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Abstract

Graph convolutional networks (GCN) with one or two hidden layers have been
widely used in handling graph data that are prevalent in various disciplines. Many
studies showed that the gain of making GCNs deeper is tiny or even negative. This
implies that the complexity of graph data is often limited and shallow models
are often sufficient to extract expressive features for various tasks such as node
classification. Therefore, in this work, we present a framework called graph con-
volutional kernel machine (GCKM)1 for graph-based machine learning. GCKMs
are built upon kernel functions integrated with graph convolution. An example
is the graph convolutional kernel support vector machine (GCKSVM) for node
classification, for which we analyze the generalization error bound and discuss
the impact of the graph structure. Compared to GCNs, GCKMs require much
less effort in architecture design, hyperparameter tuning, and optimization. More
importantly, GCKMs are guaranteed to obtain globally optimal solutions and have
strong generalization ability and high interpretability. GCKMs are composable, can
be extended to large-scale data, and are applicable to various tasks (e.g., node or
graph classification, clustering, feature extraction, dimensionality reduction). The
numerical results on benchmark datasets show that, besides the aforementioned
advantages, GCKMs have at least competitive accuracy compared to GCNs.

1 Introduction

Graph data are prevalent in science and engineering. In recent years, neural networks and deep
learning methods have shown promising performance in handling various graph data. Graph Neural
Networks (GNNs) have been developed into various basic frameworks, including famous GCN
[Kipf and Welling, 2017], GIN [Xu et al., 2019], GraphSAGE [Hamilton et al., 2017], GAT
[Velickovic et al., 2018], etc. As one of the most attractive GNN paradigms, GCN, the graph
convolutional network [Kipf and Welling, 2017], has gained widespread attention since it was
proposed. Many widely developed domains like machine learning [Chen et al., 2023b; Cai et
al., 2022; Fan et al., 2022; Fan, 2022b], data mining [Chang et al., 2021; Fan, 2021; Wu et
al., 2022], computer vision [Guan et al., 2022; Cai and Fan, 2022; Wu et al., 2023], etc., have
also made extensive use of numerous GCN variants. Despite the better performance compared
to classical graph methods (e.g., DeepWalk [Perozzi et al., 2014], LINE [Tang et al., 2015] and
node2vector [Grover and Leskovec, 2016]), some recent studies have pointed out a few draw-
backs of GCNs [Wang et al., 2020; Bo et al., 2021; Wang et al., 2023]. Perhaps the failure of
deep GCNs is the most notorious one that severely restricted the further development of GCNs.
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Figure 1: Accuracy and standard devi-
ations of deep GCNs, SGC, and GCN
with diverse layer/hop numbers.

Containing both the self features and pair-wise relations of
entities, graph is viewed as a more complex non-Euclidean
data type, so there is a natural and wide desire to construct
deeper GCNs. Unfortunately, the performance of GCN
decreases when stacking more graph convolutional layers,
which is defined as the so-called over-smoothing issue [Li
et al., 2018]. For instance, even a 7-layer GCN will in-
evitably generate indistinguishable node embeddings and
lead to over 30% accuracy degradation [Liu et al., 2020].
Recently, some methods modifying the basic structure of
GCN have been proposed to handle the over-smoothing
issue and make GCN deeper [Xu et al., 2018; Klicpera et
al., 2019; Yang et al., 2022]. Indeed, most of them have
successfully alleviated the over-smoothing issue. But it
seems counter-intuitive that these elaborate deep GCNs,
which stack dozens or even hundreds of layers, can only
laboriously maintain the performance that a 2-layer vanilla
GCN achieves easily. We apply some GCNs to a node
classification experiment on Cora following the settings of
the original GCN, as shown in Figure 1. APPNP [Klicpera et al., 2019] and JKNet [Xu et al., 2018]
are two well-known models that attempted to pass information from shallow layers to the final output
but benefited very limited from the deep neural networks. These explorations raise a question:

Do we really need deep GCNs in common graph-based tasks?

Actually, there have also been some efforts paid to simplifying GCN, showing comparative effec-
tiveness to vanilla GCN, like SGC [Wu et al., 2019], which removed nonlinearity and collapsed
weight matrices to accelerate GCN. Impressively, it gained equal or even better performance on the
benchmark graph datasets, which can partially be observed in Figure 1. Inspired by the success of
SGC, some research moved further to decouple the graph convolution by individually performing an
MLP (usually 2-layer) and several (can be hundreds) neighbor aggregations, called decoupled-style
GCN [Nt and Maehara, 2019; Wang et al., 2021]. All these works revealed that simple GCNs
can achieve encouraging performance on commonly used graph datasets such as Cora, Citeseer,
and Pubmed [Sen et al., 2008]. In these datasets, the numerical node features and the adjacency
matrices are already discriminative, which means further feature extractions via neural networks do
not improve the performance significantly.

However, SGC removes the nonlinearities of GCN and essentially becomes a linear classifier in
terms of features given by neighbor aggregations, which may limit the possibility of extending to
more complex tasks. In general, considering the limitations of the deep GCNs and SGC, one can
conclude that: 1⃝ the neighbor aggregation is essential for GCNs; 2⃝ a simple feature mapping is
helpful and sufficient but should be expressive enough. These two points as well as the effectiveness
of kernel methods in various machine learning problems [Cortes and Vapnik, 1995; Schölkopf et
al., 1998a; Fan and Chow, 2020; Fan et al., 2022; Fan, 2022a] inspire us to establish a general and
simple kernel-based framework, termed Graph Convolutional Kernel Machine (GCKM), for graph
data. GCKM incorporates implicit feature mapping induced by kernels and neighbor aggregation
over graphs, providing a new paradigm for graph-based machine learning. The main contributions of
this work are summarized as follows:

• We propose a GCKM framework for graph-based learning. GCKM takes advantages of
kernel learning and graph learning. Compared to GCNs, GCKMs have lower computational
costs, higher interpretability, stronger theoretical guarantees, and stabler performances.

• We provide a generalization error bound for GCKM-based node classification and prove
that graph structure can tighten this bound, both theoretically and empirically.

• We provide a few variants of GCKM that are useful in various graph-based learning problems
such as node clustering and node embedding.

• We extend GCKMs to graph-level learning such as graph classification.

Comprehensive experiments demonstrate that the proposed GCKMs are as powerful as the state-
of-the-art GCNs and significantly surpass several GCN-based methods on node semi-supervised
classification and clustering tasks.
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Notations Given an undirected attributed graph G = (V, E), where V and E are the vertex set and
edge set, respectively, and |V| = n is the number of nodes. The node features are represented as
matrix X = [x1,x2, . . . ,xn]

⊤ ∈ Rn×m, where xi ∈ Rm denotes the column feature vector of node
i. And edges can be described by an adjacency matrix A ∈ Rn×n, where Aij = 1 if there exists an
edge connecting node i and j, otherwise Aij = 0. We use Ai to denote the i-th row of A. We denote
the self-looped adjacency matrix as Ã = A + I. The degree matrix corresponding to diagonal Ã
is denoted by D̃ ∈ Rn×n, where D̃ii = Σn

j=1Ãij . ∥ · ∥ denotes the Euclidean norm of vector. Let
yi ∈ {0, 1}k be the label vector of node i and Y = {yi : ∀i ∈ L}, where L denotes the index set
of labeled nodes. For node classification, the task is to learn a model fΘ(·) from X, A, and Y to
classify the unlabeled nodes.

2 Related Work

Vanilla and Deep GCNs. Kipf and Welling [2017] proposed GCN which further developed ChebyNet
[Defferrard et al., 2016] and formulated an efficient and effective graph convolutional operation. Up
to now, numerous studies have tried to explore and interpret GCN, and a widely applied description
of GCN decoupled the graph convolution into the following two steps

H̄(l+1) = AGGREGATE
({

G;H(l)
})

= ÂH(l),

H(l+1) = TRANSFORM
(
H̄(l+1)

)
= σ

(
H̄(l+1)W(l)

)
,

(1)

where H(l) and H(l+1) are the input and output representations of the l-th layer. Â = D̃− 1
2 ÃD̃− 1

2

is the renormalized adjacency matrix and σ(·) is an activation function, e.g. ReLU(·). These two
operations compose the layer-wise propagation of GCN, but plenty of research has revealed that
constructing a GCN with more such layers would deteriorate the performance. Li et al. [2018]
first pointed out the over-smoothing issue is the key point of this phenomenon, that is, repeatedly
multiplying the input node features by adjacency matrix eventually makes them more and more
similar, resulting in indistinguishable node embeddings. This view has been broadly acknowledged,
and many studies have been conducted on how to solve the over-smoothing issue. APPNP [Klicpera
et al., 2019] considered the relationship between GCN and PageRank to design a new aggregation
scheme, and improve the performance of deep GCN. JKNet [Xu et al., 2018] is another famous
model for the same goal, which enabled each node to adaptively gain information from different hops
of neighborhood. Nevertheless, different from the well-known deep CNNs, these approaches only
alleviate the performance degradation but hardly benefit from the deep layers. More work on deep
GCNs can be found in [Chen et al., 2020; Sun et al., 2021; Chen et al., 2023a; Xu et al., 2023].

Simplified GCNs. Although GCN put forward a simple formula of forward propagation rule, its
mechanisms have not been fully discussed and may contain redundant computation, which suggests
simplified GCNs. Among these, SGC [Wu et al., 2019] removed the nonlinearity of GCN and
only retained one learnable weight, so that built a faster model by precomputing the powers of the
adjacency matrix. Wu et al. [2019] reported some interesting results that this intuitive way can still
achieve the powerful expressive ability of vanilla GCN even with a relatively small solution space.
Following this work, some decoupled-style GCNs have been designed, which decouple the two
processes in (1) and then only stack the aggregation step while reducing the transformations. For
example, Nt and Maehara [2019] claimed that graph structure only provided a denoising approach
and GCN and SGC only performed low-pass filtering on node features. They then proposed gfNN to
improve SGC from the perspective of graph signal processing. Liu et al. [2020] hypothesized that the
coupling of these two operations causes not only more computations but also the over-smoothing
issue, and introduced DAGNN by processing graph data via an MLP separately before performing
the neighbor aggregation. In light of DAGNN, Dong et al. [2021] further analyzed the mechanism of
decoupled GCNs, concluding the effectiveness of this kind of simplifying approaches.

3 Graph Convolutional Kernel Machine

3.1 General Framework

GCN can be decoupled as two key steps: neighbor aggregation and feature transformation, as
formulated in (1). The former is a fixed operation and only the feature transformation contains the
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Figure 2: Overview of the proposed Graph Convolutional Kernel Machine (GCKM).

learnable weights W(l), and it has been discovered that stacking these two operations significantly
damaged the performance. Therefore, some research has been dedicated to solving this problem and
making GCN deeper, but to little avail. On the other hand, various simplified GCNs reduced the
learnable parameters and are competitive to those deeper GCNs, and SGC even simplified the feature
transformation to one weight matrix without activation functions. In other words, despite the larger
solution space provided by the nonlinearity and more learnable weights, improperly designed feature
transformations may cause significant performance deterioration, while reduction of weights can lead
to comparable power. Meanwhile, the representative SGC may be less expressive to cope with more
complex data owing to its linear classifier. So it is crucial to present a light model by exploring an
effective as well as efficient feature transformation approach.

Neighbor aggregation is commonly regarded as the pivotal component and makes the node rep-
resentations more compact. Paired with a feature map to low-dimensional space, it may lead to
indistinguishable node representations between different classes. Thus, to guarantee discrimina-
tive node representations, we propose to map node features to a higher-dimensional space via a
transformation operation

TRANSFORM
(
X) := ϕ(X) = [ϕ(x1), ϕ(x2), . . . , ϕ(xn)]

⊤, (2)

where ϕ : Rm → RM is a feature mapping and M > m. Explicitly designing a ϕ is usually costly
especially when M is very large or even infinity. Instead, we can take advantage of kernels that can
induce ϕ implicitly. Let k : X × X → R be a kernel function, we have

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ = ϕ(x)⊤ϕ(x′). (3)

Thus we can obtain a kernel matrix of X as

K =

 k(x1,x1) · · · k(x1,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)

 . (4)

There are many kernel functions available and each kernel function induces a specific feature map ϕ.
For instance, the ϕ induced by a polynomial kernel k(x,x′) = (x⊤x′ + a)b is a b-order polynomial
feature map; the ϕ induced by a Gaussian kernel k(x,x′) = exp

(
−∥x− x′∥2/(2σ2)

)
is an infinity-

order polynomial feature map, namely, M = ∞.

We can alternatively perform the neighbor aggregation and the transformation (2), and obtain a
layer-wise formulation of graph convolutional kernel machine as follows

H̄(l+1) = AGGREGATE
({

G;H(l)
})

= ÂqH(l),

H(l+1) = TRANSFORM
(
H̄(l+1)

)
= ϕ(l)(H̄

(l+1)),
(5)

where ϕ(l) is the l-th implicit feature map induced by a kernel k(l) and the corresponding kernel

matrix is K(l+1) = H(l+1)H(l+1)⊤. Here the q-th power of Â is adopted to allow several times
graph convolution. Formulation (5) can be easily extended to multi-layer cases, but H(l+1) is actually
implicit and we calculate the kernel matrix K(l+1) directly in practice. It is necessary to discuss
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the connection between K(l+1) and K(l) and how to derive K(l+1) layer by layer with only kernel
matrices. Thus we will take the Gaussian kernel as an example, give the recursive formulation, and
show how to derive the corresponding formulation in terms of kernel matrices. With a Gaussian

kernel, we have K(l+1)
ij = exp

(
− ∆

(l+1)
ij

2σ2
(l+1)

)
, (i, j) ∈ [n]× [n], where ∆

(l+1)
ij =

∥∥h̄(l+1)
i − h̄

(l+1)
j

∥∥2
is an element from ∆(l+1), which is a squared distance matrix of H̄(l+1). By a series of derivations
(deferred to Appendix A), we have

∆(l+1) = dK̄(l+1)1⊤
n + 1nd

⊤
K̄(l+1) − 2K̄(l+1), (6)

where K̄(l+1) = ÂqK(l)(Âq)⊤ and dK̄l+1 = [K̄
(l+1)
11 , K̄

(l+1)
22 , . . . , K̄

(l+1)
nn ]⊤. Thus the recursive

formulation can be summarized asK̄(l+1) = ÂqK(l)(Âq)⊤,

K(l+1) = exp

(
−∆(l+1)

2σ2
(l+1)

)
.

(7)

Particularly, we define K(0) = XX⊤. Based on (7), GCKM with Gaussian kernels can be easily
generalized to multi-layer cases. It is worth noting that similar compositions also apply to other
kernels such as polynomial kernel and Laplace kernel, which will not be detailed here.

After obtaining the kernel matrix K(L) from an L-layer GCKM, we can use Support Vector Machine
(SVM) [Cortes and Vapnik, 1995] to perform node classification. Generally, SVM aims to solve

min
w,ξ

1

2
∥w∥2 + λ

n

n∑
i=1

ξi s.t. yi ⟨φ(xi),w⟩ ≥ 1− ξi, ξi ≥ 0, ∀i = 1, . . . , n, (8)

where yi ∈ {+1,−1} denotes the target label of training data i and ξi are the slack variables for the
training data, and φ is a feature map. The Lagrangian dual problem is

max
c

n∑
i=1

ci −
1

2

n∑
i=1

n∑
j=1

cicjyiyjφ(xi)
⊤
φ(xj) s.t.

n∑
i=1

ciyi = 0, 0 ≤ ci ≤
λ

n
. (9)

Invoking K(L) into (9), whereφ(xi) = ϕ(L)((h̄
(L)
i )⊤), we obtain the following optimization problem

of GCKM with L layers for node classification:

max
c

n∑
i=1

ci −
1

2

n∑
i=1

n∑
j=1

cicjyiyjK
(L)
ij s.t.

n∑
i=1

ciyi = 0, 0 ≤ ci ≤
λ

n
. (10)

For convenience, we call (10) graph convolutional kernel SVM (GCKSVM). Compared to GCN
which is nonconvex, GCKSVM is convex and hence we can find its global optimal solution easily.
In addition, kernel methods often have higher interpretability than neural networks and stronger
generalization guarantees. Compared to SGC which is a linear classifier with respect to the final node
representation, GCKSVM is a nonlinear classifier and hence is expected to perform better when the
data are not linearly separable. Further justification and discussion will be presented in Figure 3 and
its related explanations.

3.2 Generalization Bounds of GCKSVM for Node Classification

We analyze the generalization ability of GCKSVM for node classification. Different from [Bartlett
and Shawe-Taylor, 1999; Bartlett and Mendelson, 2002; Grønlund et al., 2020] that focuses on the
primary problem of SVM, we focus on the dual problem, otherwise, the graph structure does not
explicitly present in the bound.

Let ĉ be the solution to (10) and denote the corresponding w as ŵ, where we use the Gaus-
sian kernel for GCKSVM. Denote S be the set of training data drawn from some distribution
D. Let LS(ĉ,K

(L)) := Pr(φ(x),y)∼S [y⟨φ(x), ŵ⟩ ≤ 1] be the training error and LD(ĉ,K
(L)) :=

Pr(φ(x),y)∼D[sign(⟨φ(x), ŵ⟩) ̸= y] = Pr(φ(x),y)∼D[y⟨φ(x), ŵ⟩ ≤ 0] be the expected test error. We
have the following generalization error bound.
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Theorem 1. Denote the index set of the support vectors as V = {i : 1 ≤ i ≤ n, ĉi ̸= 0}. For any
0 < δ < 1, it holds with probability at least 1− δ over a set of n samples S ∼ D that

LD(ĉ,K
(L)) ≤ LS(ĉ,K

(L)) +O

(
η lnn+ ln(1/δ)

n
+

√
η lnn+ ln(1/δ)

n
· LS(ĉ,K(L))

)
,

(11)
where η =

∑
i∈V ĉ

2
i +

∑
i∈V

∑
j∈V\i,yi=yj

ĉiĉjK
(L)
ij −

∑
i∈V

∑
j∈V,yi ̸=yj

ĉiĉjK
(L)
ij ≤ λ2|V|2

n2 .

The proof for the theorem is in Appendix B. In the theorem, K
(L)
ij = exp

(
−

∥(Âq)iH
(L−1) − (Âq)jH

(L−1)∥2/(2σ2
L)
)
, which shows the direct connection between the error

bound and graph. Empirically (see Appendix F.6), we find that given a fixed λ, the graph convolution
reduces the number of support vectors |V| and has minor influence on the training error LS(ĉ,K

(L)),
which eventually reduces the upper bound of test error. The fundamental reason is that incorporating
the graph structure significantly improved the quality of the kernel matrix K(L), in which the overall
within-class similarity becomes much larger than the between-class similarity. In other words, the
kernel matrix becomes more discriminative, which can be verified by Figure 4.

Note that the number of support vectors |V| in SVM is data-dependent and in order to theoretically
show the influence of graph convolution on |V|, we have to make the following assumption:

Assumption 1. The aggregation step with graph G increases the inner product between the kernel
feature maps of samples in the same class and reduces or does not change the inner product between
the kernel feature maps of samples in different classes.

This is a reasonable assumption because a useful graph should make the samples from different
classes more distinguishable or at least make the samples from the same class more similar.

Theorem 2. Given a graph G that satisfies Assumption 1, let φ and φG be the kernel feature
maps without and with aggregation on graph G respectively. The corresponding negative La-
grangian dual objectives (to minimize) are denoted as L(c) := 1

2

∑n
i=1

∑n
j=1 cicjqij −

∑n
i=1 ci,

where qij = yiyjφ(xi)
⊤
φ(xj) and LG(c) := 1

2

∑n
i=1

∑n
j=1 cicjq

G
ij −

∑n
i=1 ci, where qGij =

yiyjφG(xi)
⊤
φG(xj). We have

LG(c) ≥ L(c) +R(c), (12)

where R(c) ≥ 0 is a regularization term inducing sparsity in c.

The proof as well as the details about R(c) are in Appendix C. According to Theorem 2, the
aggregation step introduces an additional sparse regularization term R(c), which will make c sparser,
or in other words, reduce the number of support vectors |V|. Considering both the theoretical and
empirical results, we conclude that graph convolution leads to a tighter generalization error bound,
which verifies the effectiveness of our GCKSVM. By the way, the interpretability of GCKSVM is
higher than that of GCN, owing to the support vectors.

3.3 Extensions

Besides SVM, our method can be generalized to many other machine learning problems. We show a
few examples of node-level learning in the following context.

• GCKM for Spectral Clustering (GCKSC) For node clustering, it is natural to perform
spectral clustering [Ng et al., 2001; Von Luxburg, 2007] using the kernel matrix K(L).
Instead of using the generally dense matrix K(L), we retain only the largest values of each
column to obtain a sparse matrix K̂(L), which often yields better clustering performance.

• GCKM for Principal Component Analysis (GCKPCA) It is straightforward to conduct
Kernel PCA [Schölkopf et al., 1998b] using K(L), where the principal components can be
used as the representations of the nodes of G. Please refer to Appendix F.5 for experiments.

• We can also adapt GCKM to other learning models such as self-expressive models [Elhamifar
and Vidal, 2013], Fisher linear discriminant analysis [Fisher, 1936], canonical correlation
analysis [Hardoon et al., 2004], etc.
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Now we extend GCKM to graph-level learning. Suppose we have a set of graphs G =

{G1,G2, . . . ,GN}, where |Vg| = ng, g = 1, 2, . . . , N . For each Gg, we use (7) to obtain K
(L)
g

as well as the implicit node-level representations H
(L)
g . For each Gg, we compute the implicit

graph-level representation as the summation of node-level representations, i.e.,

u(L)
g = (H(L)

g )⊤1ng
, g = 1, 2, . . . , N. (13)

Then for any two graphs Gg,Gg′ , we have

K(L)
gg′ := (u(L)

g )⊤u
(L)
g′ = 1⊤

ng
H(L)

g (H
(L)
g′ )⊤1ng′ = 1⊤

ng
K

(L)
gg′ 1ng′ , (14)

where K
(L)
gg′ ∈ Rng×ng′ can be computed using (5) recursively. Consequently, we can obtain a

graph-level kernel matrix as

K(L)
G =

[
K(L)

gg′

]
(g,g′)∈[N ]×[N ]

=

1
⊤
n1

· · · 0
...

. . .
...

0 · · · 1⊤
nN



K

(L)
11 · · · K

(L)
1N

...
. . .

...
K

(L)
N1 · · · K

(L)
NN


1n1 · · · 0

...
. . .

...
0 · · · 1nN

 (15)

Using (14) to compute K(L)
G has a high time complexity of N(N − 1)/2 and using (15) has a high

space complexity of O((
∑N

g=1 ng)
2). To reduce the cost, we can perform (15) on mini-batchs of G.

We have the following result (proved in Appendix D)

Proposition 1. Suppose k(L) is a Gaussian kernel with 0 < σL <∞. Then K(L)
G is positive definite.

K(L)
G can be applied to various graph-level learning tasks such as graph classification and clustering.

3.4 Fast and Explicit Feature Transformation for GCKM

GCKMs can be stacked as multi-layer model and applied to a wide range of tasks by calculating
the kernel matrix, and has the advantages of being fast, explainable, and requiring few parameters.
Despite this, the time and space complexities of GCKM are O(n2), which limits the application to
very large graph datasets. To tackle this issue, we consider approximating the kernel by

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ ≈ ⟨ψ(x), ψ(x′)⟩, (16)

where ψ(·) is a low-dimensional map using Random Fourier Feature [Rahimi and Recht, 2007]. The
following theorem provides the key foundation of this approximation method:
Theorem 3 (Bochner’s theorem [Rudin, 1994]). A continuous kernel k(x,x′) = k(x− x′) on Rm is
positive definite if and only if k(δ) is the Fourier transform of a non-negative measure.

Specifically, for Gaussian kernel, let pRBF(ω) be a probability distribution and also the Fourier
transforamtion of kRBF(δ). We first randomly sample {ω(l)

1 ,ω
(l)
2 , . . . ,ω

(l)
D } from the probability

distribution pRBF(ω) = N
(
0, 1

σ I
)
. Subsequently the multi-layer GCKM with explicit feature

transformation, called GCKM-E, on the i-th sample is defined as z(l+1)
i = ψ(l)

(
z̄
(l+1)
i

)
where

ψ(l)

(
z̄
(l+1)
i

)
=

√
1

D

[
cos(ω⊤

1 z̄
(l+1)
i ), . . . , cos(ω⊤

Dz̄
(l+1)
i ), sin(ω⊤

1 z̄
(l+1)
i ), . . . , sin(ω⊤

Dz̄
(l+1)
i )

]⊤
(17)

and z
(l+1)
i and z̄

(l+1)
i denote i-th columns vectors drawn from the transposes of Z(l+1) and Z̄(l+1) =

ÂqZ(l), respectively. For detailed derivations, please refer to Appendix E. This approach allows
GCKM to flexibly choose the dimensions of explicit node representations when n is very large.

4 Experiment

In this section, we evaluate GCKMs on several real-world graph datasets. Comparison experiments of
both semi-supervised node classification and node clustering show GCKMs’ accuracy and efficiency.
Due to the space limitation, some important experimental results are deferred to Appendix F.2 (more
types of datasets and large-scale dataset), Appendix F.3 (over-smoothing problem), Appendix F.4
(GCKM with various kernels) and Appendix F.5 (GCKPCA visualization).
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Table 1: Accuracy (mean% and standard deviation%) of all methods, note that the best results are
highlighted in orange and the second-best results are highlighted in blue.

Standard Split Random Split

Cora Citeseer Pubmed Cora Citeseer Pubmed

Chebyshev 75.0 (0.7) 63.8 (0.6) 74.7 (0.8) 76.1 (1.5) 63.4 (3.8) 75.4 (2.8)
GraphSAGE 76.9 (0.5) 63.3 (0.7) 74.8 (0.2) 76.3 (0.9) 63.2 (1.1) 73.9 (1.8)
GAT 82.0 (0.5) 69.8 (0.4) 77.5 (0.2) 79.2 (1.4) 65.8 (2.9) 78.1 (1.7)
GCN 81.7 (0.7) 70.5 (0.5) 78.4 (0.4) 80.6 (1.4) 69.1 (1.8) 77.4 (2.1)
SGC 81.3 (0.0) 68.4 (0.1) 78.6 (0.1) 79.6 (1.3) 68.0 (1.7) 76.6 (2.4)

APPNP 79.5 (0.6) 70.0 (0.8) 78.8 (1.3) 80.1 (1.8) 69.2 (2.1) 77.7 (2.0)
JKNet 77.9 (0.8) 72.3 (0.1) 80.1 (0.2) 78.0 (1.7) 66.9 (2.3) 77.0 (1.7)
DAGNN 82.6 (1.1) 71.0 (0.5) 80.0 (1.0) 81.8 (1.2) 68.4 (1.4) 78.8 (1.4)
AdaGCN 77.1 (0.1) 69.4 (0.2) 78.0 (0.1) 76.7 (1.8) 67.0 (1.2) 77.3 (1.3)
AMGCN 81.3 (0.4) 70.4 (0.2) 75.5 (0.9) 80.9 (1.2) 68.1 (1.4) 74.2 (2.1)
DefGCN 77.8 (1.0) 67.5 (1.7) 77.9 (0.6) 78.4 (2.3) 67.8 (2.6) 77.1 (1.7)

GCKSVM-E 82.4 (0.3) 72.4 (0.4) 79.1 (0.4) 80.8 (0.8) 68.5 (1.3) 79.2 (1.2)
GCKSVM 82.4 (0.0) 72.3 (0.0) 79.8 (0.0) 83.3 (0.8) 71.9 (1.0) 80.9 (0.5)

Datasets We employ three most widely adopted citation networks Cora, Citeseer, and Pubmed
for evaluations, they are formed as unweighted and undirected graphs where each node represents
a paper and edges denote citations between papers. As for graph classification, IMDB-BINARY
and IMDB-MULTI are movie collaboration datasets; COLLAB is a scientific collaboration dataset;
MUTAG, PROTEINS, and PTC are three bioinformatics datasets. Details about these datasets and
more datasets (e.g., social networks, paper networks and OGB-Arxiv) can be found in Appendix F.1.

Compared Methods For node classification, two types of GNNs are selected: Chebyshev [Defferrard
et al., 2016], GraphSAGE [Hamilton et al., 2017], GAT [Velickovic et al., 2018], GCN [Kipf and
Welling, 2017] and SGC [Wu et al., 2019] serve as classical baseline GNNs; APPNP [Klicpera
et al., 2019], JKNet [Xu et al., 2018], DAGNN [Liu et al., 2020], AdaGCN [Sun et al., 2021],
AMGCN[Wang et al., 2020], DefGCN [Park et al., 2022] are state-of-the-art models, in particular
the former four ones are Deep GCNs. For node clustering, K-means and Spectral Clustering are two
traditional baseline methods and GAE and VGAE [Kipf and Welling, 2016] are GCN-based baseline
methods; ARGA, ARVGA [Pan et al., 2018], DGI [Velickovic et al., 2019], MVGRL [Hassani
and Ahmadi, 2020], GALA [Park et al., 2019], DFCN [Tu et al., 2021] and S3GC [Devvrit et al.,
2022] are all state-of-the-art GNN-based approaches. For graph classification, WL subtree kernel
[Shervashidze et al., 2011], AWL [Ivanov and Burnaev, 2018] are two baselines; DCNN [Atwood
and Towsley, 2016], PATCHY-SAN [Niepert et al., 2016] and DGCNN [Zhang et al., 2018] are three
deep learning methods; GCN, GraphSAGE and GIN [Xu et al., 2019] are GNN-based methods.

Experimental Settings All the above methods are set as default following the original paper. We
use a 2-layer GCKM for the experiments and the kernel is specified as Gaussian kernel, more detailed
settings of GCKM can be found in Appendix F.1. In node classification, following vanilla GCN
[Kipf and Welling, 2017], the nodes are split into three set: train set containing 20 samples per class,
validation set and test set with 500 and 1, 000 samples respectively, and the standard fixed split is
same to [Yang et al., 2016]. GCKM paired with kernel-based Spectral Clustering is leveraged for
node clustering, which is described in Section 3.3. For graph classification task, we adopt the 10-fold
cross validation following the settings of GIN Xu et al. [2019].

Semi-supervised Node Classification The results are reported in Table 1, where GCKSVM-E
denotes GCKSVM with explicit features. Note that, we tune the hyperparameters of GCKSVM on the
validation set and report the best performance. We have the following observations. 1) In the case of
standard split, GCKSVM achieves decent performance and beats several GNNs including deep GCNs,
even though it is a shallow model. Besides, owing to that GCKSVM can obtain globally optimal
solutions, the standard deviations are zero. 2) In the case of random split, GCKSVM outperforms
all GNNs on the three datasets and has the smallest standard deviations, showing higher stability. 3)
Deep GCNs are not substantially better than, or even worse than baselines, which further validates
that deepening is not essential in common graph-based tasks. 4) GCKSVM-E performs comparably
to GCKSVM and other SOTA methods.

Decision Boundary To further explore the expressiveness, we illustrate the decision boundaries of
SGC, APPNP, GCN, and the proposed GCKSVM in Figure 3. We generate a synthetic two-circle
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Table 2: Graph classification accuracy (mean% and standard deviation%) of all methods, note that
the best results are highlighted in orange and the second-best results are highlighted in blue.

IMDB-B IMDB-M COLLAB MUTAG PROTEINS PTC

WL subtree 73.8 (3.9) 50.9 (3.8) 78.9 (1.9) 90.4 (5.7) 75.0 (3.1) 59.9 (4.3)
DCNN 49.1 33.5 52.1 67 61.3 56.6
PATCHYSAN 71.0 (2.2) 45.2 (2.8) 72.6 (2.2) 92.6 (4.2) 75.9 (2.8) 60.0 (4.8)
DGCNN 70 47.8 73.7 85.8 75.5 58.6
AWL 74.5 (5.9) 51.5 (3.6) 73.9 (1.9) 87.9 (9.8) — —
MLP 73.7 (3.7) 52.3 (3.1) 79.2 (2.3) 84.0 (6.1) 76.0 (3.2) 66.6 (6.9)
GIN 75.1 (5.1) 52.3 (2.8) 80.2 (1.9) 89.4 (5.6) 76.2 (2.8) 64.6 (7.0)
GCN 74.0 (3.4) 51.9 (3.8) 79.0 (1.8) 85.6 (5.8) 76.0 (3.2) 64.2 (4.3)
GraphSAGE 72.3 (5.3) 50.9 (2.2) — — 75.9 (3.2) 63.9 (7.7)

GCKSVM 75.4 (2.4) 53.9 (2.8) 81.7 (1.5) 88.7 (7.6) 74.5 (3.9) 67.7 (5.4)
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Figure 3: Decision boundary visualizations of SGC, APPNP, GCN, and GCKM on Circle (row 1),
Chameleon-2D (row 2) and Cora-2D (row 3), where Circle is a synthetic dataset and Chameleon-2D
and Cora-2D are two preprocessed real-world datasets.

dataset named Circle. We also consider two real datasets, denoted by Cora-2D and Chameleon-2D,
where we select two classes of samples from the original datasets and map them to 2-D space using
tSNE [Van der Maaten and Hinton, 2008]. We randomly labeled 200 samples for each dataset and
constructed adjacency matrices by k-nearest neighbor algorithm, where the original graph structures
are not used here. The details are described in Appendix F.1. Cora-2D is the simplest case where the
decision boundary is easy to construct, Circle is with a clear but non-linear decision boundary, and
Chameleon-2D is the most complex one.

We have the following conclusions. 1) Consistent with our previous discussion, the nonlinearity
provided by SGC is low even if we increase the power of Â to a large value such as 50. Therefore,
SGC performs poorly on Circle and Chameleon-2D, where its decision boundaries are approximately
linear. This is unexpected considering its performance in the previous experiment. An explanation is
that these commonly used graph datasets can be well classified linearly in high-dimension spaces,
rather than these 2D spaces. 2) The deep model APPNP fits these datasets with similar boundaries
as GCN, either simple or complex, revealing that existing deep GCNs may not provide more
powerful expressiveness. 3) GCKSVM gains advantages over the three other models, whose decision
boundaries fit these datasets well, attributed to which GCKM explicitly maps the samples to high-
dimensional space to achieve better separability.

Graph Classification The results of graph classification tasks are recorded in Table 2. Compared to
both classical baselines and GNNs, especially GIN designed for Graph-level tasks, GCKSVM shows

9



Table 3: ACC, NMI, and ARI of all methods, note that the best results are highlighted in orange and
the second-best results are highlighted in blue.

Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 49.20 32.10 22.90 54.00 30.50 27.80 59.50 31.50 28.10
SC 36.70 12.60 3.10 23.80 5.50 1.00 52.80 9.70 6.20
GAE 59.60 42.90 34.70 40.80 17.60 12.40 67.20 27.70 27.90
VGAE 50.20 32.90 25.40 46.70 26.00 20.50 63.00 22.90 21.30
ARGA 64.00 44.90 35.20 35.20 35.00 34.10 66.80 30.50 29.50
ARVGA 64.00 45.00 37.40 54.40 26.10 24.50 69.00 29.00 30.60
DGI 55.40 41.10 32.70 51.40 31.50 32.60 58.90 27.70 31.50
MVGRL 73.20 56.20 51.90 68.10 43.20 43.40 69.30 34.40 32.30
GALA 74.59 57.67 53.15 69.32 44.11 44.60 69.39 32.73 32.14
DFCN 64.07 48.24 39.17 69.50 43.90 45.50 69.32 32.19 31.55
S3GC 74.20 58.80 54.40 68.80 44.10 44.80 71.30 33.30 34.50

GCKSC 74.30 54.95 52.89 71.27 43.57 46.51 71.31 32.24 34.21

(a) Adjacency Matrix (36.7) (b) Kernel Matrix (63.2) (c) GCKM Matrix (74.3)
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Figure 4: Visualizations of the adjacency matrix Âq, kernel matrix [k(xi,xj)]
n
i,j=1, and GCKM

matrix K(2) on Cora, with corresponding best-tuned clustering accuracy.

competitive power in graph classification. It is worth noting that GCKSVM outperforms the GNNs in
the two relatively large datasets IMDB-M and COLLAB.

Node Clustering The comparison of all node clustering methods is shown in Table 3.

Figure 5: Runtimes of all methods.

Similar to the results of node classification, GCKM is well
extended to node clustering tasks and is competitive with
the deep-learning-based models. It is impressive that the
vanilla GCN variants for clustering, GAE and VGAE both
perform much worse than our GCKSC, demonstrating that
GCKM can yield a discriminative kernel matrix. This can
also be observed in Figure 4, where the powered adjacency
matrix, the kernel matrix calculated on node features, and
the kernel matrix of GCKM are visualized.

Time Costs Figure 5 shows the runtime of all methods on
Pubmed. GCKSVM is much more efficient than all other
methods except SGC.

5 Conclusions

After analyzing the limitations of GCN, SGC and deep GCNs, we proposed a framework of GCKM.
GCKM integrated graph convolution with kernel learning and exhibited higher efficiency, inter-
pretability, and stability. We extended GCKM to many graph-based machine-learning tasks, like
node-level and graph-level classification and clustering. Experiments showed that GCKMs are, at
least, as accurate as GCN and other SOTA GNNs. More importantly, compared to the representative
simplified model SGC, GCKM is much more effective in handling non-linear data. One possible
limitation of this work is that we did not systematically test other kernel functions, though we have
found that the Gaussian kernel is better than the polynomial for GCKM.
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A Details about Recursive Formulations of GCKM

An L-layer GCKM on node feature X can be written as

H(L) = ϕ(L)

(
Âq · · ·ϕ(l)

(
Âq · · ·ϕ(0)

(
ÂqX

)
· · ·
)
· · ·
)
. (18)

Note that H(l+1) is actually implicit and we directly obtain the kernel matrix K(l+1) =

H(l+1)H(l+1)⊤ in practice. Now we show how to derive K(l+1) only by kernel matrix K(l). Take

the Gaussian kernel as an example, we have K(l+1)
ij = exp

(
−∆

(l+1)
ij

2σ2
l+1

)
, (i, j) ∈ [n] × [n], where

∆(l+1) is a squared-distance matrix of the rows of H̄(l+1). To be more precise,

∆
(l+1)
ij =∥h̄(l+1)

i − h̄
(l+1)
j ∥2 (19)

=h̄
(l+1)
i

(
h̄
(l+1)
i

)⊤ − 2h̄
(l+1)
i

(
h̄
(l+1)
j

)⊤
+ h̄

(l+1)
j

(
h̄
(l+1)
j

)⊤
, (20)

where h̄
(l+1)
i (a row vector) is the representation of the i-th node drawn from

H̄(l+1) = ÂqH(l) = Âqϕ(l−1)

(
H̄(l)). (21)

Thus h̄(l+1)
i = (Âq)iϕ(l−1)

(
H̄(l)

)
, it follows from (19) that

∆
(l+1)
ij =

(
Âq
)
i
ϕ(l−1)

(
H̄(l)

)
ϕ⊤(l−1)

(
H̄(l)

)(
Âq
)⊤
i
− 2
(
Âq
)
i
ϕ(l−1)

(
H̄(l)

)
ϕ⊤(l−1)

(
H̄(l)

)(
Âq
)⊤
j

+
(
Âq
)
j
ϕ(l−1)

(
H̄(1)

)
ϕ⊤(l−1)

(
H̄(1)

)(
Âq
)⊤
j

=
(
Âq
)
i
K(l)

(
Âq
)⊤
i
− 2
(
Âq
)
i
K(l)

(
Âq
)⊤
j
+
(
Âq
)
j
K(l)

(
Âq
)⊤
j
,

(22)

where K(l)
ij = exp

(
− ∥(Âq)iH

(l−1)−(Âq)jH
(l−1)∥2

2σ2
l

)
, (i, j) ∈ [n] × [n]. Particularly, we define

K(0) = XX⊤. So K(l+1)
ij can be obtained through K(l), i.e.,

K
(l+1)
ij = exp

(
−
(Âq)iK

(l)(Âq)⊤i − 2(Âq)iK
(l)(Âq)⊤j + (Âq)jK

(l)(Âq)⊤j
2σ2

l+1

)
. (23)

For convenience, letting K̄(l+1) = ÂqK(l)(Âq)⊤ and dK̄(l+1) = [K̄
(l+1)
11 , K̄

(l+1)
22 , . . . , K̄

(l+1)
nn ]⊤,

we can calculate K(l+1) in the following matrix form

K(l+1) = exp

(
−
dK̄(l+1)1⊤

n + 1nd
⊤
K̄(l+1) − 2K̄(l+1)

2σ2
l+1

)
. (24)

B Proof for Theorem 1

Proof. Since ĉ is the optimal solution of the dual problem, the optimal solution ŵ of the primary
problem can be given by

ŵ =
∑
i∈V

ĉiyiφ(xi). (25)

We have

∥ŵ∥22 =

(∑
i∈V

ĉiyiφ(xi)

)⊤(∑
i∈V

ĉiyiφ(xi)

)
=
∑
i∈V

∑
j∈V

ĉiĉjyiyjφ(xi)
⊤φ(xj)

=
∑
i∈V

∑
j∈V

ĉiĉjyiyjK
(L)
ij

=
∑
i∈V

ĉ2iK
(L)
ii +

∑
i∈V

∑
j∈V\i,yi=yj

ĉiĉjK
(L)
ij −

∑
i∈V

∑
j∈V,yi ̸=yj

ĉiĉjK
(L)
ij

=
∑
i∈V

ĉ2i +
∑
i∈V

∑
j∈V\i,yi=yj

ĉiĉjK
(L)
ij −

∑
i∈V

∑
j∈V,yi ̸=yj

ĉiĉjK
(L)
ij

(26)
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On the other hand, we have

∥ŵ∥22 =
∑
i∈V

∑
j∈V

ĉiĉjyiyjK
(L)
ij

=⟨[· · · ĉiyi · · · ]⊤[· · · ĉiyi · · · ], [K(L)
ij ]i,j∈V⟩

≤
∥∥[· · · ĉiyi · · · ]⊤[· · · ĉiyi · · · ]∥∥F ∥∥∥[K(L)

ij ]i,j∈V

∥∥∥
F

=
∥∥∥[K(L)

ij ]i,j∈V

∥∥∥
F

∑
i∈V

ĉ2i

≤
∥∥∥[K(L)

ij ]i,j∈V

∥∥∥
F

λ2|V|
n2

≤λ
2|V|2

n2
.

(27)

Now we use the following theorem, where the notations are a little different from ours.

Theorem 3 ([Grønlund et al., 2020]). Let d ∈ N+and let R > 0. Denote by X the ball of radius R
in Rd and let D be any distribution over X × {−1, 1}. For every δ > 0, it holds with probability at
least 1− δ over a set of n samples S ∼ Dn, that for every w ∈ Rd with ∥w∥2 ≤ 1 and every margin
θ > 0, we have

LD(w) ≤ Lθ
S(w) +O

(
(R/θ)2 lnn+ ln(1/δ)

n
+

√
(R/θ)2 lnn+ ln(1/δ)

n
· Lθ

S(w)

)

According to our setting, we have R = 1 and θ = 1
∥ŵ∥ , since ∥φ(xi)∥2 = K

(L)
ii and y⟨ŵ, φ(x)⟩ ≥

1 ⇔ y⟨ ŵ
∥ŵ∥ , φ(x)⟩ ≥

1
∥ŵ∥ . For convenience, let η = ∥ŵ∥, which was given by (27). Substituting

these values into Theorem 3 and changing the notations, we obtain

LD(ĉ,K
(L)) ≤ LS(ĉ,K

(L)) +O

(
η lnn+ ln(1/δ)

n
+

√
η lnn+ ln(1/δ)

n
· LS(ĉ,K(L))

)
.

(28)
This finished the proof.

C Proof for Theorem 2

Proof. Here we recall the Lagrangian dual problem:

max
c

n∑
i=1

ci −
1

2

n∑
i=1

n∑
j=1

cicjyiyjφ(xi)
⊤
φ(xj) s.t.

n∑
i=1

ciyi = 0, 0 ≤ ci ≤
λ

n
. (29)

For φ, we define

L(c) := 1

2

n∑
i=1

n∑
j=1

cicjqij −
n∑

i=1

ci, where qij = yiyjφ(xi)
⊤
φ(xj). (30)

Similarly, for φG , we let

LG(c) :=
1

2

n∑
i=1

n∑
j=1

cicjq
G
ij −

n∑
i=1

ci, where qGij = yiyjφG(xi)
⊤
φG(xj). (31)

Then we need to minimize L(c) and LG(c) under the constraints
∑n

i=1 ciyi = 0, 0 ≤ ci ≤ λ
n .

According to the Assumption 1, we have:

• if samples i and j are in the same class, φG(xi)
⊤φG(xj) > φ(xi)

⊤φ(xj) and yiyj = 1;

• if samples i and j are in different classes, φG(xi)
⊤φG(xj) ≤ φ(xi)

⊤φ(xj) and yiyj = −1.
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Therefore, the following equality holds:

qGij = qij + ϵij , ϵij ≥ 0, ∀(i, j) ∈ [n]× [n] (32)

For convenience, let ϵ̄i = minj ϵij and ϵ̃ = mini ϵ̄i. We have

LG(c) :=
1

2

n∑
i=1

n∑
j=1

cicj(qij + ϵij)−
n∑

i=1

ci

≥1

2

n∑
i=1

n∑
j=1

cicjqij +
1

2

n∑
i=1

ϵ̄i

n∑
j=1

cicj −
n∑

i=1

ci

=L(c) + 1

2

n∑
i=1

ϵ̃ici

n∑
j=1

cj

≥L(c) + 1

2

(
ϵ̃∥c∥22 +

n∑
i=1

ϵ̄ici∥c/i∥1

)
,

(33)

where c/i = [c1, . . . , ci−1, ci+1, . . . , cn]
⊤. It is known that the ℓ1-norm ∥ · ∥1 is a convex relaxation

of the ℓ0-norm ∥ · ∥0, i.e., the number of nonzero elements in a vector. Denote R(c) := 1
2

(
ϵ̃∥c∥22 +∑n

i=1 ϵ̄ici∥c/i∥1
)
. We see R(c) is very similar to the elastic net regularization and is able to

induce sparsity. Actually, if we let κ = mini ∥c/i∥1, we have R(c) ≥ 1
2

(
ϵ̃∥c∥22 + κ

∑n
i=1 ϵ̄ici

)
=

1
2

(
ϵ̃∥c∥22 + κ∥diag(ϵ̄)c∥

)
, where the second term is a weighted ℓ1-norm and also induces sparisty.

D Proof for Proposition 1

Proof. Let

Q =

1n1
· · · 0

...
. . .

...
0 · · · 1nN

 , K̄(L) =

K
(L)
11 · · · K

(L)
1N

...
. . .

...
K

(L)
N1 · · · K

(L)
NN

 .
It is easy to show that Q is full-rank. Because k(L) is a Gaussian kernel with 0 < σL <∞, K̄(L) is
symmetric and always full-rank. It means K̄(L) can be factorized as K̄(L) = B⊤B, where B is a
square and full-rank matrix. Denote P = BQ. It follows that

K(L)
G = P⊤P. (34)

Since P is full-rank, we conclude that K(L)
G is full-rank, which means K(L)

G is positive definite [Horn
and Johnson, 2012].

E Detailed Derivations of GCKM-E

Theorem 2 (Bochner’s theorem [Rudin, 1994]). A continuous kernel k(x,x′) = k(x− x′) on Rm is
positive definite if and only if k(δ) is the Fourier transform of a non-negative measure.

With positive definite and shift-invariant kernel k(·, ·) (e.g. Gaussian kernel), the Bochner’s theorem
points out that the kernel function can be expanded with harmonic basis as

k(xi − xj) =

∫
Rd

p(ω)ejω
⊤(xi−xj)dω = Eω

[
ejω

⊤xie−jω⊤xj
]
, (35)

where p(ω) is a probability distribution and also the Fourier transform of k(δ). For real-valued kernel
functions, ejω

⊤xie−jω⊤xj can be simplified by

ejω
⊤xie−jω⊤xj = cosω⊤(xi − xj) (36)
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according to Euler’s formula. Then we can define function ζω(·) with ζω(xi)ζ
⊤
ω (xj) = cosω⊤(xi−

xj), so that it satisfies

Eω

[
ζω(xi)ζ

⊤
ω (xj)

]
= Eω

[
ejω

⊤xie−jω⊤xj
]
= k(xi − xj) (37)

Here we simply adopt ζω(x) =
[
cos(ω⊤x), sin(ω⊤x)

]⊤
, and the kernel function can be approxi-

mated by combining several ω drawn from distribution p(ω).

Specifically, for Gaussian kernel, we first randomly sample {ω1,ω2, . . . ,ωD} from the probability
distribution pRBF(ω) = N

(
0, 1

σ I
)
. Subsequently the explicit feature transformation on the i-th

sample xi is defined as

ψ(xi) =

√
1

D

[
cos(ω⊤

1 xi), . . . , cos(ω
⊤
Dxi), sin(ω

⊤
1 xi), . . . , sin(ω

⊤
Dxi)

]⊤
. (38)

On the basis of the above derivations, the multi-layer GCKM with explicit feature transformation can
be similarly defined:

Z(l+1) = ψ(l)

(
ÂZ(l)

)
, (39)

where Z(l+1) is the random Fourier features of input Z(l). This approach allows GCKM to flexibly
choose explicit node representations or kernel matrix as the interface, and the final representation can
be low-dimensional and thus efficiently computed. By selecting a proper D, the convergence of this
approximation and the expressive ability of the kernel can be simultaneously guaranteed.

F Detailed Experimental Settings and Results

F.1 Experimental Settings

Two types of graph datasets are employed in this paper. Each node-level dataset contains only a graph
where each node is a sample, while each graph is regarded as a sample in the graph-level datasets.
Here we list the key statistics of these datasets in Table 4 and 5 and provide detailed descriptions in
the following.

Node-level Datasets

• Cora is a citation network containing a number of machine learning papers. Each node
represents a paper and the edges represent the citation relationships between papers. Node
features are the bag-of-words representations of papers, and all papers are divided into 7
categories according to their domains.

• Citeseer is also a well-known citation network with nodes, node features, and edges having
the same meanings as Cora. Similarly, the papers are grouped into 6 classes.

• Pubmed is a citation network composed of 19, 717 scientific publications drawn from the
PubMed database, which are classified into 3 categories and node features are also the
bag-of-words representations.

• ACM is a paper network. Different from the above citation networks, the edges denote the
co-author relationships between any two papers. Another difference is that the node features
are bag-of-words representations of papers’ keywords.

• CoraFull is a large version of the Cora dataset which has 19, 793 papers of 70 classes.
• Chameleon is a webpage network, in which nodes are Wikipedia pages of certain topics and

edges are the page-page hyperlinks. Some informative nouns in the pages are extracted to
be node features and the nodes are organized in 5 categories based on the average monthly
traffic of the corresponding web pages.

• Actor is a subgraph of the film–director–actor–writer network which only includes actors as
nodes. An edge between two actors exists when they occur on the same Wikipedia page.

• Squirrel is a webpage network as well, and all the settings are similar to the Chameleon
dataset.

• UAI is a webpage network that has been used to test GCN for community detection. Nodes
represent web pages and each edge represents a citation between two pages.
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Table 4: Dataset statistics.

Datasets # Nodes # Edges # Classes # Features # Train/Val/Test Data Type

Cora 2,708 5,429 7 1,433 140/500/1,000 Citation Network
Citeseer 3,327 4,732 6 3,703 120/500/1,000 Citation Network
Pubmed 19,717 44,338 3 500 60/500/1,000 Citation Network
ACM 3,025 13,128 3 1,870 60/500/1,000 Paper Network
Chameleon 2,277 36,101 3 2,325 60/500/1,000 Webpage Network
CoraFull 19,793 65,311 70 8,710 1,400/500/1,000 Citation Network
Actor 7,600 15,009 5 932 100/500/1,000 Social Network
Squirrel 5,201 217,073 3 2,089 60/500/,1000 Webpage Network
UAI 3,067 28,311 19 4,973 367/500/,1000 Webpage Network

Table 5: Dataset statistics.

IMDB-B IMDB-M COLLAB MUTAG PROTEINS PTC

# Nodes 1,000 1,500 5,000 188 1,113 344
# Classes 2 3 3 2 2 2
Avg # Nodes 19.8 13.0 74.5 17.9 39.1 25.5
Data type Movie Movie Scientific Bioinformatics Bioinformatics Bioinformatics

• OGB-Arxiv dataset is a citation network with 169, 343 computer science arXiv papers,
where each node is an arXiv paper and each edge indicates that a paper cites another
paper. Each paper has a 128-dimensional feature vector, which is obtained by averaging
embeddings of words in its title and abstract.

Graph-level Datasets

• IMDB-BINARY and IMDB-MULTI are movie collaboration datasets, where each graph
represents an ego-network for each actor/actress. Each node corresponds to an actor/actress,
and the edges represent the actors/actresses’ co-occurrences in a movie. Graphs are classified
according to the genre of the movies they come from.

• COLLAB is a scientific collaboration dataset, collected from three public collaboration
datasets. Similar to the two datasets mentioned above, each graph is a self-network of differ-
ent researchers, and these graphs are classified by the domains to which their corresponding
researchers belong.

• MUTAG is a bioinformatics dataset. 188 mutagenic aromatic and heteroaromatic nitro
compounds with 7 labels compose this dataset.

• PROTEINS is a bioinformatics dataset where nodes denote secondary structure elements
with 3 labels. An edge between any two nodes means they are neighbors in the amino-acid
sequence or 3D space.

• PTC is a bioinformatics dataset containing 344 chemical compounds that report carcino-
genicity for male and female rats and it has 19 discrete labels.

For datasets ACM, Chameleon, CoraFull, Actor, Squirrel, and UAI, we randomly split them into the
train, validation, and test sets and fix them for all the compared methods. For graph-level datasets
split, we follow settings in [Xu et al., 2019].

Then, we also briefly introduce the compared methods used in node-level tasks and graph-level tasks.

Node-level Compared Methods

• Chebyshev [Defferrard et al., 2016] generalizes the convolution operation to the non-
Euclidean space based on spectral graph theory, which leverages Chebyshev polynomial to
design a localized graph convolutional filter.

• GraphSAGE [Hamilton et al., 2017] is proposed to tackle the drawbacks of transductive
GNNs. It trains the aggregation function from each node’s local neighborhood, and this
function can be performed on unseen nodes.
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Table 6: Node classification accuracy (mean% and standard deviation%) of all methods, note that the
best results are highlighted in orange and the second-best results are highlighted in blue. GraphSAGE
encounters some errors on ACM and the corresponding result is marked as “—”.

ACM Chameleon CoraFull Actor Squirrel UAI

Chebyshev 82.8 (1.4) 35.6 (0.2) 57.2 (1.1) 22.5 (0.4) 23.0 (0.6) 49.7 (0.4)
GraphSAGE — 44.0 (0.0) 59.9 (0.7) 21.0 (0.5) 26.8 (0.2) 41.7 (1.4)
GAT 84.6 (0.5) 51.1 (1.0) 62.4 (0.4) 21.1 (0.7) 28.4 (0.6) 49.7 (3.0)
GCN 88.8 (0.5) 49.0 (1.8) 62.8 (0.4) 20.9 (0.9) 30.9 (1.8) 58.5 (1.1)
SGC 80.8 (2.7) 34.4 (1.1) 62.9 (2.2) 21.1 (1.3) 23.3 (1.1) 56.5 (3.5)

APPNP 88.2 (0.0) 50.4 (1.2) 63.1 (0.5) 22.6 (0.2) 27.1 (0.1) 62.3 (1.2)
JKNet 82.3 (0.6) 50.3 (1.2) 62.6 (0.0) 30.4 (0.6) 37.2 (1.0) 45.6 (0.5)
DAGNN 87.4 (0.9) 33.9 (3.9) 65.6 (0.3) 24.6 (1.7) 18.7 (2.7) 46.7 (12.4)
AdaGCN 88.7 (0.0) 43.8 (0.0) 63.8 (0.0) 24.9 (0.0) 25.7 (0.0) 47.3 (1.1)
AMGCN 90.4 (0.6) 34.2 (1.3) 52.6 (0.7) 26.8 (0.7) 22.6 (1.3) 59.3 (3.8)
DefGCN 86.9 (0.6) 49.5 (0.7) 42.6 (2.3) 31.3 (3.8) 28.4 (3.6) 56.4 (2.1)

GCKSVM 91.0 (0.0) 54.0 (0.0) 61.8 (0.0) 29.5 (0.0) 36.8 (0.0) 59.6 (0.0)

Table 7: Accuracy of several representative methods on large-scale dataset OGB-Arxiv, note that the
best results are highlighted in orange and the second-best results are highlighted in blue.

OGB-Arxiv
# Nodes: 169,343 # Features: 128 # Edges: 1,166,243 # Classes: 40

Chebshev GraphSAGE GAT GCN SGC APPNP JKNet GCKM-E
69.7 (0.2) 69.8 (0.2) 70.2 (0.2) 69.5 (0.1) 66.7 (0.0) 69.3 (0.1) 69.8 (0.2) 71.0 (0.0)

• GAT [Velickovic et al., 2018] is a classical spatial GNN equipping with self-attentional
layers that adaptively learn different weights for edges.

• GCN [Kipf and Welling, 2017] is one of the most popular GNNs recently. It truncates the
Chebyshev polynomial to first order and proposes a simple and effective graph convolution.

• SGC [Wu et al., 2019] further simplifies GCN by removing the nonlinearity and collapsing
the learnable weights, so as to build a faster model and achieve competitive performance.

• APPNP [Klicpera et al., 2019] uses personalized Pagerank to improve vanilla GCN by solv-
ing the over-smoothing issue and derives a new framework with initial residual connections.

• JKNet [Xu et al., 2018] establishes a jumping knowledge structure to combine representa-
tions from various layers to stack a deeper GNN.

• DAGNN [Xu et al., 2023] decouples the neighbor aggregations and feature transformations
to form a deeper GNN and further uses the attention mechanism to integrate the information
from different depths.

• AdaGCN [Sun et al., 2021] is also a deep GCN that considers the Adaboost strategy to fuse
knowledge from distinct layers.

• AMGCN [Wang et al., 2020] constructs a feature graph via k-NN algorithm and a multi-
channel framework to enhance the vanilla GCN.

• DefGCN [Park et al., 2022] improves the limitations of common GNNs with fixed graph
convolution and has deformable graph convolution that allows nodes to adaptively capture
long-range dependencies.

Graph-level Compared Methods

• WL subtree kernel [Shervashidze et al., 2011] is a famous graph kernel, and AWL [Ivanov
and Burnaev, 2018] is an approach for embedding entire graphs. Paired with SVM, they are
selected as two baselines.

• DCNN [Atwood and Towsley, 2016], PATCHY-SAN [Niepert et al., 2016] and DGCNN
[Zhang et al., 2018] are three deep learning methods for graph classification, and their
performance is reported as in the original paper.
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Figure 6: Accuracy of GCKSVM with varied layers/hops.

• GCN, GraphSAGE, and GIN [Xu et al., 2019] serve as GNN-based compared methods, and
they are all set following [Xu et al., 2019]. For the methods having different variants, we
report their best performance.

Note that the settings of these graph-level methods are the same as [Xu et al., 2019].

Settings about Figure 1. We set the hidden dimensions as 32 for all hidden layers of GCN, APPNP,
and JKNet, while SGC only has a learnable matrix W ∈ Rn×c where n is the number of nodes and c
is the number of classes, and the learning rate is selected in {1 × 10−2, 1 × 10−3, 1 × 10−4} and
weight decay is selected in {5× 10−4, 5× 10−5, 5× 10−6}.

Settings of Boundary Visualization For better illustration, we conduct a visualization experiment
on the decision boundaries of SGC, APPNP, GCN, and GCKSVM. The purpose of this experiment is
to explore how the three methods perform on linear, non-linear, and more complex data. So we select
2 classes of samples from Cora and Chameleon and map them to 2-D space by t-SNE. Besides, we
generate a synthetic dataset (called Circle) consisting of noisy samples drawn from two concentric
circles using Scikit-learn. For better boundary and performance, the numbers of layers are 2 and
8 for GCN and APPNP respectively, the hidden dimensions are 32, and the learning rate is set as
1× 10−3 and weight decay is 5× 10−5 for all models. SGC has only one learnable matrix and we
set the power of adjacency as 50 to show that the graph structure provide SGC with non-linearity but
the non-linearity is very low.

F.2 Supplementary Experiments of Node Classification

In this section, we evaluate GCKSVM on more types of graph datasets. As reported in Table 6,
it can be seen that GCKSVM still has superior performance compared to the most state-of-the-art
GNNs. Furthermore, we also evaluate the proposed GCKM on the OGB dataset Arxiv with over
160k nodes. Table 7 demonstrates that GCKM is still competitive with these GNNs on large-scale
datasets. Although the complexity of GCKM is quadratic, we provide an efficient variant GCKM-E
in Section 3.4 that leverages the random Fourier feature to explicitly derive a low-dimensional output
instead of a kernel matrix. With this output, we can apply fast linear methods (e.g. linear SVM) for
downstream tasks, which is still more efficient than GNNs needing a lengthy training process.

F.3 Experiments and Discussions on Over-smoothing Issue

Thanks for your insightful comment. We have supplemented an experiment on this issue, which
revealed that GCKM can be deeper and alleviate the over-smoothing issue. To be specific, two
situations are considered in this experiment:

• GCKM with fixed 2 layers and varied hops of neighbors per aggregation (q in Eq. (40))

H = ϕ(1)(Â
qϕ(0)(Â

qX)). (40)

• GCKM with fixed 2 hops of neighbors per aggregation and varied layers

H = ϕ(L)(Â
2 · · ·ϕ(0)(Â2X)). (41)

From Figure 6, we have the following observations:
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Table 8: Accuracy of GCKSVM with different kernel functions on Cora, Citeseer, and Pubmed.

Cora Citeseer Pubmed

Polynomial 83.0 70.6 80.6
Sigmoid 79.7 69.2 75.6
Laplacian 82.2 70.5 79.0
Gaussian 82.4 72.3 79.8

• Deep GCKM performs more stably than deep GCN.
• GCKM’s performance first improves then slightly decreases with increasing layers/hops
• Particularly, GCKM with fixed layers performs better and decreases less.

It is known that over-smoothing is caused by the aggregation step, that is, multiplying Â makes
the representations of different nodes more and more indistinguishable. However, the analysis of
over-smoothing does not consider activation functions and learnable weights, and it theoretically
exists when the power of Â tends to infinity [Li et al., 2018], which does not match the fact that
GCN collapses with only 8 layers. A recent study of [Cong et al., 2021] has pointed out that the
over-smoothing problem might be an artifact of theoretical analysis and the failure of deep GNNs
may not only be caused by the over-smoothing issue in the aggregation/message-passing step.

Although GCKM and GCN share a familiar aggregation step, the main difference between them is the
transformation step, namely, GCN uses a linear layer to conduct explicit dimension reduction while
GCKM employs implicit high-dimensional feature mapping. GCKM implicitly maps node features
to a high-dimensional (even infinite) space after aggregation, and there may exist an appropriate
space where node representation can be distinguished. In contrast, a recent study of [Guo et al.,
2023] has found that the node representations processed by deep GCN would collapse to be low-rank
and lose expressive power. The appropriate space can be found by tuning the hyperparameters of
GCKM, however, the number of hyperparameters will increase when building a deeper GCKM and it
is time-consuming to search this space. That may be the reason why GCKM decreases slightly with
too many layers and why fixing the number of layers improves the performance.

F.4 Experiments on Various Kernels

To solve the limitations we stated in the conclusion section, we provided a complementary experiment
on various kernel functions during the rebuttal process. Table 8 records the results corresponding
to 2nd order polynomial kernel, sigmoid kernel, and Laplacian kernel. All the kernel functions
show decent performance and the Gaussian kernel performs the best. Note that, this experiment is
conducted with GCKSVM, under the settings of node classification with standard split.

F.5 Experiments of GCKPCA

We added a visualization experiment for GCKPCA. To be specific, we first map the node features to
2-D space by PCA, Graph-regularized PCA (GPCA) [Jiang et al., 2013] and GCKPCA (row 1), then
further try to map them to 32-D space and leverage t-SNE to obtain the 2-D results (row 2). Figure 7
illustrates the comparison of mapping results of three methods. It can be observed that the subfigures
of GCKPCA and GCKPCA + t-SNE both show the best separability between different classes, and
GPCA performs slightly better than PCA.

F.6 Empirical Experiments regarding Theorem 1

Theorem 1 demonstrated the connections between the generalization bound and graph structure, and
experiments further provided the evidence. To verify the conclusion we have made from Theorem 1
in the main paper, we report the training error and numbers of support vectors in Table 9. In fact, we
consider three cases:

• Non-graph-convolution: We replaced the affinity matrix Â in GCKM with an identity matrix
In, which means the graph structure is not used.

22



(a) PCA

(d) PCA + t-SNE

(b) GPCA

(e) GPCA + t-SNE

(c) GCKPCA

(f) GCKPCA + t-SNE

Figure 7: Visualization of PCA, GPCA and GCKPCA.

Table 9: The values of the training error (TE) and the number of support vectors |V|. Note that λ
is the regularization parameter of SVM, In and 1n are n × n identity matrix and all-ones matrix
respectively.

In 1n×n − In Âq

TE |V| TE |V| TE |V|

C
or

a

λ = 1 0.01 80 0.50 32 0.20 40
λ = 10 0.00 72 0.50 32 0.00 30
λ = 50 0.00 72 0.50 32 0.00 24
λ = 100 0.00 72 0.50 32 0.00 24
λ = 1000 0.00 72 0.50 32 0.00 24

C
ite

se
er

λ = 1 0.02 120 0.50 62 0.20 120
λ = 10 0.00 112 0.50 62 0.00 105
λ = 50 0.00 111 0.50 62 0.00 102
λ = 100 0.00 111 0.50 62 0.00 102
λ = 1000 0.00 111 0.50 62 0.00 102

Pu
bm

ed

λ = 1 0.12 1206 0.48 802 0.18 1366
λ = 10 0.05 755 0.48 802 0.10 755
λ = 50 0.02 617 0.48 794 0.07 571
λ = 100 0.01 574 0.48 802 0.07 508
λ = 1000 0.00 548 0.48 804 0.11 396

• Strongly connected graph: Â in GCKM is replaced with In − 1n×n, which means every
node is connected with all other nodes.

• The normal GCKM.

We see that with fixed λ, graph convolution significantly reduces the number of support vectors, which
verifies the correctness of Theorem 2. Thus, according to Theorem 1, the upper bound (monotonically
increasing with |V|) of test error can be tighter compared to the one using a non-graph-convolution
kernel, which means that the test error is potentially smaller. So we can conclude that the graph
structure significantly improves the quality of the kernel matrix.
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