A EM Procedure for Multiple Means

We show that the Bayesian EM procedure provides sensible estimates of the regularization parameter
even in the setting of the normal multiple means problem with known variance o2. In this setting, the
LOOCY is unable to provide any guidance on how to choose A due to all the information for each
regression parameter being concentrated in a single observation. We use the 7 parameterisation of
the hyperparameter, rather than 72, as the resulting estimator has an easy to analyse form.

In the normal multiple means model, we are given (y;|5;) ~ N(3;,1), i.e., y is a p-dimensional
normally distributed vector with mean 3 and identity covariance matrix. The conditional posterior
distribution of 3 is:

Bly.m ~ N((1=r)y,0*(1 - x)) amn

where k = 1/(1+ 7'2). Under this setting, Strawderman [43] proved that if p > 3, then any estimator

of the form ) )
p—
I —|y||2> —) y (18)
( <2 [yl[?

where 0 < r (% |y |2) < 2 and r(-) is non-decreasing, is minimax, i.e., it dominates least-squares.
We will now show that our EM procedure not only yields reasonable estimates in this setting, in
contrast to LOOCY, but that these estimates are minimax, and hence dominate least-sqaures.

For the normal means model, we can obtain a closed form solution for the optimum 7, by solving for
the stationary point for which 7441 = 7, with 7 ~ C (0, 1):

argmin {Eg[—log p(y|B,7) —log p(B|7) —log 7(7)]} =T
w

52 + log(1 + 7'2)} =T

arg min {g log 72 +

w—p+/p? + 8w + 2pw + w?
2(2+p) -

and with w = Y% | E[87] = (1 — k)%s + (1 — k)p, s = [|y||* and 7 = |/ L==. This yields

11—k

\/(\/p((ﬁ “ 2% _8r 1 8) — 2(k — 1)%s((r — 2)p —4) 1 (h — 1% — kp + (k — 1)25)
2(2 +p)

with solution x = (p + 2)/s. Plugging this  solution into (17), we note that the resulting estimator
of 3 (17) is of the form (18) with

1 p+2 p—2
(5m?) = (52) 7 (52)
(2 [y[|? Iyl|?
_pt2
= p_— 5
As we have r (% [y |2) < 2 when p > 6, the EM ridge estimator is minimax in this setting for p > 6.

B Proof of Theorem 3.1

We prove that for sufficiently large n, a continuous injective reparameterization of the negative log
joint posterior of (5) & (7) is convex when restricted to 72 > €. This is sufficient, since unimodality
is preserved by strictly monotone transformations and continuous injective reparameterizations.

Specifically, for the presented hierarchical model, the negative log joint posterior up to an additive
constant is

n+p+2 p+2—2a ., IBII?
v gre =7y

2 5 8T T g2

and reparameterising with ¢ = 8/, p = 1/o and Y = 1/7 and reorganising terms yields

Ixol*
l

+ (a + b)log(1 + 72)

1
logo? + ﬁﬂy - XBI” +

~ 1
—(n+p+2)logp— (p+2 —2a)log x + (a+ b)log(1 + x 2)+§||py—Xq.’>||2+
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The first three terms can easily be checked to be convex via a second derivative test, for which the
convexity of the second term is contingent on the condition that a < 1 + p/2, a condition that holds
true in our specific scenario with a = b = 1/2. For the last two terms, the combined Hessian is of
block form [A, B; BT, C] with A = XTX + x*I,,, B = 2x¢, and C = ||¢||?. Symmetric matrices
of this form are positive definite if A and its Schur complement

C-B"A 'B=¢|® —4¢"(X"X/* +1,) ¢
are positive definite. Clearly, A is positive definite. Moreover, for n > 4/(e27,), we have

P XTX/XP+ )T = ¢t (VETEVT /i + )71
=o' V(E'E/N?+ )TV
< ¢TVVT¢X2/(TWH)
= (T=VV)g+ VVT0)TVV 2 /(ny,)
= [VVTl°x*/ (nyn)
< [18l1°x*/ (nyn)
< [|ol*/(e*nyn)
< loll*/4

where we used the fact that VVT is the orthogonal projection onto the column space of V. The
overall inequality implies the required positivity of the Schur complement.

C Derivation of Equation 9

C.1 Derivation of ESN

Here we show that
P

P
> B3 170,67 = tr (Covl]) + Y E[8)
j=1

j=1
= o’tr(A7Y) + (18-

This is a rather straightforward proof. We use the fact that given a random variable x; the expected
squared value of z is E [#?] = Var[z] + E[z]’.

C.2 Derivation of ESS
Here we show that
Ep|lly = X812 | #,6*"] = [ly = X E[8] > + tx(X"X Cov[8)) (19)

We first provide an important fact on the quadratic forms of random variables in Lemma C.1 below:

Lemma C.1. Let b be a p-dimensional random vector and A be a p-dimensional symmetric matrix.

IfE[b] = pand Var(b) = %, then E[bTAb| = tr(AX) + pTAp.
Now, we expand the left-hand side of Equation 19 :
Esllly - X8II°] =Ep[(y - XB)" (y - XB)]
=EBgly'y —2y"Xp + 8" X X4
=y'y -2y ' XE[g] + E[3" XX 3] (20)
The use of lemma C.1 allows Equation 20 to be rewritten as
Ep[lly — XBIP°] = y"y — 2y"XE[8] + E[8]" (X"X)E[8] + tx(X"X Cov[3])
= |ly = X E[8] |* + tz(X"X Cov[3])
=|ly = X 8. + o ?tr(XTXAY)

T
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D Solving for the parameter updates (Derivation of Equation 11)

Rather than solving a two-dimensional numerical optimization problem (10), we show that given
a fixed 72, we can find a closed formed solution for o2, and vice versa. To start off, we need to
find the solution for o2 as a function of 72. First, find the negative logarithm of the joint probability
distribution of hierarchy (5):

arg min {Eg[—log p(y|X, 8,0°) —log p(B|r*,0*) —log p(c?) —log 7(7%)]}. (1)

Dropping terms that do not depend on ¢ yields:
arg min {Eg[—log p(y| X, #,0%) —log p(B|7*,0*) —log p(c*)] }

= argmin{(nT—’—p) logo? + ESS + ES—N + logJQ}

2 202 20272

. n—+p+2 5 ESS  ESN
= arggrznm { (T) logo® + Eyo) + 29272 [ (22)

Solving the above minimization problem involves differentiating the negative logarithm with respect
to o2 and solving for o2 that set the derivative to zero. This gives us:

s, {<n+p+2>log02+E_SS+ ESN}_O

Oo? 2 202 20272
2+n+p ESS B ESN 0
202 2(02)2  2(02)272
2
.o T°ESS+ ESN
= - — 2
T o 23

Next, to obtain the M-step updates for the shrinkage parameter 72, we repeat the same procedure -
find the negative logarithm of the joint probability distribution and remove terms that do not depend
on either o2 or 72

arg min {Eﬁ[— log p(y|X,B,02) — log p(ﬂ|7’2,02) — log p(02) —log 71'(7'2)]}

) n+p+2 , ESS ESN p 9 5. logT?
:argTrznm{(T)loga +F+m+§logr +log(l14+7 )+T (24)

Substiting the solution for o2 (23) into equation (24), yields a Q-function that depends only on 72.
We eliminate the dependency on o2 by finding the optimal o2 as a function of 72 and substitute it
into the Q-function of (24):

.1 9 9 ESN + 72ESS
rcu"gTrzmn{2 [(1 +p)log7® +2log(1 +7°) 4+ (n+p+2) (1 + log ( mp 2
(25)

Differentiating (25) with respect to 72 and solving for the 72 that set the derivative to zero yields:

a (1 5 5 ESN + 72ESS _
5,2 {2 [(1+p)logr +2log(1+7°)+(n+p+2) <1+log<(n+p+2)7_2>>}} =0

(3ESS + ESSp)(72)? 4 (ESN — ESNn 4 ESS + ESSp)7? — ESN — ESNn
272(1 + 72)(ESN + 12ESS)

(26)

The 72 update is the positive solution to the quadratic equation (in terms of 72) (26):

> (n—=1)ESN — (1 + p)ESS + \/(4n + 4)ESN(3 + p)ESS + ((1 — n)ESN + (p + 1)ESS)?
T (6 + 2p)ESS
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Table 3: Pseudo-code of EM algorithm with complexity of individual steps.

EM Algorithm with SVD Operations

Input: Standardised predictors X € R™*P, centered targets y € R™ and convergence
threshold € > 0
Output: 3 € RP

r = min(n,p) o(1)
IFp>n
[U, %, V] =svd(X) O(mr?)
S2 = (Eila'-'azg,r) O(T)
c=(UTy)os O(nr)
ELSE
[V, 22] = eigen(XTX) O(mr?)
52 = (E%,h e 7272",7>) O(T)
c=VTXTy O(np)
Y =y'y O(n)
21 0(1)
0% — (1/n) S0, (i =), 7= (1/n) Tz, s O(n)
RSS « o0 o)
DO
RSSoia < RSS O(k)
: %
o T 1 O(kr)
(E-step)
T T 1
ESN «+ ;af +o° (;W + 72 max(p — n, 0)) O(kr)
RSS «+ Y —QZajcj +Za?s§ O(kr)
j=1 j=1
T 82
ESS «+ RSS + o2 ZTJT_Q O(kr)
j=1"7
(M-step)
g < (4n +4)ESN (3 + p)ESS + ((1 — n)ESN + (p + 1)ESS)? O(k)
(n —1)ESN — (14 p)ESS + /g
2
T ] (6 + 2p)ESS O(k)
5 T°ESS +ESN
T rpror O(k)
|RSSo1a — RSS|
0 1+ mss) Olk)
until § < e
c;
Qi $— —832- +J1/T2 O(k’l‘)
B=Va« O(pr)
return 3
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Table 4: Pseudocode of the fast LOOCV algorithm with complexity of individual steps. R has
column vectors r; for 1 < j <.

Fast LOOCYV ridge with SVD Operation

Input: Standardised predictors X € R™*P, centered targets y € R"™ and a grid of
penalty parameters L = (A1, A, ..., \)
Output: 8 € RP

i girﬁ(n,p) 0o(1)
[U, 3, V] =svd(X) O(mr?)
S = (21717 ey ET,T,) O(T)
R = (s1uy,...,su,) O(nr)
c=(UTy)os O(nr)
ELSE
[V, 3?] = eigen(XTX) O(mr?)
s*=(%%,,...,%2,) O(r)
R =XV O(nrp)
c = RTy O(m“)
U= (r1/s1,-..,0r/5) O(nr)
forNe L{
- 53 2 ,
hizz 2o ) Y (t=1,...,n) O(lnr)
j=1 \J
Y
o = T o(lr)
e=y - Ra O(lnr)
1 " €; 2
CVE(\) =~ ; (1 — h) O(In)
}
Find \* = argmin {CVE())} o(l)
AEL
.y
= 53 —If A* o(r)
B=Va O(pr)
return 3
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E Supplementary Results Material

E.1 Real Datasets Details

Table 5: Real datasets details

DATASETS ABBREVIATION n D TARGET VARIABLE SOURCE

Buzz IN SOCIAL MEDIA (TWITTER) TWITTER 583250 77 mean number of active discus- UCI
sion

BLOG FEEDBACK BLoG 60021 281 number of comments in the next UCI
24 hours

RELATIVE LOCATION OF CT SLICES CT SLICES 53500 386  reference: Relative image loca- UCI

ON AXIAL AXIS tion on axial axis

Buzz IN sOCIAL MEDIA (ToM’s ToMsSHw 28179 97 Mean Number of display UCI

HARDWARE)

CONDITION-BASED MAINTENANCE OF  NPD - coMm 11934 16 GT Compressor decay state co- UClI

NAVAL PROPULSION PLANTS efficient

CONDITION-BASED MAINTENANCEOF ~ NPD - TUR 11934 16  GT Turbine decay state coeffi- UCI

NAVAL PROPULSION PLANTS cient

PARKINSON’S TELEMONITORING PT - MOTOR 5875 26 motor UPDRS score UCI

PARKINSON’S TELEMONITORING PT - TOTAL 5875 26 total UPDRS score UClI

ABALONE ABALONE 4177 8 Rings (age in years) UClI

COMMUNITIES AND CRIME CRIME 1994 128  ViolentCrimesPerPop UCI

AIRFOIL SELF-NOISE AIRFOIL 1503 6 Scaled sound pressure level UClI
(decibels)

STUDENT PERFORMANCE STUDENT 649 33 final grade (with G1 & G2 re- UCI
moved)

CONCRETE COMPRESSIVE STRENGTH  CONCRETE 1030 9 Concrete compressive strength UCI
(MPa)

FOREST FIRES F.FIRES 517 13 forest burned area (in ha) UCI

BOSTON HOUSING B.HOUSING 506 13 Median value of owner- [21]
occupied homes in $1000’s

FACEBOOK METRICS FACEBOOK 500 19 Total Interactions (with com- UCI
ment, like, and share columns
removed)

DIABETES DIABETES 442 10 quantitative measure of disease [13]
progression one year after base-
line

REAL ESTATE VALUATION R.ESTATE 414 7 house price of unit area UCI

AUTO MPG A MPG 398 8 city-cycle fuel consumption in UClI
miles per gallon

YACHT HYDRODYNAMICS YACHT 308 7 residuary resistance per unit UCI
weight of displacement

AUTOMOBILE A.MOBILE 205 26  price UCI

RAT EYE TISSUES EYE 120 200  the expression level of TRIM32 [39]
gene

RIBOFLAVIN RIBO 71 4088  Log-transformed riboflavin pro- [9]
duction rate

CROP CROP 24000 3072 24 crop classes UCR

ELECTRIC DEVICES ELECD 16637 4096 7 electric devices UCR

STARLIGHT CURVES STARL 9236 7168 3 starlight curves UCR
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Figure 3: Comparison of predictive performance (R?) of EM algorithm (x-axes) against CV with

fixed grid (y-axes, top) and glmnet heuristic (y-axis, bottom). Columns correspond to the results of
linear features (left), second-order features (middle), and third-order features (right). Negative values
are capped at 0. Points skewing toward the bottom right indicate when our EM approach is giving
better/same prediction performance as LOOCYV (colored in green).
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