M  FlanT5base

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

30

35

40

45

50

ac
c.

VQAv2
OPT350M  FlanT5base

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

25.0

27.5

30.0

32.5

35.0

37.5

40.0

ac
c.

GQA
OPT350M  FlanT5base

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

10.0

12.5

15.0

17.5

20.0

22.5

25.0

ac
c.

OKVQA
OPT350M  FlanT5base

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

105

110

115

120

125

130

135

140

C
ID

Er

COCO Caption
FlanT5XL  OPT2.7B

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

70

80

90

100

110

C
ID

Er

NoCaps
FlanT5XL  OPT2.7B

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

42

44

46

48

50

52

54

ac
c.

VQAv2
FlanT5XL  OPT2.7B

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

26

28

30

32

34

36

ac
c.

GQA
FlanT5XL  OPT2.7B

train from scratch
VPGTrans

1 2 3 4 5 6 7 8 9 10
epochs

18

20

22

24

26

28

30

ac
c.

OKVQA
FlanT5XL  OPT2.7B

train from scratch
VPGTrans

Figure 8: Comparison between different methods across 2 TaT variants on 5 tasks. Note that the
model is directly evaluated after pre-training without further fine-tuning. Please refer to Appendix§D
for other transfer variants.

VPG trained on smaller LLMsrc can outperform the larger ones in most conditions, which indicates249

a better visual perception ability of VPG trained on smaller LLMsrc. Therefore, adapting a VPG250

from a smaller OPT model which is less affected, is helpful to take fewer steps to reach the251

TFS’s best performance and achieve even better performance.252

4.3 Scale-up Experiments253
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Figure 7: The confusion ma-
trix. Only linear layers are
trained for VPG evaluation.
Models are tested on COCO
caption with SPICE metric to
compare the VPGs trained on
different LLMsrc.

To validate the effectiveness of our VPGTrans on the real-world254

application level, we experiment on transferring from BLIP-2 ViT-G255

OPT2.7B to OPT6.7B and from BLIP-2 ViT-G FlanT5XL to FlanT5XXL.256

Please refer to Appendix§C.4 for implementation details.257

Speed-up with non-degenerated performances. As shown in Ta-258

ble 4, we can see that (1) OPT2.7B→6.7B: our VPGTrans achieves a259

10.7 times speed-up with only 10.7% training data, while the perfor-260

mance on VQAv2 and OKVQA have over 2 points improvement. (2)261

FlanT5XL→XXL: VPGTrans can achieve 21.1 times speed-up with262

less than 5% training data while achieving the same performance263

on VQAv2, higher performance on GQA and slightly lower perfor-264

mance on OKVQA. Note that continuing training the FlanT5XL→XXL265

only shows improvement on VQAv2 and GQA. Thus, we do not266

show a checkpoint with more training steps.267

5 Exp-II: Transfer across Different Model Types268

In this section, we further investigate the transfer across different model types. For simplicity, we269

mark this type of transfer as TaT.270

5.1 Experimental Settings271

In this part, we introduce baselines and transfer variants. For details about training data and imple-272

mentation details, please refer to the experiment settings in the Preliminary (cf. 2.2).273
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How many people are in the image? 

There are two people in the image. 

What are they doing?

The two people in the image are both 
holding baseball bats and standing on 
a baseball field. One person is the 
pitcher, and the other is the catcher. 
The pitcher is holding the baseball bat 
and preparing to throw the ball to the 
catcher...

MiniGPT-4

How many people are in the image? 

There are three people in the image: the 
batter, the catcher, and the umpire. 

What are they doing?

The batter is standing in the batter’s 
box, holding a bat, and waiting for the 
pitcher to throw the ball. The catcher is 
standing behind the plate, holding the 
catcher’s mitt, and ready to catch the 
ball if the batter hits...

VL-Vicuna

Tell me anything you know 
about the man in the image. 

The man in the image is wearing a 
gray sweater and sitting in front of a 
fireplace. He has a serious expression 
on his face and is looking off into the 
distance. The room appears to be
dimly lit, with shadows cast on the 
walls and floor. There is a sense of 
stillness and quiet in the scene. 

MiniGPT-4

Tell me anything you know 
about the man in the image. 

The man in the image is an actor 
named Leonardo DiCaprio. He was 
born on November 11, 1974, in Los 
Angeles, California, USA. He is known 
for his roles in films such as Titanic, 
Inception, and The Wolf of Wall Street. 
DiCaprio has won several awards for 
his acting, including an Academy 
Award for Best Actor for his role in 
The Revenant. 

VL-Vicuna

Figure 9: Comparison between MiniGPT-4 and our VL-Vicuna.

Baselines. We mainly compare our VPGTrans with training from scratch (TFS), and report the274

performance on the aforementioned 5 tasks. Other details (cf. 4.1) are totally the same with TaS275

experiments.276

Transfer Variants. We conducted experiments on transfer learning between 1) OPT350M and277

FlanT5base, and 2) OPT2.7B and FlanT5XL.278

5.2 VPGTrans Enabling Faster Convergence only on Large LLMs under TaT279

• There is no speed-up of TaT between two small LLMs. A finding is that on TaT our VPGTrans280

does not show speed-up for small models, and even shows a degeneration of training speed in the281

initial several epochs. As shown in Fig. 8, when transferring from OPT350M to FlanT5base, the282

convergence speed of VPGTrans is even slower than TFS in the initial several epochs.283

• Speed-up of VPGTrans happens in large LLMs. However, when moving to the large LLMs like284

OPT2.7B and FlanT5XL, there is an obvious speed-up. As shown in Table 3, we can see at least 2 times285

speed-up when transferring from FlanT5XL to OPT2.7B. We empirically find that the soft prompts286

for larger LLM are more linear transferrable among different LLM types. As shown in Fig. 8,287

when transferring between FlanT5base and OPT350M, the VGPTrans’ 1st epoch results on two caption288

datasets are limited, where only a linear operation can be trained. The result of OPT350M→FlanT5base289

on the COCO caption is even near to zero. By contrast, the result of FlanT5XL→OPT2.7B with290

our VPGTrans are obviously higher than TFS. We hypothesize that larger LLM typically learned291

more generalizable text embeddings and share more similarity among relative word distances, which292

enables an easier VPG transfer.293

6 Customizing New VL-LLMs with Any LLMs294

Above, we thoroughly certify the efficacy of our proposed VPGTrans approach for higher efficient295

transfer of VPG. In this section, we illustrate how to apply the VPGTrans framework for VPG transfer296

to customize new VL-LLMs with any LLMs.297

VL-LLaMA. By applying our VPGTrans, we can equip the recently released LLaMA [46] model298

with a VPG trained on BLIP-2 OPT6.7B to perceive the visual information. As shown in Table 4, we299

can see that our VL-LLaMA can outperform the original BLIP-2 OPT6.7B on all datasets.300

VL-Vicuna. An exciting application of our VPGTrans is to build a GPT-4 [8] style multimodal301

conversation chatbot. To achieve our goal, we employ Vicuna [10] as our base LLM. Similarly, we302

transfer the VPG from BLIP-2 OPT6.7B, and add an extra instruction tuning using MiniGPT-4’s self-303

instruct data [54]. We compare our model with MiniGPT-4 in Fig. 9. When compared to MiniGPT-4,304

our VL-Vicuna shows better visual perception ability. Please refer to Appendix§E for more cases.305

7 Conclusion306

In this work, we conduct a comprehensive investigation to the problem of VPG transferability across307

LLMs. We first explore the key factors for maximizing the transfer efficiency under the VPG transfer308

across different LLM sizes and types. Based on the key findings, we propose a novel two-stage309

transfer framework, namely VPGTrans, which can help achieve comparable or better performance310

while significantly reducing training costs. Moreover, a list of important findings and possible reasons311

behind them are shown and discussed. Finally, we demonstrate the practical value of our VPGTrans,312

by customizing new VL-LLMs via VPG transfer from existing VL-LLMs.313
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A Related Work467

A.1 Vision and Language Models468

Vision and language models (VLMs) aim at understanding visual and textual information with a469

single model. Previously, the VLM mainly employs a pre-trained object detector as its feature470

extractor and conducts unsupervised training on a huge amount of image-text pairs. For example,471

VL-Bert [43], ViL-Bert [29] and Uniter [9] adopt Faster-RCNN [40] to extract image information472

into object features and take advantage of the masked language model as their pre-training task.473

Later, due to the prevalence of vision transformer (ViT), the VLM paradigm is turned into end-to-end474

training with a ViT as the visual encoder. The representative works include ALBEF [24], BLIP [25],475

and BEIT-v3 [49], which show the state-of-the-arts supervised training performance on a wide range476

of downstream tasks.477

Recently, LLMs have shown their remarkable capability as zero/few-shot learners [7] and a series478

of emergent abilities [50] like in-context learning [7], and chain-of-thoughts reasoning [51]. A479

new paradigm, i.e., VL-LLMs is created by associating the VLM or pure vision encoders with480

LLMs. As we illustrated before, the VLM or visual encoders are typically able to convert the481

input vision signals into LLM-understandable soft prompts, and thus we call them VPG. The VL-482

LLMs advance in inheriting the great potentials of the backbone LLMs, and thus are capable of483

achieving excellent zero/few-shot performances [2, 26] on downstream tasks or be equipped with484

visual planning ability [15]. However, connecting the VPG to the existing LLMs with further tuning485

is costly. Even the BLIP-2 [26], targeted at efficient training, will take over 600 A100 GPU hours486

on over 100M image-text pairs for its largest model. With this regard, our proposed VPGTrans can487

effectively reduce the cost of building new VL-LLMs with the help of existing ones.488

A.2 Prompt Transfer489

In this paper, we investigate the VPG transfer, where the soft prompt is to represent the content of490

specific inputs like images and videos. In addition to the content prompt, the more explored soft491

prompt is the task prompt [22, 53, 20], where a sequence of soft prompts are tuned to assist the492

pre-trained models to achieve better performance on specific tasks. There have already been some493

works exploring the transferability of task prompts. For example, Su et al. [44] conducts a series494

of experiments to illustrate the transferability across tasks and models. Specifically, Su et al. [44]495

find that the transfer between similar tasks is beneficial for training speed-up and better performance.496

Lester et al. [23] proposes to recycle soft prompts across models with vocab-to-vocab transformations,497

or linear-combination transformations. Note that our word converter initialization is similar to the498

idea of vocab-to-vocab transformations. However, we do not observe a zero-shot transfer in our499

experiments like them, which indicates a potential difference between the content prompts and task500

prompts. Another way of soft prompt transfer [13] is to conduct prompt tuning on discrete prompts,501

and thus the discrete prompts can be directly shared across models. Different from these task prompts502

transfer works, our VPG transfer scenario actually suffers from fewer limitations. For example, the503

task soft prompts transfer suffers from the dimension change problem, where the main body of the504

trainable parameters should be processed. However, our VPG (the main trainable parameters) can505

naturally be shared among LLMs with different embedding dimensions and leave the dimension506

change problem to a simple projector with ignorable parameters.507

B Extended Findings in Exploratory Analysis508

In this section, we show extended findings of exploratory analysis (cf. §3.1).509

• 1. Merely tuning the projector can not achieve the best performance. We want to clarify that510

merely tuning the projector is insufficient for achieving the best performance. Notably, as shown in511

Fig. 10, significant performance gaps are observed between the “only linear” (green curve) and “train512

from scratch” (orange curve) approaches for COCO caption and NoCaps. Therefore, if the goal is to513

build a multimodal conversation robot using carefully collected dialog data, training only the linear514

projector is insufficient to align with the provided data.515

13



1 2 3 4 5 6 7 8 9
epochs

100

110

120

130

ac
c.

COCO Caption

VPG inherit
train from scratch
only linear

1 2 3 4 5 6 7 8 9
epochs

60

70

80

90

100

ac
c.

NoCaps

VPG inherit
train from scratch
only linear

1 2 3 4 5 6 7 8 9
epochs

36

38

40

42

44

ac
c.

VQAv2

VPG inherit
train from scratch
only linear

1 2 3 4 5 6 7 8 9
epochs

26

28

30

32

34

ac
c.

GQA

VPG inherit
train from scratch
only linear

1 2 3 4 5 6 7 8 9
epochs

12

13

14

15

16

17

18

19

ac
c.

OKVQA

VPG inherit
train from scratch
only linear

Figure 10: Comparisons between i) inheriting VPG from OPT125M and training it with randomly
initialized projector for OPT350M and ii) training VPG and randomly initialized projector for OPT350M
from scratch. iii) training only the projector.

Figure 11: Interpreting generated soft prompts for OPT125M with nearest words.

• 2. Word embedding converter can not replace a trained linear projector. As demonstrated516

in Fig. 11, we observe a common pattern: the last token of soft prompts is closest to EOS, while517

the middle tokens represent the image content. Such a phenomenon indicates a similarity between518

soft prompts and word embeddings. However, they are not identical. For instance, the norm of soft519

prompts is typically around 10 times the average norm of word embeddings. It is important to note520

that the linear projector initialization cannot replace the warm-up training. Using only the linear521

projector initialization even yields a random performance. We believe that a better understanding of522

how prompt works will further benefit the VPG’s transfer learning.523

• 3. The projector warm-up is robust to a larger learning rate, while VPG can not. The first524

thing we want to clarify is that the 5 times normal learning rate will result in a training crash for525

VPG. Additionally, we find that although increasing the learning rate to 10 times in the projector526

warm-up does not yield any additional acceleration, the projector can converge without crashing527

during training.528

C Extended TaS Experiments529

In this section, we first illustrate extending findings of TaS experiments (cf. §4). Then, we introduce530

the implementation details of scale-up experiments. We also plot a more complete version of Fig. 6531

in Fig. 13.532

C.1 VPGTrans Enabling Stable Training under TaS533

As we illustrated before, FlanT5large training is extremely unstable. Even when the learning rate534

is adjusted to one-tenth of its original value, the model does not converge or shows a very slow535

convergence rate after 4 epochs. However, we find that by lowering the learning rate for stage-2536

training, our VPGTrans can achieve stable training on FlanT5large. We plot the performance curve of537

the COCO caption in Fig. 12.538

C.2 VPGTrans Enabling Training with Less Data under TaS539

We empirically find that TaS can reduce the requirement for the amount of training data. By reducing540

the training data to only COCO, we find no obvious performance drop. However, we want to stress541

that the retained data should be of high quality, which means that if the same number of SBU data542
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Figure 12: Comparison of training FlanT5large using different methods.

Table 5: The speed-up rate of our VPGTrans compared with VPG inherit. The symbol "-" means
VPGTrans can not achieve better performance than VPG inherit.

Transfer COCO Caption NoCaps VQAv2 GQA OKVQA

OPT125M→350M 1.1 2.7 10.0 6.0 6.0
OPT125M→1.3B - 2.7 - - -
OPT350M→1.3B - 1.7 1.0 2.0 1.0
OPT125M→2.7B 3.0 3.0 3.0 1.0 3.0
OPT350M→2.7B 3.3 4.5 1.0 1.0 1.0
OPT1.3B→2.7B 2.3 3.0 - - -
FlanT5base→XL - 1.0 1.8 9.0 0.4

is retained, the performance especially for captioning will drop. The conclusion can also be found in543

Table 4. We refer the readers to the next subsection for more details.544

C.3 Comparison between VPGTrans and VPG Inherit545

As shown in Fig. 13, the green line (our VPGTrans) can be higher than the orange line (VPG inherit)546

for the majority of various conditions. Especially when considering the best performance of different547

tasks, our VPGTrans can achieve better performance than VPG inherit (non “-” in Table 5) for over548

74% Transfer-Task variants. Moreover, among the variants that our VPGTrans can achieve better549

performance, our VPGTrans can also achieve a speed-up on 69.2% conditions.550

C.4 Scale-up Experiment Implementation Details551

The scale-up experiment refers to the results in Table 4. We try to imitate BLIP-2’s pre-training data552

composition. First of all, two human-annotated datasets COCO and VG are used. SBU is also used.553

Then, BLIP-2 uses BLIP to generate captions for the 115M web images and rank them with CLIP554

ViT-L/14. We also adopt similar synthetic data from Laion-COCO.6 We report the concrete number555

of data we use in Table 4. For the stage-1 training, we keep the same as the previous validation556

experiments where COCO and SBU are used for warm-up with a 5 times the learning rate. Then,557

we use COCO, VG, and Laion-COCO for the stage-2 training. Note that we have tried to include558

Laion-COCO and VG for the stage-1 training, but found no obvious difference and thus use COCO559

and SBU for simplicity. For VL-Vicuna, to align with the conversation scenario, we further fine-tune560

our VL-Vicuna with MiniGPT-4’s self-instruct data, which is 3,439 image-text pairs.561

6https://laion.ai/blog/laion-coco
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Figure 13: Comparison between different methods across 7 TaS variants on 5 tasks. Note that the
model is directly evaluated after pre-training without further fine-tuning.
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Table 6: Comparison between tuning only the projector (i.e. linear transfer) and the best results the
VPGTrans achieve.

Transfer COCO Caption VQAv2
linear best linear best

FlanT5base → OPT350M 110.8 136.5 40.4 44.2
FlanT5XL → OPT2.7B 132.1 139.3 50.4 50.3
OPT350M → FlanT5base 1.1 122.1 34.0 49.9
OPT2.7B → FlanT5XL 106.5 133.2 51.3 53.5

D Extended TaT Experiments562

In this section, we mainly illustrate extending findings of TaT experiments (cf. §5). We plot a more563

complete version of Fig. 8 in Fig. 14.564

D.1 Linear Transfer Gap between Different LLM’s Visual Prompts565

As illustrated in Section 5.2, it is more difficult to transfer between two small LLMs with our566

VPGTrans due to the weaker linear transferability between two small LLMs’ visual prompts. To567

better support our results, we compare the results of tuning only the projector (i.e. linear transfer) and568

the best results the VPGTrans can achieve. As shown in Table 6, we can see that when conducting569

transfers between two large models (OPT350M and FlanT5base), the performance is typically far570

from the optimal results. However, when we transfer between OPT2.7B and FlanT5XL, the linear571

performance is near to the optimal performance. There is a 25.7 points gap between FlanT5base →572

OPT350M’s linear and best on COCO caption datasets but only 7.2 points gap between FlanT5XL573

→ OPT2.7B’s linear and best. If considering the transfer between the small to large LLMs under574

TaT, both the VPG’s visual perception ability and transfer gap should be considered. We leave the575

systematical exploration for future works.576

E Extended Results for VL-LLM Customization577

We show more comparisons between VL-Vicuna and MiniGPT-4 in Fig. 15. We can see that our578

VL-Vicuna has better visual perception ability. For example, when MiniGPT-4 falsely recognizes579

the three people in the image as two in the first example, our VL-Vicuna can not only recognize the580

number of people but also tell their roles. Moreover, our VL-Vicuna can successfully link the vision581

content with external knowledge. In the third example, our VL-Vicuna can recognize Leonardo and582

link the content with his films like Titanic.583

F Potential Impact and Limitations584

Our VPGTrans is designed for building new VL-LLMs with lower computational cost, i.e., shorter585

training time and less training data. With an already pre-trained VL-LLM, VPGTrans enables fast586

VPG transfer to build either a larger VL-LLM or a VL-LLM with a different type of LLM. We587

hope VPGTrans can facilitate teams in LLM communicty to customize their VL-LLMs with reduced588

cost. There are also possible limitations of the current version of VPGTrans. The first one is that589

our VPGTrans should rely on some already-aligned VPGs. The second potential limitation is that590

the VPGTrans-built VL-LLMs still suffer from the common problems of content generation AI591

systems [38, 39, 41, 7]. For example, the VL-Vicuna may make up some sentences with falsely592

recognized visual facts, like what is shown in Fig. 16. It is worth exploring associating our VPGTrans593

with training safer models [5, 34, 31].594
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Figure 14: Comparison between different methods across 4 TaS variants on 5 tasks. Note that the
model is directly evaluated after pre-training without further fine-tuning.
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How many people are in the image? 

There are two people in the image. 

What are they doing?

The two people in the image are both holding 
baseball bats and standing on a baseball field. 
One person is the pitcher, and the other is the 
catcher. The pitcher is holding the baseball bat and 
preparing to throw the ball to the catcher. The 
catcher is standing behind the home plate and 
holding the glove, ready to catch the ball. 

How many people are in the image? 

There are three people in the image: the batter, the 
catcher, and the umpire. 

What are they doing?

The batter is standing in the batter’s box, holding a 
bat, and waiting for the pitcher to throw the ball. 
The catcher is standing behind the plate, holding 
the catcher’s mitt, and ready to catch the ball if the 
batter hits it. The umpire is standing behind the 
catcher, holding the umpire’s mask, and ready to 
make a call on any balls and strikes. 

MiniGPT-4 VL-Vicuna

What is written in the middle sign? 

The sign says “Pike Place” and points in the 
direction of the building in the background. 

What does this mean? 

This sign is indicating the location of Pike Place, 
which is likely a street or location in the city. The 
arrow on the sign points in the direction of the 
building in the background, which is likely a high-
rise apartment or office building. 

What is written in the middle sign? 

The middle sign says “Pike PI” 

What does this mean? 

“Pike PI” is likely a reference to the intersection of 
Pike Place and Pine Streets in downtown Seattle, 
Washington. 

Tell me anything you know about the 
man in the image. 

Tell me anything you know about the 
man in the image. 

The man in the image is an actor named Leonardo 
DiCaprio. He was born on November 11, 1974, in 
Los Angeles, California, USA. He is known for his 
roles in films such as Titanic, Inception, and The 
Wolf of Wall Street. DiCaprio has won several 
awards for his acting, including an Academy Award 
for Best Actor for his role in The Revenant. 

The man in the image is wearing a gray sweater 
and sitting in front of a fireplace. He has a serious 
expression on his face and is looking off into the 
distance. The room appears to be dimly lit, with 
shadows cast on the walls and floor. There is a 
sense of stillness and quiet in the scene. 

Figure 15: Comparison between MiniGPT-4 and our VL-Vicuna.
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Please describe the image. 

The image is of a three-tiered wedding cake on a 
wooden table. The cake is decorated with white 
frosting and red berries. The table is cluttered with 
plates, silverware, and a vase of flowers. The room 
appears to be a reception area or banquet hall. 
The lighting is bright and well-lit, casting shadows 
on the table and the cake. 

When is it now in the image? 

I’m sorry, but as an AI language model, I don’t have 
the ability to determine the current time based on 
the image you’ve provided. However, I can tell you 
that the image appears to be of a bar or restaurant 
with a clock on the wall. 

Failure Cases

Figure 16: Failure cases of our VL-Vicuna.
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