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Abstract

Randomized experiments have been the gold standard for assessing the effective-
ness of a treatment, policy, or intervention, spanning various fields, including social
sciences, biomedical studies, and e-commerce. The classical complete randomiza-
tion approach assigns treatments based on a pre-specified probability and may lead
to inefficient use of data. Adaptive experiments improve upon complete randomiza-
tion by sequentially learning and updating treatment assignment probabilities using
accrued evidence during the experiment. Hence, they can help achieve efficient data
use and higher estimation efficiency. However, their application can also raise fair-
ness and equity concerns, as assignment probabilities may vary drastically across
groups of participants. Furthermore, when treatment is expected to be extremely
beneficial to certain groups of participants, it is more appropriate to expose many
of these participants to favorable treatment. In response to these challenges, we
propose a fair adaptive experiment strategy that simultaneously enhances data use
efficiency, achieves an “envy-free” treatment assignment guarantee, and improves
the overall welfare of participants. An important feature of our proposed strategy is
that we do not impose parametric modeling assumptions on the outcome variables,
making it more versatile and applicable to a wider array of applications. Through
our theoretical investigation, we characterize the convergence rate of the estimated
treatment effects and the associated standard deviations at the group level and fur-
ther prove that our adaptive treatment assignment algorithm, despite not having a
closed-form expression, approaches the optimal allocation rule asymptotically. Our
proof strategy takes into account the fact that the allocation decisions in our design
depend on sequentially accumulated data, which poses a significant challenge in
characterizing the properties and conducting statistical inference of our method.
We further provide simulation evidence and two synthetic data studies to showcase
the performance of our fair adaptive experiment strategy.

1 Introduction

1.1 Motivation and contribution

Randomized experiments are considered gold standards for evaluating the effectiveness of public
policies, medical treatments, or advertising strategies [32, 34, 35]. They involve randomly assigning
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participants to different treatment groups, allowing for rigorous causal conclusions and robust evi-
dence for decision-making and policy implementation. However, classical randomized experiments,
which maintain fixed treatment assignment probabilities, often do not optimize data utilization.
This limitation is problematic due to the high costs associated with conducting such experiments.
Consequently, maximizing information gain is crucial, but classical randomized experiments do not
prioritize this objective [25, 46].

Compared to classical randomized experiments, adaptive experiments provide enhanced information
gain and improved statistical efficiency. As a result, adaptive experiments have gained popularity
in diverse domains such as field experiments, online A/B testing, and clinical trials [26, 56, 63, 64].
The information gain of adaptive experiments stems from their ability to iteratively adjust treatment
allocations based on refined knowledge obtained from accumulated data during the experiment. This
iterative process often favors the treatment arm that offers more informative or beneficial outcomes,
maximizing the information gained from each participant and optimizing the overall statistical
efficiency of the experiment [45]. Moreover, adaptive experiments, thanks to their adept utilization of
data resources, often exhibit greater statistical testing power when practitioners employ the collected
data to assess the null hypothesis of zero treatment effect upon experiment completion [14].

Despite their appealing benefits in improving data use efficiency and boosting statistical power,
adaptive experiments potentially bring fairness concerns in applications. This issue is neither
sufficiently explored nor fully addressed in the existing literature. Below, we shall concretely discuss
the fairness concerns under a scenario where the study population can be divided into distinct groups
based on demographic information or biomarkers — a scenario frequently encountered in field
experiments or clinical trials. The first fairness concern in adaptive experiments arises when there
are significant disparities in treatment allocations among different participant groups [14]. This is
because when the treatment is potentially beneficial, it is crucial to ensure a fair chance for each group
to receive beneficial treatment. Similarly, it is important to avoid disproportionately burdening any
specific group with unfavorable treatment. However, conventional adaptive experiments prioritizing
efficiency gains may inadvertently result in unfair treatment allocations. For example, if the outcome
of a particular group of participants exhibits a higher variance in response to the treatment, more
participants in the group will be allocated to the treatment arm. Consequently, this group would
have a significantly higher treatment assignment probability than the others, regardless of the sign
and magnitude of the treatment effect. This may lead to an unfair allocation of treatments among
participants. Completely randomized experiments with fixed one-half treatment assignments would
avoid this challenge, but they suffer from information loss. The second fairness concern arises when
the adaptive treatment allocation does not adequately account for the overall welfare of experimental
participants. This is crucial as a fair experiment is expected to not only assign a large proportion
of participants to a beneficial treatment arm but also assign a small proportion of participants to a
harmful treatment to avoid adverse effects.

There are evident challenges in addressing fairness concerns while optimizing information gain in
adaptive experiments due to the potential trade-off among fairness concerns, welfare improvement,
and information gain. For example, if most of the participants are assigned to the beneficial treatment
to maximize welfare, then there would be insufficient sample size in the control arm, resulting
in imprecisely estimated treatment effect and hence reduced statistical efficiency for conducting
inference. To overcome these challenges, we propose a fair adaptive experimental design strategy
that balances competing objectives: improving fairness, enhancing overall welfare, and gaining
efficiency. By rigorously demonstrating the effectiveness of our approach and providing statistical
guarantees, we offer a practical solution that is both grounded in theory and reconciles fairness
concerns with the requirement for robust information gain in adaptive experiments. Our contributions
can be summarized as follows:

First, in comparison to existing adaptive experiments, our proposed strategy integrates fairness and
welfare considerations while optimizing information gain. As a result, the treatment allocation
probability generated by our method avoids extreme values and exhibits minimal necessary variations
across different groups. These desirable characteristics are supported by our simulation studies and
empirical illustration using synthetic data. It is important to note that due to the additional constraints
of welfare and fairness, the optimal treatment allocation probability does not have a closed-form
expression, which brings additional technical challenges to studying the theoretical properties of our
design. Despite this challenge, we demonstrate that the constructed treatment allocation rule for each
group of our design converges to its oracle counterpart (Theorem 2). This implies that our proposed
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designs in Section 2.3, despite not relying on prior knowledge about the underlying data distribution
before the start of the experiment, can allocate treatments in a similar manner to a scenario where
perfect knowledge of the data distribution is available.

Second, we do not impose any specific parametric modeling assumptions on the outcomes beyond
mild moment conditions. We instead estimate the mean and variance of potential outcomes at
the group level, which are further incorporated into our algorithm. The nonparametric nature of
our procedure delivers an efficient and accurate estimation of the average treatment effect. As an
important theoretical contribution, we prove that those group-level estimates are asymptotically
consistent (Theorem 1).

Third, our theoretical framework addresses the challenges and complexities associated with adaptive
experiment design, where data are sequentially accumulated, and treatment allocation decisions are
adaptively revised, resulting in non-independently and non-identically distributed data. By leveraging
the martingale methods, we demonstrate that the estimate of the average treatment effect is consistent
and asymptotically normally distributed (Theorems 1 and 3). An important methodological and
practical innovation of our framework is that it does not require the number of participants enrolled
in the first stage to be proportional to the overall sample size. This flexibility allows researchers
to allocate more participants in later stages of the experiment, enabling a truly adaptive approach
to experiment design and implementation. This innovation has significant implications for the
methodology and practical application of adaptive experiments.

1.2 Related literature

Our proposed fair adaptive experiment strategy has a natural connection with the response adaptive
randomization (RAR) design literature. The early work develops the randomized play-the-winner
rule in clinical trial settings based on urn models [46, 48, 60]. Theoretical properties of urn models
are investigated in [6] and [29]. Another conventional response adaptive design is the doubly adaptive
biased coin (DBCD) design [15, 26, 27, 53]. However, to our best knowledge, many existing works
on response adaptive designs do not take fair treatment allocations into account [24, 47]. An insightful
work in [33] proposes an efficient RAR design to minimize the variance of the average treatment
effects and discusses some directions for fair experimental design. Compared with [33], our method
does not require estimating outcome models, which can be challenging in the presence of correlated
data in RAR designs. In addition, our design centers around “group” fairness, aiming to enhance
participants’ well-being while avoiding extra fairness complications among distinct individuals.
Furthermore, RAR designs that further incorporate covariate information are known as covariate-
adjusted response adaptive (CARA) designs [7, 9, 37, 49, 57, 71, 72]. Some early work proposes to
balance covariates based on the biased coin design [44, 69]. Later work considers CARA designs that
account for both efficiency and ethics [28] and extends the CARA design framework to incorporate
nonparametric estimates of the conditional response function [1]. It is worth mentioning that another
strand of literature focuses on ethical designs using Bayesian frameworks. Some recent work proposes
to use the Gittins index to improve participants’ welfare [55, 58]. A later work develops a Bayesian
ethical design to further improve statistical power [62]. Some other ethical designs are discussed in
[18, 52, 68].

Our manuscript also relates to the literature on semiparametric efficiency and treatment effect
estimation [20, 42, 54]. Our algorithm adaptively allocates participants to treatment and control arms,
with the aim of not only minimizing the variance of the estimated average treatment effect but also
incorporating constraints on fairness and welfare. There is also a large literature on efficient estimation
of treatment effects and, more broadly, on estimation and statistical inference in semiparametric
models. See, for example, [8, 10, 11, 12, 16, 22, 38, 39, 59, 61] and references therein. Our algorithm
takes the group structure as given. Another strand of literature studies stratified randomization. Some
recent contributions in this area include [5, 51].

Lastly, our proposed design is connected to the multi-armed bandit (MAB) literature. [50] studies
the trade-off between regret and statistical estimation efficiency by formulating a minimax multi-
objective optimization problem and proposing an effective Pareto optimal MAB experiment. They
provide insightful theoretical results on the sufficient and necessary conditions for the Pareto optimal
solutions. Our procedure attains the minimax lower bound for fair experiment design problems.
Our work has a different focus on uncovering the underlying causal effect by providing an adaptive
procedure for efficient treatment effect estimation while incorporating fairness and welfare consid-
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erations. Furthermore, in the theoretical investigations, we focus on the asymptotic normality of
the proposed estimator and its variance estimator, which enables valid statistical inference. Our
work broadly connects with fair contextual bandit literature [13, 17, 19, 30, 40, 43]. [65] and [66]
propose algorithms under subpopulation fairness and equity requirements for the tasks of best arm
identification and ranking and selection. The work in [31] characterizes fairness under the contextual
bandit setting by bridging the fair contextual bandit problems with “Knows What It Knowns” learning.
While [31] defines fairness metric on the individual level, we focus on group-level fairness and further
incorporate a welfare constraint.

2 Fair adaptive experiment

2.1 Problem formulation and notation

In this section, we formalize our adaptive experiment framework and introduce necessary notations.
In adaptive experiments, participants are sequentially enrolled across T stages. We denote the total
number of enrolled participants as N =

∑T
t=1 nt, where nt is the number of participants in Stage t,

t = 1, . . . , T . In line with the existing literature [24, 25, 28], we assume T → ∞, and nt is small
relative to the overall sample size N , meaning that we have many opportunities to revise the treatment
allocation rule during the experiment (see Assumption 3 below). At Stage t, we denote participant i’s
treatment assignment status as Dit ∈ {0, 1}, i = 1, . . . , nt, with Dit = 1 being the treatment arm
and Dit = 0 being the control arm. Denote participant i’s covariate information as Xit ∈ Rp and the
observed outcome as Yit ∈ R.

Next, we quantify causal effects under the Neyman-Rubin potential outcomes framework. Define
Yit(d) as the potential outcome we would have observed if participant i receives treatment d at Stage
t, d ∈ {0, 1}. The observed outcome can be written as

Yit = DitYit(1) + (1−Dit)Yit(0), i = 1, . . . , nt, t = 1, . . . , T. (1)

In accordance with classical adaptive experiments literature, we assume that the outcomes are
observed without delay, and their underlying distributions do not shift over time [25]. The average
treatment effect (ATE) is the mean difference between the two potential outcomes:

τ = E[Yit(1)− Yit(0)]. (2)

In our proposed fair adaptive experiment strategy, to protect the participant’s welfare (more dis-
cussions in Section 2.2), we also consider the group-level treatment effects. We assume the study
population can be partitioned based on demographics or biomarkers, which is frequently seen in
clinical settings or social science studies [3, 36, 67]. More concretely, by dividing the sample space
X of the covariate Xit into m non-overlapping regions, denoted as {Sj}mj=1, we define the treatment
effect in each group as

τj = E[Yit(1)− Yit(0)|Xit ∈ Sj ], j = 1, . . . ,m. (3)

We further denote the total number of participants enrolled in the group j as Nj =
∑T

t=1 ntj .

In adaptive experiments, as we aim to adaptively revise the treatment assignment probabilities based
on the evidence accrued during the experiment to meet our fairness and efficiency goals, we define
treatment assignment probability (or propensity scores) for participants in groups j at stage T as

etj := P(Dit = 1|Xit ∈ Sj , history up to time t− 1), t = 1, . . . , T, j = 1, . . . ,m. (4)

The goal of our experiment is to dynamically revise etj for efficiency improvement, fairness guarantee,
and welfare enhancement.

2.2 Design objective in an oracle setting

Classical adaptive experiments, aimed at reducing variance (or, equivalently, efficiency improvement),
often assign treatment using Neyman allocation for participants in each group, that is

e∗j,Neyman =
σj(1)

σj(1) + σj(0)
, j = 1, . . . ,m, (5)
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where σ2
j (d) = V[Yit(d)|Xit ∈ Sj ], d ∈ {0, 1}, denotes the variance of the potential outcome under

treatment arm d in group j. Although Neyman allocation improves the estimation efficiency of
the ATE, it brings two critical fairness concerns. First, different groups of participants may have
substantially different probabilities of receiving treatments. The form of Eq (5) implies that the
treatment assignment probabilities solely rely on group-level variances under different arms. More
specifically, the group of participants with a larger variance under the treatment arm will have a
higher probability of being treated, which may lead to disproportionate treatment allocations across
different groups. Second, some participants’ welfare could be harmed under the adaptive experiment
strategy in Eq (5). To see this, assume a group of participants exhibits a large variance yet rather
negative responses under the treatment arm. However, more participants in this group will be assigned
to the treatment arm to improve the estimation efficiency of ATE despite the impairment of those
participants’ welfare.

To address fairness concerns and facilitate the introduction of our experimental goals, we begin with
an infeasible “oracle” setting, where we possess knowledge of the true underlying data distribution
before the experiment begins. Since adaptive experiments naturally allow for sequential learning of
unknown parameters and adjustment of treatment allocations during the experiment, we will present
our adaptive experimental design strategy in the following section (Section 2.3), which attains the
same theoretical guarantee for estimating the ATE as in the oracle setting (see Theorems 2 and 3 for
justification).

In the oracle setting, given we have perfect knowledge of the underlying data distribution (thus τj
and σ2

j (d) are known to us), our goal is to find optimal treatment allocations e∗ = (e∗1, . . . , e
∗
m)⊺ that

solve the following optimization problem:

min
e

m∑
j=1

pj

(σ2
j (1)

ej
+

σ2
j (0)

1− ej

)
, ← Improve estimation efficiency for the ATE

Problem A

s.t. − c1 ≤ ej − eℓ ≤ c1, j ̸= ℓ ← Envy-freeness constraint

log
( ej
1− ej

)
· τj ≥ 0, j = 1, . . . ,m ←Welfare constraint

c2 ≤ ej ≤ 1− c2, j = 1, . . . ,m, ← Feasibility constraint

where c1 ∈ (0, 1) and c2 ∈ (0, 1/2). Here, the objective function captures the goal of improving
information gain from study participants, which is formalized as minimizing the asymptotic variance
of the inverse probability weighting estimator of the ATE (c.f. Theorem 3). The “feasibility”
constraint restricts that the treatment assignment probability in each group is bounded away from 0
and 1 by a positive constant c1.

To ensure fair treatment assignment and mitigate significant disparities in treatment allocations among
participant groups, we introduce the “envy-freeness” constraint. This constraint limits the disparity
in treatment assignment probabilities across different groups in an acceptable pre-specified range.
The concept of “envy-freeness” originates from game theory literature and ensures that agents are
content with their allocated resources without envying their peers [2, 4, 23, 41]. By incorporating
this envy-freeness constraint, we address the first fairness concern and promote equitable treatment
allocation.

To enhance the overall welfare of experiment participants, we introduce the “welfare” constraint.
This constraint ensures that a group of participants is more likely to receive the treatment if their
treatment effects are positive and less likely to receive the treatment otherwise. Specifically, when
the group-level treatment effect τj ≥ 0, indicating that group j benefits from the treatment, we
want the treatment assignment probability ej to be larger than 1

2 . The welfare constraint achieves
this by ensuring that the sign of log(

ej
1−ej

) aligns with the sign of τj . When incorporating the
welfare constraint, we effectively address the second fairness concern by providing more treatment to
beneficial groups.
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2.3 Learning oracle strategy in adaptive experiments

In this section, we present our fair adaptive experimental design strategy for realistic scenarios where
we lack prior knowledge about the underlying data distribution, and our approach achieves the same
desirable properties as in the oracle setting (refer to Section 3 for justification).

We present our proposed fair adaptive experiment strategy in Algorithm 1.

Algorithm 1 Fair adaptive experiment
Stage 1 (Initialization):

1: Enroll n1 participants, and assign treatments in group j according to e1j =
1
2 ;

2: Compute τ̂1j , σ̂2
1j(d), and p̂1j as in Eq (6). Also, see the Supplementary Materials.

Stage t (Fully-adaptive experiment):
3: for t→ 2 to T do
4: With τ̂t−1,j , σ̂2

t−1,j(d), and p̂t−1,j , solve Problem B to find ê∗tj ;
5: Enroll nt participants and assign treatment with probability ê∗tj ;
6: Update τ̂tj , σ̂2

tj(d), and p̂tj as in Eq (6).
7: end for

Stage T (Inference):
8: Compute v̂2j and v̂2 as in Eq (7).
9: Construct two-sided confidence intervals for τ̂j and τ as in Eq (8).

Concretely, in Stage 1 (line 1–2), because we have no prior knowledge about the unknown parameters,
we obtain initial estimates of the group-level treatment effect τ̂1j and the associated variances σ̂2

1j(d).
Then, in Stage t (line 4–6), our design solves the following sample analog of Problem A at each
experimental stage:

min
e

m∑
j=1

p̂t−1,j

( σ̂2
t−1,j(1)

ej
+

σ̂2
t−1,j(0)

1− ej

)
, ← Minimize the estimated variance

Problem B

s.t. − c1 ≤ ej − eℓ ≤ c1, j ̸= ℓ ← Envy-freeness constraint

log
( ej
1− ej

)
· τ̂t−1,j ≥ −δ(Nt−1), j = 1, . . . ,m ←Wellfare constraint

c2 ≤ ej ≤ 1− c2, j = 1, . . . ,m, ← Feasibility constraint.

Here, we define

p̂t−1,j =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)∑t−1
s=1 ns

,(6)

Ȳt−1,j(1) =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)DisYis∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)Dis

, Ȳt−1,j(0) =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)Yis∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)
,

τ̂t−1,j = Ȳt−1,j(1)− Ȳt−1,j(0),

σ̂2
t−1,j(1) =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)Dis

(
Yis − Ȳt−1,j(1)

)2∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)Dis

,

σ̂2
t−1,j(0) =

∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)
(
Yis − Ȳt−1,j(0)

)2∑t−1
s=1

∑ns

i=1 1(Xis∈Sj)(1−Dis)
.

One important feature of Problem B is that we introduce a relaxation of the welfare constraint
through δ(Nt−1). From a theoretical perspective, the function δ(·) should be strictly positive, and
satisfies limx→∞ δ(x) = 0 and limx→∞

√
xδ(x) =∞. For implementation, we recommend using

δ(Nt−1) =
√
log(Nt−1)/Nt−1. It is also possible to incorporate the standard error of the estimated
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subgroup treatment effects into the welfare constraint, which motives the more sophisticated version:

log
( ej
1− ej

)
· τ̂t−1,j

v̂t−1,j
≥ −

√
log(Nt−1)

Nt−1
,

where v̂t−1,j is the adaptively estimated standard deviation defined in the Supplementary Materials.
Scaling the welfare constraint by v̂t−1,j , a measure of randomness in τ̂t−1,j , delivers a more clear
interpretation: the above now corresponds to a t-test for the subgroup treatment effect τj with a
diverging threshold, and the specific choice stems from Schwarz’s minimum BIC rule.

After the final Stage T , we have the group-level treatment effect estimates τ̂j := τ̂Tj , the variance
estimates σ̂2

j (d) := σ̂2
Tj(d), and the group proportions p̂j := p̂Tj (that is, we omit the time index T

for estimates obtained after the completion of the experiment). Together with valid standard errors,
one can conduct statistical inference at some pre-specified level α. To be precise, the estimated ATE
is τ̂ =

∑m
j=1 p̂j τ̂j , and we define the following

v̂2j =
1

p̂j

( σ̂2
j (1)

êj
+

σ̂2
j (0)

1− êj

)
, and v̂2 =

m∑
j=1

p̂2j v̂
2
j +

m∑
j=1

p̂j
(
τ̂j − τ̂

)2
,(7)

where êj =

∑T
s=1

∑ns

i=1 1(Xis∈Sj)Dis∑T
s=1

∑ns

i=1 1(Xis∈Sj)

.

Lastly, we can construct the two-sided confidence intervals for τ̂j and τ̂ as[
τ̂j ± Φ−1(1− α/2) · v̂j/

√
N
]

and
[
τ̂ ± Φ−1(1− α/2) · v̂/

√
N
]
.(8)

3 Theoretical investigations

In this section, we investigate the theoretical properties of our proposed fair adaptive experiment
strategy, and we demonstrate that our approach achieves the same desirable properties as in the oracle
setting. We work under the following assumptions:

Assumption 1 For t = 1, . . . , T and i = 1, . . . , nt, the covariates and the potential outcomes,
(Xit, Yit(0), Yit(1)), are independently and identically distributed; the potential outcomes have
bounded fourth moments: E[|Yit(d)|4] <∞ for d = 0, 1.

Assumption 2 The group proportions pj are bounded away from 0: there exists δ > 0 such that
pj ≥ δ for all j = 1, 2, . . . ,m.

Assumption 3 The sample size for each stage, nt, are of the same order: there exists c ≥ 1 such
that N

cT ≤ nt ≤ cN
T .

Assumption 1 imposes a mild moment condition on the potential outcomes over different stages.
Assumption 2 assumes that the proportion of each group is nonzero. Assumption 3 requires that the
sample size in each stage are of the same order. We remark that this assumption can be easily relaxed.

Theorem 1 (Consistent treatment effect and variance estimation) Assume Assumptions 1–3
hold. Then, the estimated group-level treatment effects and the associated variances are consistent:

τ̂tj − τj = Op

(
1
/√

Nt

)
, σ̂2

tj(d)− σ2
j (d) = Op

(
1
/√

Nt

)
,

where Nt =
∑t

s=1 ns. As a result, after stage T ,

τ̂j − τj = Op

(
1
/√

N
)
, τ̂ − τ = Op

(
1
/√

N
)
, σ̂2

j (d)− σ2
j (d) = Op

(
1
/√

N
)
.

Theorem 1 shows consistency of the group-level treatment effects and the associated variance
estimators. This further implies the consistency of the average treatment effect estimator. The proof
of Theorem 1 leverages the martingale methods [21]. Building on Theorem 1, we can establish the
theoretical properties of the actual treatment allocation under our design strategy.
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Theorem 2 (Convergence of actual treatment allocation) Assume Assumptions 1–3 hold. Then
the actual treatment allocation, defined in Eq (7), converges to the oracle allocation: êj−e∗j = op(1).

Theorem 2 is a key result. It suggests that despite having minimum knowledge regarding the
distribution of the potential outcomes at the experiment’s outset, we are able to adaptively revise the
treatment allocation probability using the accrued information, and the actual treatment probabilities
under our proposed fair adaptive experiment strategy converge to their oracle counterparts. Building
on Theorem 1 and Theorem 2, we are able to establish the asymptotic normality results of our
proposed estimators and show that the standard errors are valid.

Theorem 3 (Asymptotic normality and valid standard errors) Assume Assumptions 1–3 hold.
Then, the estimated group-level treatment effects and the estimated ATE are asymptotically nor-
mally distributed:

√
N
(
τ̂j − τj

)
⇝ N

(
0, v2(e∗j )

)
, and

√
N
(
τ̂ − τ

)
⇝ N

(
0, v2(e∗)

)
,

where

v2j (e
∗
j ) =

1

pj

(σ2
j (1)

e∗j
+

σ2
j (0)

1− e∗j

)
, and v2(e∗) =

m∑
j=1

p2jv
2
j (e

∗
j ) +

m∑
j=1

pj(τj − τ)2.

In addition, the standard errors in Eq (7) are consistent: v̂2j − v2j (e
∗
j ) = op(1) and v̂2 − v2(e∗) =

op(1).

Theorem 3 shows the asymptotic normality results of the estimated treatment effects under our
proposed adaptive experiment strategy. In addition, Theorem 3 verifies that the constructed confidence
intervals in Eq (8) attain the nominal coverage thanks to the consistency of standard errors. The proof
of Theorem 3 relies on the convergence of the actual treatment allocation in Theorem 2 and and the
martingale central limit theorem [21].

4 Simulation evidence

In this section, we evaluate the performance of our proposed fair adaptive experiment strategy through
simulation studies. We summarize the takeaways from the simulation studies as follows. First, our
proposed fair adaptive experiment strategy achieves higher estimation efficiency than the complete
randomization design. Second, compared to a classical adaptive experiment strategy, our method
avoids disproportionate treatment assignment probabilities across different groups of participants and
accounts for participants’ welfare.

Our simulation design generates the potential outcomes under two data-generating processes. DGP
1: Continuous potential outcomes Yi(d)|Xi ∈ Sj ∼ N (µd,j , σd,j), where µ1 = (1, 4)⊺, µ0 =
(4, 2)⊺,σ1 = (2.5, 1.2)⊺, and σ0 = (1.5, 3.5)⊺. The group proportions are p = (0.5, 0.5)⊺. The
group-level treatment effects are τ = (−3, 2)⊺. DGP 2: Binary potential outcome: Yi(d)|Xi ∈ Sj ∼
Bernoulli(µd,j), where µ1 = (0.6, 0.2, 0.3, 0.4, 0.1)⊺, µ0 = (0.1, 0.5, 0.3, 0.4, 0.6)⊺. The group
proportions are p = (0.15, 0.25, 0.2, 0.25, 0.15)⊺. To mimic our first case study (in Supplementary
Materials), consider the log relative risk as the parameter of interest: logE[Y (1)]− logE[Y (0)]. The
group-level treatment effects are τ = (1.79,−0.92, 0, 0,−1.79)⊺.

We compare three experiment strategies for treatment assignment: (1) our proposed fair adaptive
experiment strategy, (2) the doubly adaptive biased coin design (DBCD) [70], and (3) the complete
randomization design, which fixes the treatment allocation probability to be 1/2 throughout the
experiments. To mimic the fully adaptive experiments, we fix stage 1 sample size at n1 = 40
and nt = 1 for t = 2, . . . , T , where the total number of stages ranges from T ∈ {40, . . . , 400}.
We evaluate the performance of each strategy from two angles. First, we compare the standard
deviation of the ATE estimates to evaluate the estimation efficiency. Second, we compare the fraction
of participants assigned to the treatment arm in each group to evaluate the fairness in treatment
allocation. The simulation results are summarized in Figure 1.

We first focus on (A) and (B), which correspond to DGP 1. Panel (A) depicts standard deviations
of the treatment effect estimates under the three experiment designs. It clearly demonstrates that
our proposed method achieves higher estimation efficiency compared to complete randomization.
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Figure 1: Comparison of the proposed adaptive experiment design strategy, the complete randomiza-
tion design, and the doubly adaptive biased coin design. (A) and (C) show the standard deviation
comparisons. (B) and (D) show the percentage of participants allocated to the treatment arm in each
group under different experiment strategies.

Panel (B) shows the treatment assignment probabilities produced by the three experiment design
strategies. Not surprisingly, complete randomization allocates 50% participants to the treatment
arm regardless of their group status. On the other hand, the DBCD design may produce extreme
treatment allocations. In addition, participants in different groups may receive drastically different
treatment allocations, which can raise fairness concerns. Encouragingly, our approach generates
treatment assignment probabilities that not only are closer to 50% (i.e., less extreme) but also exhibit
less variation across groups. Panel (C) and (D) summarize the simulation evidence for DGP 2 in
which the outcome variable is binary. A similar pattern emerges: our fair adaptive experiment design
approach improves upon complete randomization, delivering more precise treatment effect estimates.
It also accounts for fairness and participants’ welfare in assigning treatments.

The simulation results demonstrate the clear trade-off between fairness/welfare and statistical effi-
ciency by adopting our proposed fair adaptive experiment strategy. Although it involves a minor
sacrifice in estimation efficiency when contrasted with the DBCD design, our approach delivers more
fair treatment allocations and safeguards participant well-being. As our proposed method does not
restrict each group to have exactly the same treatment assignment probabilities as in the complete
randomization design, it improves the estimation efficiency of ATE. We provide additional simulation
results and synthetic data analyses in the Supplementary Materials.

5 Discussion

In this work, we propose an adaptive experimental design framework to simultaneously improve
statistical estimation efficiency and fairness in treatment allocation, while also safeguarding partici-
pants’ welfare. One practical limitation of the proposed design is that its objective mainly aligns with
the experimenter’s interests in estimating the effect of a treatment, as opposed to the interests of the
enrolled participants. This aspect offers opportunities for future research exploration.
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