A Trichotomy
for Transductive Online Learning

Supplementary Materials

A Multiclass Threshold Bounds

Definition A.1. Let \(X \) and \(Y \) be sets, let \(X = \{x_1, \ldots, x_t\} \subseteq X \), and let \(H \subseteq Y^X \). We say that \(X \) is threshold-shattered by \(H \) if there exist distinct \(y_0, y_1 \in Y \) and functions \(h_1, \ldots, h_t \in H \) such that \(h_i(x_j) = y_{k(j \leq i)} \). The threshold dimension of \(H \), denoted \(TD(H) \), is the supremum of the set of integers \(t \) for which there exists a threshold-shattered set of cardinality \(t \).

We introduce the following generalization of the threshold dimension.

Definition A.2. Let \(X \) and \(Y \) be sets, let \(X = \{x_1, \ldots, x_t\} \subseteq X \), and let \(H \subseteq Y^X \). We say that \(X \) is multi-class threshold-shattered by \(H \) if there exist \(y_1, \ldots, y_t \in Y \) such that \(y_i \neq y_j \) for all \(i, j \in [t] \), and there exist functions \(h_1, \ldots, h_t \in H \) such that

\[
h_i(x_j) = \begin{cases} y_i & (j \leq i) \\ y_j & (j > i) \end{cases}.
\]

The multi-class threshold dimension of \(H \), denoted \(MTD(H) \), is the supremum of the set of integers \(t \) for which there exists a threshold-shattered set of cardinality \(t \).

Claim A.3. Let \(X \) and \(Y \) be sets, let \(k = |Y| < \infty \), and let \(H \subseteq Y^X \). Then \(TD(H) \geq \lceil MTD(H)/k^2 \rceil \).

Proof of Claim A.3. The proof follows from two applications of the pigeonhole principle. \(\square \)

Claim A.4. Let \(X \) and \(Y \) be sets, let \(H \subseteq Y^X \) such that \(d = TD(H) < \infty \), and let \(n \in \mathbb{N} \). Then

\[
M(H, n) \geq \min \{ \lceil \log(d) \rceil, \lceil \log(n) \rceil \}.
\]

The proof of Claim A.4 is similar to that of Claim 3.4.

Theorem A.5. Let \(X \) and \(Y \) be sets with \(k = |Y| < \infty \), let \(H \subseteq Y^X \). If \(LD(H) = \infty \) then \(MTD(H) = \infty \).

Following is a lemma from Ramsey theory used for proving Theorem A.5, and a generalized notion of subtrees used in that lemma.

Definition A.6. Let \(X \) be a finite set and let \((X, \preceq) \) be a partial order relation. For \(p, c \in X \), we say that \(c \) is a child of \(p \) if \(p \preceq c \) and there does not exist \(m \in X \) such that \(p \preceq m \preceq c \). We say that \(z \in X \) is a leaf if there exists no \(x \in X \) such that \(z \preceq x \). \((X, \preceq) \) is a binary tree every non-leaf \(x \in X \) has precisely 2 children. The depth of \(z \in X \) is the largest \(d \in \mathbb{N} \) for which there exist distinct \(x_1, \ldots, x_d \in X \) such that \(x_1 \preceq x_2 \preceq \cdots \preceq x_d \preceq z \). For \(d \in \mathbb{N} \), we say that \((X, \preceq) \) is a complete binary tree of depth \(d \) if \((X, \preceq)\) is a binary tree and all the leaves in \(X \) have depth \(d \). We say that a partial order \((X', \preceq')\) is a subtree of \((X, \preceq)\) if \(X' \subseteq X \), and \(\forall a, b \in X' : a \preceq' b \Rightarrow a \preceq b \).

The following lemma follows from Lemma 16 in Appendix B of [ALMM19].

Lemma A.7. Let \(k, d \in \mathbb{N} \), and let \(Y \) be a set, \(|Y| = k \). Let \(T = (X, \preceq) \) be a complete binary tree of depth \(d \in \mathbb{N} \), and let \(g : X \to Y \). Then \(T \) has a monochromatic complete binary tree subtree \(T' = (X', \preceq') \) of depth \(d/k \), namely there exists \(T' \) such that \(T' \) is a subtree of \(T \), \(T' \) is a complete binary tree of depth \(d/k \), and \(|g(X')| = |\{g(a) : a \in X'\}| = 1 \).

Proof of Theorem A.5. Let \(f_k(d) \) be the largest number such that every class with Littlestone dimension \(d \) has multi-class threshold dimension at least \(f_k(d) \). We show by induction on \(d \) that \(f_k \) satisfies the following recurrence relation: \(f_k(d) \geq 1 + f_k(\lceil d/k \rceil - 1) \).

For the base case, if \(d = LD(H) = 0 \), \(H \) and \(X \) are non-empty and therefore \(MTD(H) \geq 1 \). For the induction step \(d = LD(H) \geq 1 \), let \(T \) be a Littlestone tree of depth \(d \) that is shattered by \(H \). Let \(h \in H \). Then \(h \) is a \(k \)-cloning of the nodes of \(T \). By Lemma A.7, there exists an \(h \)-monochromatic
subtree $T' \subseteq T$ of depth at least d/k. Let y_1 be the color assigned by h to all nodes of T'. T' is shattered by H, so there exists a child x_1 of the root r of T' such that the label of the edge leading to it is some $y'_1 \neq y_1$. Let $H_1 = \{ h \in H : h(x_1) = y'_1 \}$. Notice that $LD(H_1) \geq d/k - 1$, so by the induction hypothesis, there exist x_2, \ldots, x_s for $s = f_k([d/k] - 1)$ that are multi-class threshold shattered. By construction, the set $\{x_1, \ldots, x_s\}$ is multi-class threshold shattered by H, as desired. □

B Multiclass Trichotomy

The Natarajan dimension is one popular generalization of the VC dimension to the multiclass setting.

Definition B.1 ([Nat89]). Let \mathcal{X} and \mathcal{Y} be sets, let $H \subseteq \mathcal{Y}^X$, let $d \in \mathbb{N}$, and let $X = \{x_1, \ldots, x_d\} \subseteq \mathcal{X}$. We say that H Natarajan-shatters X if there exist $f_0, f_1 : X \rightarrow \mathcal{Y}$ such that:

1. $\forall x \in X : f_0(x) \neq f_1(x)$; and
2. $\forall A \subseteq X \exists h \in H \forall x \in X : h(x) = f_{\mathbb{1}(x \in A)}(x)$.

The Natarajan dimension of H is $ND(H) = \sup \{|X| : X \subseteq \mathcal{X} \text{ finite } \land H \text{ Natarajan-shatters } X\}$.

We show the following generalization of Theorem 4.1 for the multiclass setting.

Theorem B.2 (Formal Version of Theorem 5.1). Let \mathcal{X} and \mathcal{Y} be sets with $k = |\mathcal{Y}| < \infty$, let $H \subseteq \mathcal{Y}^X$, and let $n \in \mathbb{N}$ such that $n \leq |\mathcal{X}|$.

1. If $ND(H) = \infty$ then $M(H, n) = n$.
2. Otherwise, if $ND(H) = d < \infty$ and $\Lambda(H) = \infty$ then

$$\max\{\min\{d, n\}, |\log(n)|\} \leq M(H, n) \leq O(d \log(nk/d)). \tag{5}$$

The $\Omega(\cdot)$ and $O(\cdot)$ notations hide universal constants that do not depend on \mathcal{X}, \mathcal{Y} or H.

3. Otherwise, there exists a number $C(H) \in \mathbb{N}$ (that depends on \mathcal{X}, \mathcal{Y} and H but does not depend on n) such that $M(H, n) \leq C(H)$.

The proof of Theorem B.2 uses the following generalization of the Sauer–Shelah–Perles lemma.

Theorem B.3 ([Nat89]; Corollary 5 in [HL95]). Let $d, n, k \in \mathbb{N}$, let \mathcal{X} and \mathcal{Y} be sets of cardinality n and k respectively, and let $H \subseteq \mathcal{Y}^X$ such that $ND(H) \leq d$. Then

$$|H| \leq \sum_{i=0}^{d} \binom{n}{i} \binom{k+1}{2}^i \leq \left(\frac{ek^2}{d}\right)^d.$$

Proof of Theorem B.2. Items 1 and 3 and the $\min\{d, n\}$ lower bound in Item 2 follow similarly to the corresponding items in Theorem 4.1. The upper bound in Item 2 also follows similarly to the corresponding item in Theorem 4.1, except that it uses Theorem B.3 instead of the Sauer–Shelah–Perles lemma.

The $|\log(n)|$ lower bound in Item 2 follows from Theorem A.5 and Claim A.4.