
A Brute-force edit distance certification

In this appendix, we show that an edit distance certification mechanism based on brute-force search is
computationally infeasible. Suppose we are interested in issuing an edit distance certificate at radius
r for a sequence classifier f at input x. Recall from (1) that in order to issue a certificate, we must
show there exists no input x̄ within the edit distance neighborhood Nr(x) that would change f ’s
prediction. This problem can theoretically be tackled in a brute-force manner, by querying f for all
inputs in Nr(x). In the best case, this would take time linear in |Nr(x)|, assuming f responds to
queries in constant time. However the following lower bound [65], shows that the size of the edit
distance neighborhood is too large even in the best case:

|Nr(x)| ≥
r∑

i=0

255i
r∑

j=i−r

(
|x|+ j

i

)
≥ 255r.

For example, applying the loosest bound that is independent of x, we see that brute-force certification
at radius r = 128 would require in excess of 255r ≈ 10308 queries to f . In contrast, our probabilistic
certification mechanism (Figure 1) makes npred + nbnd queries to f , and we can provide high
probability guarantees when the number of queries is of order 103 or 104.

B Proofs for Section 4

In this appendix, we provide proofs of the theoretical results stated in Section 4.

B.1 Proof of Proposition 3

A sufficient condition for (8) is

min
x̄∈Nr(x)

min
h∈F(x)

py(x̄;h) ≥ max
x̄∈Nr(x)

max
h∈F(x)

(
ηy +max

y′ ̸=y
py′(x̄;h)− min

y′ ̸=y
ηy′

)
. (17)

We first consider the multi-class case where |Y| > 2. If ηy ≥ miny′ ̸=y ηy′ , then py(x̄;h) ≥
maxy′ ̸=y py′(x̄;h) by (17) and we can upper-bound maxy′ ̸=y py′(x̄;h) by 1

2 . On the other hand,
if ηy ≥ miny′ ̸=y ηy′ , we can only upper-bound maxy′ ̸=y py′(x̄;h) by 1. Thus when |Y| > 2 (17)
implies

min
x̄∈Nr(x)

min
h∈F(x)

py(x̄;h) ≥
{

1
2 + ηy −miny′ ̸=y ηy′ , ηy ≥ miny′ ̸=y ηy′ ,

1 + ηy −miny′ ̸=y ηy′ , ηy < miny′ ̸=y ηy′ .

Next, we consider the binary case where |Y| = 2. Since the confidences sum to 1, we have
maxy′ ̸=y py′(x̄;h) = 1− py(x̄;h). Putting this in (17) implies

min
x̄∈Nr(x)

min
h∈F(x)

py(x̄;h) ≥
1 + ηy −miny′ ̸=y ηy′

2
.

B.2 Proof of Lemma 4

Let rS : S → {1, . . . , |S|} be a bijection that returns the rank of an element in an ordered set S. Let
ṙS : 2

S → 2{1,...,|S|} be an elementwise extension of rS that returns a set of ranks for an ordered
set of elements—i.e., ṙS(U) = { rS(i) : i ∈ U } for U ⊆ S. We claim m(ϵ̄) = ṙ−1

ϵ⋆ (ṙϵ̄⋆(ϵ̄)) is a
bijection that satisfies the required property.

To prove the claim, we note that m is a bijection from 2ϵ̄
⋆

to 2ϵ
⋆

since it is a composition of bijections
ṙϵ̄⋆ : 2ϵ̄

⋆ → 2{1,...,l} and ṙ−1
ϵ⋆ : 2{1,...,l} → 2ϵ

⋆

where l = |ϵ̄⋆| = |ϵ⋆|. Next, we observe that ṙϵ̄⋆(ϵ̄)
relabels indices in ϵ̄ so they have the same effect when applied to z⋆ as ϵ̄ on x̄ (this also holds for ṙϵ⋆
and ϵ). Thus

apply(x̄, ϵ̄) = apply(z⋆, ṙϵ̄⋆(ϵ̄))

= apply(z⋆, ṙϵ⋆(ṙ
−1
ϵ (ṙϵ̄⋆(ϵ̄))))

= apply(x,m(ϵ̄))
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as required. To prove the final statement, we use (4), (5) and (12) to write

s(ϵ̄, x̄;h)

s(ϵ,x;h)
=

1h(apply(x̄,ϵ̄))=yp
|x̄|−|ϵ̄|
del (1− pdel)|ϵ̄|

1h(apply(x,ϵ))=yp
|x|−|ϵ|
del (1− pdel)|ϵ|

=
p
|x̄|−|z|
del (1− pdel)|z|1h(z)=y

p
|x|−|z|
del (1− pdel)|z|1h(z)=y

= p
|x̄|−|x|
del ,

where the second last line follows from the fact that apply(x̄, ϵ̄) = apply(x, ϵ) = z.

B.3 Proof of Theorem 5

Let ϵ̄⋆ and ϵ⋆ be defined as in Lemma 4. We derive an upper bound on the sum over ϵ ∈ 2ϵ
⋆

that
appears in (13). Observe that∑

ϵ/∈2ϵ⋆

s(ϵ,x;h) ≤
∑
ϵ/∈2ϵ⋆

Pr [G(x) = ϵ]

= 1−
∑
ϵ∈2ϵ⋆

Pr [G(x) = ϵ]

= 1− p|x|−|ϵ⋆|
del

|ϵ⋆|∑
|ϵ|=0

(
|ϵ⋆|
|ϵ|

)
p
|ϵ⋆|−|ϵ|
del (1− pdel)|ϵ|

= 1− p|x|−|ϵ⋆|
del , (18)

where the first line follows from the inequality 1h(apply(x,ϵ)=y) ≤ 1; the second line follows from
the law of total probability; the third line follows by constraining the indices {1, . . . , |x|} \ ϵ̄⋆ to be
deleted; and the last line follows from the normalization of the binomial distribution. Putting (18)
and

∑
ϵ̄∈2ϵ̄⋆ s(ϵ̄, x̄;h) ≥ 0 in (13) gives

py(x̄;h) ≥ p|x̄|−|x|
del

(
µy − 1− p|x|−|ϵ⋆|

del

)
= p

|x̄|−|x|
del

(
µy − 1− p

1
2 (distLCS(x̄,x)+|x|−|x̄|)
del

)
. (19)

In the second line above we use the following relationship between the LCS distance and the length
of the LCS |z⋆| = |ϵ⋆|:

distLCS(x̄,x) = |x̄|+ |x| − 2|z⋆|.

Since (19) is independent of the base classifier h, the lower bound on ρ(x̄,x, µy) follows immediately.

B.4 Proof of Corollary 6

Since the length of x can only be changed by inserting or deleting elements in x̄, we have

|x| − |x̄| = nins − ndel. (20)

We also observe that the LCS distance can be uniquely decomposed in terms of the counts of insertion
ops mins and deletion ops mdel: distLCS(x̄,x) = mdel +mins. These counts can in turn be related to
the given decomposition of edit ops counts for generalized edit distance. In particular, any substitution
must be expressed as an insertion and deletion under LCS distance, which implies mins = nins + nsub
and mdel = ndel + nsub. Thus we have

distLCS(x̄,x) = ndel + nins + 2nsub. (21)

Substituting (20) and (21) in (14) gives the required result.
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B.5 Proof of Theorem 7

Eliminating nsub from (16) using the constraint nsub = r − ndel − nins, we obtain a minimization
problem in two variables:

min
nins,ndel∈N0

ψ(nins, ndel)

s.t. 0 ≤ nins + ndel ≤ r

where ψ(nins, ndel) = pndel−nins

del

(
µy − 1 + pr−ndel

del

)
. Observe that ψ is monotonically increasing in

nins and ndel:

ψ(nins + 1, ndel)

ψ(nins, ndel)
=

1

pdel
≥ 1

ψ(nins, ndel + 1)

ψ(nins, ndel)
=

(µy − 1)pndel+1
del + prdel

(µy − 1)pndel

del + prdel
≥ 1,

where the second inequality follows since we only consider r and µy such that the numerator
and denominator are positive. Thus the minimizer is (n⋆ins, n

⋆
del, n

⋆
sub) = (0, 0, r) and we find

ρ(x;µy) = µy−1+prdel. The expression for the certified radius follows by solving ρ(x;µy) ≥ νy(η)
for non-negative integer r.

B.6 Proof of Corollary 8

Recall that Corollary 6 gives the following lower bound on the classifier’s confidence at x:

ρ̃(x̄,x, µy) = pndel−nins

del

(
µy − 1 + pnsub+nins

del

)
.

Observe that we can replace µy by a lower bound µy that holds with probability 1− α (as is done
in lines 4–6 of Figure 1) and obtain a looser lower bound ρ̃(x̄,x, µy) ≤ ρ̃(x̄,x, µy) that holds with
probability 1 − α. Crucially, this looser lower bound has the same functional form, so all results
depending on Corollary 6, namely Theorem 7 and Table 1, continue to hold albeit with probability
1− α.

C Background for malware detection case study

In this appendix, we provide background for our case study on malware detection, including motiva-
tion for studying certified robustness of malware detectors, a formulation of malware detection as a
sequence classification problem, and a threat model for adversarial examples.

C.1 Motivation

Malware (malicious software) detection is a vital capability for proactively defending against cyberat-
tacks. Despite decades of progress, building and maintaining effective malware detection systems
remains a challenge, as malware authors continually evolve their tactics to bypass detection and
exploit new vulnerabilities. One technology that has lead to advancements in malware detection, is the
application of machine learning (ML), which is now used in many commercial systems [66, 43, 45, 46]
and continues to be an area of interest in the malware research community [67, 68, 44, 49]. While
traditional detection techniques rely on manually-curated signatures or detection rules, ML allows
a detection model to be learned from a training corpus, that can potentially generalize to unseen
programs.

Although ML has an apparent advantage in detecting previously unseen malware, recent research
has shown that ML-based static malware detectors can be evaded by applying adversarial perturba-
tions [18–20, 36, 50, 31, 51, 17, 38]. A variety of perturbations have been considered with different
effects at the semantic level, however all of them can be modeled as inserting, deleting and/or
substituting bytes. This prompts us to advance certified robustness for sequence classifiers within this
general threat model—where an attacker can perform byte-level edits.
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C.2 Related work

Several empirical defense methods have been proposed to improve robustness of ML classifiers [60,
61]. Incer Romeo et al. [33] compose manually crafted Boolean features with a classifier that is
constrained to be monotonically increasing with respect to selected inputs. This approach permits a
combination of (potentially vulnerable) learned behavior with domain knowledge, and thereby aims
to mitigate adversarial examples. Demontis et al. [60] show that the sensitivity of linear support
vector machines to adversarial perturbations can be reduced by training with ℓ∞ regularization of
weights. In another work, Quiring et al. [61] take advantage of heuristic-based semantic gap detectors
and an ensemble of feature classifiers to improve empirical robustness. Compared to our work on
certified adversarial defenses, these approaches do not provide formal guarantees.

Binary normalization [69–72] was originally proposed to defend against polymorphic/metamorphic
malware, and can also be seen as a mitigation to certain adversarial examples. It attempts to sanitize
binary obfuscation techniques by mapping malware to a canonical form before running a detection
algorithm. However, binary normalization cannot fully mitigate attacks like Disp (see Table 9), as
deducing opaque and evasive predicates are NP-hard problems [17].

Dynamic analysis can provide additional insights for malware detection. In particular, it can record a
program’s behavior while executing it in a sandbox (e.g., collecting a call graph or network traffic) [73–
77]. Though detectors built on top of dynamic analysis can be more difficult to evade, as the attacker
needs to obfuscate the program’s behavior, they are still susceptible to adversarial perturbations. For
example, an attacker may insert API calls to obfuscate a malware’s behavior [78–81]. Applying
RS-Del to certify detectors that operate on call sequences [77] or more general dynamic features
would be an interesting future direction.

C.3 Static ML-based malware detection

We formulate malware detection as a sequence classification problem, where the objective is to
classify a file in its raw byte sequence representation as malicious or benign. In the notation of
Section 2, we assume the space of input sequences (files) is X = Ω⋆ where Ω = {0, 1, . . . , 255}
denotes the set of bytes, and we assume the set of classes is Y = {0, 1} where 1 denotes the
‘malicious’ class and 0 denotes the ‘benign’ class. Within this context, a malware detector is simply a
classifier f : X → Y .

Detector assumptions Malware detectors are often categorized according to whether they perform
static or dynamic analysis. Static analysis extracts information without executing code, whereas
dynamic analysis extracts information by executing code and monitoring its behavior. In this work, we
focus on machine learning-based static malware detectors, where the ability to extract and synthesize
information is learned from data. Such detectors are suitable as base classifiers for RS-Del, as they
can learn to make (weak) predictions for incomplete files where chunks of bytes are arbitrarily
removed. We note that dynamic malware detectors are not compatible with RS-Del, since it is not
generally possible to execute an incomplete file.

Incorporating semantics In Section 3.3, we noted that our methods are compatible with sequence
chunking where the original input sequence is partitioned into chunks, and reinterpreted as a sequence
of chunks rather than a sequence of lower-level elements. In the context of malware detection, we can
partition a byte sequence into semantically meaningful chunks using information from a disassembler,
such as Ghidra [82]. For example, a disassembler can be applied to a Windows executable to identify
chunks of raw bytes that correspond to components of the header, machine instructions, raw data,
padding etc. Applying our deletion smoothing mechanism at the level of semantic chunks, rather
than raw bytes, may improve robustness as it excludes edits within chunks that may be semantically
invalid. It also yields a different chunk-level edit distance certificate, that may cover a larger set of
adversarial examples than a byte-level certificate of the same radius. Figure 3 illustrates the difference
between byte-level and chunk-level deletion for a Windows executable, where chunks correspond to
machine instructions (such as push ebp) or non-instructions (NI).
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Original file
File offset Byte Instruction chunks
00000000 77 NI
00000001 90 NI
00000002 144 NI
...

...
...

00000400 85 push ebp
00000401 139 mov ebp, esp
00000402 236
00000403 131
00000404 236
00000405 92

sub esp, 5Ch

...
...

...

File under
byte-level deletion (BYTE)
File offset Byte
00000000 77
00000002 144
...

...
00000400 85
00000403 131
00000404 236
...

...

File under
chunk-level deletion (INSN)
File offset Chunk
00000001 90
...

...
00000400 85
00000401 139 236
...

Figure 3: Illustration of the deletion smoothing mechanism applied to an executable file at the byte-
level versus chunk-level. Left: An executable file where the elementary byte sequence representation
is shown in the 2nd column and chunks that correspond to machine instructions are shown in the
3rd column (sourced from the Ghidra [82] disassembler). Bytes that do not correspond to machine
instructions are marked NI. Shading represents bytes (light gray) or instruction chunks (dark gray)
that are deleted in the corresponding perturbed file to the right. Middle: A perturbed file produced by
the deletion mechanism operating at the byte level (BYTE). Notice that individual instructions may
be partially deleted. Right: A perturbed file produced by the deletion mechanism operating at the
chunk-level (INSN).

C.4 Threat model

We next specify the modeled attacker’s goals, capabilities and knowledge for our malware detection
case study [83].

Attacker’s objective We consider evasion attacks against a malware detector f : X → Y , where
the attacker’s objective is to transform an executable file x so that it is misclassified by f . To ensure
the attacked file x̄ is useful after evading detection, we require that it is functionally equivalent to
the original file x. We focus on evasion attacks that aim to misclassify a malicious file as benign
in our experiments, as these attacks dominate prior work [51]. However, the robustness certificates
derived in Section 4 also cover attacks in the opposite direction—where a benign file is misclassified
as malicious.

Attacker’s capability We measure the attacker’s capability in terms of the number of elementary
edits they make to the original file x. If the attacker is capable of making up to c elementary edits,
then they can transform x into any file in the edit distance ball of radius c centred on x:

Ac(x) = {x̄ ∈ X : distO(x, x̄) ≤ c}.

Here distO(x, x̄) denotes the edit distance from the original file x to the attacked file x̄ under the set
of edit operations (ops) O. We assume O consists of elementary byte-level or chunk-level deletions
(del), insertions (ins) and substitutions (sub), or a subset of these operations.

We note that edit distance is a reasonable proxy for the cost of running evasion attacks that iteratively
apply localized functionality-preserving edits (e.g., [19, 36, 37, 17, 38]). For these attacks, the edit
distance scales roughly linearly with the number of attack iterations, and therefore the attacker has
an incentive to minimize edit distance. While attacks do exist that make millions of elementary
edits in the malware domain (e.g., [31]), we believe that an edit distance-constrained threat model is
an important step towards realistic threat models for certified malware detection. (To examine the
effect of large edits on robustness we include the GAMMA attack [31] in experiments covered in
Appendix F.)
Remark 9. The set Ac(x) overestimates the capability of an edit distance-constrained attacker,
because it may include files that are not functionally equivalent to x. For example, Ac(x) may
include files that are not malicious (assuming x is malicious) or files that are invalid executables.
This poses no problem for certification, since overestimating an attacker’s capability merely leads to
a stronger certificate than required. Indeed, overestimating the attacker’s capability seem necessary,
as functionally equivalent files are difficult to specify, let alone analyze.
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Table 3: Summary of datasets.

Number of samples

Dataset Label Train Validation Test

Sleipnir2 Benign 20 948 7 012 6 999
Malicious 20 768 6 892 6 905

VTFeed Benign 111 258 13 961 13 926
Malicious 111 395 13 870 13 906

Attacker’s knowledge In our certification experiments in Appendix E, we assume the attacker has
full knowledge of the malware detector and certification scheme. When testing published attacks
in Appendix F, we consider both white-box and black-box access to the malware detector. In the
black-box setting, the attacker may make an unlimited number of queries to the malware detector
without observing its internal operation. We permit access to detection confidence scores, which are
returned alongside predictions even in the black-box setting. In the white-box setting, the attacker
can additionally inspect the malware detector’s source code. Such a strong assumption is needed for
white-box attacks against neural network-based detectors that compute loss gradients with respect to
the network’s internal representation of the input file [20, 17].

D Experimental setup for malware detection case study

In this appendix, we detail the experimental setup for our malware detection case study.

D.1 Datasets

Though our methods are compatible with executable files of any format, in our experiments we
focus on the Portable Executable (PE) format [84], since datasets, malware detection models and
adversarial attacks are more extensively available for this format. Moreover, PE format is the standard
for executables, object files and shared libraries in the Microsoft Windows operating system, making
it an attractive target for malware authors. We use two PE datasets which are summarized in Table 3
and described below.

Sleipnir2 This dataset attempts to replicate data used in past work [53], which was not published
with raw samples. We were able to obtain the raw malicious samples from a public malware repository
called VirusShare [85] using the provided hashes. However, since there is no similar public repository
for benign samples, we followed established protocols [86, 87, 20] to collect a new set of benign
samples. Specifically, we set up a Windows 7 virtual machine with over 300 packages installed using
Chocolatey package manager [88]. We then extracted PE files from the virtual machine, which were
assumed benign,4 and subsampled them to match the number of malicious samples. The dataset is
randomly split into training, validation and test sets with a ratio of 60%, 20% and 20% respectively.

VTFeed This dataset was first used in recent attacks on end-to-end ML-based malware detec-
tors [17]. It was collected from VirusTotal—a commercial threat intelligence service—by sampling
PE files from the live feed over a period of two weeks in 2020. Labels for the files were derived from
the 68 antivirus (AV) products aggregated on VirusTotal at the time of collection. Files were labeled
malicious if they were flagged malicious by 40 or more of the AV products, they were labeled benign
if they were not flagged malicious by any of the AV products, and any remaining files were excluded.
Following Lucas et al. [17], the dataset is randomly split into training, validation and test sets with a
ratio of 80%, 10%, and 10% respectively.

We note that VTFeed comes with strict terms of use, which prohibit us from loading it on our high
performance computing (HPC) cluster. As a result, we use Sleipnir2 for comprehensive experiments
(e.g., varying pdel, η) on the HPC cluster, and VTFeed for a smaller selection of experiments run on a
local server.

4Chocolatey packages are validated against VirusTotal [89].
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D.2 Malware detection models

We experiment with malware detection models based on MalConv [47]. MalConv was one of the first
end-to-end neural network models proposed for malware detection—i.e., it learns to classify directly
from raw byte sequences, rather than relying on manually engineered features. Architecturally, it
composes a learnable embedding layer with a shallow convolutional network. A large window size
and stride of 500 bytes are employed to facilitate scaling to long byte sequences. Though MalConv is
compatible with arbitrarily long byte sequences in principle, we truncate all inputs to 2MB to support
training efficiency. We use the original parameter settings and training procedure [47], except where
specified in Appendix D.5.

Using MalConv as a basis, we consider three models as described below.

NS A vanilla non-smoothed (NS) MalConv model. This model serves as a non-certified, non-robust
baseline—i.e., no specific techniques are employed to improve robustness to evasion attacks and
certification is not supported.

RS-Abn A smoothed MalConv model using the randomized ablation smoothing mechanism pro-
posed by Levine and Feizi [24] and reviewed in Appendix I. This model serves as a certified robust
baseline, albeit covering a more restricted threat model than the edit distance threat model we propose
in Section 2. Specifically, it supports robustness certification for the Hamming distance threat model,
where the adversary is limited to substitution edits (O = {sub}). Since Levine and Feizi’s formula-
tion is for images, several modifications are required to support malware detection as described in
Appendix G. To improve convergence, we also apply gradient clipping when learning parameters in
the embedding layer (see Appendix G). We consider variants of this model for different values of the
ablation probability pab.

RS-Del A smoothed MalConv model using our proposed randomized deletion smoothing mech-
anism. This model supports robustness certification for the generalized edit distance threat model
where O ⊆ {del, ins, sub}. We consider variants of this model for different values of the deletion
probability pdel, decision thresholds η, and whether deletion/certification is performed at the byte-
level (BYTE) or chunk-level (INSN). We perform chunking as illustrated in Figure 3—i.e., we chunk
bytes that correspond to distinct machine instructions using the Ghidra disassembler.

D.3 Controlling false positive rates

Malware detectors are typically tuned to achieve a low false positive rate (FPR) (e.g., less than
0.1–1%) since producing too many false alarms is a nuisance to users.5 To make all malware
detection models comparable, we calibrate the FPR to 0.5% on the test set for the experiments
reported in Appendix E and 0.5% on the validation set for the experiments reported in Appendix F
unless otherwise noted. This calibration is done by adjusting the decision threshold of the base
MalConv model.

D.4 Compute resources

Experiments for the Sleipnir2 dataset were run a high performance computing (HPC) cluster, where
the requested resources varied depending on the experiment. We generally requested a single NVIDIA
P100 GPU when training and certifying models. Experiments for the VTFeed dataset were run on a
local server due to restrictive terms of use. Compute resources and approximate wall clock running
times are reported in Tables 4 and 5 for training and certification for selected parameter settings.
Running times for other parameters settings are lower than the ones reported in these tables.

D.5 Parameter settings

We specify the parameter settings and training procedure for MalConv, which is used standalone
in NS, and as a base model for the smoothed models RS-Del and RS-Abn. Table 6 summarizes our
setup, which is consistent across all three models except where specified. We follow the authors of
MalConv [47] when setting parameters for the model and the optimizer, however we set a larger

5https://www.av-comparatives.org/testmethod/false-alarm-tests/
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Table 4: Compute resources used for training. Note that the wall clock times reported here are for an
unoptimized implementation where the smoothing mechanism is executed on the CPU.

Dataset Requested resources Model Parameters Time Notes

Sleipnir2
1 NVIDIA P100 GPU, 4
cores on Intel Xeon Gold
6326 CPU

NS – 22 hr Trained for 50 epochs,
converged in 15 epochs

RS-Del BYTE,
pdel = 95%

39 hr Trained for 100 epochs,
converged in 50 epochs

RS-Del INSN,
pdel = 95%

48 hr Trained for 100 epochs,
converged in 20 epochs

RS-Abn pab = 95% 40 hr Trained for 100 epochs,
converged in 90 epochs

VTFeed

1 NVIDIA RTX3090 GPU,
6 cores on AMD Ryzen
Threadripper PRO 3975WX
CPU

NS – 139 hr Trained for 100 epochs,
converged in 25 epochs

RS-Del BYTE,
pdel = 97%

152 hr Trained for 100 epochs,
converged in 20 epochs

Table 5: Compute resources used for certification on the test set. The evaluation dataset is partitioned
and processed on multiple compute nodes with the same specifications. The reported time is the
sum of wall times on each compute node. Note that the times reported are for an unoptimized
implementation where the smoothing mechanism is executed on the CPU.

Dataset Requested resources Model Parameters Time

Sleipnir2 1 NVIDIA P100 GPU, 12 cores
on Intel Xeon Gold 6326 CPU

NS – 5 min

RS-Del BYTE,
pdel = 95%

65 hr

RS-Del INSN,
pdel = 95%

140 hr

RS-Abn pab = 95% 210 hr

VTFeed
1 NVIDIA RTX3090 GPU, 6
cores on AMD Ryzen
Threadripper PRO 3975WX CPU

NS – 4 min

RS-Del BYTE,
pdel = 97%

500 hr

maximum input size of 2MiB to accommodate larger inputs without clipping. Due to differences
in available GPU memory for the Sleipnir2 and VTFeed experiments, we use a larger batch size
for VTFeed than for Sleipnir2. We also set a higher limit on the maximum number of epochs for
VTFeed, as it is a larger dataset, although the NS and RS-Del models converge within 50 epochs for
both datasets. To stabilize training for the smoothed models (RS-Del and RS-Abn), we modify the
smoothing mechanisms during training only to ensure at least 500 raw bytes are preserved. This may
limit the number of deletions for RS-Del and the number of ablated (masked) bytes for RS-Abn. For
RS-Abn, we clip the gradients for the embedding layer to improve convergence (see Appendix G).

E Evaluation of robustness certificates for malware detection

In this appendix, we evaluate the robustness guarantees and accuracy of RS-Del for malware detection.
We consider two instantiations of the edit distance threat model. First, in Appendix E.1, we consider
the Levenshtein distance threat model, where the attacker’s elementary edits are unconstrained and
may include deletions, insertions and substitutions. Then, in Appendix E.2, we consider the more
restricted Hamming distance threat model, where an attacker is only able to perform substitutions. We
summarize our findings in Appendix E.3. Overall, we find that RS-Del generates robust predictions
with minimal impact on model accuracy for the Levenshtein distance threat model, and outperforms
RS-Abn [24] for the Hamming distance threat model.
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Table 6: Parameter settings for MalConv, the optimizer and training procedure. Parameter settings
are consistent across all malware detection models (NS, RS-Del, RS-Abn) except where specified.

Parameter Values

MalConv

Max input size 2097152

Embedding size 8

Window size 500

Channels 128

Optimizer

Python class torch.optim.SGD

Learning rate 0.01

Momentum 0.9

Weight decay 0.001

Training

Batch size 24 (Sleipnir2), 32 (VTFeed)

Max. epoch 50 (Sleipnir2), 100 (VTFeed)

Min. preserved bytes 500 (RS-Del, RS-Abn), NA (NS)

Embedding gradient clipping 0.5 (RS-Abn), ∞ (RS-Del, NS)

Early stopping If validation loss does not improve after 10 epochs

We report the following quantities in our evaluation:

• Certified radius (CR). The radius of the largest robustness certificate that can be issued for
a given input, model and certification method. Note that this is a conservative measure of
robustness since it is tied to the certification method. The median CR is reported on the test
set.

• Certified accuracy [13, 14], also known as verified-robust accuracy [63, 54], evaluates
robustness certificates and accuracy of a model simultaneously with respect to a test set. It
is defined as the fraction of instances in the test set D for which the model f ’s prediction is
correct and certified robust at radius r or greater:

CERTACCr(D) =
∑

(x,y)∈D

1f(x)=y1CR(x)≥r

|D|
(22)

where CR(x) denotes the certified radius for input x returned by the certification method.

• Clean accuracy. The fraction of instances in the test set for which the model’s prediction is
correct.

We briefly mention default parameter settings for the experiments presented in this appendix. When
approximating the smoothed models (RS-Del and RS-Abn) we sample npred = 1000 perturbed inputs
for prediction and nbnd = 4000 perturbed inputs for certification, while setting the significance level
α to 0.05. Unless otherwise specified, we set the decision thresholds for the smoothed models so that
η = 0. After fixing η, the decision thresholds for the base models are tuned to yield a false positive
rate of 0.5%. We note that the entire test set is used when reporting metrics and summary statistics in
this appendix.

E.1 Levenshtein distance threat model

We first present results for the Levenshtein distance threat model, where the attacker’s elementary
edits are unconstrained (O = {del, ins, sub}). We vary three parameters associated with RS-Del: the
deletion probability pdel, the decision thresholds of the smoothed model η, and the level of sequence
chunking (i.e., whether sequences are chunked at the byte-level or instruction-level). We use NS as
a baseline as there are no prior certified defenses for the Levenshtein distance threat model to our
knowledge.
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Figure 4: Certified accuracy for RS-Del as a function of the radius in bytes (left horizontal axis),
radius normalized by file size (right horizontal axis) and byte deletion probability pdel (line styles).
The results are plotted for the Sleipnir2 test set under the byte-level Levenshtein distance threat
model (with O = {del, ins, sub}) . The grey vertical lines in the left plot represent the best achievable
certified radius for RS-Del (setting µy = 1 in the expressions in Table 1).
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Figure 5: Certified accuracy for RS-Del with chunk-level deletion (INSN) as a function of the radius
in chunks (left horizontal axis), radius normalized by sequence length in chunks (right horizontal
axis) and chunk deletion probability pdel (line styles). The results are plotted for the Sleipnir2 test
set under the chunk-level Levenshtein distance threat model (with O = {del, ins, sub}). The grey
vertical lines in the left plot represent the best achievable certified radius for RS-Del (setting µy = 1
in the expressions in Table 1).

Certified accuracy Figure 4 plots the certified accuracy of RS-Del using byte-level deletion as a
function of the radius (left horizontal axis), radius normalized by file size (right horizontal axis) on
the Sleipnir2 dataset for several values of pdel. We observe that the curves for larger values of pdel
approximately dominate the curves for smaller values of pdel, for pdel ≤ 99.5% (i.e., the accuracy is
higher or close for all radii). This suggests that the robustness of RS-Del can be improved without
sacrificing accuracy by increasing pdel up to 99.5%. However, for the larger value pdel = 99.9%,
we observe a drop in certified accuracy of around 10% for smaller radii and an increase for larger
radii. By normalizing with respect to the file size, we can see that our certificate is able to certify
up to 1% of the file size. We also include an analogous plot for chunk-level deletion in Figure 5
which demonstrates similar behavior. We note that chunk-level deletion arguably provides stronger
guarantees, since the effective radius for chunk-level Levenshtein distance is larger than for byte-level
Levenshtein distance.

It is interesting to relate these certification results to published evasion attacks. Figure 4 shows
that we can achieve a certified accuracy in excess of 90% at a Levenshtein distance radius of 128
bytes when pdel = 99.5%. This radius is larger than the median Levenshtein distance of two attacks
that manipulate headers of PE files [36, 37] (see Table 9 in Appendix F). We can therefore provide
reasonable robustness guarantees against these two attacks. However, a radius of 128 bytes is orders
of magnitude smaller than the median Levenshtein distances of other published attacks which range
from tens of KB [17, 20] to several MB [31] (also reported in Table 9). While some of these attacks
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Table 7: Clean accuracy and robustness metrics for RS-Del as a function of the dataset (Sleipnir2
and VTFeed), deletion probability pdel and deletion level (BYTE or INSN). All metrics are computed
on the test set. Here “abstain rate” refers to the fraction of test instances for which RS-Del abstains
(line 7 in Figure 1), and “UB” refers to an upper bound on the median CR for a best case smoothed
model (based on Table 1 with µy = 1). A good tradeoff is achieved when pdel = 99.5% for both the
byte-level (BYTE) and chunk-level (INSN) certificates (highlighted in bold face below).

Clean accuracy Median CR Median
Dataset Model Parameters (Abstain rate) % (UB) NCR %

Sleipnir2

NS − 98.9 − − − −

RS-Del

BYTE, pdel = 90% 97.1 (0.2) 6 (6) 0.0023
BYTE, pdel = 95% 97.8 (0.0) 13 (13) 0.0052
BYTE, pdel = 97% 97.4 (0.1) 22 (22) 0.0093
BYTE, pdel = 99% 98.1 (0.1) 68 (68) 0.0262
BYTE, pdel = 99.5% 96.5(0.2) 137 (138) 0.0555
BYTE, pdel = 99.9% 83.7 (3.4) 688 (692) 0.2269

INSN, pdel = 90% 97.9 (0.1) 6 (6) 0.0026
INSN, pdel = 95% 97.8 (0.1) 13 (13) 0.0056
INSN, pdel = 97% 98.3 (0.0) 22 (22) 0.0095
INSN, pdel = 99% 97.6 (0.1) 68 (68) 0.0292
INSN, pdel = 99.5% 96.8(0.2) 137 (138) 0.0589
INSN, pdel = 99.9% 86.1 (0.2) 689 (692) 0.2982

VTFeed
NS − 98.9 − − − −

RS-Del BYTE, pdel = 97% 92.1 (0.9) 22 (22) 0.0045
BYTE, pdel = 99% 86.9 (0.8) 68 (68) 0.0122

arguably fall outside an edit distance constrained threat model, we consider them in our empirical
evaluation of robustness in Appendix F.

Clean accuracy and abstention rates Table 7 reports clean accuracy for RS-Del and the non-
certified NS baseline. It also reports abstention rates for RS-Del, the median certified radius (CR), and
the median certified radius normalized by file size (NCR). We find that clean accuracy for Sleipnir2
follows similar trends as certified accuracy: it is relatively stable for pdel in the range 90–99.5%, but
drops by more than 10% at pdel = 99.9%. We note that the clean accuracy of RS-Del (excluding
pdel = 99.9%) is at most 3% lower than the NS baseline for Sleipnir2 and at most 7% lower than
the NS baseline for VTFeed. We observe minimal differences in the results for chunk-level (INSN)
and byte-level (BYTE) deletion smoothing, but note that the effective CR is larger for chunk-level
smoothing, since each chunk may contain several bytes.

Accuracy under high deletion It may be surprising that RS-Del can maintain high accuracy even
when deletion is aggressive. We offer some possible explanations. First, we note that even with
a high deletion probability of pdel = 99.9%, the smoothed model accesses almost all of the file in
expectation, as it aggregates npred = 1000 predictions from the base model each of which accesses a
random 0.1% of the file in expectation. Second, we posit that malware detection may be “easy” for
RS-Del on these datasets. This could be due to the presence of signals that are robust to deletion (e.g.,
file size or byte frequencies) or redundancy of signals (i.e., if a signal is deleted in one place it may
be seen elsewhere).

Decision threshold We demonstrate how the decision thresholds η introduced in Section 3.1 can be
used to trade off certification guarantees between classes. We consider normalized decision thresholds
where

∑
y ηy = 1 and ηy ∈ [0, 1]. We only specify the value of η1 when discussing our results,

noting that η0 = 1− η1 in our two-class setting.

Table 8 provides error rates and robustness metrics for several values of η1, using byte-level Lev-
enshtein distance with pdel = 99.5%. When varying η1, we also vary the decision threshold of the
base model to achieve a target false positive rate (FPR) of 0.5%. Looking at the table, we see that
η1 has minimal impact on the false negative rate (FNR), which is stable around 7%. However, there
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Table 8: Impact of the smoothed decision threshold η1 on false negative error rate (FNR) and median
certified radius (CR) for malicious and benign files. The false positive rate (FPR) is set to a target
value of 0.5% by varying the decision threshold of the base model. The results are reported for
Sleipnir2 with pdel = 99.5% using byte-level Levenshtein distance. “UB” refers to an upper bound
on the median CR for a best case smoothed model (based on Table 1 with µy = 1).

Median CR (UB)

η1 (%) FNR (%) FPR (%) Malicious Benign

50 6.8 0.5 137 (138) 137 (138)
25 6.9 0.5 275 (276) 57 (57)
10 6.8 0.5 455 (459) 20 (21)
5 6.6 0.5 578 (597) 10 (10)
1 7.1 0.5 582 (918) 1 (2)
0.5 6.9 0.5 506 (1057) 0 (0)

is a significant impact on the median CR (and theoretical upper bound), as reported separately for
each class. The median CR is balanced for both the malicious and benign class when η1 = 50%,
but favours the malicious class as η1 is decreased. For instance when η1 = 5% a significantly larger
median CR is possible for malicious files (137 to 578) at the expense of the median CR for benign
files (137 to 10). This asymmetry in the class-specific CR is a feature of the theory—that is, in
addition to controlling a tradeoff between error rates of each class, η1 also controls a tradeoff between
the CR for each class (see Table 1).

Figure 6 plots the certified true positive rate (TPR) and true negative rate (TNR) of RS-Del on
the Sleipnir2 dataset for several values of η1. The certified TPR and TNR can be interpreted as
class-specific analogues of the certified accuracy. Concretely, the certified TPR (TNR) at radius
r is the fraction of malicious (benign) instances in the test set for which the model’s prediction is
correct and certified robust at radius r. The certified TPR and TNR jointly measure accuracy and
robustness and complement the metrics reported in Table 8. Looking at Figure 6, we see that the
certified TNR curves drop more rapidly to zero than the certified TPR curves as η1 decreases. Again,
this suggests decreasing η1 sacrifices the certified radii of benign instances to increase the certified
radii of malicious instances. We note that the curves for η1 = 50% correspond to the same setting as
the certified accuracy curve in Figure 4 (with pdel = 99.5%).

E.2 Hamming distance threat model

We now turn to the more restricted Hamming distance threat model, where the attacker is limited
to performing substitutions only (O = {sub}). We choose to evaluate this threat model as it is
covered in previous work on randomized smoothing, called randomized ablation [24] (abbreviated
RS-Abn), and can serve as a baseline for comparison with our method. Recall that we adapt RS-Abn
for malware detection by introducing a parameter called pab, which is the fraction of bytes that are
“ablated” (replaced by a special masked value) (see Appendix D.2). This parameter is analogous
to pdel in RS-Del, except that the number of ablated bytes is deterministic in RS-Abn, whereas the
number of deleted bytes is random in RS-Del. We compare RS-Del and RS-Abn for varying values
of pdel and pab using the Sleipnir2 dataset and byte-level Hamming distance.

Certified accuracy Figure 2 plots the certified accuracy of RS-Del and RS-Abn for three values
of pdel and pab. We observe that the certified accuracy is uniformly larger for our proposed method
RS-Del than for RS-Abn when pdel = pab. The superior certification performance of RS-Del is
somewhat surprising given it is not optimized for the Hamming distance threat model. One possible
explanation relates to the learning difficulty of RS-Abn compared with RS-Del. Specifically, we find
that stochastic gradient descent is slower to converge for RS-Abn despite our attempts to improve
convergence (see Appendix G). Recall, that RS-Del provides certificates for any of the threat models in
Table 1—in addition to the Hamming distance certificate—without needing to modify the smoothing
mechanism.
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Figure 6: Certified true positive rate (TPR) and true negative rate (TNR) of RS-Del as a function
of the certificate radius r (horizontal axis) and the decision threshold η1 (line style). The results
are plotted for the Sleipnir2 test set for byte-level deletion (BYTE) with pdel = 99.5% under the
Levenshtein distance threat model (withO = {del, ins, sub}). It is apparent that η1 controls a tradeoff
in the certified radius between the malicious (measured by TPR) and benign (measured by TNR)
classes. Note that in this setting, a non-smoothed, non-certified model (NS) achieves a clean TPR
and TNR of 98.2% and 99.5% respectively.

Tightness RS-Abn is provably tight, in the sense that it is not possible to issue a larger Hamming
distance certificate unless more information is made available to the certification mechanism or
the ablation smoothing mechanism is changed. This tightness result for RS-Abn, together with the
empirical results in Figure 2, suggests that RS-Del produces certificates which are tight or close to
tight in practice, at least for the Hamming distance threat model. This is an interesting observation,
since it is unclear how to derive a tight, computationally tractable certificate for RS-Del.

E.3 Summary

Our evaluation shows that RS-Del provides non-trivial robustness guarantees with a low impact on
accuracy. The certified radii we observe are close to the best radii theoretically achievable using
our mechanism. For the Levenshtein byte-level edit distance threat model, we obtain radii of a
few hundred bytes in size, which can certifiably defend against attacks that edit headers of PE files
[36, 37, 51]. However, certifying robustness against more powerful attacks that modify thousands
or millions of bytes remains an open challenge. By varying the detection threshold, we show that
certification can be performed asymmetrically for benign and malicious instances. This can boost the
certified radii of malicious instances by a factor of 4 in some cases. While there are no prior methods
to use as baselines for the Levenshtein distance threat model, our comparisons with RS-Abn [24] for
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the Hamming distance threat model show that RS-Del outperforms RS-Abn in terms of both accuracy
and robustness.

F Evaluation of robustness to published attacks

In this appendix, we empirically evaluate the robustness of RS-Del to several published evasion
attacks. By doing so, we aim to provide a more complete picture of robustness, as our certificates
are conservative and may underestimate robustness to real attacks, which are subject to additional
constraints (e.g., maintaining executability, preserving a malicious payload, etc.). We introduce the
attacks in Appendix F.1, provide details of the experimental setup in Appendix F.2 and discuss the
results in Appendix F.3.

F.1 Attacks covered

Table 9: Evasion attacks used in our evaluation. The attack distance refers to the median Levenshtein
distance computed on a set of 500 attacked files from the Sleipnir2 test set. We use a closed
source implementation of Disp and open source implementations of the remaining attacks based on
secml-malware [90].

Attack Supported
settings

Attack
distance Optimizer Description

Disp [17] White-box,
black-box 17.2 KB Gradient-guided

Disassembles the PE file and displaces
chunks of code to a new section,
replacing the original code with
semantic nops.

Slack [20] White-box 34.7 KB Fast Gradient Sign
Method [2]

Replaces non-functional bytes in slack
regions or the overlay of the PE file
with adversarially-crafted noise.

HDOS [36] White-box,
black-box 58.0 B Genetic algorithm

Manipulates bytes in the DOS header of
the PE file which are not used in
modern Windows.

HField [37] White-box,
black-box 17.0 B Genetic algorithm

Manipulates fields in the header of the
PE file (debug information, section
names, checksum, etc.) which do not
impact functionality.

GAMMA [31] Black-box 2.10 MB Genetic algorithm
Appends sections extracted from benign
files to the end of a malicious PE file
and modifies the header accordingly.

We consider five recently published attacks designed for evading static PE malware detectors as
summarized in Table 9. The attacks cover a variety of edit distance magnitudes from tens of bytes to
millions of bytes. While attacks that edit millions of bytes arguably fall outside our edit distance-
constrained threat model, we include one such attack (GAMMA) to test the limits of our methodology.
We note that four of the five attacks are able to operate in a black-box setting and can therefore be
applied directly to RS-Del. However, the white-box attacks are designed for neural network malware
detectors with a specific architecture. In particular, they assume the network receives a raw byte
sequence as input, that the initial layer is an embedding layer, and that gradients can be computed with
respect to the output of the embedding layer. Although these architectural assumptions are satisfied
by the base MalConv model, they are not satisfied by RS-Del, because additional operations are
applied before the embedding layer and the aggregation of base model predictions is not differentiable.
In Appendix H, we adapt the white-box attacks for RS-Del by applying two tricks: (1) we apply
the smoothing mechanism after the embedding layer, and (2) we replace majority voting with soft
aggregation following Salman et al. [91].
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Table 10: Success rates of direct attacks against RS-Del and the NS baseline. A lower success rate is
better from our perspective as a defender, as it means the model is more robust to the attack. The
model that achieves the lowest success rate for each attack/dataset is highlighted in boldface.

Attack success rate (%)

Setting Attack Dataset NS RS-Del

White-box
Disp [17] Sleipnir2 73.8 56.7

VTFeed 94.1 74.5

Slack [20] Sleipnir2 57.9 85.3
VTFeed 96.0 43.9

Black-box

HDOS [36] Sleipnir2 0.0 0.0
VTFeed 0.0 0.0

HField [37] Sleipnir2 0.607 0.0
VTFeed 0.990 0.0

Disp [17] Sleipnir2 0.809 0.0
VTFeed 10.9 0.0

GAMMA [31] Sleipnir2 99.2 54.1
VTFeed 76.2 100.0

F.2 Experimental setup

Since some of the attacks take hours to run for a single file, we use smaller evaluation sets containing
malware subsampled from the test sets in Table 3. The evaluation set we use for Sleipnir2 consists of
500 files, and the one for VTFeed consists of 100 files (matching [17]). We note that our evaluation
sets are comparable in size to prior work [18, 20, 50]. For each evaluation set, we report attack
success rates against malware detectors trained on the same dataset.

Since all attacks employ greedy optimization with randomization, they may fail on some runs, but
succeed on others. We therefore repeat each attack 5 times per file and use the best performing
attacked file in our evaluation. We define the attack success rate as the proportion of files initially
detected as malicious for which at least one of the 5 attack repeats is successful at evading detection.
Lower attack success rates correlate with improved robustness against attacks. We permit all attacks
to run for up to 200 attack iterations of the internal optimizer. Early stopping is enabled for those
attacks that support it (Disp, Slack, GAMMA), which means the attack terminates as soon as the
model’s prediction flips from malicious to benign.

Where possible, we run direct attacks against RS-Del and compare success rates against NS as a
baseline. We also consider transfer attacks from NS to RS-Del as an important variation to the
threat model, where an attacker has limited access to the target RS-Del during attack optimization.
When running direct attacks against RS-Del, we use a reduced number of Monte Carlo samples
(npred = 100) to make the computational cost of the attacks more manageable. For both direct and
transfer attacks against RS-Del, we set pdel = 97% and perform deletion and certification at the
byte-level (BYTE).

F.3 Results

The results for direct attacks against RS-Del are presented in Table 10. For both the Sleipnir2 and
VTFeed datasets, we observe that the robustness of RS-Del is superior (or equal) to NS against four of
the six attacks. The two cases where RS-Del’s robustness drops compared to NS are for the strongest
attacks: Slack and GAMMA. The results for transfer attacks from NS to RS-Del are presented in
Table 11. Almost all of the attacks transfer poorly to RS-Del. In most cases the attack success rates
drop to zero or single digit percentages. We hypothesize that Slack and GAMMA make such drastic
changes to the original binary that they can overwhelm the malicious signal—enough to cross the
decision boundary—akin to a good word attack [92]. We find that HDOS and HField are ineffective
for both RS-Del and the baseline NS. Both attacks change up to 58 bytes in the header, and tend to
fall within our certifications.
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Table 11: Success rates of attacks transferred from NS to RS-Del.

Attack success rate (%)

Setting Attack Dataset NS RS-Del

White-box
Disp [17] Sleipnir2 73.8 0.414

VTFeed 94.1 0.0

Slack [20] Sleipnir2 57.9 2.90
VTFeed 96.0 1.01

Black-box

HDOS [36] Sleipnir2 0.0 0.0
VTFeed 0.0 0.0

HField [37] Sleipnir2 0.607 0.0
VTFeed 0.990 0.0

Disp [17] Sleipnir2 0.607 0.0
VTFeed 10.9 0.0

GAMMA [31] Sleipnir2 99.2 99.6
VTFeed 76.2 100.0

G Efficiency of RS-Del

In this appendix, we discuss the training and computational efficiency of RS-Del. We provide
comparisons with RS-Abn [24], which serves as a baseline in Appendix E.2 for a more restricted
Hamming distance threat model.

Computational efficiency Table 12 reports wall clock times for training and prediction. For
training, we measure the time taken to complete 1 epoch of stochastic gradient descent on the
Sleipnir2 training set, where inputs are perturbed by the smoothing mechanism. For prediction, we
measure the time taken for a single 1MB input file using npred = 1000 Monte Carlo samples. We
split the prediction time into two components: (1) the time taken to generate perturbed inputs from
the smoothing mechanism and (2) the time taken to aggregate predictions for the perturbed inputs
using the base MalConv model. All times are recorded on a desktop PC fitted with an AMD Ryzen 7
5800X CPU and an NVIDIA RTX3090 GPU, using our PyTorch implementation of RS-Del and
RS-Abn. We execute training and prediction for the base model on the GPU, and the smoothing
mechanism on the CPU. We use a single PyTorch process, noting that times may be improved by
running the smoothing mechanism in parallel or on the GPU.

We now make some observations about the results. First, we note that training is an order of
magnitude faster for RS-Del compared with RS-Abn. We attribute this speed-up to the deletion
smoothing mechanism of RS-Del, which drastically reduces the dimensionality of inputs, thereby
reducing the time taken to perform forward and backward passes for the base model. On the contrary,
the ablation smoothing mechanism of RS-Abn does not alter the dimensionality of inputs, so it does
not have a performance advantage in this respect. Second, we observe that the total prediction time
for RS-Del is approximately 150% faster than for RS-Abn. We expect this difference is also due to
the effect of dimensionality reduction for the deletion smoothing mechanism.

Training efficiency Training curves for the base MalConv models used in RS-Del and RS-Abn
are provided in Figure 7 for the Sleipnir2 dataset. Due to convergence issues for RS-Abn, we
adapted training to incorporate gradient clipping when updating the embedding layer. This addresses
imbalance in the gradients arising from the dominance of masked (ablated) values in the perturbed
inputs. However, even with this fix, we observe slower convergence to a higher loss value for RS-Abn
than for RS-Del. Combining the results of Table 12 and Figure 7, we conclude that RS-Abn beats
RS-Abn in terms of training efficiency as it requires both fewer epochs to converge and takes less
time per epoch.
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Table 12: Comparison of runtime efficiency for two models: RS-Del (our method with byte-level
deletion) and RS-Abn [24]. The first column of wall times measures the time taken to train each
model for one epoch on Sleipnir2. The second and third columns of wall times measure the time
taken to make a prediction for a 1MB input file. This is split into two components: the time taken to
generate npred = 1000 perturbed inputs from the smoothing mechanism (second column) and the
time taken to pass the perturbed inputs through the base model (third column).

Wall time (s)

Predict

Model Parameters Train 1 epoch Smoothing Base model

RS-Del pdel = 90% 354 10.42 0.070
RS-Abn [24] pab = 90% 1692 15.29 0.352

RS-Del pdel = 99% 329 8.79 0.043
RS-Abn [24] pab = 99% 1788 15.60 0.352
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Figure 7: Training curves for RS-Del (our method with byte-level deletion) and RS-Abn [24] for the
Sleipnir2 dataset.

H Adapting attacks for smoothed classifiers

In this appendix, we show how to adapt gradient-guided white-box attacks to account for randomized
smoothing.

We consider a generic family of white-box attacks that operate on neural network-based classifiers,
where the first layer of the network is an embedding layer. Mathematically, we assume the classifier
under attack f can be decomposed as

f = fembed ◦ fsoft ◦ fpred (23)

where

• fembed is the embedding layer, which maps an input sequence x ∈ X of length n = |x| to
an n× d array of d-dimensional embedding vectors;

• fsoft represents the subsequent layers in the network, which map an n× d embedding array
to a probability distribution over classes Y; and

• fpred is an optional final layer, which maps a probability distribution over classes to a
prediction (e.g., by taking the argmax or applying a threshold).
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The attack may query any of the above components in isolation and compute gradients of fsoft. For
instance, the attacks we consider [20, 36, 17] optimize the input in the embedding space e ∈ Rn×d,
by computing the gradient ∂fsoft(e)

∂e .

While the above setup covers attacks against MalConv, or classifiers with similar architectures,
it is not directly compatible with smoothed classifiers. There are two incompatibilities. First, a
direct implementation of a smoothed classifier (as described in Section 3.1 and Figure 1) does not
decompose like (23). And second, the aggregation of hard predictions from the base classifiers is
non-differentiable. We explain how to address these incompatibilities below.

Leveraging commutativity Consider a smoothed classifier composed from a base classifier h
and smoothing mechanism ϕ, and suppose the base classifier decomposes as in (23). Following
Section 3.1 and Figure 1, the smoothed classifier’s confidence score for class y can be expressed as

py(x) = smoothN (x;ϕ, hembed ◦ hsoft ◦ hpred ◦ 1□=y) (24)

where

smoothN (x;ϕ, f) =
1

N

N∑
i=1

f(zi), with zi ∼ ϕ(x)

is the (empirical) smoothing operation. This expression does not immediately decompose like (23),
because the embedding layer is applied to the perturbed input ϕ(x), not x. Fortunately, we can
manipulate the expression into the desired form by swapping the order of ϕ and hembed. To do so, we
extend the definition of ϕ to operate on an embedding array so that hembed(ϕ(x)) = ϕ(hembed(x)),
i.e., ϕ and hembed commute. In particular, this can be done for randomized deletion (RS-Del) by
applying the deletion edits to embedding vectors along the first dimension. Then (24) can equivalently
be expressed as

py(x) = hembed︸ ︷︷ ︸
fembed

◦ smoothN (ϕ, hsoft ◦ hpred ◦ 1□=y)︸ ︷︷ ︸
fsoft

(x). (25)

Soft aggregation While (25) decomposes as required, the fsoft component is not differentiable.
This is due to the presence of hpred, which is an argmax layer. To proceed, we replace the aggregation
of predictions by the aggregation of softmax scores as proposed by Salman et al. [91]. This yields a
differentiable approximation of the smoothed classifier:

py(x) ≈ hembed︸ ︷︷ ︸
fembed

◦ smoothN (ϕ, hsoft ◦□y)︸ ︷︷ ︸
fsoft

(x).

Salman et al. note that this approximation performs well, and is empirically more effective than an
alternative approach proposed by Cohen et al. [14, Appendix G.3].

I Review of randomized ablation

In this appendix, we review randomized ablation [24], which serves as a baseline for the Hamming
distance threat model in our experiments. It is based on randomized smoothing (see Section 3.1) like
our method, however the smoothing mechanism and robustness certificate differ. In this review, we
formulate randomized ablation for sequence classifiers; we refer readers to Levine and Feizi [24] for
a formulation for image classifiers.

I.1 Ablation smoothing mechanism

Randomized ablation employs a smoothing mechanism that replaces a random subset of the input
elements with a special null value NA. Levine and Feizi use an encoding for the null value tailored for
images, that involves doubling the number of channels. This encoding is not suitable for discrete
sequences, so we instead augment the sequence domain Ω with a special null value: Ω→ Ω ∪ {NA}.
The hyperparameter controlling the strength of ablation must also be adapted for our setting. Levine
and Feizi use a hyperparameter k that corresponds to the number of elements retained in the output.
This is ineffective for inputs that vary in length, so we scale k in proportion with the input length.
Specifically, we introduce an alternative hyperparameter pab ∈ (0, 1) that represents the fraction of
ablated elements and set k(|x|) = ⌈(1− pab)|x|⌉.
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Mathematically, the ablation mechanism has the following distribution when applied to an input
sequence x:

Pr[ϕ(x) = z] =
∑

ϵ∈Ek(|x|)(x)

1( |x|
k(|x|)

)1ablate(x,ϵ)=z,

where Ek = {ϵ ∈ E(x) : |ϵ| = k} consists of all sets of element indices of size k and

zi = ablate(x, ϵ)i =

{
xi, if i ∈ ϵ “retained”,
NA, if i ̸∈ ϵ “ablated”.

Remark 10. Hyperparameter pab has a similar interpretation as pdel for randomized deletion, in that
both hyperparameters control the proportion of sequence elements hidden (by ablation or deletion)
from the base classifier.

I.2 Hamming distance robustness certificate

Randomized ablation provides a Hamming distance (ℓ0) certificate that guarantees robustness under
a bounded number of arbitrary substitutions. Levine and Feizi provide two certificates: one that
makes use of the confidence score for the predicted class, and another that makes use of the top two
confidence scores. We present the first certificate here, since it matches the certificate we consider in
Section 4 and it is the simplest choice for binary classifiers (the focus of our experiments).

To facilitate comparison with randomized deletion, we reuse notation and definitions from Section 4.
Recall from (15) that ρ̃(x;µy) is a lower bound on the smoothed classifier’s confidence score py(x̄;h)
that holds for any input x̄ in the edit distance ball of radius r centered on x and any base classifier
h such that py(x;h) = µy. For randomized ablation, we can replace the edit distance ball with a
Hamming distance ball and obtain the following result (see [24] for the derivation):

ρ̃(x;µy) = µy − 1 +

(|x|−r
k(|x|)

)( |x|
k(|x|)

) .
Recall from Proposition 3, that the smoothed classifier is certifiably robust if ρ̃(x;µy) ≥ νy(η),
where η denotes the smoothed classifier’s tunable decision thresholds. Hence the certified radius r⋆
is the maximum value of r ∈ {0, 1, 2, . . .} that satisfies

µy − 1 +

(|x|−r
k(|x|)

)( |x|
k(|x|)

) − νy(η) ≥ 0.

This maximization problem does not have an analytic solution, however it can be solved efficiently
using binary search since the LHS of the above inequality is a non-increasing function of r. In
practice, the exact confidence score µy can be replaced with a 1 − α lower confidence bound µy
to yield a probabilistic certificate that holds with probability 1− α (see procedure in Figure 1 and
Corollary 8).

Since randomized ablation and randomized deletion both admit Hamming distance certificates, it is
interesting to compare them. The following result shows that randomized deletion admits a tighter
certificate, all else being equal.

Proposition 11. Consider a randomized deletion classifier (RS-Del) with deletion probability pdel =
p and a randomized ablation classifier (RS-Abn) with ablation fraction pab = p. Suppose both
classifiers make the same prediction y with the same confidence score µy for input x and that we
are interested in issuing a Hamming distance certificate of radius r. Then the lower bound on the
confidence score over the certified region is tighter for RS-Del than for RS-Abn.
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Proof. From Theorem 7 we have

ρ̃RS-Del(x;µy) = µy − 1 + pr

= µy − 1 +

(
|x| − (1− p)|x|

|x|

)r

≥ µy − 1 +

(
|x| − ⌈(1− p)|x|⌉

|x|

)r

= µy − 1 +

r∏
j=1

|x| − k(|x|)
|x|

≥ µy − 1 +

r∏
j=1

(|x| − k(|x|)− j + 1)

(|x| − j + 1)

= µy − 1 +

(|x|−r
k(|x|)

)( |x|
k(|x|)

)
= ρ̃RS-Abn(x;µy)

Remark 12. Jia et al. [25] extend randomized ablation to top-k prediction, while at the same time
proposing enhancements to the Hamming distance certificate. These enhancements also apply to
regular classification and involve: (1) discretizing lower/upper bounds on the confidence scores;
and (2) using a better statistical method to estimate lower/upper bounds on the confidence scores.
However, both of these enhancements would have a negligible impact in our experiments, as we
shall now explain. The first enhancement tightens lower/upper bounds on the confidence scores by
rounding up/down to the nearest integer multiple of q := 1/

( |x|
k(|x|)

)
. This improves the lower/upper

bound by at most

q ≤ min

{(
|x| − k
|x|

)|x|−k

,

(
k

|x|

)k
}
≤ 1

|x|

if the number of retained elements satisfies 1 ≤ k ≤ |x|, as is the case in our experiments. However,
since we consider inputs of length |x| ≥ 103, this means the improvement in the bound due to
discretization is at most q ≤ 10−3. This improvement is comparable to the resolution of our estimator
(1/nbnd ∼ 10−4), and consequently, discretization will not have a discernible impact. The second
enhancement involves simultaneously estimating lower/upper bounds using a statistical method
called SimuEM [93]. SimuEM has been demonstrated to improve tightness when there are multiple
classes [25], however it has no impact when there are two classes (as is the case in our experiments).
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