
Appendix506

We divide the appendix into four different sections following the results section. Each section507

additionally provides hyper-parameters used for IPL in that section. The first section, setup, contains508

details information on the experimental setup and hyper-parameters used. The second section on509

benchmark results gives full learning curves for the experiments in Section 4.2. The third section510

provides full learning curves for the MetaWorld and Data-scaling experiments. The final Appendix511

section provides extended ablations.512

A Setup513

Here we provide the full algorithmic outline of IPL using Implicit Q-Learning [27] that514

mimics our implementation. While in practice the policy 𝜋 could be extracted at the515

end of training, we do it simultaneously as in [27] in order to construct learning curves.516

Algorithm 2: IPL Algorithm (IQL Variant)
Input :D𝑝 , D𝑜, 𝜆, 𝛼
for 𝑖 = 1, 2, 3, ... do

Sample batches 𝐵𝑝 ∼ D𝑝 , 𝐵𝑜 ∼ D𝑜

Update 𝑄: min𝑄 E𝐵𝑝
[L𝑝 (𝑄)] + 𝜆E𝐵𝑝∪𝐵𝑜

[L𝑟 (𝑄)]
Update 𝑉 : min𝑉 E𝐵𝑝∪𝐵𝑜

[
|𝜏 − 𝟙(𝑄(𝑠, 𝑎) −𝑉 (𝑠)) | (𝑄(𝑠, 𝑎) −𝑉 (𝑠))2]

Update 𝜋: max𝜋 ED𝑝∪D𝑜
[𝑒𝛽 (𝑄 (𝑠,𝑎)−𝑉 (𝑠) ) log 𝜋(𝑎 |𝑠)]

517

Note that above we write the temperature parameter 𝛽 as done in IQL, instead of how it is usually518

done, using 𝛼 in the denominator [18, 42].519

When sampling batches of preference data 𝐵𝑝 ∼ D𝑝, we take sub-samples of each segment 𝜎 of520

length 𝑠. For a sampled data point (𝜎 (1) , 𝜎 (2) , 𝑦), we sample start ∼ Unif[0, 1, 2, ...𝑘 − 𝑠] and then521

let take 𝜎 = 𝑠start, 𝑎start, ..., 𝑠start+𝑠 . We use the same start value across the entire batch.522

Given that we run experiments using MLPs, all of our experiments were run on CPU compute523

resources. Each seed for each method requires one CPU core (two hyper-threads) and 8 Gb of524

memory.525

B Benchmark Results526

Here we provide details for our experiments on the preference-based RL benchmark from Kim et al.527

[25]. We use the same hyperparameters as Kim et al. [25] and Kostrikov et al. [27] where applicable528

as shown in Table 4.529

Gym-Mujoco Locomotion. Hopper and Walker2D agents are tasked with learning locomotion530

policies from datasets of varying qualities taken from the D4RL [16] benchmark. Preference datasets531

were constructed by Kim et al. [25] by uniformly sampling queries and labeling a subset of them. For532

all locomotion tasks the segment length. Preference datasets for “medium” quality offline datasets533

contain 500 queries, while preference datasets for “expert” quality offline datasets contain 100 queries.534

Segment lengths 𝑘 = 100 for all datasets, and were subsampled to length 𝑠 = 64 by IPL and our MR535

(reimplementation). Evaluation was preformed over 10 episodes every 5000 steps. Full learning536

curves are shown in Fig. 3.537

RoboMimic. The RoboMimic datasets contain interaction data of two types: ph — proficient human538

and mh – multihuman. The multi-human data was collected from human demonstrators of mixed539

quality. The robot is tasked with learning how to lift a cube (lift) or pick and place a can (can).540

Preference datasets were again taken directly from Kim et al. [25]. Preference datasets of size 100541

with segment lengths 𝑘 = 50, randomly sub-sampled to length 𝑠 = 32 were used for the ph datasets.542

Preference datasets of size 500 with segment lengths 𝑘 = 100, randomly sub-sampled to length 𝑠 = 64543

were used for the mh datasets. Evaluation was performed over 25 episodes every 50000 steps. Full544

learning curves are shown in Fig. 4.545
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Figure 3: Full learning curves on the D4RL locomotion benchmark with human preferences.
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Figure 4: Full learning curves on the RoboMimic benchmark with human preferences.
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Common Hyperparameters MR Hyperparameters
Parameter Locomotion Robomimic Parameter Locomotion Robomimic
𝑄,𝑉, 𝜋 Arch 2x 256d 2x 256d 𝑟𝜃 Arch 2x 256d 2x 256d
Learning Rate 0.0003 0.0003 𝑟𝜃 LR 0.0003 0.0003
Optimizer Adam Adam 𝑟𝜃 Optimizer Adam Adam
𝛽 3.0 0.5 𝑟𝜃 Steps 20k 20k
𝜏 0.7 0.7
D𝑜 Batch Size 256 256
D𝑝 Batch Size 8 8
Training Steps 1 Mil 1 Mil IPL Hyperparameters
𝑘 100 100, 50 Parameter Locomotion Robomimic
Subsample 𝑠 64 64, 32 𝜆 0.5 4

Table 4: Hyperparameters used for the benchmark experiments. We can see that IPL has fewer
hyperparameters.

Common Hyperparameters MR Hyperparameters
Parameter Value Parameter Value
𝑄,𝑉, 𝜋 Arch 3x 256d 𝑟𝜃 Arch 3x 256d
Learning Rate 0.0003 𝑟𝜃 LR 0.0003
Optimizer Adam 𝑟𝜃 Optimizer Adam
𝛽 4.0 𝑟𝜃 Steps 20k
𝜏 0.7
D𝑝 Batch Size 16
Training Steps 200k IPL Hyperparameters
𝑘 25 Parameter Locomotion
Subsample 𝑠 16 𝜆 0.5

Table 5: Hyper-parameters used in the MetaWorld data scaling experiments.

C Data Scaling Results546

Experiments for data scaling were conducted on the MetaWorld benchmark from Yu et al. [52]. Offline547

datasets for five different MetaWorld tasks were constructed as follows: Collect 100 trajectories of548

expert data on the target task using the built in ground truth policies with the addition of Gaussian549

noise of standard deviation 1.0. Collect 100 trajectories of sub-optimal data by running the ground-550

truth policy for a different randomization of the target task with Gaussian noise 1.0. Collect 100551

trajectories of even more sub-optimal data by running the ground truth policy of a different task552

with Gaussian noise standard deviation 1.0 in the target domain. Finally, collect 100 trajectories553

with uniform random actions. As MetaWorld episodes are 500 steps long, this results in 200,000554

time-steps of data. We then construct preference datasets by uniformly sampling segments from555

the offline dataset and assigning labels 𝑦 according to
∑

𝑡 𝑟 (𝑠
(1)
𝑡 , 𝑎

(1)
𝑡 ) > ∑

𝑡 𝑟 (𝑠
(2)
𝑡 , 𝑎

(2)
𝑡 ) where 𝑟 is556

the ground truth reward provided by metaworld. We then train using only the data from D General557

architecture hyper-parameters were taken from Lee et al. [30], Hejna and Sadigh [21] which also use558

the MetaWorld benchmark, but for online preference-based RL. Full-hyper parameters are shown559

in Table 5. We run 20 evaluation episodes every 2500 steps. Full learning curves are shown in560

Fig. 5. When reporting values in Table 2, we choose the maximum point on the learning curves which561

average across five seeds. This provides results as if early stopping was given by an oracle, which is562

less optimistic than averaging the maximum of each seed as done in Mandlekar et al. [34].563

D Ablations564

In this section we provide additional ablations on both the benchmark datasets and MetaWorld565

datasets. We keep the hyperparameters the same, except for the parameter-efficient experiments. We566

run hyper-parameter sensitivty results for the human-preference benchmark datasets in Fig. 6. The567

top row depicts the sensitivity for IPL to the value of 𝜆. The bottom row depicts the sensitivity of MR568

to the number of timesteps the reward function is trained for.569
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Figure 5: Full learning curves for the MetaWorld data scaling results with scripted preferences.

For the parameter-efficient experiments only we use an efficient version of IPL based on AWAC570

[37] to additionally remove the value network. The outline of this variant is given below571

Algorithm 3: IPL Algorithm (AWAC Variant)
Input :D𝑝 , D𝑜, 𝜆, 𝛼
for 𝑖 = 1, 2, 3, ... do

Sample batches 𝐵𝑝 ∼ D𝑝 , 𝐵𝑜 ∼ D𝑜

Estimate 𝑉 as 𝑄(𝑠, 𝜋(𝑠))
Update 𝑄: min𝑄 E𝐵𝑝

[L𝑝 (𝑄)] + 𝜆E𝐵𝑝∪𝐵𝑜
[L𝑟 (𝑄)]

Update 𝜋: max𝜋 ED𝑝∪D𝑜
[𝑒𝛽 (𝑄 (𝑠,𝑎)−𝑄 (𝑠, 𝜋 (𝑠) ) ) log 𝜋(𝑎 |𝑠)]

572

For this version of IPL, we use 𝜆 = 0.5. All other hyper-parameters remain the same as in Table 6573

except the architectures. For the parameter-efficiency experiments only we use MLPs consisting of574

two dense layers with either dimension 64 or dimension 35. Running MR with a two-layer MLP of575

dimension 35 has almost exactly the same number of parameters as IPL-AWAC with two-layer MLPs576

of dimension 64. We include full results for the parameter-efficiency experiments in Table 6. We577

find that on Drawer Open and Sweep Into, IPL outperforms both MR (64) and MR (35). In these578

environments, performance increases from MR (35) to MR (64) indicating that the expressiveness579

of the 𝑄-function and policy are limiting performance. For the same budget, IPL is able to perform580
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Figure 6: Ablations on regularization strength 𝜆 for IPL (top row) and the number of reward steps for
MR (bottom row). We see that IPL is relatively consistent across different values of 𝜆. MR on the
other hand, can vary greatly if the reward function under or over fits. In Walker2D Medium Replay
and Drawer Open, 500, we see that it can easily under-fit. In Walker2D Medium Expert it easily
over-fits.

better. In Button Press, the simplest task, we find that MR (64) actually over-fits more than MR (35)581

and MR (64) ends up performing worse. In Plate Slide, all methods perform similarly independent of582

parameter count. We omit Assembly because of its low success rate at all data scales.583
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Preference Queries 500 1000 2000 4000

Button Press
MR (35) 73.9 ± 8.9 86.8 ± 8.2 89.9 ± 14.4 99.0 ± 1.0
MR (64) 54.2 ± 16.1 42.6 ± 33.0 67.1 ± 14.9 43.4 ± 7.4

IPL (64) 65.8 ± 13.3 79.8 ± 18.1 80.0 ± 17.3 95.8 ± 5.2

Drawer Open
MR (35) 13.4 ± 13.9 12.6 ± 21.9 15.5 ± 20.1 18.4 ± 25.6

MR (64) 13.4 ± 19.0 57.1 ± 31.2 54.5 ± 31.7 78.8 ± 12.2

IPL (64) 89.8 ± 11.3 93.2 ± 2.5 99.5 ± 0.9 95.5 ± 3.7

Sweep Into
MR (35) 35.1 ± 8.9 42.4 ± 9.9 45.9 ± 9.6 35.9 ± 4.1

MR (64) 31.1 ± 6.4 55.8 ± 5.9 49.6 ± 10.3 56.4 ± 10.3

IPL (64) 41.1 ± 14.2 63.9 ± 8.0 65.0 ± 12.0 63.9 ± 11.8

Plate Slide
MR (35) 55.2 ± 6.1 51.1 ± 4.4 53.0 ± 2.0 48.9 ± 3.3
MR (64) 46.6 ± 21.9 50.8 ± 0.6 47.0 ± 2.5 48.5 ± 4.6
IPL (64) 54.9 ± 3.2 49.4 ± 1.6 45.2 ± 9.0 48.8 ± 4.9

Table 6: Performance of different methods on the MetaWorld tasks under a limited parameter budget.
MR (35) and IPL (64) have the same number of parameters. The Assembly task is ommited due
to low success rate. On Button Press, fewer parameters appears to perform better as, due to the
simplicity of the task, its easier for the bigger models to overfit. On Drawer Open and Sweep Into,
we see consistent gains from increasing the number of parameters in the network, and IPL performs
best overall. On the Plate Slide task, all methods at different parameter scales perform similarly.
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