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Abstract

In this paper, we initiate the study of Euclidean clustering with Distance-based
privacy. Distance-based privacy is motivated by the fact that it is often only
needed to protect the privacy of exact, rather than approximate, locations. We
provide constant-approximate algorithms for k-means and k-median clustering,
with additive error depending only on the attacker’s precision bound ρ, rather
than the radius Λ of the space. In addition, we empirically demonstrate that
our algorithm performs significantly better than previous differentially private
clustering algorithms, as well as naive distance-based private clustering baselines.

1 Introduction

Two of the most fundamental and widely studied problems in unsupervised machine learning are
the k-means and k-median clustering problems. Solving these clustering problems can allow us to
group together data efficiently, and hence extract valuable and concise information from massive
datasets. The goal of the k-means (resp., k-median) clustering problem is: given a dataset X of points,
construct a set C of k centers to minimize the clustering cost

∑
x∈X d(x,C)2 (resp.,

∑
x∈X d(x,C)),

where d(x,C) represents the minimum distance between the data point x and the closest center in C.

In general, machine learning and data mining algorithms are prone to leaking sensitive information
about individuals who contribute data points. In certain scenarios, this can lead to severe consequences,
including losses of billions of dollars [60] or even the loss of human lives [10]. Thus, providing
accurate algorithms that protect data privacy has become crucial in algorithm design. Over the past
decade, the notion of differential privacy (DP) [31] has emerged as the gold standard for privacy-
preserving algorithms, both in theory and in practice, and has been implemented by several major
companies and the US Census [34, 68, 30, 1]. Informally, DP requires the output distribution of the
algorithm to remain almost identical whenever a single data point is altered. (See Section 2 for a
formal definition.) Hence, even the knowledge of all but one data point, along with the output of the
algorithm, still cannot reveal significant information about the final data point.

The importance of k-means and k-median clustering, as well as preserving data privacy, has led to a
large interest in designing differentially private clustering algorithms in Euclidean space [14, 62, 36,
47, 59, 73, 64, 65, 71, 38, 9, 63, 48, 70, 69, 44, 49, 17, 61, 19, 13, 24, 33, 25, 56]. Here, the goal is
to design a differentially private set of k centers, such that the clustering cost with respect to these
centers is only a small factor larger than the optimal (non-private) clustering cost. Importantly, the
work of [70, 44, 25] led to efficient polynomial-time and differentially private algorithms that achieve
constant multiplicative approximation ratios.

While we can obtain DP algorithms with low multiplicative error, all such algorithms also require an
additional additive error. If Λ is the radius of a ball that is promised to contain all data points, even the
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best private clustering algorithms are known to have an additive error proportional to poly(k, d) ·Λp,
where p = 2 for k-means and p = 1 for k-median. This factor of Λp is in fact unavoiadable [47], as a
single individual datapoint can be moved up to distance Λ and the algorithm must preserve privacy
with respect to this change. If we do not have a good bound of Λ, this factor may dominate the error,
and may make the clustering algorithm highly inaccurate. Even if the bound is known exactly, errors
scaling with Λ may however be unnecessary and unacceptable in certain situations.

The additive error depending on Λ is necessary because standard differential privacy requires us
to protect learning anything about the location of any point. However, in practice this may not be
necessary as it might be enough to not know the location of a point up to a certain error. For instance,
in address data, the risk is leaking the actual location, but uncertainty within a few miles in a city
is sufficient to protect the privacy of the person [20]. Another motivation is in smart meters [20,
Section 6.1], where accurately learning the fine-grained consumption can result in spectacular privacy
leaks (e.g. learning which TV channel is being watched [46, 52]) but slight uncertainty on the
measurements is sufficient to protect from such attacks. Moreover, when differential privacy is
used to protect the algorithm from adversarial inputs, it is often sufficient to protect against small
perturbations as large perturbations can be detected or removed otherwise [53].

These cases can be modeled by variants of differential privacy, such as dX privacy (a.k.a. extended
differential privacy) [20, 40], and pixelDP [53]. All such models are adaptations or generalizations of
DP which take into account a metric over the datasets.

In this paper, we study a concrete formulation of distance-based privacy which we call ρ-dist-DP.
Roughly speaking, an algorithm is ρ-dist-DP if the algorithm protects privacy of a single data point if
it is moved by at most ρ in a metric space. (See Section 2 for a formal definition, where we define
(ε, δ, ρ)-dist-DP.) This is a less restrictive version of DP, as usually the neighboring datasets are
defined to be any two datasets with a single point allowed to move anywhere. While we remark that
although this notion is well-defined for any metric space, our results in this paper focus entirely on
Euclidean space.

The main question we study in this paper is the following: can we obtain much better approximation
results (and algorithms better in practice) if we allow the algorithm to resist small movements, as
opposed to arbitrary movements, of a point for instance for clustering? In other words, can we design
ρ-dist-DP algorithms that perform significantly better than the state of the art regular DP algorithms
for k-means or k-median clustering?

1.1 Our Results

In this work, we answer the above question affirmatively, by providing an efficient and accurate
theoretical algorithm, and showing empirically that our algorithm outperforms clustering algorithms
with standard differential privacy.

1.1.1 Theoretical Results

From a theoretical perspective, we are able to obtain O(1)-approximate algorithms for k-means and
k-median clustering with ρ-dist-DP, and with additive error essentially only depending on the smaller
distance ρ as opposed to the full radius Λ. More precisely, our main theorem is the following.

Theorem 1.1. Let n, k, d be integers, ρ ∈ (0,Λ], ε, δ ∈ (0, 1] be privacy parameters, and p ∈ {1, 2}.
Then, given a dataset X = {x1, . . . , xn} of points in a given ball of radius Λ in Euclidean space
Rd, there exists a polynomial-time (ε, δ, ρ)-dist-DP algorithm A that outputs a set of centers C =
{c1, . . . , ck}, such that

n∑
i=1

d(xi, C)p ≤ O(1) · min
C∗⊂Rd

|C∗|=k

n∑
i=1

d(xi, C
∗)p + poly

(
k, d, log n,

1

ε
, log

1

δ
, log

Λ

ρ

)
· ρp.

Here, p = 1 for k-median and p = 2 for k-means.

For more precise dependences on the parameters k, d, 1/ε, please see Theorem C.1.

Qualitatively, Theorem 1.1 has similar guarantees to [70], who also provided an (ε, δ)-
differentially private algorithm with an O(1)-approximation algorithm and additive error that was
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poly(k, d, log n, 1
ε , log

1
δ ) · Λ

p. The main difference is that we drastically reduce the additive error
by reducing the dependence on Λ to a dependence on the distance privacy parameter ρ.

Running time and parallel computation. The runtime of a straightforward implementation of
our algorithm is Õ(nkd) + poly(k) · d,1 if we also ignore polynomial factors in log Λ

ρ . By using
approximate near neighbor algorithms, we can improve this further to Õ(nd)+poly(k)·d, which for k
at most a small polynomial in n, is nearly linear. In addition, the algorithm can be easily implemented
in the massively parallel computation (MPC) model [51, 11] (an abstraction of MapReduce [28])
using O(1) rounds and near linear total space where each machine has sublinear space. We discuss
above in-memory algorithms and MPC algorithms further at the end of Appendix C.

Finally we remark that the ρp dependence in the additive error is required for ensuring ρ-dist-DP. In
fact, we prove in Appendix D that any (ε, δ, ρ)-dist-DP algorithm, with any finite multiplicative error,
must incur Ω(k · ρ2)-additive error for k-means and Ω(k · ρ)-additive error for k-median.

1.1.2 Empirical Results

We empirically studied the performance of our algorithm on public and real-world datasets. We
compare the approximation guarantee of our algorithm with the standard DP clustering algorithm and
the standard non-private k-clustering algorithm. Experiments show that our algorithm outperforms
the DP clustering algorithm and is only slightly worse than the non-private algorithm. In addition,
we show that smaller ρ provides a better approximation guarantee, which aligns with our theoretical
study. We refer readers for more details of our empirical study to Section 6.

1.2 Other Related Work

Distance-based Privacy: The literature on distance-based privacy explored different data protection
schemes which we now describe in more detail. A general notion is known as dX privacy [20] (a.k.a.
Extended differential privacy) which includes as a special case differential privacy. This privacy
notion bounds the distinguishability of two statistical datasets, not just by the number of different
users’ inputs (i.e., their Hamming distance) but by an arbitrary dχ distance between them accounting
for the magnitude of the changes to each user entry. Similar notions, such as pixelDP [53] and
perceptual indistinguishability [21], are also formalization of DP where adjacent datasets differ in a
single feature of the input (e.g. a pixel) or some custom function of the data. Several algorithms have
been defined for these notions, including LSH algorithms [40].

From an application point of view, much work has focused on geo-indistinguishability [3, 6, 15], i.e.
preventing an adversary from distinguishing two close locations (by ensuring that close location have
similar probabilities to generate a certain output). Other areas of applicability has been protecting
textual data [39, 41], private smart meters sensing [27], image obfuscation [35, 21] and mobile
crowsensing [74].

k-Clustering: k-Means and k-median clustering have seen a large body of work over the past
few decades. While both problems are known to be NP-hard [58], a significant amount of work
has given various O(1)-approximation algorithms for both problems [18, 8, 50, 7, 55, 16, 2, 26].
The state-of-the-art approximation is a 5.912-approximation for Euclidean k-means and a 2.406-
approximation for Euclidean k-median [26]. As noted in previously, there has also been significant
work in specifically studying differentially private k-means and k-median clustering, though to our
knowledge we are the first to study distance-based private clustering.

2 Preliminaries

We present some basic definitions and setup that will be sufficient for explaining our algorithms for
the main body of the paper. We defer some additional preliminaries to Appendix A.

1Õ(f(n)) denotes O(f(n) log f(n)).
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2.1 Differential Privacy

First, we recall the definition of differential privacy.

Definition 2.1. [31] A (randomized) algorithm A is said to be (ε, δ)-differentially private ((ε, δ)-DP
for short) if for any two datasets X and X ′ that differ in exactly one data point and any subset S of
the output space of A, we have

P(A(X) ∈ S) ≤ eε · P(A(X ′) ∈ S) + δ.

In standard differential privacy, two datasets X and X ′ are adjacent if we can convert X to X ′ either
by adding, removing, or changing a single data point. Notably, the change in the single data point
may be arbitrary.

In distance-based privacy, however, we only allow two datasets to be adjacent if they differ by
changing (not adding or removing) a single data point, by moving it up to distance ρ. Formally, we
define the following.

Definition 2.2. Let X,X ′ be ρ-adjacent if they have the same number of points and differ in exactly
one data point, where the distance between the two differing data points is ρ. Then, a (randomized)
algorithm A is (ε, δ, ρ)-dist-DP if for any two ρ-adjacent datasets X and X ′ and any subset S of the
output space of A, we have

P(A(X) ∈ S) ≤ eε · P(A(X ′) ∈ S) + δ.

We remark that in all of our theoretical guarantees, we implicitly assume that ε, δ ≤ 1
2 .

The Laplace Mechanism is one of the most common primitives used to ensure privacy. Simply put,
for a non-private statistic, the Laplace Mechanism adds noise Lap(t) to the statistic for some t > 0,
where Lap(t) has the probability density function (PDF) equal to 1

2t · e
−|x|/t. It is well-known

that if f(X) is a statistic such that |f(X)− f(X ′)| ≤ ∆ for any two adjacent datasets X,X ′, then
f(X) + Lap(∆/ε) is (ε, 0)-DP. Likewise, if |f(X)− f(X ′)| ≤ ∆ between two ρ-adjacent datasets
X,X ′, then f(X) + Lap(∆/ε) is (ε, 0, ρ)-dist-DP.

Similar to the Laplace Mechanism, we can also implement the Truncated Laplace mechanism [43]
for approximating functions f : X → R. The Truncated Laplace Mechanism outputs f(X) +
TLap(∆, ε, δ), where TLap(∆, ε, δ) is the distribution with PDF proportional to e−|x|·ε/∆ on the
region [−A,A], where A = ∆

ε · log
(
1 + eε−1

2δ

)
, and PDF 0 outside the region [−A,A]. Assuming

0 < ε and 0 < δ ≤ 1
2 , it is known that if |f(X) − f(X ′)| ≤ ∆ for all adjacent X,X ′, then this

mechanism is (ε, δ)-DP, and if ε ≤ 1
2 this is accurate up to error ∆

ε · log 1
δ , with probability 1.

Likewise, a nearly identical result holds for distance-based privacy. Namely, if |f(X)− f(X ′)| ≤ ∆
for any ρ-adjacent datasets X,X ′, then f(X) + TLap(∆, ε, δ) is (ε, δ, ρ)-dist-DP.

We defer some additional preliminaries to Appendix A.

2.2 k-Means and k-Median Clustering

We define d(x, y) to be the Euclidean distance between two points x and y, and for a finite subset
C ⊂ Rd, we define d(x,C) = d(C, x) to be minc∈C d(x, c). Given a dataset X = {x1, . . . , xn} of
points in Rd, and a set of centers C = {c1, . . . , ck}, we define the k-means/k-median cost as

cost(X;C) :=
∑
x∈X

d(x,C)p.

Above, p = 2 for k-means and p = 1 for k-median. Finally, we define OPTk(X) to be the minimum
value of cost(X;C) for any set of k points C.

We further assume that the points in X are in B(0,Λ), which is the ball of radius Λ about the
origin in Rd. Our goal in k-means (resp., k-median) clustering is to find a subset C of k-points that
minimizes cost(X;C), i.e., where cost(X;C) is as close to OPTk(X) as possible. Occasionally,
we may assign each point xi ∈ X a positive weight wi, in which case we define cost(X;C) :=∑

xi∈X wi · d(xi, C)p.
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Our goal in differentially private clustering is to produce a set of k centers C such that C is (ε, δ)-DP
with respect to X , and such that cost(X;C) ≤ β · OPT(X) + V · Λp (where p = 2 for k-means
and p = 1 for k-median), where β and V are not too large. In distance-based privacy, we wish to
replace the factor Λ with some smaller ρ, i.e., we want cost(X;C) ≤ β ·OPT(X)+V ·ρp. However,
our algorithm only has to be private up to changing a single data point by up to ρ. If we obtain this
guarantee, we say that we have a (β, V )-approximate and (ε, δ, ρ)-dist-DP solution.

3 Technical Overview and Roadmap

We focus on proving Theorem 1.1 in Sections 4 and 5, and discuss our experimental results in Section
6. In Sections 4 and 5, we will only describe the algorithms, and we defer all formal proofs to the
Supplementary sections. For simplicity, in this overview we focus on k-median and assume the
dimension d = (log n)O(1), and can be hidden in Õ notation.

Our approach follows two high-level steps, inspired by the work of [22, 25]. The insight used in [25],
which proved highly efficient private clustering algorithms, is to start by generating a crude but
private solution that may use a large number of centers and have a large approximation, but has
small additive error. Then, one can apply the crude solution to partition the Euclidean space Rd into
smaller regions, and apply some regular differentially private clustering algorithm in the regions. We
follow a similar high-level template to [25]. However, we still need to implement each of these steps,
which require several technical insights to ensure we maintain privacy while only losing additive
error roughly proportional to poly(k, d) · ρ.

To obtain a crude approximation, we use a technique based on partitioning the space Rd into randomly
shifted grids at various levels (also known as the Quadtree). In the Quadtree, the 0th level is a very
coarse grid containing the large ball of radius Λ, and each subsequent level refines the previous level
with smaller grid cells. For a single grid and knowledge of which point lies in which grid cell, a
natural approach for minimizing cost would be to output the centers of the “heaviest” cells, i.e., those
with the most number of points. Indeed, it is known that outputting the O(k) heaviest cells at each
grid level provides a good approximation, at the cost of having more than k centers.

While this is not DP, a natural way of ensuring privacy would be to add Laplace noise to each count
and add the heaviest cells after this. Unfortunately, doing so will lead to error depending on the full
radius Λ, due to the coarser levels of the quadtree (i.e., levels with grid length close to Λ rather than ρ).
For example, if there was only a single data point, there will be at least ed cells even at coarse levels,
and several of them may have large noisy counts. Hence, we are likely to choose completely random
cells, which will cause additive error to behave like Λ as opposed to ρ. Another option is to add noise
to the points first and then compute the heaviest cells. While this avoids additive dependence on Λ,
the additive dependence will behave like n · ρ where n is the full size of the dataset.

Surprisingly, we show that we can combine both of these observations in the right way. Namely, for
coarse cells (i.e., with length larger than Õ(ρ)), we add noise (of distance proportional to Õ(ρ)) to
the data points directly to generate private points x̃i, and then compute the heaviest cells without
adding noise to the counts. For fine cells (length smaller than Õ(ρ)), we do not add noise to the data
points, but we add Laplace noise to the cell counts.

To explain the intuition behind this, suppose that the n data points happen to be perfectly divided
into n/k clusters, where every point has distance r to its nearest cluster center. If r ≫ ρ, then even if
we add Õ(ρ) noise to each data point, we will still find cluster centers that are within Õ(r) of each
correct center. So, the k-means cost should only blow up by a small multiplicative factor, without
additive error. Alternatively, if r ≪ ρ, then the grid cells of side length Õ(r) should contain the
entire cluster, and hence have n/k points in them. Assuming n ≫ d · k, even if we add Laplace noise
to each of ed cells, none of them will exceed n/k. Alternatively, if n ≪ d · k, then our approach of
simply adding noise to the points and obtaining n · ρ error will be only O(dk) · ρ, which is small.

In summary, we can generate a crude approximation F with roughly O(k) cells per grid level (and
Õ(k) centers total), with small additive ratio. But we desire for the number of centers to be exactly
k, and the multiplicative ratio to be O(1), whereas ours will end up being dO(1). To achieve such an
accurate result, we use F to partition the data into regions, and apply a private coreset algorithm on
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each. By combining these coresets together, we may obtain a private coreset of the full data, and then
we can apply an O(1)-approximate non-private algorithm on the coreset.

A first attempt, inspired by [22, 25], is to send each xi to a region Sj if fj ∈ F is the closest center to
xi, and then compute a standard (i.e., not dist-DP) private coreset on each region Sj . To avoid dealing
with large additive errors depending on Λ, we further split each region into a close and far region,
depending on whether the distance from xi to fj is more than or less than S · ρ for some parameter S.

This attempt will still suffer from a large additive cost. For instance, if a point moves, even by
distance ρ, it may move from a close region to a far region. Hence, the far region may have 1 more
point, and since the far regions have diameter Λ, an algorithm that is private to adding or deleting a
point must incur error proportional to Λ.

Our fix for this is to assign each xi to a region not based on its closest point and distance, but instead
based on x̃i’s closest point and distance, where we recall that x̃i is the noisy version of xi. For the
points {xi} that are mapped to a far region (meaning x̃i is far from its nearest fj), we will simply use
{x̃i} as the coreset, as x̃i is already dist-DP. However, for points that are mapped to a close region,
while we use x̃i to determine which region the point xi is mapped to, we compute a private coreset
using [70] on the points xi, rather than use the points x̃i.

To explain why this algorithm is accurate, for the close regions, we obtain additive error proportional
to S · ρ as we apply the private coreset on a ball of radius S · ρ. There is one region for each center
in F , which multiplies the additive error by |F | = Õ(k). For the far regions, we first note that
d(x̃i, C) = d(xi, C)±Õ(ρ) for any set of k centers C, as d(xi, x̃i) ≤ Õ(ρ). Hence, we have additive
error Õ(ρ) per point. While this seems bad as this might induce additive error for n points, we in fact
show that this additive error can be “charged” to multiplicative error. To see why, if xi mapped to
the far regions, this means d(x̃i, F ) ≥ ρ · S, which also means d(xi, F ) ≥ Ω(ρ · S), If there were T
such points, then the total cost of X with respect to F is at least T · ρ · S, whereas the additive error
is roughly T · ρ. Finally, in our crude approximation we show cost(X;F ) is at most dO(1) times the
optimum k-means cost, which means for S ≫ dO(1) the additive error is small even compared to the
optimum cost. Hence, we can charge the additive error to multiplicative error. We still have additive
error from the close regions, but for S = dO(1), the additive error is only poly(k, d) · ρ.
To summarize, while our techniques are inspired by [25], one important novel technical contribution
of our work is that while [25] uses the true locations of the points to assign them to regions, we first
add Gaussian noise to the points to determine their region, and then use the noised points only for the
“far” regions and the true points only for the “close” regions. This change is crucial in ensuring the
analysis is successful. In addition, we must set several parameters carefully to charge the additional
incurred cost either to a small additive or small multiplicative factor.

4 Crude Approximation

In this section, we devise a crude bicriteria approximation that will serve as a starting point in
developing our more refined algorithm. A bicriteria approximation is a set F of α · k points, that
is (ε, δ, ρ)-DP in terms on X , and in addition, it is a (β, V ) approximation, i.e., cost(X;F ) ≤
β ·OPTk(X) + V · ρp, where p = 1 for k-median and p = 2 for k-means. Even though F has more
than k points, we still compare to the optimal solution with exactly k points. We will show such an
algorithm with α = poly(log n, log Λ

ρ ), β = poly(d), and V = poly(k, d, ε−1, log δ−1, log n). We
defer the formal theorem statement, along with the proof, to Appendix B.

Algorithm Description: The algorithm works as follows. For each i ≤ n, let x̃i be generated by
adding O

(
ρ
ε ·
√
log(1/δ)

)
· N (0, I) noise to each data point xi. Let X̃ = {x̃1, . . . , x̃n}.

We create REP = O(log n) random quadtrees starting from the top level with side length Λ (full
diameter of pointset) until the bottom level of size length ρ/B, for some parameter B. Next, for
some parameter A, for each level with side length between ρ · A and ρ/B, we count how many
points are in each cell, add TLap(1/ε′, 1/δ′) noise, where ε′ = Θ(ε/

√
log n log(A ·B) log(1/δ))

and δ′ = Θ(δ/(log n log(A ·B))), and then pick the 4k cells in that level with the largest number of
points in them, after adding noise to the number of points. For the levels of side length more than
ρ ·A, we count how many of the x̃i points are in each cell and then pick the 4k cells in that level with
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the largest number of points in X̃ . Our final algorithm simply outputs the union of all cell centers
that we have picked.

One issue is that the number of cells is exponential in d, so adding noise to each cell count may be
inefficient. To fix this, we will only add TLap(1/ε′, 1/δ′) noise to cells that were nonempty, and
will only pick a cell center if its noisy count is at least K

ε′ log
1
δ , for some large constant K. Since an

empty cell, even after adding noise to its count, can never exceed K
ε′ log

1
δ , we can pretend we did the

same procedure to the empty cells, but simply never included them. It is straightforward to verify that
every other step of the algorithm is implementable in polynomial time.

We provide pseudocode for the algorithm in Algorithm 2 in Appendix B, and we discuss the runtime
at the end of Appendix C.

5 From Crude to Accurate

In this section, we devise an improved approximation that only uses k centers and achieves a constant
approximation ratio, using the crude approximation from Section 4 as a starting point. We will
subsequently prove Theorem 1.1. Again, we defer all proof details to Appendix C.

Our approach utilizes both the crude approximation from Section 4 and previously known constant-
approximation differentially private (but not dist-DP) algorithms from the literature, to create a dist-DP
“semi-coreset” for clustering. More formally, given a set of n points X = {x1, . . . , xn} ∈ Rd, we
will compute a (weighted) set of points Y that is (ε, δ, ρ)-dist-DP with respect to X , such that for any
set of k centers C = {c1, . . . , ck}, cost(Y ;C) = Θ(cost(X;C))±O(OPTk(X))±W · ρp, where
W will be polynomial in d, k, ε−1, log δ−1, log n, and log Λ

ρ .

If we can achieve this, then we just have to compute an O(1)-approximate k-means (or k-median)
solution to Y , which does not have to be private since Y already is. Indeed, one can prove an
O(1)-approximation of Y will be a dist-DP (O(1), O(W ))-approximate solution for X .

Algorithm Description: Our algorithm works as follows. First, for each point xi ∈ X , add
O
(

ρ
ε ·
√

log(1/δ)
)
· N (0, I) noise to get a point x̃i. (Recall: this was also done for the crude

approximation.)

Next, we partition the set of points into regions, using our dist-DP bicriteria approximation F from
Section 4. If d(x̃i, F ) > ρ · S for some parameter S, we send the noised point x̃i to the set X̃0, and
send the index i to the index set I0. Else, if x̃i is closest to center fj (for j ≤ α · k), we send the true
point xi to the set X̂j , and send i to the index set Ij . In fact, for all j including j = 0, we may define
X̂j to be the set {xi : i ∈ Ij}. Note that X̂j is a full partition of the dataset X . For each j ≥ 1, we
will define the region Rj as the ball of radius O(ρ · S) around fj .

For each 0 ≤ j ≤ α · k, we let n̂j be the number of indices in Ij . Note that this equals the number of
points mapped to X̂j . If n̂j < T for some parameter T , then we define X̃j to be the corresponding
points {x̃i : i ∈ Ij}. Otherwise, we apply the private semi-coreset algorithm from [70] to find
a private semi-coreset X̃j of the dataset X̂j , with respect to the ball B(fj , ρ · O(S/γ)) for some
parameter γ < 1. Finally, we will merge all the semi-coresets X̃j together, which includes X̃0 defined
in the previous paragraph, to obtain X̃ . Finally, we may apply any O(1)−approximate (non-private)
clustering to X̃ .

We provide pseudocode for the algorithm, in Algorithm 1.

6 Empirical Evaluation
In this section, we study the emperical approximation of our ρ-dist-DP k-means clustering algorithm.
Datasets. We evaluate our algorithm on 6 well-known public datasets brightkite (51406 × 2),
gowalla (107092×2), shuttle (58000×10), skin [12] (245057×4), rangequeries [67] (200000×6)
and s-sets [42] (5000×2), where brightkite and gowalla are datasets of geographic locations (latitude
and longitude) of users and can be found in Stanford Large Network Dataset Collection (SNAP) [54],
shuttle, skin and rangequeries are non-geographic datasets and can be found on UCI Repository [29],
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Algorithm 1 Main Algorithm: dist-DP k-means (resp., k-median) clustering
1: Input: Parameters n, d, k, ε, δ, ρ, dataset X = {x1, . . . , xn} ⊂ Rd, crude private bicriteria approximation

F = {f1, . . . , fα·k} ⊂ Rd.
2: Output: Improved private approximation C = {c1, . . . , ck} ⊂ Rd.

3: Initialize S = O
(

1
ε
·
√

(d+ logn) · log(1/δ) · d3
)

, T = O

(
k log2 n log(1/δ)+k

√
d log(1/δ)

ε

)
.

4: Create array arr[1 : n].
5: for i = 1 to n do
6: x̃i := xi +

ρ·
√

2 log(1.25/δ)

ε
· N (0, I).

7: if d(x̃i, F ) ≤ ρ · S then
8: arr[i] = argminj d(x̃i, fj).
9: else

10: X̃0 = X̃0 ∪ {x̃i}
11: for j = 1 to α · k do
12: X̂j = {xi : arr[i] = j}, and n̂j = |X̂j |.
13: if n̂j < T then
14: X̃j is {x̃i : arr[i] = j}.
15: else
16: Compute X̃j by applying a DP k-means (resp., k-median) semi-coreset algorithm (such as from

Lemma A.10) to X̂j with respect to B(fj , ρ · S/γ), for some fixed γ ≤ 1
2

.
17: X̃ =

⋃m
ℓ=0 X̃ℓ

18: Return non-private k-means (resp., k-median) approximate solution with respect to X̃ .

and s-sets is another non-geographic dataset and can be found in the clustering benchmark dataset2.
For each dataset, we preprocess it to make it fit into [−1, 1]d. We refer readers to Appendix E for
more details of the preprocessing steps.

Setup. We compare our algorithm described in Algorithm 1 in Section 5 with other three algorithms.
We report the k-means cost of all algorithms. In all plots, the label of our algorithm is “dist-DP
k-means”. The three compared baseline algorithms are as follows.

1. Non-private baseline (k-means++): We compare our algorithm with the non-private k-
means solver using k-means++ seeding implemeted by Python scikit-learn package [66].
The output k-means cost of this baseline can be regarded as the groudtruth cost.

2. DP baseline (DP k-means): This is a k-means clustering algorithm in the standard DP
setting implemented in part of a standard open-source DP library 3.

3. ρ-Dist-DP baseline (dist-DP random points): Finally, we also compare with a natural
ρ-dist-DP algorithm described as the following. We run non-private k-means solver on X̃
described in Section 4. Since X̃ is a ρ-dist-DP version of X , the output centers are ρ-dist-DP.
Note that since the final solution of this baseline only depends on X̃ , we assign the entire
privacy budget (ε, δ) to computing X̃ .

In all experiments, we fix privacy parameters ε = 1, δ = 10−6. These parameter setups are standard
in many other DP papers as well. We evaluate our algorithms for different choices of the privacy
parameter ρ. Note that the parameter ρ should not be determined by our algorithm. We try different ρ
to show how the choice of ρ affects the clustering quality. We refer readers to Section 7 for more
discussions of the choice of ρ.

We use the DP coreset implementation provided by the DP baseline for the purpose of the computation
of semi-coreset X̃j described in Section 5.

Our Results. We run all algorithms for k = 4, 6, 8, 12, 16. For each experiment, we repeat 10 times
and report the mean and the standard error. In the experiments shown in Figure 1, we fix ρ = 0.054.
As shown, the k-means cost of our dist-DP k-means algorithm is always smaller than the cost of DP

2https://cs.joensuu.fi/sipu/datasets/.
3https://ai.googleblog.com/2021/10/practical-differentially-private.html.
4We show advantages of our clustering for an example ρ which neither depends on our algorithm nor be

optimized. An example of the privacy guarantee of ρ = 0.05: For geographic (latitude and longitude) datasets
(e.g., brightkite, gowalla), an attacker is hard to distinguish whether a user was in New York or in Toronto.
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k-means baseline and is only slightly worse than the non-DP baseline which is as expected. The dist-
DP baseline introduces a large k-means cost which implies that our partitioning strategies described
in Section 4 and Section 5 are indeed necessary and can improve the clustering quality significantly
in practice. Finally, we fix k = 8 and investigate how the changes of ρ affect the k-means cost of our
dist-DP k-means algorithm. We run our algorithm on all datasets for ρ = 1, 0.08, 0.008, 0.0001. As
shown in Figure 2, the k-means cost of our algorithm decreases as ρ decreases, which is as expected.
For running time, though we did not optimize our implementation, each algorithm runs within at
most a few minutes in a single thread mode.

In summary, for a reasonable range of ρ, we significantly outperform previous DP k-means algorithms,
whereas more naive distance-based DP algorithms perform far worse. In addition, we have comparable
approximation guarantees even to the non-private k-means algorithm.
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Figure 1: k-Means cost of non-private baseline (blue), DP baseline (green), our dist-DP k-means (yellow), and
dist-DP baseline (gray) for different k with ρ = 0.05. Shades indicate 3× standard error over 10 runs.
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Figure 2: k-Means cost of dist-DP k-means algorithm for various ρ with k = 8. Shades indicate 3× standard
error over 10 runs. The result supports the interpolating nature of the parameter ρ. In particular, when ρ decreases,
the k-means cost also decreases. When ρ = 0, we exactly recover the result as non-private k-means++.

7 Limitations and Open Problems
In this work, we propose efficient (ε, δ, ρ)-dist-DP algorithms for k-means and k-median problems
for any given privacy parameters ε, δ, ρ. However, the choices of ε, δ and ρ remain open. Notice
that these privacy parameters should not be determined by our algorithm, but rather by legal teams,
policy makers, or other experts for different specific scenarios. This is an expert determination that is
outside of the scope of this paper but has been studied by practitioners extensively.

9



In proving Theorem 1.1, we obtains an additive error proportional to k2 · ρ2 (ignoring polynomial
factors in d and logarithmic factors in the other parameters - see Theorem C.1), whereas the work
of [61] has dependence k · Λ2. This is because to improve the dependence on Λ to a dependence on
ρ, we end up partitioning the data into roughly k regions and must apply a separate private k-means
algorithm on each region, which increases the additive dependence on k. Hence, a natural open
question is whether one can improve the additive error’s dependence on k.
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A Additional Preliminaries

In this section, we state some additional definitions and preliminary results that are of use.

We note one notation that we may abuse: for positive reals A,B, we say that C = A ± B if
C ∈ [A−B,A+B]. Likewise, we may say C = (1± γ)B if C ∈ [(1− γ)B, (1 + γ)B].

A.1 Differential Privacy

In Section 2, we described the Laplace mechanism for approximating functions f : X → R.

Similar to the Laplace mechanism, there also exists the Gaussian mechanism, which is useful for
high-dimensional functions f : X → Rd. We will state a simpler version that is sufficient for
our purposes. Namely, a dataset consists of a single data point x, it is known that outputting

x̃ = x+ ρ ·
√

2 log(1.25/δ)

ε · N (0, I) satisfies (ε, δ, ρ)-dist-DP, where N (0, I) represents a standard
d-dimensional Gaussian. This implicitly follows from [32, Theorem 3.22]. As a result, we have the
following basic proposition.

Proposition A.1. Let X = {x1, . . . , xn} be a dataset of size n. Then, the dataset {x̃1, . . . , x̃n},

where each x̃i is i.i.d. drawn as xi + ρ ·
√

2 log(1.25/δ)

ε · N (0, I), is (ε, δ, ρ)-dist-DP.

Next, we note two classic theorems regarding the privacy of composing private mechanisms (see,
for instance, [32] or [72]). Note that these theorems hold for adaptive composition, which allows to
run algorithms A1, . . . ,Ak in sequence, where each Ai is allowed to treat A1, . . . ,Ai−1 as a fixed
public input to its algorithm.

Theorem A.2 (Basic Adaptive Composition). Let A1, . . . ,Ak be adaptive mechanisms on a dataset
X such that each Ai is (εi, δi)-differentially private as a function of X , assuming that the previ-
ous outputs A1, . . . ,Ai−1 are fixed. Then, the mechanism A which concatenates the outputs of
A1, . . . ,Ak is (

∑
εi,
∑

δi)-differentially private.

Likewise, if each Ai were (εi, δi, ρ)-dist-DP, the concatenated mechanism A is (
∑

εi,
∑

δi, ρ)-dist-
DP.

Theorem A.3 (Advanced Adaptive Composition). Let A1, . . . ,Ak be adaptive mechanisms on a
dataset X such that each Ai is (ε, δ)-differentially private as a function of X , assuming that the
previous outputs A1, . . . ,Ai−1 are fixed. Then, for any δ′ > 0, the mechanism A which concatenates
the outputs of A1, . . . ,Ak is (

√
2k log δ−1 · ε+ kε(eε − 1), kδ + δ′)-differentially private.

Likewise, if each Ai were (ε, δ, ρ)-dist-DP, the concatenated mechanism A is (
√
2k log δ−1 · ε +

kε(eε − 1), kδ + δ′, ρ)-dist-DP.

A.2 Clustering

In k-means or k-median clustering, given a dataset X ⊂ B(0,Λ) of size n, we recall that our goal is
to efficiently find a set of points C such that cost(X;C) is a good approximation to OPT(X). In
general, we wish for purely multiplicative approximations, but due to the nature of private k-means
(and k-median), we will additionally have a small additive approximation that is proportional to Λp.
We now define approximate k-means/k-median solutions.

Definition A.4. Suppose we are given data X = {x1, . . . , xn} ∈ Rd, and implicit parameters ρ and
k. Then, for any β ≥ 1, we define a set C of size k to be a (β, V )-approximate solution for X if
cost(X;C) ≤ β ·OPT(X) + V · ρp.

We also define bicriteria solutions for k-means and k-median: here, we are allowed to use a larger
dataset C that may have more than k points, but still compare to the optimal k-clustering.

Definition A.5. Suppose we are given data X = {x1, . . . , xn} ∈ Rd, and implicit parameters ρ and
k. Then, for any α, β ≥ 1, a set C is an (α, β, V )-bicriteria approximate solution for X if |C| ≤ β ·k
and cost(X;C) ≤ β ·OPT(X) + V · Λp.

Finally, we define coresets and semi-coresets for k-means (or k-median) clustering. A coreset of a
dataset X , roughly speaking, is a (usually smaller) dataset Y such that one can estimate a k-means
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(or k-median) solution of X by computing the solution on Y . More precisely, we have the following
definition.
Definition A.6. Given a dataset X = {x1, . . . , xn} and some γ,W ≥ 0, a (γ,W, ρ)-coreset for
k-means (resp., k-median) is a dataset Y such that for any subset C ⊂ Rd of size k,

1

1 + γ
· cost(Y,C)−W · ρp ≤ cost(Y ;C) ≤ (1 + γ) · cost(X,C) +W · ρ2,

where p = 2 (resp., p = 1). Likewise, a (κ,W, ρ)-semi-coreset (for κ,W ≥ 0) for k-means (resp.,
k-median) is a dataset Y such that for any subset C ⊂ Rd of size k,

1

1 + κ
·cost(Y,C)−κ·OPTk(X)−W ·ρp ≤ cost(Y ;C) ≤ (1+κ)·cost(X,C)+κ·OPTk(X)+W ·ρ2.

A.3 Randomly Shifted Grids

In our algorithms, we will make use of the Quadtree data structure which is composed of randomly
shifted grids, which we now describe. This data structure has proven useful in various geometric
settings beyond clustering, such as approximate near neighbor and computing other geometric
quantities such as Earth-Mover distance and Minimum Spanning Tree cost.
Definition A.7. A randomly shifted Quadtree is constructed as follows. We start with a top level
of some size Λ and let level 0 be a single grid cell, which is the d-dimensional hypercube [−Λ,Λ]d.
Next, we choose a uniformly random point ν = (ν1, . . . , νd) ∈ [−Λ,Λ]d, which will represent our
shift vector. Now, for each level ℓ ≥ 1, we partition the region [−Λ,Λ]d into grid cells of size Λ/2ℓ,
shifted by ν. In other words, each cell is the form [ν1 + a1 ·Λ/2ℓ, ν1 +(a1 +1) ·Λ/2ℓ]× · · ·× [νd +
ad · Λ/2ℓ, νd + (ad + 1) · Λ/2ℓ], where a1, . . . , ad ∈ Z. We say that Λ/2ℓ is the grid size at level ℓ.
(We remark that we may truncate some grid cells so that they do not escape [−Λ,Λ]d.) We continue
this for a finite number of levels, until we reach some bottom level.

We will utilize the following fact about Quadtrees, or more specifically the randomly shifted grid at
some fixed level ℓ.
Proposition A.8. (see Proof of Theorem B.1 in [25]) Given a randomly shifted grid of dimension
20r · d, a Euclidean ball of radius r (in Rd) is split into at most 2 pieces in expectation.

A.4 Private k-means

Finally, we note the result of [61] on differentially private k-means (and k-median) clustering.
Theorem A.9. [61] There exists a polynomial-time (ε, δ)-DP algorithm that, given a set X =
{x1, . . . , xn} in a fixed ball of radius Λ in Rd, outputs a set of k centers C = {c1, . . . , ck} such that

cost(X;C) ≤ O(1) ·OPTk(X) + U · Λp,

where U = O

(
k log2 n log(1/δ)+k

√
d log(1/δ)

ε

)
, and p = 2 for k-means and p = 1 for k-median.

Using a slightly weaker result, [70, 25] was able to extend it to an algorithm for generating a
private semi-coreset for k-means or k-median. Given Theorem A.9, the algorithm simply computes
C = {c1, . . . , ck}, and gives each ci a weight which is the number of points in X closest to ci, plus
Lap(1/ε) noise. By combining Theorem A.9 and the conversion of [70, 25] (e.g., see [25, Lemma
C.1], which uses a slightly weaker bound), the following is immediate.
Lemma A.10. For some κ = O(1), there exists a polynomial-time (ε, δ)-DP algorithm that, given
a set X = {x1, . . . , xn} in a fixed ball of radius R in Rd, computes a (κ, U, ρ)-semi-coreset for

k-means, where U = O

(
k log2 n log(1/δ)+k

√
d log(1/δ)

ε

)
.

B Crude Approximation

In this section, we devise a crude bicriteria approximation that will serve as a starting point in
developing our more refined algorithm. To recall the setup of the bicriteria problem (see Definition
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Algorithm 2 Approximate dist-DP bicriteria algorithm
1: Input: Parameters n, d, k, ε, δ,Λ, ρ, dataset X = {x1, . . . , xn} ⊂ Rd.
2: Output: Crude bicriteria approximation F = {f1, . . . , fα·k} ⊂ Rd: will be (O(ε), O(δ), ρ)-

dist-DP.
3: Initialize A = O(ε−1

√
log δ−1 · d

√
d+ log n), B = n, REP = O(log n).

4: Initialize ε′ = Θ
(
ε/
√
log n log(A ·B) log(1/δ)

)
and δ′ = Θ(δ/(log n log(A ·B))).

5: for i = 1 to n do
6: x̃i := xi +

ρ·
√

2 log(1.25/δ)

ε · N (0, I).
7: for rep = 1 to REP do
8: Create a randomly shifted Quadtree with largest level ℓ = 0 with side length Λ and smallest

level with side length ρ/B.
9: for ℓ = 0 to L1 := log2(Λ/(Aρ)) do

10: for each cell g at level ℓ containing some x̃i do
11: count(g) = #{x̃i in cell g}.
12: Let g1, . . . , g4k be the 4k cells at level ℓ with maximum count(g).
13: Add the centers of g1, . . . , g4k to F .
14: for ℓ = log2

(
Λ
Aρ

)
+ 1 to L2 := log2

(
BΛ
ρ

)
do

15: for each cell g at level ℓ that contains some xi ∈ X do
16: count(g) = #{xi in cell g}+TLap(1/ε′, 1/δ′).
17: Let g1, . . . , g4k be the 4k cells at level ℓ with maximum count(g).
18: Add each center gi to F , if count(gi) ≥ K

ε′ log
1
δ′ for some constant K.

19: Return F .

A.5), we are given a dataset X = {x1, . . . , xn}, contained in a given ball of radius Λ in Rd. We
wish to compute an (α, β, V )-approximation that satisfies (ε, δ, ρ)-dist-DP. By this, we must output a
set of α · k centers F = {f1, . . . , fα·k} such that cost(X;F ) ≤ β · OPTk(X) + V · ρp for some
parameters α, β, V , where p = 1 for k-median and p = 2 for k-means. In addition, F should be
(ε, δ, ρ)-dist-DP with respect to X .

Our desire for α, β, V is that they are polynomial in d, k, log n, ε−1, log δ−1, and log Λ
ρ . We do not

wish for any polynomial dependencies on n, either in the approximation ratio or in the additive error.

We recall the algorithm description from Section 4. We also include the pseudocode here, as
Algorithm 2.

We now focus on analyzing the privacy and accuracy of the algorithm. Formally, in this section we
prove the following.

Theorem B.1. For any 0 < ε, δ < 1
2 and ρ ≤ Λ

2 , there exists an (ε, δ, ρ)-dist-DP (α, β, V )-

bicriteria approximation for k-median, with α = O
(
log n · (log n+ log Λ

ρ )
)

, β = O(d3/2), and

V = kd2/ε2 · poly log(n, d, ε−1, δ−1).

Likewise, there exists an (ε, δ, ρ)-dist-DP (α, β, V )-bicriteria approximation for k-means, with

α = O
(
log n · (log n+ log Λ

ρ )
)

, β = O(d3), and V = kd4/ε3 · poly log(n, d, ε−1, δ−1).

Analysis of Privacy: The x̃i points will be (ε, δ, ρ)-dist-DP, by the Gaussian Mechanism (Proposition
A.1). The levels above ρ ·A are strictly determined by x̃i. For each level of grid length between ρ ·A
and ρ/B, changing one data point changes at most 2 grid cells each by 1, which implies (2ε′, 2δ′)-DP.
In addition, this happens over O(log(A ·B)) levels and O(log n) repetitions for each. By applying
the advanced composition theorem (Theorem A.3, we have that as long as ε, δ < 1, for our choices
of ε′, δ′, the composition is (O(ε), O(δ))-DP.

In total, the algorithm is (O(ε), O(δ), ρ)-dist-DP.

Analysis of Accuracy: Let X = {x1, . . . , xn} be our original set of points, and let C = {c1, . . . , ck}
be the optimal set of k centers. For any radius r, let nr be the number of points x ∈ X such that
d(x,C) ≥ r. Then, it is well known that the k-means cost and k-median cost, up to an O(1)-
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multiplicative factor, equal ∑
t∈Z

22t · n2t and
∑
t∈Z

2t · n2t ,

respectively. For the set of centers F generated, we similarly define n̂r to be the number of points
x ∈ X such that d(x,C) ≥ r.

It is well-known that the magnitude of a d-dimensional Gaussian N (0, I) is bounded by
O(
√
d+ log 1/β) with failure probability β. Hence, we set A = O(ε−1

√
log δ−1 · d

√
d+ log n),

so that with high probability, ∥x̃i − xi∥2 ≤ ρ ·A/(40d) for all i. Now, for any r ≥ ρ ·A/(40d), if
there exist k balls of radius r that contain all but nr of the points in X , then there exist k balls of
radius 2r that contain all but nr of the points in X̃ . In addition, given a randomly shifted grid of
dimension 40r · d, a ball of radius 2r, in expectation, is split into at most 2 pieces, by Proposition
A.8. Therefore, by Markov’s inequality, the k balls of radius 2r are split into at most 4k cells with at
least 50% probability, which means that the top 4k cells at grid level 40rd contain all but at most
nr points. Hence, because the center of the 40r · d-side length grid has radius 20rd3/2, this means
n̂20rd3/2 ≤ nr for all r ≥ ρ ·A/(40d) with at least 50% probability: repeating this O(log n) times,
this holds with at least 1− n−5 probability, even across all levels.

Next, suppose that r ≤ ρ ·A/(40d). In this case, if we didn’t add noise we would have n̂20rd3/2 ≤ nr

as in the previous case. This time, however, we add noise to the count of each cell rather than the
number of points. In addition, we may not include a cell if its noisy count is at most K

ε′ · log
1
δ′ , but

note that this means its true count is at most 2K
ε′ · log 1

δ′ . Therefore, since the count of each cell is
altered by O( 1

ε′ log
1
δ′ ), we have that n̂20rd3/2 ≤ nr +O( k

ε′ · log
1
δ′ ) for all r ≤ ρ · A

40d .

In summary, we have that n̂20rd3/2 ≤ nr for r ≥ ρ ·O(ε−1
√

log δ−1 ·
√
d+ log n). In addition, for

r ≤ ρ ·O(ε−1
√

log δ−1 ·
√
d+ log n), we have that n̂20rd3/2 ≤ nr +O(k/ε′ · log 1/δ′). If we set

B = n, then below r = ρ ·
√
d/n we have n̂r ≤ n by default and above r = ρ ·

√
d/n the above

bounds hold. This implies that

∑
t∈Z

2tn̂2t ≤ O(d3/2) ·

(∑
t∈Z

2tn2t

)
+O(ρ) · d3/2 ·

∑
t∈Z:2t≤ε−1

√
log δ−1·

√
d+logn

2t ·O
(
k

ε′
· log 1

δ′

)
+O

(
ρ ·

√
d

n

)
· n

= O(d3/2) ·OPTk(X) +O

(
kd2

ε2

)
· poly log(n, d, ε−1, δ−1) · ρ.

Hence, we obtain a bicriteria with multiplicative approximation β = O(d3/2) and additive error
k
√
d · poly(ε−1, log δ−1, log n) · ρ, for k-median. The same calculation for k-means will give us a

multiplicative approximation β = O(d3) and additive error kd4/ε3 · poly log(n, d, ε−1, δ−1) · ρ2.

Finally, the number of centers we output is simple to compute. We have O(log n) repetitions, and
each repetition has O

(
log Λ

ρ/n

)
levels, each of which we select at most 4k cell centers from. Hence,

we select O
(
k · log n · (log n+ log Λ

ρ )
)

points, meaning that α = O
(
log n · (log n+ log Λ

ρ )
)

.

C From Crude to Accurate

In this section, we devise an improved approximation that only uses k centers and achieves a constant
approximation ratio. We will subsequently prove Theorem 1.1.

Our approach utilizes both the crude approximation from Section 4/Section B and previously known
constant-approximation differentially private (but not dist-DP) algorithms from the literature. We
show how to combine these to create a dist-DP semi-coreset. This idea is partially inspired by the
work of [22] for (non-private) coreset constructions and more recently [25] for fast private (semi-
)coreset constructions, More accurately, given a set of n points X = {x1, . . . , xn} ∈ Rd, we will
compute a (weighted) set of points Y that is (ε, δ, ρ)-dist-DP with respect to X , such that for any set
of k centers C = {c1, . . . , ck}, cost(Y ;C) = Θ(cost(X;C))±O(OPTk(X))±W · ρp, where W
will be polynomial in d, k, ε−1, log δ−1, log n, and log Λ

ρ .
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If we can achieve this, then we just have to compute an O(1)-approximate k-means (or k-median)
solution to Y , which does not have to be private since Y already is. Indeed, if we do so, then the
centers C that we find for Y satisfy

cost(Y ;C) ≤ O(1) · cost(Y ;C∗) ≤ O(1) · cost(X;C∗) +O(OPTk(X)) +O(W ) · ρp

for any set of k centers C∗. Hence, this implies that

cost(Y ;C) ≤ O(1) ·OPTk(X) +O(W ) · ρp.

Finally, we also have that cost(Y ;C) ≥ Ω(1) · cost(X;C)−O(OPTk(X))−W · ρp, which means
cost(X;C) ≤ O(1) · cost(Y ;C) +O(OPTk(X)) +O(W ) · ρp, so as desired, we have

cost(X;C) ≤ O(1) ·OPTk(X) +O(W ) · ρp.

Hence, it suffices to prove the following theorem.
Theorem C.1. For any 0 < ε, δ < 1

2 and ρ ≤ Λ
2 , there exists an (ε, δ, ρ)-dist-DP (O(1),W, ρ)-semi-

coreset for k-means (resp., k-median), with W = O
(

k2d4.5

ε3

)
· poly log

(
n, d, 1

ε ,
1
δ ,

Λ
ρ

)
for k-means

and W = O
(

k2d2.5

ε2

)
· poly log

(
n, d, 1

ε ,
1
δ ,

Λ
ρ

)
for k-median.

We assume we have a private (α, β, V )-bicriteria approximation F . Recall this means we have an
(ε, δ, ρ)-dist-DP set of (at most) α · k centers F such that cost(X;F ) ≤ β ·OPTk(X) + V · ρp.

We recall the algorithm description and pseudocode (Algorithm 1) from Section 5. Hence, for the
remainder of this section we focus on proving Theorem C.1. In addition, after proving Theorem C.1,
we briefly discuss the runtime and how to make the runtime close to linear, and parallelizable.

Analysis of Privacy: We will think of the algorithm as having 3 adaptive components. First, we must
create F , which is (ε, δ, ρ)-dist-DP, by Theorem B.1. In addition, we create {x̃i}, which as a set is
(ε, δ, ρ)-dist-DP, by Proposition A.1. Note that X̃0, the sets Ij , and the sizes n̂j are also only depend
on F and {x̃i}. So, for each j with n̂j < T , the algorithm’s creation of X̃j is only depends on F

and {x̃i}. Finally, we must compute X̃j for each j such n̂j ≥ T . However, each coreset is (ε, δ)-DP
which also implies (ε, δ, ρ)-dist-DP, and we are computing the coresets on disjoint subsets of indices,
which are fixed. So overall, computing all of the X̃j is (ε, δ, ρ)-dist-DP if we fix F and each x̃i.

By basic adaptive composition (Theorem A.2), the overall procedure is (3ε, 3δ, ρ)-dist-DP.

Analysis of Accuracy: We focus on accuracy for k-means; the proof for k-median is extremely
similar.

First, note that d(xi, x̃i) ≤ O

(
ρ
√

log(1/δ)

ε ·
√
d+ log n

)
for all i. Also, note that for general positive

reals A,B, (A±B)2 = A2±2AB+B2, and 2AB ≤ γA2+ 1
γB

2 for any positive γ. This means that

for any 0 < γ < 1, (A+B)2 = (1± γ)A2 ±O
(

1
γ

)
B2, and (A−B)2 = (1± γ)A2 ±O

(
1
γ

)
B2.

Hence,

d(x̃i, C)2 =

(
d(xi, C)±O

(√
log(1/δ)

ε
·
√
d+ log n

)
· ρ

)2

= (1± γ) · d(xi, C)2 ±O

(
(d+ log n) · log(1/δ)

ε2
· 1
γ

)
· ρ2. (1)

Therefore, for any set C of size at most k,∑
i∈I0

d(x̃i, C)2 = (1± γ) ·
∑
i∈I0

d(xi, C)2 ±O

(
(d+ log n) · log(1/δ)

ε2
· 1
γ

)
· ρ2 · |I0|,

where we recall that i ∈ I0 if and only if d(x̃i, F ) > S · ρ. For S ≥ Ω

(√
log(1/δ)

ε ·
√
d+ log n

)
,

this implies that d(xi, F ) ≥ S
2 · ρ. However, if d(x̃i, F ) > S · ρ, then d(xi, F ) ≥ S

2 · ρ, and the
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number of such i with d(xi, F ) ≥ S
2 · ρ is at most cost(X;F )

(S/2)2ρ2 ≤ 4β·OPTk(X)+4V ·ρ2

S2·ρ2 . Hence, apart from
the 1± γ multiplicative error, we also incur an additional additive error of

O

(
(d+ log n) · log(1/δ)

ε2
· 1
γ

)
· β

S2
·OPTk(X) +O

(
(d+ log n) · log(1/δ)

ε2
· 1
γ

)
· V

S2
· ρ2.

So, by setting S = O
(

1
ε·γ ·

√
(d+ log n) · log(1/δ) · β

)
, we obtain an additional 1±O(γ) multi-

plicative error and an additive error of O
(

γ
β · V · ρ2

)
. This deals with the error from points sent to

X̃0. To summarize, we have∑
i∈I0

d(x̃i, C)2 = (1±O(γ)) ·
∑
i∈I0

d(xi, C)2 ±O

(
γ

β
· V · ρ2

)
(2)

for all sets C of size at most k.

Next, we deal with points in X̂j with n̂j < T . In this case, we still have that (1) holds, which means
for any such j and any subset C of k points,∑

i∈Ij

d(x̃i, C)2 = (1± γ) ·
∑
i∈Ij

d(xi, C)2 ±O

(
(d+ log n) · log(1/δ)

ε2
· 1
γ
· T
)
· ρ2, (3)

since |Ij | = n̂j < T .

Finally, we deal with the rest of the points, for which we use a regular differentially private semi-
coreset algorithm on each X̂j . Recall that we choose S so that ∥x̃i − xi∥2 ≤ S · ρ for all i, which
means every point xi for i ∈ Ij is in B(fj , 2Sρ), i.e., the ball of radius 2Sρ of fj . We apply the
private semi-coreset algorithm from Lemma A.10 with respect to the larger ball B(fj , ρ · S/γ). This
means that for any subset C of size at most k in Rd,

cost(X̃j ;C) = Θ(1) · cost(X̂j ;C)±O(1) ·OPTk(X̂j)± U ·
(
2Sρ

γ

)2

, (4)

where U = O

(
k log2 n log(1/δ)+k

√
d log(1/δ)

ε

)
. We emphasize that Lemma A.10 holds even with

respect to a center set C that is not contained in the ball B(fj , ρ · S/γ).

We now combine Equations (2), (3), and (4), setting γ to be a fixed small constant. Since X̃ is the
aggregation of all X̃j’s for j = 0, 1, . . . , α · k, and recalling that X̂j = {xi : i ∈ Ij}, we have that

cost(X̃;C)

=

α·k∑
j=0

cost(X̃j ;C)

= Θ(1) ·
α·k∑
j=0

cost(X̂j ;C)±O(1) ·
α·k∑
j=1

OPTk(X̂j)±O

(
V

β
+ αk · (d+ log n) · log(1/δ)

ε2
· T + αk · U · S2

)
· ρ2

= Θ(1) · cost(X;C)±O(1) ·OPTk(X)±O

(
k2d4.5

ε3

)
· poly log

(
n, d,

1

ε
,
1

δ
,
Λ

ρ

)
· ρ2.

The second line is true by combining the equations and setting γ to be a small constant. The third
line is true since X̂j forms a partition of X , and by our parameter settings of α, β, S, T, U, V.

This completes the proof of Theorem C.1, in the k-means case. The k-median case follows the
same analysis (though we will set S = O

(
1
ε·γ ·

√
(d+ log n) · log(1/δ) · β

)
in this case), and

will result in the additive term of O

(
V
β + αk ·

√
(d+ log n) · log(1/δ)

ε2 · T + αk · U · S
)

· ρ =

O
(

k2d2.5

ε2

)
· poly log

(
n, d, 1

ε ,
1
δ ,

Λ
ρ

)
· ρ. By combining this with our discussion at the beginning of

this section, we have also proven Theorem 1.1.
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Runtime: Finally, we note that this algorithm can be implemented efficiently. Indeed, in Algorithm
2, creating the points x̃i, creating each quadtree data structure, computing the counts (only for the x̃i

and xi points), and adding laplace noise all takes Õ(nd) time, where we also hide logarithmic factors
in Λ

ρ . Finally, picking the k heaviest cells in each grid also takes Õ(n) time.

In Algorithm 1, there are two potential bottlenecks. The first is mapping each point x̃i to its closest
center fj , which takes O(nd · |F |) = Õ(ndk) time, hiding logarithmic factors in Λ

ρ . We additionally

have to compute a private semi-coreset for the points in each α · k sets of points X̂j . However,
using the private algorithm of [25, Theorem C.2], computing an O(1)-approximate private semi-
coreset can be done in time Õ(n̂jd) + poly(k) · d. Note that n̂j = |X̂j | and

∑
n̂j = n. Hence,

because α = O
(
log Λ

ρ

)
, the overall algorithm, apart from the assignment of each xi to X̂j , takes

Õ(nd) + poly(k) · d time, hiding logarithmic factors in Λ
ρ .

To improve the nkd to nd, we may use a K = O(log n)-approximate nearest neighbor data structure
to map each x̃i to its K-approximate nearest neighbor fj ∈ F . By using the locality-sensitive
hashing algorithm of [4], we can compute every K-approximate nearest neighbor of each x̃i in Õ(nd)
time instead. We remark that the privacy analysis will be unchanged, and the accuracy analysis
will be similar, up to getting a slightly worse additive approximation. Namely, if the points X̂j

were previously within O(S) of the center fj , they may now have distance O(S ·K). Hence, the
semi-coreset computation will have to be done with respect to a ball of radius O(ρ · S ·K/γ), but
for K = O(log n) and γ a constant, this doesn’t affect the additive error by more than an O(log2 n)
factor.

Hence, we can compute a private semi-coreset in Õ(nd) + poly(k) · d time. Finally, we need to
compute an offline (non-private) k-means (or k-median) approximation. As this is not related to
private clustering, we simply sketch how this can be done.

First, in linear (Õ(nd)) time, the method of [22] computes an O(1)-approximate coreset C of size
poly(k, log n) · d. We can then project the data onto O(log k) dimensions, with a linear map Π. In
low dimensions, we can compute a smaller coreset C ′ of size poly(k, log n) of ΠC in linear time,
and then solve k-means on C ′ in time poly(k, log n). This also implies an O(1)-approximation
for ΠC. Next, we can map every point in ΠC to its closest center in d′ = O(log k) dimensions,
to form an explicit clustering. This takes time O(|C| · k · d′) = poly(k, log n) · d time. By [57],
every k clustering has its k-means objective preserved by a Θ(1)-approximate when projected by Π,
which means the same clustering should still be an O(1)-approximation in the original space. We
can compute the mean of each cluster in linear time, so in the original d-dimensional space, we can
find an O(1)-approximate k-means clustering in time Õ(nd) + poly(k) · d, as desired. Finally, in
the k-median case, [57] is still applicable, and we can compute an approximate 1-median of each
clustering in near-linear time as well [23].

Parallel computation. In the following, we briefly discuss how to implement our algorithm in
the massively parallel computation (MPC) model [51, 11] when each machine has (kd log(n) ·
1/ε · log 1/δ · log(Λ/ρ))C memory for a sufficiently large constant C > 0. Before we state our
implmentation, let us briefly describe the MPC model. In the MPC model, there are M machines
where each machine has H local memory where H is sublinear in the input size and H = Mγ for an
arbitrary constant γ > 0. At the beginning of the computation, the input is arbitrarily distributed in
the machines. The computation proceeds in rounds. In each round, each machine performs some
local computation. Then at the end of the round, each machine sends/recieves messages to/from
other machines. However, the messages sent/recived by a machine in a round cannot exceed its local
memory H . At the end of the algorithm, the output should stored in machines distributedly. The goal
is to design an algorithm with small number of rounds. In the following, we show how to implement
our algorithm in the MPC model using O(1) rounds.

Consider Algorithm 2. Computation of {x̃1, x̃2, · · · , x̃n} only requires local computations. Then, we
can run REP repetitions and each level ℓ ∈ [0, L2] of the loop in Algorithm 2 in parallel. For each
instance, it only requires the counting and taking maximum which can be easily done in the MPC
model in O(1) rounds [45]. Since a single machine has large enough local memory, we are able to
send the entire F to a single machine. The total space required here is O(REP ·L2 · n · d). Next, let
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us consider the implementation of Algorithm 1. Since each machine has enough local memory, we
are able to make each machine holds a copy of F . This broadcasting process can be done in O(1)
rounds (see e.g., [5]). Once each machine holds F , only local computation is required to determine a
point x̃i whether it should be in X̃0. For points that are not belong to X̃0, we are able to determine
whether it belongs to X̂j by only local computations. For each X̂j , we run the MPC DP coreset
algorithm of [25] to get an semi-coreset. This step also takes O(1) rounds. Finally, we can run any
non-private MPC k-means algorithm (e.g., [37]) on X̃0 ∪ X̃1 · · · ∪ X̃|F | which takes O(1) rounds.

D A simple lower bound for dist-DP clustering

In this section, we prove the following simple proposition, showing a additive dependence on k · ρ
(resp., k · ρ2) is necessary for k-median (resp, k-means), as long as the dimension is d = Ω(log k).

Proposition D.1. Let X0 = {x1, . . . , x2k} be points in the ball of radius ρ around the origin,
separated by at least ρ

10 (for d = Ω(log k), this is doable). Suppose X ⊂ X0 is a random subset of
size k, and there exists an (ε, δ, ρ)-dist-DP algorithm that outputs k centers C in terms of X , where
ε, δ ≤ 0.1. Then, the expected cost E[cost(X;C)] is Ω(k · ρp), where p = 1 for k-median and p = 2
for k-means. Yet, the optimum cost OPTk(X) is 0.

Hence, any (ε, δ, ρ)-dist-DP algorithm with finite multiplicative ratio must incur additive error k · ρp.

Proof. First, note that OPTk(X) = 0 since |X| = k, so for C∗ = X , cost(X,C∗) = 0. We now
show that E[cost(X;C)] = Ω(k · ρp).
For each i ≤ 2k, let Bi be the ball of radius ρ

100 around xi. Let pi be the probability over X and the
randomness of the private algorithm that some point in C is in Bi. Let p+i be the probability of the
same event conditioned on xi ∈ X , and p−i be the same probability conditioned on xi ̸∈ X .

First, note that xi ∈ X with probability 1/2, since |X| = 1
2 · |X0|. So, pi = 1

2 (p
−
i + p+i ). Next, there

exists a simple coupling between the events of xi ∈ X and xi ̸∈ X , that changes at most 1 point.
Namely, if X contains xi, add in a random point in X0\X , and then remove xi, to get a new set X ′.
If the distribution of X is uniform conditioned on xi ∈ X , it is simple to see that the distribution of
X ′ is uniform conditioned on xi ̸∈ X. Therefore, P(C(X) ∈ Bi) = p+i and P(C(X ′) ∈ Bi) = p−i .

Because we only changed one element xi and moved it a distance at most ρ, this means that
P(C(X) ∈ Bi) = e±ε ·P(C(X ′) ∈ Bi)± δ, or equivalently, p+i = e±ε · p−i ± δ. Since δ ≤ ε ≤ 0.1,
this means |p+i − p−i | ≤ 0.3. Also, since pi =

1
2 (p

−
i + p+i ), this means p+i − pi ≤ 0.15.

Now, since the points in X0 are separated by ρ
10 , the balls Bi are disjoint. So, for any fixed C, at

most k of the events of some point in C is in Bi can hold. Therefore,
∑2k

i=1 pi ≤ k, which means∑2k
i=1 p

+
i ≤ k + 0.15 · 2k = 1.3k.

Now, cost(X,C) is at least
∑2k

i=1

(
ρ
10

)p ·P(xi ∈ X) · (1−p+i ). This is because P(xi ∈ X) · (1−p+i )
represents the probability that xi ∈ X but no point in C is within ρ

10 , so the point xi itself contributes(
ρ
10

)p
to the cost. But this simply equals

(
ρ
10

)p · (2k −
∑2k

i=1 p
+
i ) ≥ Ω(ρp · k), as desired.

E Additional Details of Experiments

E.1 Details of Implementations

More Implementation Details. Note that the privacy budget is consumed in 3 parts: (1) computing
X̄ , (2) computing count(g) for cells g at level l for l ∈ [L1 + 1, L2], and (3) computing DP semi-
coreset X̃j in Algorithm 1. We split the privacy budget uniformly, i.e., each part takes ε/3 and
δ/3.

Detailed implementation of Algorithm 2. Since we know each x is in [−1, 1]d, When we compute
x̃i, if any coordinate is outside [−2, 2], we project it to [−2, 2]. We choose REP = 5. The random
shifted vector is chosen uniformly random from [0, 4]d and thus the cell in the highest level of the
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quadtree has side length 8. We choose L1 = 5 and L2 = 10. When we compute count(g) of cell g
at level l ∈ [L1 + 1, L2], we apply Gaussian thresholding mechanism5.

Detailed implementation of Algorithm 1. We set S =
√

2 log(1.25)/(δ/6) ·
√
d/(ε/6). We

run the first loop of Algorithm 1 to obtain X̃0. We slightly modify the second loop as follows:
X̂j = {xi ∈ X \ X̃0 | d(xi, fj) = d(xi, F )}. We use Gaussian thresholding mechanism to compte
n̂j to estimate |X̂j |. If n̂j ≤ 0, we drop X̂j . Otherwise we run a semi-coreset for X̂j . It is easy to
show that the above modifed procedure is still DP. When we use the DP open-source library 6 to
compute the (semi)-coreset of X̂j , we specify the the bounding ball is centered at fj with radius
min(S,

√
(d)) · ρ, i.e., the points in X̂j that are outside the ball are projected to the ball.

Finally, we use non-DP baseline k-means to run k-means over the union of (semi)-coresets X̃1 ∪
· · · ∪ X̃α·k and X̃0.

E.2 Preprocessing Steps of the Datasets

Dataset gowalla contains 6,442,890 user check-ins of 107,092 different users and dataset brightkite
contains 4,491,143 user check-ins of 51,406 different users. Each check-in record contains a location
information (latitude and longitude). For each user, we use its latest check-in record, and thus we
obtain a dataset of size 107,092 x 2 for gowalla and a dataset of size 51,406 x 2 for brightkite. For
each latitude, we divided it by 90. For each longitude, we divided it by 180. Thus, each coordinate of
a user is in [-1,1].

For other non-geographic datasets (shuttle, skin, rangequeries, s-sets), we follow the same prepro-
cessing steps of experiments in [24]. In particular, we linearly rescale each dimension of each point
to make the coordinate have value in [-1,1].

F Broader Impacts

Our work developed distance based private algorithms for clustering problems. Distance based
privacy provides provable standards of privacy but its use, like that of any privacy protection, is
subject to limitations (we refer to standard textbooks on differential privacy such as [32] for the
subject). We also stress that privacy is only one of the requirements of a responsible machine learning
system. For this reason, we encourage anyone using the techniques developed in this paper in a real
system, to review carefully the overall safety of their design.

5https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_
Thresholding.pdf.

6https://ai.googleblog.com/2021/10/practical-differentially-private.html.
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