
Building the Bridge of Schrödinger:
A Continuous Entropic Optimal Transport Benchmark

Nikita Gushchin
Skoltech∗

Moscow, Russia
n.gushchin@skoltech.ru

Alexander Kolesov
Skoltech∗

Moscow, Russia
a.kolesov@skoltech.ru

Petr Mokrov
Skoltech∗

Moscow, Russia
petr.mokrov@skoltech.ru

Polina Karpikova
Skoltech∗

Moscow, Russia
polina.karpikova@skoltech.ru

Andrey Spiridonov
Skoltech∗

Moscow, Russia
andrew.spiridonov@skoltech.ru

Evgeny Burnaev
Skoltech∗

AIRI†
Moscow, Russia

e.burnaev@skoltech.ru

Alexander Korotin
Skoltech∗

AIRI†
Moscow, Russia

a.korotin@skoltech.ru

Abstract

Over the last several years, there has been significant progress in developing neural
solvers for the Schrödinger Bridge (SB) problem and applying them to generative
modelling. This new research field is justifiably fruitful as it is interconnected
with the practically well-performing diffusion models and theoretically grounded
entropic optimal transport (EOT). Still, the area lacks non-trivial tests allowing
a researcher to understand how well the methods solve SB or its equivalent
continuous EOT problem. We fill this gap and propose a novel way to create pairs
of probability distributions for which the ground truth OT solution is known by
the construction. Our methodology is generic and works for a wide range of OT
formulations, in particular, it covers the EOT which is equivalent to SB (the main
interest of our study). This development allows us to create continuous benchmark
distributions with the known EOT and SB solutions on high-dimensional spaces
such as spaces of images. As an illustration, we use these benchmark pairs to test
how well existing neural EOT/SB solvers actually compute the EOT solution. Our
code for constructing benchmark pairs under different setups is available at:

https://github.com/ngushchin/EntropicOTBenchmark .

Diffusion models are a powerful tool to solve image synthesis [25, 45] and image-to-image translation
[50, 47] tasks. Still, they suffer from the time-consuming inference which requires modeling
thousands of diffusion steps. Recently, the Schrodinger Bridge (SB) has arisen as a promising
framework to cope with this issue [15, 9, 54]. Informally, SB is a special diffusion which has rather
straight trajectories and finite time horizon. Thus, it may require fewer discretization steps to infer
the diffusion.

∗Skolkovo Institute of Science and Technology
†Artificial Intelligence Research Institute

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/ngushchin/EntropicOTBenchmark


In addition to promising practical features, SB is known to have good and well-studied theoretical
properties. Namely, it is equivalent [38] to the Entropic Optimal Transport problem (EOT, [13, 20])
about moving the mass of one probability distribution to the other in the most efficient way. This
problem has gained a genuine interest in the machine learning community thanks to its nice sample
complexity properties, convenient dual form and a wide range of applications [28, 6, 44].

Expectidely, recent neural EOT/SB solvers start showing promising performance in various tasks
[15, 52, 9, 14, 23, 42]. However, it remains unclear to which extent this success is actually attributed
to the fact that these methods properly solve EOT/SB problem rather than to a good choice of
parameterization, regularization, tricks, etc. This ambiguity exists because of the lack of ways
to evaluate the performance of solvers qualitatively in solving EOT/SB. Specifically, the class
of continuous distributions with the analytically known EOT/SB solution is narrow (Gaussians
[10, 41, 26, 7]) and these solutions have been obtained only recently. Hence, although papers in the
field of neural EOT/SB frequently appear, we never know how well they actually solve EOT/SB.

Contributions. We develop a generic methodology for evaluating continuous EOT/SB solvers.

1. We propose a generic method to create continuous pairs of probability distributions with analyti-
cally known (by our construction) EOT solution between them (M3.1, M3.2).

2. We use log-sum-exp of quadratic functions (M3.3, M3.4) to construct pairs of distributions (M4)
that we use as a benchmark with analytically-known EOT/SB solution for the quadratic cost.

3. We use these benchmark pairs to evaluate (M5) many popular neural EOT/SB solvers (M2) in
high-dimensional spaces, including the space of 64 × 64 celebrity faces.

In the field of neural OT, there already exist several benchmarks for the Wasserstein-2 [32], the
Wasserstein-1 [31] and the Wasserstein-2 barycenter [31] OT tasks. Their benchmark construction
methodologies work only for specific OT formulations and do not generalize to EOT which we study.

1 Background: Optimal Transport and Schrödinger Bridges Theory
We work in Euclidean space X = Y = RD equipped with the standard Euclidean norm ∥ · ∥. We use
P(X ) = P(Y) = P(RD) to denote the sets of Borel probability distributions on X ,Y , respectively.

Classic (Kantorovich) OT formulation [27, 53, 48]. For two distributions P0 ∈ P(X ), P1 ∈ P(Y)
and a cost function c : X × Y → R, consider the following problem (Fig. 1a):

OTc(P0,P1)
def
= inf

π∈Π(P0,P1)

∫
X×Y

c(x, y)dπ(x, y), (1)

where the optimization is performed over the set Π(P0,P1) of transport plans, i.e., joint distributions
on X × Y with marginals P0, P1, respectively. The set Π(P0,P1) is non-empty as it always contains
the trivial plan P0 × P1. With mild assumptions, a minimizer π∗ of (1) exists and is called an OT
plan. Typical examples of c are powers of Euclidean norms, i.e., c(x, y) = 1

q∥x− y∥q , q ≥ 1.

(a) Classic OT formulation (1). (b) Weak OT formulation (2).

Figure 1: Classic (Kantorovich’s) and weak OT formulations.

Weak OT formulation [22, 2, 3]. Let C : X × P(Y) → R ∪ {+∞} be a weak cost which takes a
point x ∈ X and a distribution of y ∈ Y as inputs. The weak OT cost between P0, P1 is (Fig. 1b)

WOTC(P0,P1)
def
= inf

π∈Π(P0,P1)

∫
X
C(x, π(·|x))dπ0(x) = inf

π∈Π(P0,P1)

∫
X
C(x, π(·|x))dP0(x), (2)

where π(·|x) denotes the conditional distribution of y ∈ Y given x ∈ X and π0 is the projection of π
to X which equals P0 since π ∈ Π(P0,P1). Weak OT formulation (2) generalizes classic OT (1): it
suffices to pick C

(
x, π(·|x)

)
=

∫
Y c(x, y)dπ(y|x) to obtain (1) from (2). A more general case of a

2



weak cost is C
(
x, π(·|x)

)
=

∫
Y c(x, y)dπ(y|x) + ϵR

(
π(·|x)

)
, where ϵ > 0 and R : P(Y) → R is

some functional (a.k.a. regularizer), e.g., variance [3, 35], kernel variance [34] or entropy [3]. With
mild assumptions on the weak cost function C, an OT plan π∗ in (2) exists. We say that the family of
its conditional distributions {π∗(·|x)}x∈X is the conditional OT plan.

Entropic OT formulation [13, 20]. It is common to consider entropy-based regularizers for (1):
EOT(1)

c,ϵ (P0,P1)

EOT(2)
c,ϵ (P0,P1)

EOTc,ϵ(P0,P1)

def
= min

π∈Π(P0,P1)

∫
X×Y

c(x, y)π(x, y) +


+ϵKL (π∥P0×P1) , (3)
−ϵH(π), (4)
−ϵ

∫
XH

(
π(·|x)

)
dP0(x). (5)

Here KL is the Kullback–Leibler divergence and H is the differential entropy, i.e., the minus KL
divergence with the Lebesgue measure. Since π ∈ Π(P0,P1), it holds that KL (π∥P0×P1) =
H(P0) −

∫
X H

(
π(y|x)

)
dP0(x) = −H(π) + H(P0) + H(P1), i.e., these formulations are equal

up to an additive constant when P0 ∈ Pac(X ) and P1 ∈ Pac(Y) and have finite entropy. Here we
introduce "ac" subscript to indicate the subset of absolutely continuous distributions. With mild
assumptions on c,P0,P1, the minimizer π∗ exists, it is unique and called the entropic OT plan. It is
important to note that entropic OT (5) is a case of weak OT (2). Indeed, for the weak cost

Cc,ϵ(x, π(·|x))
def
=

∫
Y
c(x, y)dπ(y|x)− ϵH

(
π(·|x)

)
, (6)

formulation (2) immediately turns to (5). This allows us to apply the theory of weak OT to EOT.

Dual OT formulation. There exists a wide range of dual formulations of OT [53, 48], WOT [2, 22]
and EOT [20, 44]. We only recall the particular dual form for WOT from [3, 2] which serves as
the main theoretical ingredient for our paper. For technical reasons, from now on we consider only
P1 ∈ Pp(Y) ⊂ P(Y) for some p ≥ 1, where subscript "p" indicates distributions with a finite p-th
moment. We also assume that the weak cost C : X ×Pp(Y) → R∪{+∞} is lower bounded, convex
in the second argument and jointly lower-semicontinuous in X × Pp(Y). In this case, a minimizer
π∗ of WOT (2) exists [3, Theorem 3.2] and the following dual formulation holds [3, Eq. 3.3]:

WOTC(P0,P1) = sup
f

{∫
X
fC(x)dP0(x) +

∫
Y
f(y)dP1(y)

}
, (7)

where f ∈ Cp(Y)
def
= {f : Y → R continuous s.t. ∃α, β ∈ R : |f(·)| ≤ α∥ · ∥p + β} and fC is the

so-called weak C-transform of f which is defined by

fC(x)
def
= inf

ν∈Pp(Y)
{C(x, ν)−

∫
Y
f(y)dν(y)}. (8)

Function f in (7) is typically called the dual variable or the Kantorovich potential.

SB problem with Wiener prior [38, 11]. Let Ω be the space of RD-valued functions of time
t ∈ [0, 1] describing trajectories in RD, which start at time t = 0 and end at time t = 1. We use P(Ω)
to denote the set of probability distributions on Ω, i.e., stochastic processes.

Figure 2: The bridge of Schrödinger.

Consider two distributions P0 ∈ P2,ac(X ) and P1 ∈
P2,ac(Y) with finite entropy. Let F(P0,P1) ⊂ P(Ω)
be the subset of processes which have marginals P0

and P1 at times t = 0 and t = 1, respectively. Let dWt

be the differential of the standard RD-valued Wiener
process. Let W ϵ ∈ P(Ω) be the Wiener process with
the variance ϵ > 0 which starts at P0 at time t = 0. It
can be represented via the following stochastic differ-
ential equation (SDE): dXt =

√
ϵdWt with X0 ∼ P0.

The Schrödinger Bridge problem with the Wiener prior is the following:

inf
T∈F(P0,P1)

KL (T∥W ϵ) . (9)

The inf is attained uniquely at some process T ∗ [38, Proposition 4.1]. This process turns out to be a
diffusion process and can be (uniquely) represented as the following SDE:

T ∗ : dXt = v∗(Xt, t)dt+
√
ϵdWt, (10)

3



where v∗ : RD × [0, 1] → RD is its drift function which we call the optimal drift. Hence, in (9), one
may consider only diffusion processes ⊂ F(P0,P1) with the volatility ϵ coinciding with the volatility
of the Wiener prior W ϵ. In turn, solving SB can be viewed as finding the optimal drift v∗.

Link between SB and EOT problem. The process T ∗ solving SB (9) is related to the solution π∗ of
EOT problem (5) with the quadratic cost function c(x, y) = 1

2∥x−y∥2. We start with some notations.
For a process T ∈ P(Ω), denote the joint distribution at time moments t = 0, 1 by πT ∈ P(X × Y).
Let T|x,y be the distribution of T for t ∈ (0, 1) conditioned on T ’s values x, y at t = 0, 1.

For the solution T ∗ of SB (9), it holds that πT∗
= π∗, where π∗ is the EOT plan solving (5).

Moreover, T ∗
|x,y = W ϵ

|x,y , i.e., informally, the "inner" part of T ∗ matches that of the prior W ϵ.

Conditional process W ϵ
|x,y is well-known as the Brownian Bridge. Due to this, given x, y, simulating

the trajectories of W ϵ
|x,y is rather straightforward. Thanks to this aspect, SB and EOT can be treated

as nearly equivalent problems. Still EOT solution π∗ does not directly yield the optimal drift v∗.
However, it is known that the density dπ∗(x,y)

d(x,y) of π∗ has the specific form [38, Theorem 2.8], namely,
dπ∗(x,y)
d(x,y) = φ̃∗(x)N (y|x, ϵI)φ∗(y), where functions φ∗, φ̃∗ : RD → R are called the Schrödinger

potentials. From this equality one gets the expression for φ∗(·) and the density of π∗(·|x):

dπ∗(y|x)
dy

∝ N (y|x, ϵI)φ∗(y) =⇒ φ∗(y) ∝ dπ∗(y|x)
dy

·
[
N (y|x, ϵI)

]−1
(11)

up to multiplicative constants. One may recover the optimal drift v∗ via [38, Proposition 4.1]

v∗(x, t) = ϵ∇ log

∫
RD

N (y|x, (1− t)ϵID)φ∗(y)dy. (12)

Here the normalization constant vanishes when one computes ∇ log(·). Thus, technically, knowing
the (unnormalized) density of π∗, one may recover the optimal drift v∗ for SB (9).

2 Background: Solving Continuous OT and SB Problems
Although OT (2), EOT (5) and SB (9) problems are well-studied in theory, solving them in practice
is challenging. Existing OT solvers are of two main types: discrete [44] and continuous [32]. Our
benchmark is designed for continuous EOT solvers; discrete OT/EOT is out of the scope of the
paper.

Continuous OT assumes that distributions P0 and P1 are continuous and accessible only via their
random samples X = {x1, . . . , xN} ∼ P0 and Y = {y1, . . . , yM} ∼ P1. The goal is to recover an
OT plan π∗ between entire P0 and P1 but using only X and Y . Most continuous OT solvers do this
via employing neural networks to implicitly learn the conditional distributions π̂(·|x) ≈ π∗(·|x). In
turn, SB solvers learn the optimal drift v̂ ≈ v∗ but it is anyway used to produce samples y ∼ π̂(·|x)
via solving SDE dXt = v̂(x, t)dt+

√
ϵdWt starting from X0 = x (sampled from P0) at time t = 0.

After training on available samples X and Y , continuous solvers may produce y ∼ π̂(·|xtest) for
previously unseen samples xtest ∼ P0. This is usually called the out-of-sample estimation. It allows
applying continuous OT solver to generative modelling problems such as the image synthesis (noise-
to-data) and translation (data-to-data). In both these cases, P1 is a data distribution, and P0 is either
a noise (in synthesis) or some other data distribution (in translation). Many recent OT solvers achieve
competitive performance in synthesis [12, 15, 46] and translation [35, 34] tasks.

Continuous OT/SB solvers are usually referred to as neural OT/SB because they employ neural
networks. There exist a lot of neural OT solvers for classic OT (1) [46, 17, 56, 40, 30, 19], see also
[32, 31] for surveys, weak OT (2) [34, 35, 1], entropic OT (5) [49, 14, 42] and SB (9) [52, 15, 9, 23].
Providing a concise but still explanatory overview of them is nearly impossible as the underlying
principles of many of them are rather different and non-trivial. We list only EOT/SB solvers which
are relevant to our benchmark and provide a brief summary of them in Table 1. In M5, we test all
these solvers on our continuous benchmark distributions which we construct in subsequent M3.

Approaches to evaluate solvers. As seen from Table 1, each paper usually tests its solver on a
restricted set of examples which rarely intersects with those from the other papers. In particular,
some papers consider data→data tasks, while the others focus on noise→data. Due to this, there is

4



EOT
solvers

Solver
Underlying principle
and parameterization

Evaluated as
EOT/SB

Tested in generation
(noise→data)

Tested in translation
(data→data)

LSOT [49, 21]
Solves classic dual EOT [20, M3.1] with 2 NNs.

Learns 1 more NN for the barycentric projection. ✗ MNIST (32x32)
MNIST→USPS(16x16),
USPS→MNIST (16x16),

SVHN→MNIST (3x32x32)

SCONES [14]
Combines LSOT’s potentials with a score model for
P1 to sample from π∗(·|x) via Langevin dynamics. Gaussians ✗ CelebA Upscale (3x64x64)

NOT* [35]
Solves max-min reformulation of weak OT

dual (7) with 2 NNs (transport map and potential). * This is a generic neural solver for weak OT
but it has not been tested with the entropic cost function.

EGNOT [42]
Employs energy-based modeling (EBM [37])

to solve weak EOT dual (7); non-minimax; 1NN. Gaussians ✗ Colored MNIST 2→3 (3x32x32)

SB
solvers

ENOT [23]
Solves max-min reformulation of SB
with 2 NNs (potential and SDE drift). Gaussians ✗ CelebA Upscale (3x64x64),

Colored MNIST 2→3 (3x32x32)

MLE-SB [52]
Alternate solving of two Half Bridge (HB) problems.

HB is solved via drift estimation with GP [55]. ✗ ✗ Single Cell data (D = 5),
Motion Capture (D = 4)

DiffSB [15]
Iterative Mean-Matching Proportional Fitting
2 NNs for forward and backward SDE drifts Gaussians CelebA (32x32) MNIST→EMNIST (32x32)

FB-SDE [9]
Likelihood training of SB

2 NNs for the ∇ log of Schrödinger potentials ✗
MNIST (32x32),

CelebA (3x32x32),
CIFAR-10 (3x32x32)

✗

Table 1: Table of existing continuous (neural) solvers for EOT/SB.

no clear understanding of the superiority of one solver over the other. Importantly, in many cases,
the quatitative evaluation is done exclusively via the metrics of the downstream task. For example,
[15, 9, 23, 14] consider image generation or translation tasks and test the quality of generated images
via FID [24]. That is, they compare generated marginal distribution π̂1 with target P1. This allows to
access the generative performance of solvers but gives no hint whether they actually learn the true
EOT/SB solution. Works [14, 23, 42, 15] do a step toward opening the veil of secrecy and test their
solvers in the Gaussian case. Unfortunately, it is rather trivial and may not be representative.

3 Constructing Benchmark Pairs for OT and SB: Theory
In this section, we present our theoretical results allowing us to construct pairs of distributions with
the EOT/SB solution known by the construction. We provide proofs in Appendix A.

3.1 Generic Optimal Transport Benchmark Idea
For a given distribution P0 ∈ P(X ), we want to construct a distribution P1 ∈ Pp(Y) such that
some OT plan π∗ ∈ Π(P0,P1) for a given weak OT cost function C between them is known by the
construction. That is, π∗

0 = P0, π∗
1 = P1 and π∗ minimizes (2). In this case, (P0,P1) may be used as

a benchmark pair with a known OT solution. Our following main theorem provides a way to do so.
Theorem 3.1 (Optimal transport benchmark constructor). Let P0 ∈ P(X ) be a given distribution,
f∗ ∈ Cp(Y) be a given function and C : X × Pp(Y) → R be a given jointly lower semi-continuous,
convex in the second argument and lower bounded weak cost. Let π∗ ∈ P(X × Y) be a distribution
for which π∗

0 = P0 and for all x ∈ X it holds that

π∗(·|x) ∈ arginf
µ∈Pp(Y)

{C(x, µ)−
∫
Y
f∗(y)dµ(y)}. (13)

Let P1
def
= π∗

1 be the second marginal of π∗ and assume that P1 ∈ Pp(Y). Then π∗ is an OT plan
between P0 and P1 (it minimizes (2)) and f∗ is an optimal dual potential (it maximizes (7)).

Thanks to our theorem, given a pair (P0, f
∗) ∈ P(X )× Cp(Y) of a distribution and a potential, one

may produce a distribution P1 for which an OT plan between them is known by the construction.
This may be done by picking π∗ ∈ Π(P) whose conditionals π∗(·|x) minimize (13).

While our theorem works for rather general costs C, it may be non-trivial to compute a minimizer
π∗(·|x) in the weak C-transform (8), e.g., to sample from it or to estimate its density. Also, we note
that our theorem states that π∗ is optimal but does not claim that it is the unique OT plan. These
aspects may complicate the usage of the theorem for constructing the benchmark pairs (P0,P1) for
general costs C. Fortunately, both these issues vanish when we consider EOT, see below.

3.2 Entropic Optimal Transport Benchmark Idea
For C = Cc,ϵ (6) with ϵ > 0, the characterization of minimizers π∗(·|x) in (13) is almost explicit.

5



Theorem 3.2 (Entropic optimal transport benchmark constructor). Let P0 ∈ P(X ) be a given
distribution and f∗ ∈ Cp(Y) be a given potential. Assume that c : X ×Y → R is lower bounded and
(x, µ) 7→

∫
Y c(x, y)dµ(y) is lower semi-continuous in X × Pp(Y). Furthermore, assume that there

exists M ∈ R+ such that for all x ∈ X it holds that Mx
def
=

∫
Y exp

(
− c(x,y)

ϵ

)
dy ≤ M . Assume

that for all x ∈ X value Zx
def
=

∫
Y exp

( f∗(y)−c(x,y)
ϵ

)
dy is finite. Consider the joint distribution

π∗ ∈ P(X × Y) whose first marginal distribution satisfies π∗
0 = P0 and for all x ∈ X it holds that

dπ∗(y|x)
dy

=
1

Zx
exp

(
f∗(y)− c(x, y)

ϵ

)
(14)

and π∗(·|x)∈Pp(Y). Then if P1
def
= π∗

1 belongs to Pp(Y), the distribution π∗ is an EOT plan for
P0,P1 and cost Cc,ϵ. Moreover, if

∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x)<∞, then π∗ is the unique EOT plan.

Our result above requires some technical assumptions on c and f∗ but a reader should not worry as
they are easy to satisfy in popular cases such as the quadratic cost c(x, y) = 1

2∥x− y∥2 (M3.3). The
important thing is that our result allows sampling y ∼ π∗(·|x) from the conditional EOT plan by
using MCMC methods [5, M11.2] since (14) provides the unnormalized density of π∗(y|x). Such
sampling may be time-consuming, which is why we provide a clever approach to avoid MCMC
below.

3.3 Fast Sampling With LogSumExp Quadratic Potentials.
In what follows, we propose a way to overcome the challenging sampling problem by considering the
case c(x, y) = ||x−y||2

2 and the special family of functions f∗. For brevity, for a matrix A ∈ RD×D

and b ∈ RD, we introduce Q(y|b, A) def
= exp

[
− 1

2 (y − b)TA(y − b)
]
. Henceforth, we choose the

potential f∗ to be a weighted log-sum-exp (LSE) of N quadratic functions:

f∗(y)
def
= ϵ log

N∑
n=1

wnQ(y|bn, ϵ−1An) (15)

Here wn ≥ 0 and we put An to be a symmetric matrix with eigenvalues in range (−1,+∞). We say
that such potentials f∗ are appropriate. One may also check that f∗ ∈ C2(Y) as it is just the LSE
smoothing of quadratic functions. Importantly, for this potential f and the quadratic cost, π∗(·|x) is a
Gaussian mixture, from which one can efficiently sample without using MCMC methods.
Proposition 3.3 (Entropic OT solution for LSE potentials). Let f∗ be a given appropriate LSE
potential (15) and let P0∈P2(X )⊂P(X ). Consider the plan dπ∗(x, y) = dπ∗(y|x)dP0(x), where
dπ∗(y|x)

dy
=

N∑
n=1

γnN (y|µn(x),Σn) with Σn
def
= ϵ(An + I)−1, µn(x)

def
= (An + I)−1(Anbn + x),

γn
def
= w̃n/

N∑
n=1

w̃n, w̃n
def
= wn(2π)

D
2

√
det(Σn)Q(x|bn,

1

ϵ
I − 1

ϵ2
Σn).

Then it holds that P1
def
= π∗

1 belongs to P2(Y) and the joint distribution π∗ is the unique EOT plan
between P0 and P1 for cost Cc,ϵ with c(x, y) = 1

2∥x− y∥2.
We emphasize that although each conditional distribution π∗(·|x) is a Gaussian mixture, in general,
this does not mean that π∗ or P1 = π∗

1 is a Gaussian mixture, even when P0 is Gaussian. This aspect
does not matter for our construction, and we mention it only for the completeness of the exposition.

3.4 Schrödinger Bridge Benchmark Idea
Since there is a link between EOT and SB, our approach allows us to immediately obtain a solution
to the Schrödinger Bridge between P0 and P1 (constructed with an LSE potential f∗).
Corollary 3.4 (Solution for SB between P0 and constructed P1). In the context of Theorem 3.2, let
p = 2 and consider c(x, y) = 1

2∥x − y∥2. Assume that P0 ∈ P2,ac(X ) ⊂ P(X ) and both P0 and

P1 (constructed with a given f∗) have finite entropy. Then it holds that φ∗(y)
def
= exp

( f∗(y)
ϵ

)
is a

Schrödinger potential providing the optimal drift v∗ for SB via formula (12).

Although the drift is given in the closed form, its computation may be challenging, especially in high
dimensions. Fortunately, as well as for EOT, for the quadratic cost c(x, y) = ||x−y||2

2 and our LSE
(15) potentials f∗, we can derive the optimal drift explicitly.

6



EOT solvers SB solvers
ϵ Metric ⌊LSOT⌉ ⌊SCONES⌉ ⌊NOT⌉ ⌊EgNOT⌉ ⌊ENOT⌉ ⌊MLE-SB⌉ ⌊DiffSB⌉ ⌊FB-SDE-A⌉ ⌊FB-SDE-J⌉

0.1
BW2

2-UVP ✗
Do not work for small ϵ

due to numerical instability
[14, M5.1].cBW2

2-UVP

1
BW2

2-UVP

cBW2
2-UVP

10
BW2

2-UVP ✗
Diverge with the default hyperparameters.
May require more hyperparameter tuning.cBW2

2-UVP

Table 2: The summary of EOT/SB solvers’ quantitative performance in cBW2
2-UVP and BW2

2-UVP
metrics on our mixtures pairs. Detailed evaluation and coloring principles are given in Appendix B.

Corollary 3.5 (SB solution for LSE potentials). Let f∗ be a given appropriate LSE potential (15)
and consider a distribution P0 ∈ P2,ac(X ) with finite entropy. Let P1 be the one constructed in
Proposition 3.3. Then it holds that P1 has finite entropy, belongs to P2,ac(Y) and

v∗(x, t) = ∇x log
N∑

n=1

wn

√
det(Σt

n)Q(x|bn,
1

ϵ(1− t)
I − 1

ϵ2(1− t)
Σt

n) (16)

is the optimal drift for the SB between P0 and P1. Here At
n

def
= (1− t)An and Σt

n
def
= ϵ(At

n + I)−1.

4 Constructing Benchmark Pairs for OT and SB: Implementation
Our benchmark is implemented using PyTorch framework and is publicly available at

https://github.com/ngushchin/EntropicOTBenchmark

It provides code to sample from our constructed continuous benchmark pairs (P0,P1) for various ϵ,
see M4.1 for details of these pairs. In M4.2, we explain the intended usage of these pairs.

4.1 Constructed Benchmark Pairs
We construct various pairs in dimensions D up to 12288 and ϵ ∈ {0.1, 1, 10}. Our mixtures pairs
simulate noise→data setup and images pairs simulate data→data case.

Mixtures benchmark pairs. We consider EOT with ϵ ∈ {0.1, 1, 10} in space RD with dimension
D ∈ {2, 16, 64, 128}. We use a centered Gaussian as P0 and we use LSE function (15) with N = 5
for constructing P1 (Proposition 3.3). In this case, the constructed distribution P1 has 5 modes (Fig.
3a, 3f). Details of particular parameters (An, bn, wn, etc.) are given in Appendix B.

Images benchmark pairs. We consider EOT with ϵ ∈ {0.1, 1, 10}. As distribution P0, we use the
approximation of the distribution of 64 × 64 RGB images (D = 12288) of CelebA faces dataset
[39]. Namely, we train a normalizing flow with Glow architecture [29]. It is absolutely continuous by
the construction and allows straightforward sampling from P0. For constructing distribution P1, we
also use LSE function f∗. We fix N = 100 random samples from P0 for bn and choose all An ≡ I .
Details of wn are given in Appendix C. For these parameters, samples from P1 look like noised
samples from P0 which are shifted to one of µn (Fig. 4).

By the construction of distribution P1, obtaining the conditional EOT plan π∗(y|x) between (P0,P1)
may be viewed as learning the noising model. From the practical perspective, this looks less
interesting than learning the de-noising model π∗(x|y). Due to this, working with images in M5, we
always test EOT solvers in P1 → P0 direction, i.e., recovering π∗(x|y) and generating clean samples
x form noised y. The reverse conditional OT plans π∗(x|y) are not as tractable as π∗(y|x). We
overcome this issue with MCMC in the latent space of the normalizing flow (Appendix C).

4.2 Intended Usage of the Benchmark Pairs
The EOT/SB solvers (M2) provide an approximation of the conditional OT plan π̂(·|x) ≈ π∗(·|x)
from which one can sample (given x ∼ P0). In particular, SB solvers recover the approximation
of the optimal drift v̂ ≈ v∗; it is anyway used to produce samples y ∼ π̂(·|x) via solving SDE
dXt = v̂(x, t)dt +

√
ϵdWt starting from X0 = x at time t = 0. Therefore, the main goal of our

benchmark is to provide a way to compare such approximations π̂, v̂ with the ground truth. Prior to
our work, this was not possible due to the lack of non-trivial pairs (P0,P1) with known π∗, v∗.

7

https://github.com/ngushchin/EntropicOTBenchmark


(a) Input and target. (b) ⌊MLE-SB⌉. (c) ⌊SCONES⌉. (d) ⌊NOT⌉. (e) ⌊EgNOT⌉.

(f) True EOT plan π∗. (g) ⌊ENOT⌉. (h) ⌊DiffSB⌉. (i) ⌊FB-SDE-A⌉. (j) ⌊FB-SDE-J⌉.

Figure 3: Qualitative results of EOT/SB solvers on our mixtures benchmark pair with
(D, ϵ) = (16, 1). The distributions are visualized using 2 PCA components of target distribution P1.

Additional examples of performance on pairs with other ϵ ∈ {0.1, 10} are given in Appendix B.

For each of the constructed pairs (P0,P1), we provide the code to do 5 main things: (a) sample
x ∼ P0; (b) sample y ∼ π∗(·|x) for any given x; (c) sample pairs (x, y) ∼ π∗ from the EOT plan;
(d) sample y ∼ P1; (e) compute the optimal drift v∗(x, t). Function (c) is just a combination of
(a) and (b). For images pairs we implement the extra functionality (f) to sample x ∼ π∗(·|y) using
MCMC. Sampling (d) is implemented via discarding x (not returning it to a user) in (x, y) in (c).

When training a neural EOT/SB solver, one should use random batches from (a,d). Everything
coming from (b,c,e,f) should be considered as test information and used only for evaluation purposes.
Also, for each of the benchmark pairs (mixtures and images), we provide a hold-out test for evaluation.

5 Experiments: Testing EOT and SB Solvers on Our Benchmark Pairs
Now we train various existing EOT/SB solvers from Table 1 on our benchmark pairs (P0,P1) to
showcase how well they capture the ground truth EOT plan. For solvers’ details, see Appendix D.

MIXTURES BENCHMARK PAIRS. For quantitative analysis, we propose the following metric:

cBW2
2-UVP

(
π̂, π∗) def

=
100%

1
2Var(P1)

∫
X

BW2
2

(
π̂(·|x), π∗(·|x)

)
dP0(x). (17)

For each x we compare conditional distributions π̂(·|x) and π∗(·|x) with each other by using the
Bures-Wasserstein metric [16], i.e., the Wasserstein-2 distance between Gaussian approximations of
distributions. Then we average this metric w.r.t. x ∼ P0. The final normalization 1

2Var(P1) is chosen
so that the trivial baseline which maps the entire P0 to the mean of P1 provides 100% error. Metric
(17) is a modification of the standard BW2

2-UVP [14, 23, 42, 33, 18] for the conditional setting. For
completeness, we also report the standard BW2

2-UVP to check how well π̂1 matches π∗
1 .

DISCLAIMER. We found that most solvers’ performance significantly depends on the selected
hyper-parameters. We neither have deep knowledge of many solvers nor have the resources to tune
them to achieve the best performance on our benchmark pairs. Thus, we kindly invite the interested
authors of solvers to improve the results for their solvers. Meanwhile, we report the results of solvers
with their default configs and/or with limited tuning. Nevertheless, we present a hyperparameter study
in Appendix E to show that the chosen hyperparameters are a reasonable fit for the considered tasks.
Our goal here is to find out and explain the issues of the methods which are due to their principle
rather than non-optimal hyperparameter selection.

The detailed results are in Appendix B. Here we give their concise summary (Table 2) and give a
qualitative example (Fig. 3) of solvers’ performance on our mixtures pair with (D, ϵ) = (16, 1).

EOT SOLVERS. ⌈LSOT⌋ and ⌈SCONES⌋ solvers work only for medium/large ϵ = 1, 10. ⌈LSOT⌋
learns only the barycentric projection [49, Def. 1] hence naturally experiences large errors and even
collapses (Fig. 3b). ⌈SCONES⌋ solver works better but recovers the plan with a large error. We think

8



(a) ϵ = 0.1 (b) ϵ = 1 (c) ϵ = 10

Figure 4: Qualitative comparison of ground truth samples x ∼ π∗(·|y) with samples produced by
⌈ENOT⌋. With the increase of ϵ, the diversity increases but the precision of image restoration drops.

this is due to using the Langevin dynamic [14, Alg. 2] during the inference which gets stuck in modes
plus the imprecise target density approximation which we employed (Appendix D). ⌈EgNOT⌋ solver
also employs Langevin dynamic and possibly experiences the same issue (Fig. 3e). Interestingly, our
evaluation shows that it provides a better metric in matching the target distribution P1. ⌈NOT⌋ was
originally not designed for EOT because it is non-trivial to estimate entropy from samples. To fix this
issue, we modify the authors’ code for EOT by employing conditional normalizing flow (CNF) as the
generator. This allows us to estimate the entropy from samples and hence apply the solver to the EOT
case. It scores good results despite the restrictiveness of the used architecture (Fig. 3d).

SB SOLVERS. For ⌈MLE-SB⌋, the original authors’ implementation uses Gaussian processes as para-
metric approximators instead of neural nets [52]. Since other SB solvers (⌈DiffSB⌋, ⌈FB-SDE-A(J)⌋
and ⌈ENOT⌋) use neural nets, after discussion with the authors of ⌈MLE-SB⌋, we decided to use
neural nets in their solver as well. All SB solvers work reasonably well, but their performance drops
as the ϵ increases. This is because it becomes more difficult to model the entire diffusion (with
volatility ϵ); these solvers may require more discretization steps. Still, the case of large ϵ is not very
interesting since, in this case, the EOT is almost equal to the trivial independent plan P0×P1.

IMAGES BENCHMARK PAIRS. There are only two solvers which have been tested by the authors in
their papers in such a large-scale data→data setup (64×64 RGB images), see Table 1. Namely, these
are ⌈SCONES⌋ and ⌈ENOT⌋. Unfortunately, we found that ⌈SCONES⌋ yields unstable training on
our benchmark pairs, probably due to too small ϵ for it, see [14, M5.1]. Therefore, we only report the
results of ⌈ENOT⌋ solver. For completeness, we tried to run ⌈DiffSB⌋, ⌈FB-SDE-A⌋ solvers with
their configs from noise→data generative modelling setups but they diverged. We also tried ⌈NOT⌋
with convolutional CNF as the generator but it also did not converge. We leave adapting these solvers
for high-dimensional data→data setups for future studies. Hence, here we test only ⌈ENOT⌋.

In Fig. 4, we qualitatively see that ⌈ENOT⌋ solver only for small ϵ properly learns the EOT plan π∗

and sufficiently well restores images from the input noised inputs. As there is anyway the lack of
baselines in the field of neural EOT/SB, we plan to release these ⌈ENOT⌋ checkpoints and expect
them to become a baseline for future works in the field. Meanwhile, in Appendix C, we discuss
possible metrics which we recommend to use to compare with these baselines.

6 Discussion
Potential Impact. Despite the considerable growth of the field of EOT/SB, there is still no standard
way to test existing neural (continuous) solvers. In our work, we fill this gap. Namely, we make a step
towards bringing clarity and healthy competition to this research area by proposing the first-ever
theoretically-grounded EOT/SB benchmark. We hope that our constructed benchmark pairs will

9



become the standard playground for testing continuous EOT/SB solvers as part of the ongoing effort
to advance computational OT/SB, in particular, in its application to generative modelling.

Limitations (benchmark). We employ LSE quadratic functions (15) as optimal Kantorovich
potentials to construct benchmark pairs. It is unclear whether our benchmark sufficiently reflects the
practical scenarios in which the EOT/SB solvers are used. Nevertheless, our methodology is generic
and can be used to construct new benchmark pairs but may require MCMC to sample from them.

To show that the family of EOT plans which can be produced with LSE potentials is rich enough, we
provide a heuristic recipe on how to construct benchmark pairs simulating given real-world datasets,
see Appendix H. As we show there, the recipe works on several non-trivial single-cell datasets [36, 8].
Thus, we conjecture that LSE potentials may be sufficient to represent any complex distribution just
like the well-celebrated Gaussian mixtures are capable of approximating any density [43]. We leave
this inspiring theoretical question open for future studies.

For completeness, we note that our images benchmark pairs use LSE potentials and do not require
MCMC for sampling from marginals P0,P1, i.e., to get clean and noisy images, respectively. However,
for computing the test conditional FID (Appendix C) of EOT/SB solvers, MCMC is needed to sample
clean images x ∼ π∗(·|y) conditioned on noisy inputs y. This may introduce extra sources of error.

Limitations (evaluation). We employ BW2
2-UVP for the quantitative evaluation (M5) as it is popular

in OT field [33, 14, 18, 23, 42] . However, it may not capture the full picture as it only compares the
1st and 2nd moments of distributions. We point to developing of novel evaluation metrics for neural
OT/SB solvers as an important and helpful future research direction.

Following our disclaimer in M5, we acknowledge one more time, that the hyper-parameters tuning of
the solvers which we test on our proposed benchmark is not absolutely comprehensive. It is possible
that we might have missed something and did not manage to achieve the best possible performance in
each particular case. At the same time, our Appendix E shows the extensive empirical study of the
key hyper-parameters and it seems that the metrics reported are reasonably close to the optimal ones.

7 Acknowledgements
This work was partially supported by the Skoltech NGP Program (Skoltech-MIT joint project).

References
[1] Arip Asadulaev, Alexander Korotin, Vage Egiazarian, and Evgeny Burnaev. Neural optimal

transport with general cost functionals. arXiv preprint arXiv:2205.15403, 2022.

[2] Julio Backhoff-Veraguas, Mathias Beiglböck, and Gudmun Pammer. Existence, duality, and
cyclical monotonicity for weak transport costs. Calculus of Variations and Partial Differential
Equations, 58(6):1–28, 2019.

[3] Julio Backhoff-Veraguas and Gudmund Pammer. Applications of weak transport theory.
Bernoulli, 28(1):370–394, 2022.

[4] Stefano Bianchini, Alexander Dabrowski, et al. Existence and uniqueness of the gradient
flow of the entropy in the space of probability measures. RENDICONTI DELL’ISTITUTO DI
MATEMATICA DELL’UNIVERSITÀ DI TRIESTE, 46(1):43–70, 2014.

[5] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[6] Nicolas Bonneel and Julie Digne. A survey of optimal transport for computer graphics and
computer vision. In Computer Graphics Forum, volume 42, pages 439–460. Wiley Online
Library, 2023.

[7] Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, and Andreas Krause. The schrödinger bridge
between gaussian measures has a closed form. In International Conference on Artificial
Intelligence and Statistics, pages 5802–5833. PMLR, 2023.

[8] Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-
cell perturbation responses using neural optimal transport. Nature Methods, pages 1–10, 2023.

10



[9] Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of schrödinger
bridge using forward-backward SDEs theory. In International Conference on Learning Repre-
sentations, 2022.

[10] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. Optimal steering of a linear stochastic
system to a final probability distribution, part i. IEEE Transactions on Automatic Control,
61(5):1158–1169, 2015.

[11] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. On the relation between optimal
transport and schrödinger bridges: A stochastic control viewpoint. Journal of Optimization
Theory and Applications, 169:671–691, 2016.

[12] Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semi-dual
formulation of unbalanced optimal transport. In Advances in Neural Information Processing
Systems, 2023.

[13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[14] Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-
scale optimal transport. Advances in neural information processing systems, 34:12955–12965,
2021.

[15] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

[16] D.C Dowson and B.V Landau. The fréchet distance between multivariate normal distributions.
Journal of Multivariate Analysis, 12(3):450–455, 1982.

[17] Jiaojiao Fan, Shu Liu, Shaojun Ma, Hao-Min Zhou, and Yongxin Chen. Neural monge map
estimation and its applications. Transactions on Machine Learning Research, 2023. Featured
Certification.

[18] Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Scalable computations of wasserstein
barycenter via input convex neural networks. In Marina Meila and Tong Zhang, editors, Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 1571–1581. PMLR, 18–24 Jul 2021.

[19] Milena Gazdieva, Litu Rout, Alexander Korotin, Alexander Filippov, and Evgeny Burnaev.
Unpaired image super-resolution with optimal transport maps. arXiv preprint arXiv:2202.01116,
2022.

[20] Aude Genevay. Entropy-regularized optimal transport for machine learning. PhD thesis, Paris
Sciences et Lettres (ComUE), 2019.

[21] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for
large-scale optimal transport. In Advances in neural information processing systems, pages
3440–3448, 2016.

[22] Nathael Gozlan, Cyril Roberto, Paul-Marie Samson, and Prasad Tetali. Kantorovich duality for
general transport costs and applications. Journal of Functional Analysis, 273(11):3327–3405,
2017.

[23] Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry Vetrov, and Evgeny Burnaev.
Entropic neural optimal transport via diffusion processes. In Advances in Neural Information
Processing Systems, 2023.

[24] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pages 6626–6637, 2017.

[25] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

11



[26] Hicham Janati, Boris Muzellec, Gabriel Peyré, and Marco Cuturi. Entropic optimal transport
between unbalanced gaussian measures has a closed form. Advances in neural information
processing systems, 33:10468–10479, 2020.

[27] Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS),
volume 37, pages 199–201, 1942.

[28] Abdelwahed Khamis, Russell Tsuchida, Mohamed Tarek, Vivien Rolland, and Lars Petersson.
Earth movers in the big data era: A review of optimal transport in machine learning. arXiv
preprint arXiv:2305.05080, 2023.

[29] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[30] Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
Wasserstein-2 generative networks. In International Conference on Learning Representations,
2021.

[31] Alexander Korotin, Alexander Kolesov, and Evgeny Burnaev. Kantorovich strikes back!
wasserstein GANs are not optimal transport? In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[32] Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and
Evgeny Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2
benchmark. Advances in Neural Information Processing Systems, 34:14593–14605, 2021.

[33] Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous wasserstein-
2 barycenter estimation without minimax optimization. In International Conference on Learning
Representations, 2021.

[34] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Kernel neural optimal transport.
In International Conference on Learning Representations, 2023.

[35] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. In
International Conference on Learning Representations, 2023.

[36] Takeshi Koshizuka and Issei Sato. Neural lagrangian schr\"{o} dinger bridge: Diffusion
modeling for population dynamics. In The Eleventh International Conference on Learning
Representations, 2022.

[37] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

[38] Christian Léonard. A survey of the schr\" odinger problem and some of its connections with
optimal transport. arXiv preprint arXiv:1308.0215, 2013.

[39] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[40] Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport map-
ping via input convex neural networks. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 6672–6681. PMLR, 13–18 Jul 2020.

[41] Anton Mallasto, Augusto Gerolin, and Hà Quang Minh. Entropy-regularized 2-wasserstein
distance between gaussian measures. Information Geometry, 5(1):289–323, 2022.

[42] Petr Mokrov, Alexander Korotin, and Evgeny Burnaev. Energy-guided entropic neural optimal
transport. arXiv preprint arXiv:2304.06094, 2023.

[43] T Tin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. Approximation
by finite mixtures of continuous density functions that vanish at infinity. Cogent Mathematics &
Statistics, 7(1):1750861, 2020.

12



[44] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Foundations and Trends®
in Machine Learning, 11(5-6):355–607, 2019.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[46] Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport
maps. In International Conference on Learning Representations, 2022.

[47] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 Conference Proceedings, pages 1–10, 2022.

[48] Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-
63):94, 2015.

[49] Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary, Nicolas Courty, Antoine Rolet,
and Mathieu Blondel. Large scale optimal transport and mapping estimation. In International
Conference on Learning Representations, 2018.

[50] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. In The Eleventh International Conference on Learning Representa-
tions, 2023.

[51] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[52] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

[53] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

[54] Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
schrödinger bridge. In International Conference on Machine Learning, pages 10794–10804.
PMLR, 2021.

[55] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[56] Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, and Hongyuan Zha. On scalable and
efficient computation of large scale optimal transport. volume 97 of Proceedings of Machine
Learning Research, pages 6882–6892, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

13



A Proofs

Proof of Theorem 3.1. By the definition of P1, it holds that π∗ ∈ Π(P0,P1). It suffices to show that
π∗ attains the optimal cost. Let Cost(π) be the value of weak OT functional for a plan π, i.e.,

Cost(π) def
=

∫
X
C(x, π(·|x))dP(x).

We consider weak OT (2) between P0 ∈ P(X ) and P1 ∈ Pp(X ) and use its dual form (7):

Cost(P0,P1) = sup
f

{∫
X
fC(x)dP0(x) +

∫
Y
f(y)dP1(y)

}
=

sup
f

{∫
X

inf
ν∈Pp(Y)

{C(x, ν)−
∫
Y
f(y)dν(y)}dP0(x) +

∫
Y
f(y)dP1(y)

}
≥∫

X
inf

ν∈Pp(Y)
{C(x, ν)−

∫
Y
f∗(y)dν(y)}dP0(x) +

∫
Y
f∗(y)dP1(y).

Now we use the fact that π∗(·|x) minimizes (8) for all x ∈ X :∫
X

inf
ν∈Pp(Y)

{C(x, ν)−
∫

f∗(y)dν(y)}dP0(x) +

∫
Y
f∗(y)dP1(y) =

=

∫
X

{
C(x, π∗(·|x))−

∫
Y
f∗(y)dπ∗(y|x)

}
dP0(x) +

∫
Y
f∗(y)dP1(y) =∫

X
C(x, π∗(·|x))dP0(x)−

∫
X

∫
Y
f∗(y)dπ∗(y|x) dP0(x)︸ ︷︷ ︸

=dπ∗
0 (x)

+

∫
Y
f∗(y)dP1(y) =

∫
X
C(x, π∗(·|x))dP0(x)−

∫
X×Y

f∗(y)dπ∗(x, y) +

∫
Y
f∗(y)dP1(y) =∫

X
C(x, π∗(·|x))dP0(x)−

∫
Y
f∗(y)dπ∗

1(y) +

∫
Y
f∗(y)dP1(y) =∫

X
C(x, π∗(·|x))dP0(x) +

∫
Y
f∗(y)d(P1 − π∗

1)(y)︸ ︷︷ ︸
=0 since π∗

1=P1

=

∫
X
C(x, π∗(·|x))dP0(x) = Cost(π∗). (18)

We see that Cost(π∗) is not greater than the optimal Cost(P0,P1), i.e., π∗ is optimal. At the same
time, from the derivations above, it directly follows that f∗ is an optimal potential.

Proof of Theorem 3.2. We are going to use our Theorem 3.1. First, we check that (13) holds for
π∗(·|x) defined by (14). Analogously to [42, Theorem 1], for each x ∈ X , we derive

inf
ν∈Pp(Y)

{Cc,ϵ(x, ν)−
∫
Y
f∗(y)dν(y)} = inf

ν∈Pp(Y)

{∫
Y

[
c(x, y)− f∗(y)

]
dν(y)− ϵH(ν)

}
︸ ︷︷ ︸

def
=Gx(ν)

.

Minimizing Gx, one should consider only ν ∈ Pp,ac(Y) ⊂ Pp(Y). Indeed, for ν /∈ Pp,ac(Y), it
holds that Gx(ν

∗) = +∞ since c(x, y) is lower bounded and −H(ν) = +∞. We continue

inf
ν∈Pp,ac(Y)

{
− ϵ

∫
Y
log exp

(
f∗(y)− c(x, y)

ϵ

)
dν(y) + ϵ

=−H(ν)︷ ︸︸ ︷∫
Y
log

dν(y)

dy
dν(y)

}
=

inf
ν∈Pp,ac(Y)

{
− ϵ

∫
Y
log

(
Zx · dπ

∗(y|x)
dy

)
dν(y) + ϵ

∫
Y
log

dν(y)

dy
dν(y)

}
=

−ϵ logZx + inf
ν∈Pp,ac(Y)

{
− ϵ

∫
Y
log

dπ∗(y|x)
dy

dν(y) + ϵ

∫
Y
log

dν(y)

dy
dν(y)

}
=

14



−ϵ logZx + inf
ν∈Pp,ac

ϵKL (ν∥π∗(·|x)) . (19)

Since π∗(·|x) ∈ Pp,ac(Y), by the assumption of the current Theorem, we conclude that it is the
unique minimum of Gx(ν) in Pp,ac(Y). Now to apply our Theorem 3.1, it remains to check that all
its assumptions hold. We only have to check that Cc,ϵ given by (6) is lower bounded, jointly lower
semi-continuous and convex in the second argument.

Analogously to (19), we derive

Cc,ϵ(x, ν) =

∫
Y
c(x, y)dν(y)− ϵH(ν) = −ϵ logMx︸ ︷︷ ︸

≥−ϵ logM

+ϵKL (ν∥νx)︸ ︷︷ ︸
≥0

≥ −ϵ logM, (20)

where dνx(y)
dy

def
= M−1

x exp
(
− c(x,y)

ϵ

)
. This provides a lower bound on the cost Cc,ϵ. From

the first equality in (20), we see that Cc,ϵ is jointly lower semi-continuous because the first term∫
Y c(x, y)dν(y) is jointly lower semi-continuous by the assumptions and the entropy term −H(ν) is

lower semi-continuous in P1(Y) [48, Ex. 45] and hence in Pp(Y) as well (p ≥ 1). The last step is
to note that Cc,ϵ(x, ν) is convex in ν thanks to the convexity of −H(ν).

Finally, if
∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x)<∞, then −

∫
X H

(
π∗(·|x)

)
is finite. Let U be the subset of

plans π ⊂ Π(P0,P1) where −
∫
X H

(
π(·|x)

)
is finite. It is not empty since π∗ ∈ U . At the same

time, it is a convex set and functional π 7→ −
∫
X H

(
π(·|x)

)
dP0(x) is strictly convex in U thanks to

the strict convexity of the (negative) entropy ν 7→ −H(ν) on the set of distributions where it is finite.
Thus, π 7→

∫
X Cc,ϵ

(
x, π(·|x)

)
dP0(x) is strictly convex in U and π∗ is the unique minimum.

For completeness, we note that if
∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) = +∞, this situation is trivial, as the

cost of every plan turns to be equal to +∞. As a result, every plan is optimal.

Proof of Proposition 3.3. Deriving the actual form of π∗(·|x) is an easy exercise. We substitute (15)
into (14) and use the quadratic cost c(x, y) = ||y−x||2

2 :

dπ∗(y|x)
dy

=
1

Zx
exp

(
f∗(y)− c(x, y)

ϵ

)
=

1

Zx
exp

(
ϵ log

∑N
n=1 wnQ(y|bn, ϵ−1An)− ||y−x||2

2

ϵ

)
=

1

Zx

( N∑
n=1

wnQ(y|bn, ϵ−1An)

)
exp(−||y − x||2

2ϵ
) =

1

Zx

N∑
n=1

wn

(
Q(y|bn, ϵ−1An) exp(−

||y − x||2

2ϵ
)

)
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2
(y − bn)

T An

ϵ
(y − bn)

]
exp(−||y − x||2

2ϵ
)

)
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2
(y − bn)

T An

ϵ
(y − bn)−

||y − x||2

2ϵ

])
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2
(y − bn)

T An

ϵ
(y − bn)−

1

2
(y − x)T

I

ϵ
(y − x)

])
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2

{
(y − bn)

T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x)

}])
. (21)

Next, we prove that (we write just µn instead of µn(x) for simplicity):

(y − bn)
T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x) =

15



(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn). (22)

Indeed,

(y − bn)
T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x) =

yT
An

ϵ
y − 2bTn

An

ϵ
y + bTn

An

ϵ
bTn + yT

I

ϵ
y − 2xT I

ϵ
y + xT I

ϵ
x =

yT (
An + I

ϵ
)︸ ︷︷ ︸

Σ−1
n

y − 2(Anbn + x)T
I

ϵ
y + bTn

An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2(Anbn + x)T

I

ϵ
y + bTn

An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2 (Anbn + x)T (An + I)−1︸ ︷︷ ︸

µT
n

(An + I)

ϵ︸ ︷︷ ︸
Σ−1

n

y + bTn
An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2µT

nΣ
−1
n y + bTn

An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2µT

nΣ
−1
n y + µT

nΣ
−1
n µn − µT

nΣ
−1
n µn + bTn

An

ϵ
bn + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn)− µT
nΣ

−1
n µn + bTn

An

ϵ
bn + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − µT

nΣ
−1
n µn + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − (Anbn + x)T

Σn

ϵ
Σ−1

n

Σn

ϵ
(Anbn + x) + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − (Anbn + x)T

Σn

ϵ2
(Anbn + x) + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn −

(Anbn)
T Σn

ϵ2
Anbn − 2(Anbn)

T Σn

ϵ2
x− xT Σn

ϵ2
x+ xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − (Anbn)

T Σn

ϵ2
Anbn −

2(Anbn)
T Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − bTn

AT
nΣnAn

ϵ2
bn −

2(Anbn)
T Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2(Anbn)

T Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2bTn

AnΣn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn −

2bTn

ϵΣ−1
n︷ ︸︸ ︷

(An + I) Σn − Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2bTn

ϵI − Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

16



(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2bTn (

I

ϵ
− Σn

ϵ2
)x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn −

bTn (
I

ϵ
− Σn

ϵ2
)bn + (x− bn)

T (
I

ϵ
− Σn

ϵ2
)(x− bn) =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn
An −AT

n
Σn

ϵ An

ϵ
bn − bTn (

I

ϵ
− Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An −AT

n
Σn

ϵ An

ϵ
− I

ϵ
+

Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An(I − Σn

ϵ An)

ϵ
− I

ϵ
+

Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An(I − Σn

ϵ (ϵΣ−1
n − I))

ϵ
− I

ϵ
+

Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An(

Σn

ϵ )− I + Σn

ϵ

ϵ
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
(ϵΣ−1

n − I)Σn

ϵ − I + Σn

ϵ

ϵ
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) + bTn (

I − Σn

ϵ − I + Σn

ϵ

ϵ
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn).

Next, we substitute (22) into (21)

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2

{
(y − bn)

T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x)

}])
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2

{
(y − µn)

TΣ−1
n (y − µn) + (x− bn)

T (
I

ϵ
− Σn

ϵ2
)(x− bn)

}])
=

1

Zx

N∑
n=1

wn exp(−
1

2
(y − µn)

TΣ−1
n (y − µn)) exp(−

1

2
(x− bn)

T (
I

ϵ
− Σn

ϵ2
)(x− bn)) =

1

Zx

N∑
n=1

wn(2π)
D
2

√
det(Σn)N (y|µn,Σn)Q(x|bn,

I

ϵ
− Σn

ϵ2
) =

1

Zx

N∑
n=1

wn(2π)
D
2

√
det(Σn)Q(x|bn,

I

ϵ
− Σn

ϵ2
)︸ ︷︷ ︸

w̃n

N (y|µn,Σn)) =

17



1

Zx

N∑
n=1

w̃nN (y|µn,Σn) =
1∑N

n=1 w̃n

N∑
n=1

w̃nN (y|µn,Σn) =

N∑
n=1

w̃n∑N
n=1 w̃n

N (y|µn,Σn) =

N∑
n=1

γnN (y|µn,Σn).

which finishes the derivation of the expression for the density of π∗(·|x).

Now we prove that P1
def
= π∗

1 ∈ P2(Y). For each x, consider dπ∗(y|x)
dy =

∑N
n=1 γnN (y|µn(x),Σn).

Its second moment is given by
∑N

n=1 γn
(
∥µn(x)∥2 +TrΣn

)
. Note that

∥µn(x)∥ = ∥(An + I)−1(Anbn + x)∥ ≤
∥(An + I)−1∥ · ∥Anbn + x∥ ≤ ∥(An + I)−1∥ · (∥Anbn∥+ ∥x∥),

where ∥ · ∥ applied to matrix means the operator norm. Hence, one may conclude that ∥µn(x)∥2 is
upper bounded by some quadratic polynomial of ∥x∥, i.e., there exist constants αn ∈ R, βn ∈ R+

such that ∥µn(x)∥2 ≤ αn + βn · ∥x∥2. We derive∫
Y
∥y∥2dπ∗

1(y) =

∫
X

∫
Y
∥y∥2dπ∗(y|x) dπ∗

0︸︷︷︸
=dP0(x)

(x) =

∫
X

N∑
n=1

γn
(
∥µn(x)∥2 +TrΣn

)
dP0(x) ≤

∫
X

N∑
n=1

γn
(
αn + βn∥x∥2 +TrΣn

)
dP0(x) =

N∑
n=1

γn
(
αn +TrΣn

)
+

( N∑
n=1

βnγn
) ∫

X
∥x∥2dP0(x) < ∞

since P0 ∈ P2(X ) by the assumption of the proposition.

It remains to prove that π∗ is the unique EOT plan. According to our Theorem 3.2, one only
has to ensure that

∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) < ∞. Just for completeness, we highlight that∫

X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) is lower-bounded since Cc,ϵ is lower bounded, see the proof of The-

orem 3.2. Anyway, this is indifferent for us. We recall that π∗ is an optimal plan between P0 and
P1 = π∗

1 and f∗ is an optimal potential by our construction. Thanks to the duality, we have∫
X
Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) =

∫
X
(f∗)Cc,ϵ(x)dP0(x) +

∫
Y
f∗(y)dP1(y) =∫

X

[
− ϵ logZx

]
dP0(x) +

∫
Y
f∗(y)dP1(y), (23)

where in transition to (23) we used our findings of line (19). Note that
∫
Y f∗(y)dP1(y) is finite since

f∗ ∈ C2(Y) is dominated by a quadratic polynomial, and we have already proved that P1 has finite
second moment. It remains to upper bound the first term in (23). We note that

Zx =

∫
Y
exp

(
f∗(y)− 1

2∥x− y∥2

ϵ

)
dy = (

√
2πϵ)D

∫
Y
exp

(
f∗(y)

ϵ

)
N (y|x, ϵI)dy ≥

(
√
2πϵ)D exp

(∫
Y

f∗(y)

ϵ
N (y|x, ϵI)dy

)
≥ (

√
2πϵ)D exp

(∫
Y

β + α∥y∥2

ϵ
N (y|x, ϵI)dy

)
= (24)

(
√
2πϵ)D exp

(
β + α(∥x∥2 + ϵD)

ϵ

)
, (25)

where in transition to line (24) we used the Jesnsen’s inequality and α, β ∈ R are some constants
for which f∗(·) ≥ β + α∥ · ∥2. They exist since f∗ ∈ C2(Y). Indeed, there exist α̃, β̃ : |f∗(·)| ≤
β̃ + α̃∥ · ∥2 ⇒ f∗(·) ≥ −β̃ − α̃∥ · ∥2, and we set α = −α̃, β = −β̃. In turn, line (25) uses the
explicit formula for the second moment of N (y|x, ϵI). We use (25) to upper bound the first term in
(23):∫
X

[
− ϵ logZx

]
dP0(x) ≤

∫
X

[
− ϵ log

(
{(
√
2πϵ)D exp

(
β + α∥x∥2 + αϵD

ϵ

)}]
dP0(x) =

18



−ϵD

2
log(2πϵ)− β − αϵD − α

∫
X
∥x∥2dP0(x).

It remains to note that the last value is finite, since P0 ∈ P2(X ) by the assumption.

Proof of Corollary 3.4. We note that dπ∗(y|x)
dy ∝ exp

( f∗(y)− 1
2∥x−y∥2

ϵ

)
. Therefore,

exp
(f∗(y)

ϵ

)
∝ dπ∗(y|x)

dy
exp

( 1

2ϵ
∥x− y∥2) ∝ dπ∗(y|x)

dy
·
[
N (y|x, ϵI)

]−1
. (26)

By comparing (26) with (11), we see that exp
( f∗(y)

ϵ

)
indeed coincides with the Schrödinger potential

ϕ∗(y). Formula (12) for the optimal drift follows from [38, Proposition 4.1]3.

Proof of Corollary 3.5. First, we prove that constructed P1
def
= π∗

1 actually has finite entropy. This is
needed to ensure that the assumptions of [38, Proposition 4.1]. This proposition provides the formula
for the optimal drift (12) via the Schrödinger potential. We write

0 ≤ KL (π∗
1∥N (·|0, I)) = −H(π∗

1)−
∫
Y
logN (y|0, I)dπ∗

1(y) =

−H(π∗
1) +

D

2
log(2π) +

1

2

∫
Y
∥y∥2dπ∗

1(y). (27)

From our Proposition 3.3 it follows that P1 = π∗
1 has finite second moment. Hence, the latter constant

in (27) is finite. Therefore, H(π∗
1) is upper bounded. To lower bound H(π∗

1), recall that each π∗(·|x)
is a mixture of N Gaussians (Proposition 3.3) with (x-independent) covariances Σn. Thus, its density
dπ∗(y|x)

dy is upper bounded by ξ
def
= maxn

[
(2π)−D/2

]
(detΣn)

−1/2 > 0 which also means that

dπ∗
1(y)

dy
=

∫
X

dπ∗(y|x)
dy

dπ∗
0(x) ≤

∫
X
ξdπ∗

0(x) ≤ ξ.

We conclude that

H(π∗
1) = −

∫
log

dπ∗
1(y)

dy
dπ∗

1(y) ≥ −
∫

log ξdπ∗
1(y) = − log ξ, (28)

i.e., H(π∗
1) is lower-bounded as well.

Having in mind our previous Corollary, we just substitute exp
( f∗(y)

ϵ

)
of LSE (15) potential f∗ as

the Schrödinger potential ϕ∗(y) to (12). We derive

v∗(x, t) = ϵ∇ log

∫
RD

N (y|x, (1− t)ϵI)φ∗(y)dy =

ϵ∇ log

∫
RD

N (y|x, (1− t)ϵI) exp(
f∗(y)

ϵ
)dy =

ϵ∇ log

∫
RD

N (y|x, (1− t)ϵI) exp(
ϵ log

∑N
n=1 wnQ(y|bn, ϵ−1An)

ϵ
)dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

N (y|x, (1− t)ϵI)Q(y|bn, ϵ−1An))dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

(
2πϵ(1− t)

)−D
2 exp(−(y − x)T

I

2ϵ(1− t)
(y − x))Q(y|bn, ϵ−1An)dy =

3The authors of [38] consider SB with the reversible Wiener prior R, i.e., the standard Brownian motion
starting at the Lebesgue measure. They deal with infT∈F(P0,P1) KL (T∥R) which matches (up to an additive
constant) our formulation (9) for ϵ = 1. Indeed, using the measure disintegration theorem, one can derive
KL (T∥R) = −H(P0) + KL (T∥W ϵ). For other ϵ > 0, the analogous equivalence holds true.

19



ϵ∇ log

N∑
n=1

wn

∫
RD

exp(−(y − x)T
I

2ϵ(1− t)
(y − x))Q(y|bn, ϵ−1An)dy +

ϵ∇ log
((
2πϵ(1− t)

)−D
2︸ ︷︷ ︸

=0

)
=

ϵ∇ log

N∑
n=1

wn

∫
RD

exp(−(y − x)T
I

2ϵ(1− t)
(y − x)) exp(−(y − bn)

T An

2ϵ
(y − bn))dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

exp
(
− 1

2(1− t)
{(y − x)T

I

ϵ
(y − x) + (y − bn)

T

At
n︷ ︸︸ ︷

(1− t)An

ϵ
(y − bn)}

)
dy

Next, we use (22) but with At
n instead of An and Σt

n instead of Σn. Also, we denote
µt
n = (At

n + I)−1(At
nbn + x):

ϵ∇ log

N∑
n=1

wn

∫
RD

exp
(
− 1

2(1− t)
{(y − x)T

I

ϵ
(y − x) + (y − bn)

T

At
n︷ ︸︸ ︷

(1− t)An

ϵ
(y − bn)}

)
dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

exp

(
− 1

2(1− t)

{
(y − µt

n)
T
(
Σt

n

)−1
(y − µt

n)+

(x− bn)
T (

I

ϵ
−Σt

n

ϵ2
)(x− bn)

})
dy =

ϵ∇ log

N∑
n=1

{
wn exp

(
− 1

2
(x− bn)

T ϵI − Σt
n

ϵ2(1− t)
(x− bn)

)
∫
RD

exp
(
− 1

2
(y − µt

n)
T (Σt

n)
−1

(1− t)
(y − µt

n)
)
dy

}
=

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

) ∫
RD

exp
(
− 1

2
(y − µt

n)
T (Σt

n)
−1

(1− t)
(y − µt

n)
)
dy =

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

) ∫
RD

(2π)
D
2 det((1− t)Σt

n)
1
2N (y|µt

n, (1− t)Σt
n)dy =

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
(2π(1− t))

D
2 det(Σt

n)
1
2

∫
RD

N (y|µt
n, (1− t)Σt

n)dy︸ ︷︷ ︸
=1

=

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
(2π(1− t))

D
2 det(Σt

n)
1
2 =

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
det(Σt

n)
1
2 + ϵ∇ log

(
(2π(1− t))

D
2

)︸ ︷︷ ︸
=0

=

ϵ∇ log

N∑
n=1

wn

√
det(Σt

n)Q
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
,

which finishes the proof.

B Mixtures Benchmark Pairs: Details and Results

Parameters for constructing benchmark pairs. In our benchmark pairs, we choose all their
hyperparameters manually to make sure the constructed distributions P0,P1 are visually pleasant and

20



distinguishable. As P0, we always use the centered Gaussian whose covariance matrix is 0.25I . We
use LSE function (15) with N = 5 for constructing the distribution P1. In each setup, all An are the
same and given in Table 3. We pick wn such that γn = 1

5N (x|bn, ( 1ϵ I −
1
ϵ2Σn)

−1). We sample bn
randomly from a uniform distribution on a sphere with the radius R = 5.

D = 2 D = 16 D = 64 D = 128
ϵ = 0.1 1

16 I
1
16 I

1
16 I

1
16 I

ϵ = 1 1
16 I

1
16 I

1
16 I

1
16 I

ϵ = 10 9
40 I

1
100 I

1
100 I

1
100 I

Table 3: Matrices An that we use to construct our mixtures benchmark pairs.

Evaluation details. For computing BW2
2-UVP(π̂1,P1), we use 105 random samples from P1 and

105 random samples from learned distribution π̂1. For computing cBW2
2-UVP

(
π̂, π∗), we use the

hold-out test set containing 1000 samples x ∼ P0. We compute the expectation and covariance
matrices of π∗(·|x) analytically (Proposition 3.3) and we estimate the expectation and covariance
matrix of π̂(·|x) by using 103 samples. We present results of evaluation in Table 4 and Table 5.

We present an additional trivial baseline for the conditional metric cBW2
2-UVP

(
π̂, π∗), which is

given by the independent plan P0 × P1. We compare other methods with this baseline in Table 5.

ϵ=0.1 ϵ=1 ϵ=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊LSOT⌉ - - - - - - - - - - - -
⌊SCONES⌉ - - - - 1.06 4.24 6.67 11.54 1.11 2.98 1.33 7.89
⌊NOT⌉ 0.016 0.63 1.53 2.62 0.08 1.13 1.62 2.62 0.225 2.603 1.872 6.12

⌊EgNOT⌉ 0.09 0.31 0.88 0.22 0.46 0.3 0.85 0.12 0.077 0.02 0.15 0.23
⌊ENOT⌉ 0.2 2.9 1.8 1.4 0.22 0.4 7.8 29 1.2 2 18.9 28

⌊MLE-SB⌉ 0.01 0.14 0.97 2.08 0.005 0.09 0.56 1.46 0.01 1.02 6.65 23.4
⌊DiffSB⌉ 2.88 2.81 153.22 232.67 0.87 0.99 1.12 1.56 - - - -

⌊FB-SDE-A⌉ 2.37 2.55 68.19 27.11 0.6 0.63 0.65 0.71 - - - -
⌊FB-SDE-J⌉ 0.03 0.05 0.25 2.96 0.07 0.13 1.52 0.48 - - - -

Table 4: Comparisons of BW2
2-UVP ↓ (%) between the target P1 and learned marginal π1. Colors

indicate the metric value: BW2
2-UVP ≤ 0.5,BW2

2-UVP ∈ (0.5, 1],BW2
2-UVP > 1.0.

ϵ=0.1 ϵ=1 ϵ=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊LSOT⌉ - - - - - - - - - - - -
⌊SCONES⌉ - - - - 34.88 71.34 59.12 136.44 32.9 50.84 60.44 52.11
⌊NOT⌉ 1.94 13.67 11.74 11.4 4.77 23.27 41.75 26.56 2.86 4.57 3.41 6.56

⌊EgNOT⌉ 129.8 75.2 60.4 43.2 80.4 74.4 63.8 53.2 4.14 2.64 2.36 1.31
⌊ENOT⌉ 3.64 22 13.6 12.6 1.04 9.4 21.6 48 1.4 2.4 19.6 30

⌊MLE-SB⌉ 4.57 16.12 16.1 17.81 4.13 9.08 18.05 15.226 1.61 1.27 3.9 12.9
⌊DiffSB⌉ 73.54 59.7 1386.4 1683.6 33.76 70.86 53.42 156.46 - - - -

⌊FB-SDE-A⌉ 86.4 53.2 1156.82 1566.44 30.62 63.48 34.84 131.72 - - - -
⌊FB-SDE-J⌉ 51.34 89.16 119.32 173.96 29.34 69.2 155.14 177.52 - - - -
Independent 166.0 152.0 126.0 110.0 86.0 80.0 72.0 60.0 4.2 2.52 2.26 2.4

Table 5: Comparisons of cBW2
2-UVP ↓ (%) between the optimal plan π∗ and the learned plan π̂.

Colors indicate the ratio of the metric to the independent baseline metric:
ratio ≤ 0.2, ratio ∈ (0.2, 0.5), ratio > 0.5.

Colors for the Table 2. To assign a color for the metric BW2
2-UVP and cBW2

2-UVP for each ϵ in the
Table 2, we use the following rule: we assign the rank 1 if a method’s metric for a given dimension
D has the color green, the rank 2 if a method’s metric BW2

2-UVP has the color orange and the rank 3
if a method’s metric BW2

2-UVP has the color red. To get the average rank, we take the mean of 4
ranks obtained for each dimension D and round it (1.5 and 2.5 are rounded to 1 and 2 respectively).

Extra qualitative results of EOT/SB solvers. In Figure 5 and Figure 6, we present the additional
qualitative comparison of solvers on our mixtures benchmark pairs in D = 16 with ϵ ∈ {0.1, 10}.
The figures are designed similarly to Figure 3 for (D, ϵ) = (16, 1) in the main text. Note that case
ϵ = 10 (Figure 6) is extremely challenging; only ⌊EgNOT⌉ provides more-or-less reasonable results.

21



(a) Input and target. (b) ⌊MLE-SB⌉. (c) ⌊SCONES⌉. (d) ⌊NOT⌉. (e) ⌊EgNOT⌉.

(f) True EOT plan π∗. (g) ⌊ENOT⌉. (h) ⌊DiffSB⌉. (i) ⌊FB-SDE-A⌉. (j) ⌊FB-SDE-J⌉.

Figure 5: Qualitative results of EOT/SB solvers on our mixtures benchmark pair with
(D, ϵ) = (16, 0.1). The distributions are visualized using 2 PCA components of target distr. P1.

(a) Input and target. (b) ⌊MLE-SB⌉. (c) ⌊SCONES⌉. (d) ⌊NOT⌉. (e) ⌊EgNOT⌉.

(f) True EOT plan π∗. (g) ⌊ENOT⌉. (h) ⌊DiffSB⌉. (i) ⌊FB-SDE-A⌉. (j) ⌊FB-SDE-J⌉.

Figure 6: Qualitative results of EOT/SB solvers on our mixtures benchmark pair with
(D, ϵ) = (16, 10). The distributions are visualized using 2 PCA components of target distr. P1.

Computational complexity. Sampling from P0 is lightspeed as it is just sampling a Normal noise.
Sampling from P1 is also fast, as it is the Gaussian mixture (Proposition 3.3).

C Images Benchmark Pairs: Details and Results

Parameters for constructing image benchmark pairs. We fix N = 100 random samples from P0

for bn and choose all An ≡ I . We use wn such that γn = 1
100N (x|bn, ( 1ϵ I −

1
ϵ2Σn)

−1).

GLOW details. We use the code from the repository with the default parameters:

https://github.com/rosinality/glow-pytorch

After training, the latent variable z is sampled from N(0, σ2I) with σ2 = 0.49 for image generation.
That is, the image distribution P0 is produced by the mapping z ∼ N(0, σ2I) to the image space
with the learned normalizing flow G, i.e., P0

def
= G♯N (·|σ2I) in our construction.

22

https://github.com/rosinality/glow-pytorch


MCMC in the latent space of the normalizing flow. We test EOT/SB solvers in P1 → P0 direction,
i.e., recovering π∗(x|y) and generating clean samples x from noised y. Unfortunately, the reverse
conditional OT plans π∗(x|y) are not as tractable as π∗(y|x). However, we note that

dπ∗(x|y)
dy

∝ dπ∗(y|x)
dy

dP0(x)

dx
, (29)

i.e., the density of π∗(·|y) it known up to the normalizing constant. Recall that here P0 is constructed
using the normalizing flow and π∗(·|x) is a Gaussian mixture (Proposition 3.3), i.e., we indeed know
the values of both terms. Therefore, one may use the well-celebrated Langevin dynamics to sample
from π∗(y|x). Unfortunately, we found that such sampling in the image space is rather slow.

To overcome this issue, we employ the Langevin sampling in the latent space of the normalizing flow.
It is possible since the normalizing flow is a bijection between the space of images and the latent
space. We use the standard notation z for the latent variable and G : RD → RD for the normalizing
flow, i.e., x = G(z) ∼ P0 for z ∼ p(z)

def
= N (z|0, σ2I). In this case, we have

dπ∗(z|y)
dz

=
dπ∗(x|y)

dx
|det JG−1(x)| ∝ dπ∗(y|x)

dy

dP0(x)

dx
|det JG−1(x)| =

dπ∗(y|G(z)
)

dx

dP0(x)

dx
|det JG−1(x)|︸ ︷︷ ︸
p(z)

=
dπ∗(y|G(z)

)
dy

p(z),

and we can derive the score function ∇z log
dπ∗(z|y)

dz which is needed for the Langevin dynamic as

∇z log
dπ∗(z|y)

dz
= ∇z

dπ∗(y|G(z))

dy
+∇z log p(z). (30)

Hence, instead of doing non-trivial Langevin in the data space with ∇x
dπ∗(x|y)

dx , one may equivalently
do the sampling in the latent space by using the score (30) and then get x = G(z). We empirically
found this approach works much better, presumably due to the fact that (30) is just the score of the
Normal distribution which is slightly adjusted with the information coming from π∗(y|G(z)

)
.

For sampling, we employ the Metropolis-adjusted Langevin algorithm with the time steps
10−3, 10−4 and 10−5 for ϵ = 10, ϵ = 1 and ϵ = 0.1, respectively. It provides the theoretical
guarantees that the constructed Markov chain z1, z2, . . . , ... converges to the distribution dπ∗(z|y)

dz .
For initializing the Markov chain, we sample a pair (x, y) ∼ π∗ and use z = G−1(x) as the initial
state for the Langevin sampling to get new samples from π∗(·|y). This trick allows for improving
the stability of sampling and the convergence speed since it provides a good starting point. We use
N = 200 steps for all the setups for the Metropolis-adjusted Langevin algorithm.

In Figures 7 and 8, we provide additional examples of the samples from the ground truth plan π∗.

Metric 1. For each ϵ = 0.1, 1, 10 we prepare a test set with 104 samples from P0. We use this set
to calculate the FID [24] metric between the ground truth distribution P0 and the model’s marginal
distribution π1 to estimate how well the model restores the target distribution. This allows to access
the generative performance of solvers, i.e., the quality of generated images and matching the target
distribution. However, this metric does not assess the accuracy of the recovered EOT plan.

Metric 2. For each ϵ = 0.1, 1, 10, we prepare a test set containing 100 "noised" samples y ∼ P1 and
5K samples x ∼ π∗(·|y) for each "noised" sample y, i.e., 5K×100 images for each ϵ in consideration.
We propose to compute conditional FID to evaluate the difference between the conditional plans
π∗(·|y) and π̂(·|y). That is, for each y we compute FID between π∗(·|y) and π̂(·|y), and then average
the result for all test y. Clearly, such an evaluation is approximately 100×times more consuming
than computing the base FID. However, it allows us to fairly assess the quality of the recovered EOT
solution, and we recommend this metric as the main for future EOT/SB studies.

In Tables 6, 7, we present the evaluation results for ⌊ENOT⌉ [23]. We again emphasize that, to the
best of our knowledge, there is no scalable data→data EOT/SB solver to compare against. Hence,
we report the results as-is for future methods to be able to compare with them as the baseline.

Computational complexity. Sampling x ∼ P0 is just applying the trained GLOW neural network to
noise vectors z ∼ N (·|0, σ2I). Sampling y ∼ P1 (or y|x) takes comparable time, as it is just extra

23



sampling from the Gaussian mixture with x-dependent parameters (Proposition 3.3). In turn, as we
noted above, sampling x|y requires using the Langevin dynamic and takes considerable time. To
obtain 3 test sets of 5K samples y ∼ π∗(·|x) per each of 100 samples x ∼ P0, we employed 8×A100
GPUs. This generation of test datasets took approximately 1 week.

(a) ϵ = 0.1 (b) ϵ = 1 (c) ϵ = 10

Figure 7: Ground truth samples x ∼ π∗(·|y) on images benchmark pairs.

(a) ϵ = 0.1 (b) ϵ = 1 (c) ϵ = 10

Figure 8: Ground truth samples y ∼ π∗(·|x) on images benchmark pairs.

24



ϵ 0.1 1 10
FID 5.99 3.21 4.9

Table 6: Test FID of ⌊ENOT⌉ on our images
benchmark pairs.

ϵ 0.1 1 10
cFID 40.5 19.8 14.47

Table 7: Test conditional FID of ⌊ENOT⌉ on our
images benchmark pairs

D Details of EOT/SB Solvers

D.1 Mixtures Benchmark Pairs

⌊LSOT⌉ [49]. We use the part of the code of ⌊SCONES⌉ solver from the authors’ repository

https://github.com/mdnls/scones-synthetic/blob/main/cpat.py

corresponding to learning dual OT potentials blob/main/cpat.py and the barycentric projection
blob/main/bproj.py in the Gaussian case with configuration blob/main/config.py.

⌊SCONES⌉ [14]. We use the aforementioned official code for training of dual OT potentials. We
employ sklearn.mixture.GaussianMixture with 20 components to approximate the score of
the target distribution. For the rest, we employ their configuration blob/main/config.py with
batch size=1024 and the learning rate for Langevin sampling is 5 · 10−4.

lr (potential and transport map) Tsteps σz

1e − 4 99 1.0

Table 8: ⌊NOT⌉ training parameters
for the mixture benchmark pairs experiment.

⌊NOT⌉ This algorithm [35, Algorithm 1] is a generic
algorithm for weak OT. It works for transport costs
C
(
x, π(·|x)

)
which are straightforward to estimate

by using samples of π(·|x). Entropic cost Cc,ϵ (6)
does not fit this requirement, as it is not easy to estimate entropy from samples. To do it, one has to
know the density of π(·|x). Thus, the authors of ⌊NOT⌉ skipped EOT setting. We fill this gap and do
a minor modification to their algorithm. As the base implementation, we use

https://github.com/iamalexkorotin/NeuralOptimalTransport

Instead of the multi-layer perceptron generator, we take a conditional normalizing flow with RealNVP
architecture with context-dependent latent normal distribution. This enables the access to the density
of π(·|x) and allows applying ⌊NOT⌉ algorithm to EOT. Our reimplementation is available at

https://github.com/Penchekrak/FlowNOT

Due to the decreased expressivity of RealNVP compared to MLP from ⌊NOT⌉, we do more optimiza-
tion steps for the transport map before updating potential as well as larger parameter count compared
to the original solver implementation for a similar task. We use the same set of hyperparameters
across all experiments with different (ϵ,D). The hyperparameters are summarized in Table 8.

⌊EgNOT⌉ [42] We use the official code for ⌊EgNOT⌉ from

https://github.com/PetrMokrov/Energy-guided-Entropic-OT.

K Ktest
√
η σ0 N

500 1000 0.05 1.0 1024

Table 9: ⌊EgNOT⌉ training parameters
for the mixture benchmark pairs experiment.

For our mixture benchmark pairs experiment, we
adapt the author’s setup for the Gaussian-to-Gaussian
experiment from their original paper [42, §5.2]. In
particular, we use the same architectures of neural
networks, see [42, Appendix C.2], but change the
hyper-parameters of [42, Algorithm 1], since the orig-
inal ones do not work properly when fitting Gaussian-to-Mixture. We hypothesize that the observed
failure is due to the short-run nature of the energy-based training algorithm. We suppose that sig-
nificantly increasing the number of Langevin steps K used at the training stage may leverage the
problem. The specific hyper-parameters of ⌊EgNOT⌉ algorithm are the same for all (ϵ,D) pairs and
provided in Table 9.

We initialize the learning rate as lr = 10−5 and decrease its value during the training. Similar to the
original implementation of [42] we use a replay buffer but found that a high probability (p = 0.95) of
samples reusage does not improve the quality and sometimes leads to unstable training. In turn, we
choose p = 0.5. The reported numbers in Tables 4, 5 are gathered by launching the training process

25

https://github.com/mdnls/scones-synthetic/blob/main/cpat.py
https://github.com/iamalexkorotin/NeuralOptimalTransport
https://github.com/Penchekrak/FlowNOT
https://github.com/PetrMokrov/Energy-guided-Entropic-OT


for approximately 50K iterations and reporting the best-obtained metric. We understand that such
an evaluation procedure is not ideal and does not provide statistically significant results. However,
the qualitative results reported in Table 2 seem to show the behaviour of ⌊EgNOT⌉ solver on our
benchmark setup and reveal the key properties of the approach.

⌊ENOT⌉ [23] We use the official code from

https://github.com/ngushchin/EntropicNeuralOptimalTransport

We use the same hyperparameters for this setup as the authors [23, Appendix E], except the number
of discretization steps N, which we set to 200 as well as for other Schrödinger Bridge based methods.
We also change the learning rate of the potential to 3 · 10−4 for the setups with ϵ = 10.

⌊MLE-SB⌉ [52]. We tested the official code from

https://github.com/franciscovargas/GP_Sinkhorn

Instead of Gaussian processes, we used a neural network as for ⌊ENOT⌉. We use N = 200
discretization steps as for other SB solvers, 5000 IPF iterations, and 512 samples from distributions
P0 and P1 in each of them. We use the Adam optimizer with lr = 10−4 for optimization.

⌊DiffSB⌉[15]. We utilize the official code from

https://github.com/JTT94/diffusion_schrodinger_bridge

with their configuration blob/main/conf/dataset/2d.yaml for toy problems. We increase the
number of steps of dynamics to 200 and the number of steps of the IPF procedure for dimensions 16,
64 and 128 to 30, 40 and 60, respectively.

⌊FB-SDE-J⌉[9]. We utilize the official code from

https://github.com/ghliu/SB-FBSDE

with their configuration blob/main/configs/default_checkerboard_config.py for the
checkerboard-to-noise toy experiment, changing the number of steps of dynamics from 100 to
200 steps. Since their hyper-parameters are developed for their 2-dimensional experiments, we
increase the number of iterations for dimensions 16, 64 and 128 to 15 000.

⌊FB-SDE-A⌉ [9]. We also take the code from the same repository as above. We base our configura-
tion on the authors’ one (blob/main/configs/default_moon_to_spiral_config.py) for the
moon-to-spiral experiment. As earlier, we increase the number of steps of dynamics up to 200. Also,
we change the number of training epochs during one IPF procedure for dimensions 16, 64 and 128 to
2,4 and 8 correspondingly.

D.2 Images Benchmark Pairs

⌊ENOT⌉ [23] As well as for the mixtures benchmark pairs, we use the official code from

https://github.com/ngushchin/EntropicNeuralOptimalTransport

We use the same hyperparameters for this setup as the authors [23, Appendix F] except the batch size
which we set to 16 (/blob/main/notebooks/Image_experiments.ipynb).

E Additional Study of Hyperparameters of Solvers

To show that the default solvers parameters described in Appendix D are already a good choice, we
additionally try different values of some of the most important hyperparameters. We consider each of
the solvers except ⌊LSOT⌉ because it is anyway known to poorly perform due to the systematic bias
in its solutions [31, 32]. For the evaluation, we consider the mixtures benchmark pair with D = 64
and ϵ = 1 where most of the solvers perform reasonably well. In the tables below, we use "∗" to mark
the hyperparameters that we use for comparisons in M4.1.

For ⌊ENOT⌉ solver, we consider the number of inner and outer problem iterations during the
optimization and present the results in Table 10. The obtained results show that the performance
increases slowly with increasing number of iterations of both types.

26

https://github.com/ngushchin/EntropicNeuralOptimalTransport
https://github.com/franciscovargas/GP_Sinkhorn
https://github.com/JTT94/diffusion_schrodinger_bridge
https://github.com/ghliu/SB-FBSDE
https://github.com/ngushchin/EntropicNeuralOptimalTransport


Outer iters
Inner iters

1 5 10 20

100 131.1 130.3 74.5 129.3
1000 28.77 47.36 25.91 20.16
10000 24.46 37.36 23.07∗ 18.03

Table 10: Comparison of cBW2
2-UVP ↓ (%) for ⌊ENOT⌉ on mixtures benchmark pairs for D = 64,
ϵ = 1 and different hyperparameters.

For IPF-based SB solvers ⌊MLE-SB⌉, ⌊DiffSB⌉, ⌊FB-SDE-A⌉ and ⌊FB-SDE-J⌉, we try different
numbers of IPF iterations and the number of samples used in each iteration. We present the results in
Tables 11, 12, 13, 14. All of the IPF-based solvers learn an inversion of a diffusion process at each
IPF step but they differ in the way how this is done. The typical number of IPF steps used by each
algorithm is affected by this difference. The performance increases slowly with the increase of the
two hyperparameters considered, at the cost of a proportional increase in iterations or in the number
of samples used.

IPF iters
Samples per iter

64 128 256 512

100 23.45 24.50 16.64 14.23
1000 16.95 15.35 10.71 8.74
5000 11.55 11.24 12.96 8.41∗

Table 11: Comparison of cBW2
2-UVP ↓ (%) for ⌊MLE-SB⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

IPF iters
Samples per iter

64 256 512 1024

16 62.66 60.42 58.88 57.02
32 62.90 59.42 57.76∗ 55.08
64 62.84 59.46 57.78 55.01

Table 12: Comparison of cBW2
2-UVP ↓ (%) for ⌊DiffSB⌉ on mixtures benchmark pairs for D = 64,
ϵ = 1 and different hyperparameters.

IPF iters
Samples per iter

64 256 512

15000 173.16 163.04 160.5∗
30000 168.86 165.06 156.5

Table 13: Comparison of cBW2
2-UVP ↓ (%) for ⌊FB-SDE-J⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

IPF iters
Samples per iter

64 256 512 1024

16 40.86 40.43 39.76 37.74
32 40.44 38.90 38.36∗ 35.46
64 40.00 38.86 38.31 35.4

Table 14: Comparison of cBW2
2-UVP ↓ (%) for ⌊FB-SDE-A⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

For ⌊SCONES⌉ and ⌊EgNOT⌉ solvers, we consider the number of Langevin steps and the Langevin
step size and present the results in Table 15 and Table 16. For ⌊SCONES⌉ the results obtained show
that the performance increases slowly with increasing Langevin steps and decreasing Langevin step
size. For ⌊EgNOT⌉ the trends are slightly different, since the optimal Langevin step size seems to be
in the interval [0.1, 0.2]. Anyway, our selected parameters are reasonable ones because specifying an
enormously large number of Langevin steps for these solvers is sort of impractical.

Finally, for ⌊NOT⌉ we consider the number of inner problem steps and the hidden size of the used
neural network (conditional normalizing flow). We present results in Table 17.

27



Langevin step size
Langevin steps

64 256 512 1024

10−4 92.35 89.17 86.48 86.33∗
10−3 93.51 90.41 88.22 87.74

Table 15: Comparison of cBW2
2-UVP ↓ (%) for ⌊SCONES⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

Langevin step size
Langevin steps

100 200 500 1000

0.01 70.9 70.98 72.9 68.13
0.02 71.31 67.14 69.11 69.02
0.05 68.78 68.59 63.73∗ 56.84
0.1 64.52 57.45 52.35 51.9
0.2 58.22 60.08 58.93 41.31

Table 16: Comparison of cBW2
2-UVP ↓ (%) for ⌊EgNOT⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

Inner steps
Hidden size

64 128 192 256 320 384 448 512

1 93.14 167.05 149.52 189.0 89.1 161.66 176.43 175.67
5 82.64 86.09 82.18 190.04 147.31 105.46 103.5 150.76

10 163.47 146.68 53.26 137.47 100.84 171.65 115.84 126.96
100 18.68 21.4 14.64 18.08 16.66 20.64∗ 18.71 15.15
200 61.99 52.74 58.63 53.89 52.44 55.3 55.02 54.75

Table 17: Comparison of cBW2
2-UVP ↓ (%) for ⌊NOT⌉ on mixtures benchmark pairs for D = 64,
ϵ = 1 and different hyperparameters.

Discussion. From the results it can be seen that for the most solvers’ dependence on the considered
hyperparameters is almost monotonic and the hyperparameters chosen for the solver comparison on
the mixtures setup are in the region where the metric growth is almost saturated.

F Qualitative Evaluation of the Drift Learned with SB methods

Our benchmark primarily aimed at quantifying the recovered conditional EOT plan π̂(·|x). Thanks to
our Proposition 3.5, our benchmark provides not only the ground truth conditional EOT plan π∗(·|x),
but the optimal SB drift v∗(x, t) as well. This means that for SB solvers we may additionally compare
their recovered SB drift v̂ with the ground truth drift v∗. Here we do this for ⌊MLE-SB⌉, ⌊DiffSB⌉,
⌊ENOT⌉, ⌊FB-SDE-A⌉, ⌊FB-SDE-J⌉ solvers by using our mixtures pairs.

METRICS. Recall that Tv∗ is the Schrödinger bridge (10) and let Tv̂ denote the learned process:

dXt = v̂(x, t)dt+
√
ϵdWt, X0 ∼ P0.

Both Tv∗ and Tv̂ are diffusion processes which start at distribution P0 at t = 0 and have fixed
volatility ϵ. Their respective drifts are v∗ and v̂. For each time t ∈ [0, 1], consider

L2
fwd[t]

def
= ETv∗ ∥v∗(Xt, t)− v̂(Xt, t)∥2, (31)

L2
rev[t]

def
= ETv̂

∥v∗(Xt, t)− v̂(Xt, t)∥2. (32)
which are the expected squared differences between the ground truth v∗ and learned v̂ drifts at the
time t. In (31), the expectation is w.r.t. Xt coming from the true SB trajectories of Tv∗ , while in (32)
– w.r.t. the learned trajectories from Tv̂ . Reporting this metric for all the time steps, all the mixtures
pairs and solvers would be an overkill. In what follows, we use this metric for quantitative analysis.

First, for D = 16 and ϵ ∈ {0.1, 10}, we plot these metrics (as a function of time t). The results for
all the solvers are shown in Figure 9. Second, we provide Table 19 where for D ∈ {2, 16, 64, 128}
and ϵ ∈ {0.1, 10} report L2 metrics averaged over t ∈ [0, 1]. Namely, we report

KL (Tv∗∥Tv̂)
def
=

1

2ϵ

∫ 1

0

L2
fwd[t]dt and RKL (Tv∗∥Tv̂)

def
=

1

2ϵ

∫ 1

0

L2
rev[t]dt. (33)

28



(a) 1
2ϵ
L2

fwd[t] for (D, ϵ) = (16, 0.1) (b) 1
2ϵ
L2

rev[t] for (D, ϵ) = (16, 0.1)

(c) 1
2ϵ
L2

fwd[t] for (D, ϵ) = (16, 1) (d) 1
2ϵ
L2

rev[t] for (D, ϵ) = (16, 1)

Figure 9: L2 metrics between the ground truth drift v∗ and the drift v̂ learned by SB solvers.

We write "KL" and "RKL" not by an accident. Thanks to the well-celebrated Girsanov’s theorem,
these are indeed the forward and reverse KL divergences between processes Tv∗ and Tv̂ .

In all the SB solvers, we consider 200 time discretization steps t = { 1
200 ,

2
200 , . . . 1} for their training.

During testing, we evaluate L2 metrics (31) and (32) on the same time steps. To estimate (31) and
(32), we use 105 samples Xt which are taken from random trajectories of processes Tv∗ and Tv̂.
These trajectories are simulated via the standard Euler–Maruyama method.

ϵ=0.1 ϵ=1

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊ENOT⌉ 0.61 5.49 6.59 10.36 0.86 1.64 11.43 37.53
⌊DiffSB⌉ 6.96 12.89 - - 12.28 >1000 >1000 >1000

⌊FB-SDE-A⌉ 6.9 11.08 - - 10.59 >1000 >1000 >1000
⌊FB-SDE-J⌉ 3.02 5.02 9.60 28.85 18.79 44.79 629.28 >1000
⌊MLE-SB⌉ 0.62 2.63 4.76 7.86 0.96 1.86 9.66 34.95

Table 18: Forward KL between the ground truth SB process Tv∗ and the process Tv̂

learned with SB solvers on our mixtures benchmark pairs.

ϵ=0.1 ϵ=1

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊ENOT⌉ 72.86 78.98 135.29 221.26 18.40 49.65 177.02 348.05
⌊DiffSB⌉ 11.85 21.16 - - 121.43 >1000 >1000 >1000

⌊FB-SDE-A⌉ 12.29 19.40 - - 100.22 >1000 >1000 >1000
⌊FB-SDE-J⌉ 8.03 12.11 17.16 49.32 64.37 123.68 >1000 >1000
⌊MLE-SB⌉ 18.03 28.24 163.34 254.16 22.80 86.07 296.97 636.27

Table 19: Reverse KL between the ground truth SB process Tv∗ and the process Tv̂

learned with SB solvers on our mixtures benchmark pairs.

DISCUSSION. Interestingly, we see that the forward KL divergence shows a smoother behaviour
than the RKL for almost all SB solvers. According to our evaluation, the ⌊MLE-SB⌉ and ⌊ENOT⌉
solvers mostly beat every other solver in the forward KL metric. At the same time, the RKL metric
of ⌊ENOT⌉ is surprisingly the worst. While we make all these observations, we do not know how

29



to explain them. We hope that the question of the interpretation of the KL and RKL values will be
addressed in future SB studies.

G Potential Societal Impact

Our proposed approach deals with generative models based on Entropic Optimal Transport and
Schrödinger Bridge principles. Such models form and emergent subarea in the field of machine
learning research and could be used for various purposes in the industry including image manipulation,
artificial content rendering, graphical design, etc. Our benchmark is a step towards improving the
reliability, robustness and transparency of these models. One potential negative of our work is that
improving generative models may lead to transforming some jobs in the industry.

H Building Benchmarks from Real Data

In this section, we present a simple heuristic recipe to build benchmark pairs similar to some
given real-world data. To illustrate the recipe, we consider toy 2D data example and several
single-cell datasets [36, 8]. Code and data for the experiments in this section can be found in
the benchmark_construction_examplesdata folder of our repository.

H.1 Recipe for Building Benchmark Pairs form Data.

For constructing distribution pairs similar to some given data, we consider a pair of original and target
datasets obtained from the true distributions P0 and P1, respectively. We heuristically initialize the
LSE potential (15) f∗(y) = ϵ log

∑N
n=1 wnQ(y|bn, ϵ−1An) with bn as cluster centers obtained from

the K-means clustering algorithm applied to the target data from P1. The weights wn are chosen to be
1/N and matrices An = λI are diagonal where λ is a manually-chosen parameter (shared between
all An). For any x the conditional plan π∗(·|x) for LSE potential f∗ is just a Gaussian mixture and
the mean of each its component is largely determined by bn (Proposition 3.3). We empirically found
that the resulting constructed distribution dP̂1(y) = dπ∗

1(y) =
∫
dπ∗(y|x)dP0(x) from P0 resembles

the Gaussian mixture approximation of the target dataset if one managed to find proper value of λ.

In the rest of this section, we use the described recipe to construct benchmark pairs from data to show
that the LSE parameterization of the potential provides a wide class of EOT/SB solutions and even
allows constructing a benchmark similar to real data.

H.2 Benchmark Pairs for 2D data.

Code and data for the experiment described in this section can be found in the folder
benchmark_construction_examples/2d_data of our repository.

To begin with, we present the results of constructing a benchmark pair from 2D data. We consider a
Gaussian distribution P0 as the source distribution and two moons P1 as the target distribution. We
aim to use the previously described recipe MH.1 to find parameters of the LSE potential to construct
an EOT solution between P0 and an approximation of P1 denoted as P̂1. Here we consider EOT with
ϵ = 0.05, use N = 100 for LSE potentials, and choose λ = 50. The result is in Figure 10.

As seen from the figure, the constructed target benchmark distribution P̂1 is similar to the target
distribution P1. In turn, the EOT plan maps x ∼ P0 to the close regions of the target distribution.

H.3 Single-cell RNA Data

Code and data for the experiment described in this section can be found in the folder
benchmark_construction_examples/single_cell_rna of our repository.

We consider the same setup as in [36, M5.2]. We use their data from the supplementary materials.4
The provided data displays the progression of human embryonic stem cells as they differentiate from
embryoid bodies into a range of cell types, such as mesoderm, endoderm, neuroectoderm, and neural

4https://openreview.net/forum?id=d3QNWD_pcFv

30

https://openreview.net/forum?id=d3QNWD_pcFv


Figure 10: Gaussian → Two Moons benchmark pair.

crest, throughout a span of 27 days. The cell samples (approximately 2000 ones per each time period)
were gathered at five distinct intervals (t0: day 0 to 3, t1: day 6 to 9, t2: day 12 to 15, t3: day 18
to 21, t4: day 24 to 27). These collected cells were evaluated via scRNAseq, subjected to quality
control filtering, and then projected onto a 5-dimensional feature space utilizing principal component
analysis (PCA).

To construct the benchmark pair using the LSE potential, we consider N = 250, ϵ = 100 and
λ = 100 and employ the train data at times t0 and t4. Then we use the constructed benchmark plan
π∗(·|x) to map source data at time t0 to the data at time t4 and obtain benchmark target distribution
samples P̂1. Finally, we fit TSNE [51] to the combined dataset of samples from P1 and P̂1 and
then plot their projections in Figure 11. The resulting plots are very similar, confirming that the
constructed benchmark target data resembles the considered single-cell target data.

Figure 11: TSNE visualization of Single-cell RNA target data and our constructed target data.

H.4 Single-cell Drugs Data

Code and data for the experiment described in this section can be found in the folder
benchmark_construction_examples/single_cell_drugs of our repository.

Method scGen cAE CellOT [8] EOT Benchmark (ours)
MMD↓ 0.0241 0.0074 0.0013 0.0036

Table 20: MMD↓ distances (on the test data) between the observed perturbed cells P1

and predicted responses from control cells P̂1.

In [8], the authors consider the problem of predicting single-cell drug responses for drugs with differ-
ent molecular effects, using melanoma cell lines profiled by 4i technology (single-cell technology).
Utilizing a blend of two melanoma tumor cell lines at a 1:1 ratio, a total of 21,650 cells were imaged.
Within this dataset, 11,526 cells existed in the untreated control state, 2,364 received Erlotinib
treatment, 2,650 underwent Imatinib treatment, 2,683 were subjected to Trametinib treatment, and

31



2,417 were treated with a combination of Trametinib and Erlotinib. After preprocessing, each cell is
described by 78 features. The train-test split with each drug is 80:20.

In this example, we consider cell data before treatment (P0) and after treatment with Erlotninib (P1).
For the construction of the benchmark pair using an LSE potential, we consider N = 250, ϵ = 1
and λ = 20. As with the single cell RNA data MH.3, we fit the TSNE [51] on a combined dataset of
samples from P1 and P̂1 and then plot their projections in Figure 11. As seen from the visualizations,
the TSNE projections of the real data and the mapped data are similar.

Figure 12: TSNE visualization of Single-cell Drugs target data and our constructed target data.

In addition, we quantitatively evaluate on the test data how well the constructed target distribution P̂1

matches the true data distribution P1. We employ the same MMD metric as the authors and present
the results in Table 20. The data for the baselines scGen, cAE and the authors’ method CellOT are
taken from [8]. As one can see, our approach is even better than two of the baselines considered.

32


	Background: Optimal Transport and Schrödinger Bridges Theory
	Background: Solving Continuous OT and SB Problems
	Constructing Benchmark Pairs for OT and SB: Theory
	Generic Optimal Transport Benchmark Idea
	Entropic Optimal Transport Benchmark Idea
	Fast Sampling With LogSumExp Quadratic Potentials.
	Schrödinger Bridge Benchmark Idea

	Constructing Benchmark Pairs for OT and SB: Implementation
	Constructed Benchmark Pairs
	Intended Usage of the Benchmark Pairs

	Experiments: Testing EOT and SB Solvers on Our Benchmark Pairs
	Discussion
	Acknowledgements
	Proofs
	Mixtures Benchmark Pairs: Details and Results
	Images Benchmark Pairs: Details and Results
	Details of EOT/SB Solvers
	Mixtures Benchmark Pairs
	Images Benchmark Pairs

	Additional Study of Hyperparameters of Solvers
	Qualitative Evaluation of the Drift Learned with SB methods
	Potential Societal Impact
	Building Benchmarks from Real Data
	Recipe for Building Benchmark Pairs form Data.
	Benchmark Pairs for 2D data.
	Single-cell RNA Data
	Single-cell Drugs Data


