
Spuriosity Didn’t Kill the Classifier: Using Invariant
Predictions to Harness Spurious Features

Cian Eastwood∗1,2 Shashank Singh∗1

Andrei L. Nicolicioiu1 Marin Vlastelica1 Julius von Kügelgen1,3 Bernhard Schölkopf 1

1 Max Planck Institute for Intelligent Systems, Tübingen
2 University of Edinburgh 3 University of Cambridge

Abstract

To avoid failures on out-of-distribution data, recent works have sought to extract
features that have an invariant or stable relationship with the label across domains,
discarding “spurious” or unstable features whose relationship with the label changes
across domains. However, unstable features often carry complementary information
that could boost performance if used correctly in the test domain. In this work, we
show how this can be done without test-domain labels. In particular, we prove that
pseudo-labels based on stable features provide sufficient guidance for doing so,
provided that stable and unstable features are conditionally independent given the
label. Based on this theoretical insight, we propose Stable Feature Boosting (SFB),
an algorithm for: (i) learning a predictor that separates stable and conditionally-
independent unstable features; and (ii) using the stable-feature predictions to adapt
the unstable-feature predictions in the test domain. Theoretically, we prove that
SFB can learn an asymptotically-optimal predictor without test-domain labels.
Empirically, we demonstrate the effectiveness of SFB on real and synthetic data.

1 Introduction

Machine learning systems can be sensitive to distribution shift [26]. Often, this sensitivity is due to a
reliance on “spurious” features whose relationship with the label changes across domains, ultimately
leading to degraded performance in the test domain of interest [21]. To avoid this pitfall, recent works
on domain or out-of-distribution (OOD) generalization have sought predictors which only make use of
features that have a stable or invariant relationship with the label across domains, discarding the spuri-
ous or unstable features [45, 1, 35, 15]. However, despite their instability, spurious features can often
provide additional or complementary information about the target label. Thus, if a predictor could be
adjusted to use spurious features optimally in the test domain, it would boost performance substantially.
That is, perhaps we don’t need to discard spurious features at all but rather use them in the right way.

As a simple but illustrative example, consider the ColorMNIST or CMNIST dataset [1]. This
transforms the original MNIST dataset into a binary classification task (digit in 0–4 or 5–9) and then:
(i) flips the label with probability 0.25, meaning that, across all 3 domains, digit shape correctly de-
termines the label with probability 0.75; and (ii) colorizes the digit such that digit color (red or green)
is a more informative but spurious feature (see Fig. 1a). Prior work focused on learning an invariant
predictor that uses only shape and avoids using color—a spurious feature whose relationship with
the label changes across domains. However, as shown in Fig. 1b, the invariant predictor is suboptimal
test domains where color can be used in a domain-specific manner to improve performance. We thus
ask: when and how can such informative but spurious features be safely harnessed without labels?

∗Equal contribution. Correspondence to c.eastwood@ed.ac.uk or shashankssingh44@gmail.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Train Domains Test
0.9 0.8 -0.9

(Color-Label Correlation)

(a)

1.0 0.0 -1.0
Color-Label Correlation

0.50

0.75

1.00

A
cc

ur
ac

y

ERM Invariant Optimal

(b) (c)
Figure 1: Invariant (stable) and spurious (unstable) features. (a) Illustrative images from CMNIST [1]. (b)
CMNIST accuracies (y-axis) over test domains of decreasing color-label correlation (x-axis). The ‘Oracle’ uses
both invariant (shape) and spurious (color) features optimally in the test domain, boosting performance over
an invariant model (orange region). We show how this can be done without test-domain labels. (c) Generally,
invariant models use only the stable component XS of X, discarding the spurious or unstable component XU . We
prove that predictions based on XS can be used to safely harness a sub-component of XU (dark-orange region).

Our main contribution lies in answering this question, showing when and how it is possible to
safely harness spurious or unstable features without test-domain labels. In particular, we prove that
predictions based on stable features provide sufficient guidance for doing so, provided that stable
and unstable features are conditionally independent given the label (see Fig. 1c).

Structure and contributions. The rest of this paper is organized as follows. We first discuss
related work in § 2, providing context and high-level motivation for our approach. In § 3, we then
explain how stable and unstable features can be extracted, how unstable features can be harnessed
with test-domain labels, and the questions/challenges that arise when trying to harness unstable
features without test-domain labels. In § 4, we present our main theoretical contributions which
provide precise answers to these questions, before using these insights to propose the Stable Feature
Boosting (SFB) algorithm in § 5. In § 6, we present our experimental results, before ending with a
discussion and concluding remarks in § 7. Our contributions can be summarized as follows:

• Algorithmic: We propose Stable Feature Boosting (SFB), the first algorithm for using invariant
predictions to safely harness spurious features without test-domain labels.

• Theoretical: SFB is grounded in a novel theoretical result (Thm 4.4) giving sufficient conditions
for provable test-domain adaptation without labels. Under these conditions, Thm 4.6 shows that,
given enough unlabeled data, SFB learns the Bayes-optimal adapted classifier in the test domain.

• Experimental: Our experiments on synthetic and real-world data demonstrate the effectiveness
of SFB—even in scenarios where it is unclear if its assumptions are fully satisfied.

2 Related Work

Domain generalization, robustness and invariant prediction. A fundamental starting point for
work in domain generalization is the observation that certain “stable” features, often direct causes of
the label, may have an invariant relationship with the label across domains [45, 1, 67, 55, 40, 77, 14].
However, such stable or invariant predictors often discard highly informative but unstable information.
Rothenhäusler et al. [51] show that we may need to trade off stability and predictiveness, while
Eastwood et al. [15] seek such a trade-off via an interpretable probability-of-generalization parameter.
The current work is motivated by the idea that one might avoid such a trade-off by changing how
unstable features are used at test time, rather than discarding them at training time.

Test-domain adaptation without labels (unsupervised domain adaptation). In the source-free
and test-time domain adaptation literature, it is common to adapt to new domains using a model’s
own pseudo-labels [20, 36, 39, 71, 30]—see Rusak et al. [52] for a recent review. In contrast,
we: (i) use one (stable) model to provide reliable/robust pseudo-labels and another (unstable)
model to adapt domain-specific information; and (ii) propose a bias correction step that provably
ensures an accurate, well-calibrated unstable model (Pr[Y|XU]) as well as an optimal joint/combined
model (Pr[Y|XS, XU]). Beyond this literature, Bui et al. [12] propose a meta-learning approach for
exploiting unstable/domain-specific features. However, they use unstable features in the same way
in the test domain, which, by definition, is not robust and can degrade performance. Sun et al. [63]
share the goal of exploiting unstable features to go “beyond invariance”. However, in contrast to our
approach, they require labels for the unstable features (rarely available) and only address label shifts.

2

Table 1: Comparison with related work. ∗QRM [15] uses a hyperparameter α ∈ [0, 1] to balance the
probability of robust generalization and using more information from X.

Method Components of X Used
Stable Complementary All Robust No test-domain labels

ERM [65] ✓ ✓ ✓ ✗ ✓
IRM [1] ✓ ✗ ✗ ✓ ✓
QRM [15] ✓ ✓∗ ✓∗ ✓∗ ✓
DARE [50] ✓ ✓ ✓ ✓ ✗
ACTIR [31] ✓ ✓ ✗ ✓ ✗

SFB (Ours) ✓ ✓ ✗ ✓ ✓

Test-domain adaptation with labels (few-shot fine-tuning). Fine-tuning part of a model using a
small number of labeled test-domain examples is a common way to deal with distribution shift [16, 17,
13]. More recently, it has been shown that simply retraining the last layer of an ERM-trained model
outperforms more robust feature-learning methods on spurious correlation benchmarks [50, 32, 74].
Similar to our approach, Jiang and Veitch [31] separate stable and conditionally-independent unstable
features and then adapt their use of the latter in the test domain. However, in contrast to our approach,
theirs requires test-domain labels. In addition, they assume data is drawn from an anti-causal
generative model, which is strictly stronger than our “complementarity” assumption (see § 4).

Table 1 summarizes related work while App. H discusses further related work.

3 Problem Setup: Extracting and Harnessing Unstable Features

Setup. We consider the problem of domain generalization (DG) [8, 42, 24] where predictors are
trained on data from multiple training domains and with the goal of performing well on data from
unseen test domains. More formally, we consider datasets De = {(Xe

i , Ye
i)}

ne
i=1 collected from m

different training domains or environments Etr := {E1, . . . , Em}, with each dataset De containing
data pairs (Xe

i , Ye
i) sampled i.i.d. from P(Xe, Ye).2 The goal is then to learn a predictor f (X) that

performs well on a larger set Eall ⊃ Etr of possible domains.

Average performance: use all features. The first approaches to DG sought predictors that perform
well on average over domains [8, 42] using empirical risk minimization (ERM, [66]). However,
predictors that perform well on average provably lack robustness [43, 49], potentially performing
quite poorly on large subsets of Eall. In particular, minimizing the average error leads predictors to
make use of any features that are informative about the label (on average), including “spurious” or
“shortcut” [21] features whose relationship with the label is subject to change across domains. In test
domains where these feature-label relationships change in new or more severe ways than observed
during training, this usually leads to significant performance drops or even complete failure [73, 4].

Worst-case or robust performance: use only stable features. To improve robustness, subsequent
works sought predictors that only use stable or invariant features, i.e., those that have a stable or
invariant relationship with the label across domains [45, 1, 47, 70, 58]. For example, Arjovsky
et al. [1] do so by enforcing that the classifier on top of these features is optimal for all domains
simultaneously. We henceforth use stable features and XS to refer to these features, and stable
predictors to refer to predictors which use only these features. Analogously, we use unstable features
and XU to refer to features with an unstable or “spurious” relationship with the label across domains.
Note that XS and XU partition the components of X which are informative about Y, as depicted in
Fig. 1c, and that formal definitions of XS and XU are provided in § 4.

3.1 Harnessing unstable features with labels

A stable predictor fS is unlikely to be the best predictor in any given domain. As illustrated in Fig. 1b,
this is because it excludes unstable features XU which are informative about Y and can boost per-
formance if used in an appropriate, domain-specific manner. Assuming we can indeed learn a stable
predictor with prior methods, we start by showing how XU can be harnessed with test-domain labels.

2We drop the domain superscript e when referring to random variables from any environment.

3

Boosting the stable predictor. We describe boosted joint predictions f e(X) in domain e as some
combination C of stable predictions fS(X) and domain-specific unstable predictions f e

U(X), i.e.,
f e(X) = C(fS(X), f e

U(X)). To allow us to adapt only the XU-Y relation, we decompose the stable
fS(X) = hS(ΦS(X)) and unstable f e

U(X) = he
U(ΦU(X)) predictions into feature extractors Φ and

classifiers h. ΦS extracts stable components XS = ΦS(X) of X, ΦU extracts unstable components
XU = ΦU(X) of X, hS is a classifier learned on top of ΦS (shared across domains), and he

U is a
domain-specific unstable classifier learned on top of ΦU (one per domain). Putting these together,

f e(X) = C(fS(X), f e
U(X)) = C(hS(ΦS(X)), he

U(ΦU(X))) = C(hS(XS), he
U(XU)), (3.1)

where C : [0, 1]× [0, 1] → [0, 1] is a combination function that combines the stable and unstable
predictions. For example, Jiang and Veitch [31, Eq. 2.1] add stable pS and unstable pU predictions in
logit space, i.e., C(pS, pU)=σ(logit(pS) + logit(pU)). Since it is unclear, a priori, how to choose
C, we will leave it unspecified until Thm. 4.4 in § 4, where we derive a principled choice.

Adapting with labels. Given a new domain e and labels Ye, we can boost performance by adapting
he

U . Specifically, letting ℓ : Y × Y → R be a loss function (e.g., cross-entropy) and Re(f) =
E(X,Y) [ℓ(Y, f (X))|E = e] the risk of predictor f : X → Y in domain e, we can adapt he

U to solve:

min
hU

Re(C(hS ◦ΦS, hU ◦ΦU)) (3.2)

3.2 Harnessing unstable features without labels

We now consider the main question of this work—can we reliably harness XU without test-domain
labels? We could, of course, simply select a fixed unstable classifier he

U by relying solely on the
training domains (e.g., by minimizing average error), and hope that this works for the test-domain
XU-Y relation. However, by definition of XU being unstable, this is clearly not a robust or reliable
approach—the focus of our efforts in this work, as illustrated in Table 1. As in § 3.1, we assume that
we are able to learn a stable predictor fS using prior methods, e.g., IRM [1] or QRM [15].

From stable predictions to robust pseudo-labels. While we don’t have labels in the test domain,
we do have stable predictions. By definition, these are imperfect (i.e., noisy) but robust, and can be
used to form pseudo-labels Ŷi = arg maxj(fS(Xi))j, with (fS(Xi))j ≈ Pr[Yi = j|XS] denoting the

jth entry of the stable prediction for Xi. Can we somehow use these noisy but robust pseudo-labels
to guide our updating of he

U , and, ultimately, our use of XU in the test domain?

From joint to unstable-only risk. If we simply use our robust pseudo-labels as if they were true
labels—updating he

U to minimize the joint risk as in Eq. (3.2)—we arrive at trivial solutions since fS
already predicts its own pseudo-labels with 100% accuracy. For example, if we follow [31, Eq. 2.1]
and use the combination function C(pS, pU) = σ(logit(pS) + logit(pU)), then the trivial solution
logit(he

U(·))=0 achieves 100% accuracy (and minimizes cross-entropy; see Prop. D.1 of App. D).
Thus, we cannot minimize a joint loss involving fS’s predictions when using fS’s pseudo-labels. A
sensible alternative is to update he

U to minimize the unstable-only risk Re(he
U ◦ΦU).

More questions than answers. While this new procedure could work, it raises questions about when
it will work, or, more precisely, the conditions under which it can be used to safely harness XU . We
now summarise these questions before addressing them in § 4:

1. Does it make sense to minimize the unstable-only risk? In particular, when can we minimize
the unstable-predictor risk alone or separately, and then arrive at the optimal joint predictor? This
cannot always work; e.g., for independent XS, XU ∼ Bernoulli(1/2) and Y = XS XOR XU , Y
is independent of each of XS and XU and hence cannot be predicted from either alone.

2. How should we combine predictions? Is there a principled choice for the combination function
C in Eq. (3.1)? In particular, is there a C that correctly weights stable and unstable predictions
in the test domain? As XU could be very strongly or very weakly predictive of Y in the test
domain, this seems a difficult task. Intuitively, correctly weighting stable and unstable predictions
requires them to be properly calibrated: do we have any reason to believe that, after training on
fS’s pseudo-labels, he

U will be properly calibrated in the test domain?

3. Can the student outperform the teacher? Stable predictions likely make mistakes—indeed, this
is the motivation for trying to improve them. Is it possible to correct these mistakes with XU? Is it

4

possible to learn an unstable “student” predictor that outperforms its own supervision signal or
“teacher”? Perhaps surprisingly, we show that, for certain types of features, the answer is yes. In
fact, even a very weak stable predictor, with performance just above chance, can be used to learn
an optimal unstable classifier in the test domain given enough unlabeled data.

4 Theory: When Can We Safely Harness Unstable Features Without Labels?

Suppose we have already identified a stable feature XS and a potentially unstable feature XU (we
will return to the question of how to learn/extract XS and XU themselves in § 5). In this section, we
analyze the problem of using XS to leverage XU in the test domain without labels. We first reduce
this to a special case of the so-called “marginal problem” in probability theory, i.e., the problem of
identifying a joint distribution based on information about its marginals. In the special case where
two variables are conditionally independent given a third, we show this problem can be solved exactly.
This solution, which may be of interest beyond the context of domain generalization/adaptation,
motivates our test-domain adaptation algorithm (Alg. 1), and forms the basis of Thm. 4.6 which
shows that Alg. 1 converges to the best possible classifier given enough unlabeled data.

We first pose a population-level model of our domain generalization setup. Let E be a random variable
denoting the environment. Given an environment E, we have that the stable feature XS, unstable
feature XU and label Y are distributed according to PXS ,XU ,Y|E. We can now formalize the three key
assumptions underlying our approach, starting with the notion of a stable feature, motivated in § 3:

Definition 4.1 (Stable and Unstable Features). XS is a stable feature with respect to Y if PY|XS
does

not depend on E; equivalently, if Y and E are conditionally independent given XS (Y ⊥⊥ E|XS).
Conversely, XU is an unstable feature with respect to Y if PY|XU

depends on E; equivalently, if Y
and E are conditionally dependent given XU (Y ⊥̸⊥ E|XU).

Next, we state our complementarity assumption, which we will show justifies the approach of
separately learning the relationships XS-Y and XU-Y and then combining them:

Definition 4.2 (Complementary Features). XS and XU are complementary features with respect to Y
if XS ⊥⊥ XU |(Y, E); i.e., if XS and XU share no redundant information beyond Y and E.

Finally, to provide a useful signal for test-domain adaptation, the stable feature needs to help predict
the label in the test domain. Formally, we assume:

Definition 4.3 (Informative Feature). XS is said to be informative of Y in environment E if XS ⊥̸⊥ Y|E;
i.e., XS is predictive of Y within the environment E.

We will discuss the roles of these assumptions after stating our main result (Thm. 4.4) that uses them.
To keep our results as general as possible, we avoid assuming a particular causal generative model,
but the above conditional (in)dependence assumptions can be interpreted as constraints on such a
causal model. App. D.2 formally characterizes the set of causal models that are consistent with our
assumptions and shows that our setting generalizes those of prior works [49, 68, 31, 69].

Reduction to the marginal problem with complementary features. By Defn. 4.1, we have the
same stable relationship PY|XS ,E =PY|XS

in training and test domains. Now, suppose we have used
the training data to learn this stable relationship and thus know PY|XS

. Also suppose that we have
enough unlabeled data from test domain E to learn PXS ,XU |E, and recall that our ultimate goal is
to predict Y from (XS, XU) in test domain E. Since the rest of our discussion is conditioned on E
being the test domain, we omit E from the notation. Now note that, if we could express PY|XS ,XU
in terms of PY|XS

and PXS ,XU , we could then use PY|XS ,XU
to optimally predict Y from (XS, XU).

Thus, our task thus becomes to reconstruct PY|XS ,XU
from PY|XS

and PXS ,XU . This is an instance
of the classical “marginal problem” from probability theory [28, 29, 19], which asks under which
conditions we can recover the joint distribution of a set of random variables given information about
its marginals. In general, although one can place bounds on the conditional distributions PY|XU

and
PY|XS ,XU

, they cannot be completely inferred from PY|XS
and PXS ,XU [19]. However, the following

section demonstrates that, under the additional assumptions that XS and XU are complementary and
XS is informative, we can exactly recover PY|XU

and PY|XS ,XU
from PY|XS

and PXS ,XU .

5

4.1 Solving the marginal problem with complementary features
We now present our main result which shows how to reconstruct PY|XS ,XU

from PY|XS
and PXS ,XU

when XS and XU are complementary and XS is informative. To simplify notation, we assume the
label Y is binary and defer the multi-class extension to App. C.

Theorem 4.4 (Solution to the marginal problem with binary labels and complementary features).
Consider three random variables XS, XU , and Y, where (i) Y is binary ({0, 1}-valued), (ii) XS and
XU are complementary features for Y (i.e., XS ⊥⊥ XU |Y), and (iii) XS is informative of Y (XS ⊥̸⊥ Y).
Then, the joint distribution of (XS, XU , Y) can be written in terms of the joint distributions of (XS, Y)
and (XS, XU). Specifically, if Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is a pseudo-label3 and

ϵ0 := Pr[Ŷ = 0|Y = 0] and ϵ1 := Pr[Ŷ = 1|Y = 1] (4.1)
are the accuracies of the pseudo-labels on classes 0 and 1, respectively. Then, we have:

ϵ0 + ϵ1 > 1, (4.2)

Pr[Y = 1|XU] =
Pr[Ŷ = 1|XU] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and (4.3)

Pr[Y = 1|XS, XU]=σ (logit(Pr[Y=1|XS]) + logit(Pr[Y=1|XU])− logit(Pr[Y=1])) . (4.4)

Intuitively, suppose we generate pseudo-labels Ŷ based on feature XS and train a model to predict
Ŷ using feature XU . For complementary XS and XU , Eq. (4.3) shows how to transform this into
a prediction of the true label Y, correcting for differences between Ŷ and Y. Crucially, given the
conditional distribution PY|XS

and observations of XS, we can estimate class-wise pseudo-label
accuracies ϵ0 and ϵ1 in Eq. (4.3) even without new labels Y (see App. A.1, Eq. (A.2)). Finally,
Eq. (4.4) shows how to weight predictions based on XS and XU , justifying the combination function

Cp(pS, pU) = σ(logit(pS) + logit(pU)− logit(p)) (4.5)
in Eq. (3.1), where p = Pr[Y = 1] is a constant independent of xS and xU . We now sketch the proof
of Thm. 4.4, elucidating the roles of informativeness and complementarity (full proof in App. A.1).

Proof Sketch of Thm. 4.4. We prove Eq. (4.2), Eq. (4.3), and Eq. (4.4) in order.

Proof of Eq. (4.2): The informativeness condition (iii) is equivalent to the pseudo-labels having
predictive accuracy above random chance; formally, App. A.1 shows:

Lemma 4.5. ϵ0 + ϵ1 > 1 if and only if XS is informative of Y (i.e., XS ⊥̸⊥ Y).

Together with Eq. (4.3), it follows that any dependence between XS and Y allows us to fully learn
the relationship between XU and Y, affirmatively answering our question from § 3: Can the student
outperform the teacher? While a stronger relationship between XS and Y is still helpful, it only
improves the (unlabeled) sample complexity of learning PY|XU

and not consistency (Thm. 4.6 below),
mirroring related results in the literature on learning from noisy labels [44, 7]. In particular, a weak
relationship corresponds to ϵ0 + ϵ1 ≈ 1, increasing the variance of the bias-correction in Eq. (4.3).
With a bit more work, one can formalize this intuition to show that our approach has a relative
statistical efficiency of ϵ0 + ϵ1 − 1 ∈ [0, 1], compared to using true labels Y.

Proof of Eq. (4.3): The key observation behind the bias-correction (Eq. (4.3)) is that, due to
complementarity (XS ⊥⊥ XU |Y) and the fact that the pseudo-label Ŷ depends only on XS, Ŷ is
conditionally independent of XU given the true label Y (Ŷ ⊥⊥ XU |Y); formally:

Pr[Ŷ = 1|XU] = Pr[Ŷ = 1|Y = 0, XU]Pr[Y = 0|XU]

+ Pr[Ŷ = 1|Y = 1, XU]Pr[Y = 1|XU] (Law of Total Probability)

= Pr[Ŷ = 1|Y = 0]Pr[Y = 0|XU]

+ Pr[Ŷ = 1|Y = 1]Pr[Y = 1|XU] (Complementarity)

= (ϵ0 + ϵ1 − 1)Pr[Y = 1|XU] + 1− ϵ0. (Definitions of ϵ0 and ϵ1)

3Our stochastic pseudo-labels differ from hard (Ŷ = 1{Pr[Y = 1|XS] > 1/2}) pseudo-labels often used
in practice [20, 36, 52]. By capturing irreducible error in Y, stochastic pseudo-labels ensure Pr[Y|XU] is
well-calibrated, allowing us to combine Pr[Y|XS] and Pr[Y|XU] in Eq. (4.4).

6

Algorithm 1: Bias-corrected adaptation procedure. Multi-class version given by Algorithm 2.
Input: Calibrated stable classifier fS(xS)=Pr[Y=1|XS = xS], unlabelled data {(XS,i, XU,i)}n

i=1
Output: Joint classifier f̂ (xS, xU) estimating Pr[Y = 1|XS = xS, XU = xU]

1 Compute soft pseudo-labels (PLs) {Ŷi}n
i=1 with Ŷi = fS(XS,i)

2 Compute soft class-1 count n1 = ∑n
i=1 Ŷi

3 Estimate PL accuracies (ϵ̂0, ϵ̂1)=
(

1
n−n1

∑n
i=1(1−Ŷi)(1− fS(XS,i)), 1

n1
∑n

i=1 Ŷi fS(XS,i)
)

// Eq.(4.1)

4 Fit unstable classifier f̃U(xU) to pseudo-labelled data {(XU,i, Ŷi)}n
i=1 // ≈ Pr[Ŷ=1|XU = xU]

5 Bias-correct f̂U(xU) 7→ max
{

0, min
{

1, f̃U(xU)+ϵ̂0−1
ϵ̂0+ϵ̂1−1

}}
// Eq.(4.3), ≈ Pr[Y=1|XU = xU]

6 return f̂ (xS, xU) 7→C n1
n
(fS(xS), f̂U(xU)) // Eq.(4.4)/(4.5), ≈ Pr[Y=1|XS = xS, XU = xU]

Here, complementarity allowed us to approximate the unknown Pr[Ŷ = 1|Y = 0, XU] by its average
Pr[Ŷ = 1|Y = 0] = EXU [Pr[Ŷ = 1|Y = 0, XU]], which depends only on the known distribution
PXS ,Y. By informativeness, Lemma 4.5 allows us to divide by ϵ0 + ϵ1 − 1, giving Eq. (4.3).

Proof of Eq. (4.4): While the exact proof of Eq. (4.4) is a bit more algebraically involved, the
key idea is simply that complementarity allows us to decompose Pr[Y|XS, XU] into separately-
estimatable terms Pr[Y|XS] and Pr[Y|XU]: for any y ∈ Y ,

Pr[Y = y|XS, XU] ∝XS ,XU Pr[XS, XU |Y = y]Pr[Y = y] (Bayes’ Rule)

= Pr[XS|Y = y]Pr[XU |Y = 1]Pr[Y = y] (Complementarity)

∝XS ,XU

Pr[Y = y|XS]Pr[Y = 1|XU]

Pr[Y = 1]
, (Bayes’ Rule)

where, ∝XS ,XU denotes proportionality with a constant depending only on XS and XU , not on y.
Directly estimating these constants involves estimating the density of (XS, XU), which may be
intractable without further assumptions. However, in the binary case, since 1− Pr[Y = 1|XS, XU] =
Pr[Y = 0|XS, XU], these proportionality constants conveniently cancel out when the above relation-
ship is written in logit-space, as in Eq. (4.4). In the multi-class case, App. C shows how to use the
constraint ∑y∈Y Pr[Y = y|XS, XU] = 1 to avoid computing the proportionality constants.

4.2 A provably consistent algorithm for unsupervised test-domain adaptation

Having learned PY|XS
from the training domain(s), Thm. 4.4 implies we can learn PY|XS ,XU

in the
test domain by learning PXS ,XU —the latter only requiring unlabeled test-domain data. This motivates
our Alg. 1 for test-domain adaptation, which is a finite-sample version of the bias-correction and
combination equations (Eqs. (4.3) and (4.4)) in Thm. 4.4. Alg. 1 comes with the following guarantee:

Theorem 4.6 (Consistency Guarantee, Informal). Assume (i) XS is stable, (ii) XS and XU are
complementary, and (iii) XS is informative of Y in the test domain. As n → ∞, if f̃U → Pr[Ŷ =

1|XU] then f̂ → Pr[Y = 1|XS, XU].

In words, as the amount of unlabeled data from the test domain increases, if the unstable classifier on
Line 4 of Alg. 1 learns to predict the pseudo-label Ŷ, then the joint classifier output by Alg. 1 learns
to predict the true label Y. Convergence in Thm. 4.6 occurs PXS ,XU -a.e., both weakly (in prob.) and
strongly (a.s.), depending on the convergence of f̃U . Formal statements and proofs are in Appendix B.

5 Algorithm: Stable Feature Boosting (SFB)

Using theoretical insights from § 4, we now propose Stable Feature Boosting (SFB): an algorithm
for safely harnessing unstable features without test-domain labels. We first describe learning a
stable predictor and extracting complementary unstable features from the training domains. We then
describe how to use these with Alg. 1, adapting our use of the unstable features to the test domain.

7

Training domains: Learning stable and complementary features. Using the notation of Eq. (3.1),
our goal on the training domains is to learn stable and unstable features ΦS and ΦU , a stable predictor
fS, and domain-specific unstable predictors f e

U such that:

1. fS is stable, informative, and calibrated (i.e., fS(xS)=Pr[Y=1|XS = xS]).

2. In domain e, f e
U boosts fs’s performance with complementary ΦU(Xe)⊥⊥ΦS(Xe)|Ye.

To achieve these learning goals, we propose the following objective:

min
ΦS ,ΦU ,hS ,he

U
∑

e∈Etr

Re(hS ◦ΦS) + Re(C(hS ◦ΦS, he
U ◦ΦU))

+ λS · PStability(ΦS, hS, Re) + λC · PCondIndep(ΦS(Xe), ΦU(Xe), Ye)
(5.1)

The first term encourages good stable predictions fS(X) = hS(ΦS(X)) while the second encourages
improved domain-specific joint predictions f e(Xe) = C(hS(ΦS(Xe)), he

U(ΦU(Xe))) via a domain-
specific use he

U of the unstable features ΦU(Xe). For binary Y, the combination function C takes
the simplified form of Eq. (4.5). Otherwise, C takes the more general form of Eq. (C.1). PStability
is a penalty encouraging stability while PCondIndep is a penalty encouraging complementarity or
conditional independence, i.e., ΦU(Xe) ⊥⊥ ΦS(Xe)|Ye. Several approaches exist for enforcing
stability [1, 35, 58, 47, 15, 67, 40, 77] (e.g., IRM [1]) and conditional independence (e.g., conditional
HSIC [22]). λS ∈ [0, ∞) and λC ∈ [0, ∞) are regularization hyperparameters. While another
hyperparameter γ ∈ [0, 1] could control the relative weighting of stable and joint risks, i.e., γRe(hS ◦
ΦS) and (1− γ)Re(C(hS ◦ΦS, he

U ◦ΦU)), we found this unnecessary in practice. Finally, note that,
in principle, he

U could take any form and we could learn completely separate ΦS, ΦU . In practice, we
simply take he

U to be a linear classifier and split the output of a shared Φ(X) = (ΦS(X), ΦU(X)).

Post-hoc calibration. As noted in § 4.2, the stable predictor fS must be properly calibrated to (i) form
unbiased unstable predictions (Line 5 of Alg. 1) and (ii) correctly combine the stable and unstable
predictions (Line 6 of Alg. 1). Thus, after optimizing the objective (5.1), we apply a post-processing
step (e.g., temperature scaling [25]) to calibrate fS.

Test-domain adaptation without labels. Given a stable predictor fS = hS ◦ΦS and complementary
features ΦU(X), we now adapt the unstable classifier he

U in the test domain to safely harness (or
make optimal use of) ΦU(X). To do so, we use the bias-corrected adaptation algorithm of Alg. 1
(or Alg. 2 for the multi-class case) which takes as input the stable classifier hS

4 and unlabelled
test-domain data {ΦS(xi), ΦU(xi)}ne

i=1, outputting a joint classifier adapted to the test domain.

6 Experiments

We now evaluate the performance of our algorithm on synthetic and real-world datasets requiring out-
of-distribution generalization. App. E contains full details on these datasets and a depiction of their
samples (see Fig. 4). In the experiments below, SFB uses IRM [1] for PStability and the conditional-
independence proxy of Jiang and Veitch [31, §3.1] for PCondIndep, with App. F.1.2 giving results with
other stability penalties. App. F contains further results, including ablation studies (F.1.1) and results
on additional datasets (F.2). In particular, App. F.2 contains results on the Camelyon17 medical
dataset [3] from the WILDS package [33], where we find that all methods perform similarly when
properly tuned (see discussion in App. F.2). Code is available at: https://github.com/cianeastwood/sfb.

Synthetic data. We consider two synthetic datasets: anti-causal (AC) data and cause-effect data with
direct XS-XU dependence (CE-DD). AC data satisfies the structural equations

Y ← Rad(0.5);
XS ← Y · Rad(0.75);
XU ← Y · Rad(βe),

βe

XS

Y

XU

where the input X = (XS, XU) and Rad(β) denotes a Rademacher random variable that

4Note: while Sections 3 and 5 use h for the classifier and f = h ◦ Φ for the classifier-representation
composition, Section 4 and Alg. 1 use f for the classifier, since no representation Φ is being learned.

8

https://github.com/cianeastwood/sfb

Table 2: Synthetic & PACS test-domain accuracies over 100 & 5 seeds each.
Synthetic PACS

Algorithm AC CE-DD P A C S

ERM 9.9± 0.1 11.6± 0.7 93.0± 0.7 79.3± 0.5 74.3± 0.7 65.4± 1.5
ERM + PL 9.9± 0.1 11.6± 0.7 93.7± 0.4 79.6± 1.5 74.1± 1.2 63.1± 3.1
IRM [1] 74.9± 0.1 69.6± 1.3 93.3± 0.3 78.7± 0.7 75.4± 1.5 65.6± 2.5
IRM + PL 74.9± 0.1 69.6± 1.3 94.1± 0.7 78.9± 2.9 75.1± 4.6 62.9± 4.9
ACTIR [31] 74.8± 0.4 43.5± 2.6 94.8± 0.1 82.5± 0.4 76.6± 0.6 62.1± 1.3
SFB no adpt. 74.7± 1.2 74.9± 3.6 93.7± 0.6 78.1± 1.1 73.7± 0.6 69.7± 2.3
SFB 89.2± 2.9 88.6± 1.4 95.8± 0.6 80.4± 1.3 76.6± 0.6 71.8± 2.0

Table 3: CMNIST test ac-
curacies over 10 seeds.
Algorithm Test Acc.
ERM 27.9± 1.5
IRM [1] 69.7± 0.9
SFB no adpt. 70.6± 1.8
SFB 88.1± 1.8

Oracle no adpt. 72.1± 0.7
Oracle 89.9± 0.1

0.9 0.0 -0.9
Color-Label Correlation

0.65
0.70
0.75
0.80
0.85
0.90

Ac
cu

ra
cy

IRM
IRM + PL
IRM + T3A

SFB
ERM

0.9 0.0 -0.9
Color-Label Correlation

SFB w/o Rn,CA,BC
SFB w/o Rn,CA
SFB w/o Rn

Oracle
SFB no adpt
SFB

Figure 2: CMNIST accuracies (y-axis) over test domains of decreasing color-label correlation (x-axis). Empirical
versions of Fig. 1b. Left: SFB vs. baseline methods. Right: Ablations showing SFB without (w/o) bias correc-
tion (BC), calibration (CA) and multiple pseudo-labeling rounds (Rn). Numerical results in Table 7 of App. F.1.3.

is −1 with probability 1 − β and +1 with probability β. Following [31, §6.1], we create
two training domains with βe ∈ {0.95, 0.7}, one validation domain with βe = 0.6 and one
test domain with βe = 0.1. CE-DD data is generated according to the structural equations

XS ← Bern(0.5);
Y ← XOR(XS, Bern(0.75));

XU ← XOR(XOR(Y, Bern(βe)), XS),

βe

XS

Y

XU

where Bern(β) denotes a Bernoulli random variable that is 1 with probability β and 0 with probability
1− β. Note that XS ⊥̸⊥ XU |Y, since XS directly influences XU . Following [31, App. B], we create
two training domains with βe ∈ {0.95, 0.8}, one validation domain with βe = 0.2, and one test
domain with βe = 0.1. For both datasets, the idea is that, during training, prediction based on the
stable XS results in lower accuracy (75%) than prediction based on the unstable XU . Thus, models
optimizing for prediction accuracy only—and not stability—will use XU and ultimately end up
with only 10% in the test domain. Importantly, while the stable predictor achieves 75% accuracy
in the test domain, this can be improved to 90% if XU is used correctly. Following [31], we use a
simple 3-layer network for both datasets and choose hyperparameters using the validation-domain
performance: see App. G.2 for further implementation details.

On the AC dataset, Table 2 shows that ERM performs poorly as it misuses XU , while IRM, ACTIR,
and SFB-no-adpt. do well by using only XS. Critically, only SFB (with adaptation) is able to harness
XU in the test domain without labels, leading to a near-optimal performance boost.

On the CE-DD dataset, Table 2 again shows that ERM performs poorly while IRM and SFB-no-adpt.
do well by using only the stable XS. However, we now see that ACTIR performs poorly since
its assumption of anti-causal structure no longer holds. This highlights another key advantage of
SFB over ACTIR: any stability penalty can be used, including those with weaker assumptions than
ACTIR’s anti-causal structure (e.g., IRM). Perhaps more surprisingly, SFB (with adaptation) performs
well despite the complementarity assumption XS ⊥⊥ XU |Y being violated. One explanation for this
is that complementarity is only weakly violated in the test domain. Another is that complementarity
is not necessary for SFB, with some weaker, yet-to-be-determined condition(s) sufficing. In App. I,
we provide a more detailed explanation and discussion of this observation.

ColorMNIST. We now consider the ColorMNIST dataset [1], described in § 1 and Fig. 1a. We follow
the experimental setup of Eastwood et al. [15, §6.1]; see App. G.3 for details. Table 3 shows that:
(i) SFB learns a stable predictor (“no adpt.”) with performance comparable to other stable/invariant

9

methods like IRM [1]; and (ii) only SFB (with adaptation) is capable of harnessing the spurious
color feature in the test domain without labels, leading to a near-optimal boost in performance.
Note that “Oracle no adpt.” refers to an ERM model trained on grayscale images, while “Oracle”
refers to an ERM model trained on labeled test-domain data. Table 6 of App. F.1.3 compares to
additional baseline methods, including V-REx [35], EQRM [15], Fishr [48] and more. Fig. 2 gives
more insight by showing performance across test domains of varying color-label correlation. On the
left, we see that SFB outperforms ERM and IRM, as well as additional adaptive baseline methods
in IRM + pseudo-labeling (PL, [36]) and IRM + T3A [30] (see App. G.1 for details). On the right,
ablations show that: (i) bias-correction (BC), post-hoc calibration (CA), and multiple rounds of
pseudo-labeling (Rn) improve adaptation performance; and (ii) without labels, SFB harnesses the
spurious color feature near-optimally in test domains of varying color-label correlation—the original
goal we set out to achieve in Fig. 1b. Further results and ablations are provided in App. F.1.

PACS. Table 2 shows that SFB’s stable (“no adpt.”) performance is comparable to that of the other
stable/invariant methods (IRM, ACTIR). One exception is the sketch domain (S)—the most severe
shift based on performance drop—where SFB’s stable predictor performs best. Another is on domains
A and C, where ACTIR performs better than SFB’s stable predictor. Most notable, however, is: (i) the
consistent performance boost that SFB gets from unsupervised adaptation; and (ii) SFB performing
best or joint-best on 3 of the 4 domains. These results suggest SFB can be useful on real-world
datasets where it is unclear if complementarity holds. In App. I, we discuss why this may be the case.

7 Conclusion & Future Work

This work demonstrated, both theoretically and practically, how to adapt our usage of spurious
features to new test domains using only a stable, complementary training signal. By using invariant
predictions to safely harness complementary spurious features, our proposed Stable Feature Boosting
algorithm can provide significant performance gains compared to only using invariant/stable features
or using unadapted spurious features—without requiring any true labels in the test domain.

Stable and calibrated predictors. Perhaps the greatest challenge in applying SFB in practice is the
need for a stable and calibrated predictor. While stable features may be directly observable in some
cases (e.g., using prior knowledge of causal relationships between the domain, features, and label,
as in Prop. D.2), they often need to be extracted from high-dimensional observations (e.g., images).
Several methods for stable-feature extraction have recently been proposed [1, 35, 58, 70, 15], with
future improvements likely to benefit SFB. Calibrating complex predictors like deep neural networks
is also an active area of research [18, 25, 72, 59], with future improvements likely to benefit SFB.

Weakening the complementarity condition. SFB also assumes that stable and unstable features are
complementarity, i.e., conditionally independent given the label. This assumption is implicit in the
causal generative models assumed by prior work [49, 68, 31], and future work may look to weaken it.
However, our experimental results suggest that SFB may be robust to violations of complementarity
in practice: on our synthetic data where complementarity does not hold (CE-DD) and real data where
we have no reason to believe it holds (PACS), SFB still outperformed baseline methods. We discuss
potential reasons for this in App. I and hope that future work can identify weaker sufficient conditions.

Exploiting newly-available test-domain features without labels. While we focused on domain
generalization (DG) and the goal of (re)learning how to use the same spurious features (e.g., color) in
a new way, our solution to the “marginal problem” in § 4.1 can be used to exploit a completely new
set of (complementary) features in the test domain that weren’t available in the training domains. For
example, given a stable predictor of diabetes based on causal features (e.g., age, genetics), SFB could
exploit new unlabeled data containing previously-unseen effect features (e.g., glucose levels). We
hope future work can explore such uses of SFB.

Acknowledgments and Disclosure of Funding

The authors thank Chris Williams and Ian Mason for providing feedback on an earlier draft, as well as
the MPI Tübingen causality group for helpful discussions and comments. This work was supported
by the Tübingen AI Center (FKZ: 01IS18039B) and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy – EXC number 2064/1 – Project
number 390727645. The authors declare no competing interests.

10

References
[1] Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2020). Invariant risk minimization.

arXiv:1907.02893. [Cited on pages 1, 2, 3, 4, 8, 9, 10, 26, 27, 29, and 31.]

[2] Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? Advances in Neural
Information Processing Systems, 27. [Cited on page 19.]

[3] Bandi, P., Geessink, O., Manson, Q., Van Dijk, M., Balkenhol, M., Hermsen, M., Bejnordi,
B. E., Lee, B., Paeng, K., Zhong, A., et al. (2018). From detection of individual metastases
to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE
Transactions on Medical Imaging, 38(2):550–560. [Cited on pages 8, 27, 28, and 29.]

[4] Beery, S., Van Horn, G., and Perona, P. (2018). Recognition in terra incognita. In Proceedings of
the European Conference on Computer Vision, pages 456–473. [Cited on page 3.]

[5] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. (2010). A
theory of learning from different domains. Machine Learning, 79(1):151–175. [Cited on page 32.]

[6] Bickel, S., Brückner, M., and Scheffer, T. (2009). Discriminative learning under covariate shift.
Journal of Machine Learning Research, 10(9). [Cited on page 26.]

[7] Blanchard, G., Flaska, M., Handy, G., Pozzi, S., and Scott, C. (2016). Classification with
asymmetric label noise: Consistency and maximal denoising. Electronic Journal of Statistics,
10:2780–2824. [Cited on pages 6, 19, and 32.]

[8] Blanchard, G., Lee, G., and Scott, C. (2011). Generalizing from several related classification tasks
to a new unlabeled sample. In Advances in Neural Information Processing Systems, volume 24.
[Cited on page 3.]

[9] Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Wortman, J. (2007). Learning bounds for
domain adaptation. Advances in Neural Information Processing Systems, 20. [Cited on page 32.]

[10] Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In
Proceedings of the eleventh annual conference on Computational learning theory, pages 92–100.
[Cited on page 32.]

[11] Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 535–541. [Cited on page 19.]

[12] Bui, M.-H., Tran, T., Tran, A., and Phung, D. (2021). Exploiting domain-specific features to
enhance domain generalization. In Advances in Neural Information Processing Systems, volume 34.
[Cited on page 2.]

[13] Eastwood, C., Mason, I., and Williams, C. (2021). Unit-level surprise in neural networks. In I
(Still) Can’t Believe It’s Not Better! NeurIPS 2021 Workshop. [Cited on page 3.]

[14] Eastwood, C., Mason, I., Williams, C., and Schölkopf, B. (2022a). Source-free adaptation to
measurement shift via bottom-up feature restoration. In International Conference on Learning
Representations. [Cited on page 2.]

[15] Eastwood, C., Robey, A., Singh, S., von Kügelgen, J., Hassani, H., Pappas, G. J., and Schölkopf,
B. (2022b). Probable domain generalization via quantile risk minimization. In Advances in Neural
Information Processing Systems. [Cited on pages 1, 2, 3, 4, 8, 9, 10, 29, and 31.]

[16] Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611. [Cited on page 3.]

[17] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pages 1126–1135. [Cited on
page 3.]

[18] Flach, P. A. (2016). Classifier calibration. In Encyclopedia of machine learning and data
mining. Springer US. [Cited on page 10.]

11

[19] Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann. Univ.
Lyon, 3ˆ e serie, Sciences, Sect. A, 14:53–77. [Cited on page 5.]

[20] Galstyan, A. and Cohen, P. R. (2008). Empirical comparison of “hard” and “soft” label
propagation for relational classification. In Inductive Logic Programming: 17th International
Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers 17, pages
98–111. Springer. [Cited on pages 2 and 6.]

[21] Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann,
F. A. (2020). Shortcut learning in deep neural networks. Nature Machine Intelligence, 2:665–673.
[Cited on pages 1 and 3.]

[22] Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical de-
pendence with Hilbert-Schmidt norms. In Algorithmic Learning Theory: 16th International
Conference, ALT 2005, Singapore, October 8-11, 2005. Proceedings 16, pages 63–77. Springer.
[Cited on page 8.]

[23] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Schölkopf, B. (2009).
Covariate shift by kernel mean matching. Dataset shift in machine learning, 3(4):5. [Cited on
page 26.]

[24] Gulrajani, I. and Lopez-Paz, D. (2020). In search of lost domain generalization. arXiv preprint
arXiv:2007.01434. [Cited on pages 3, 27, 30, and 31.]

[25] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural
networks. In International Conference on Machine Learning, pages 1321–1330. [Cited on pages 8,
10, 28, 31, and 32.]

[26] Hendrycks, D. and Dietterich, T. (2019). Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations. [Cited
on page 1.]

[27] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531. [Cited on page 19.]

[28] Hoeffding, W. (1940). Masstabinvariante korrelationstheorie. Schriften des Mathematischen
Instituts und Instituts fur Angewandte Mathematik der Universitat Berlin, 5:181–233. [Cited on
page 5.]

[29] Hoeffding, W. (1941). Masstabinvariante korrelationsmasse für diskontinuierliche verteilungen.
Archiv für mathematische Wirtschafts-und Sozialforschung, 7:49–70. [Cited on page 5.]

[30] Iwasawa, Y. and Matsuo, Y. (2021). Test-time classifier adjustment module for model-agnostic
domain generalization. In Advances in Neural Information Processing Systems. [Cited on pages 2,
10, 30, and 31.]

[31] Jiang, Y. and Veitch, V. (2022). Invariant and transportable representations for anti-causal
domain shifts. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural
Information Processing Systems. [Cited on pages 3, 4, 5, 8, 9, 10, 25, 26, 27, 30, 31, and 32.]

[32] Kirichenko, P., Izmailov, P., and Wilson, A. G. (2022). Last layer re-training is sufficient for
robustness to spurious correlations. In Advances in Neural Information Processing Systems. [Cited
on page 3.]

[33] Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W.,
Yasunaga, M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw, B. A.,
Haque, I. S., Beery, S., Leskovec, J., Kundaje, A., Pierson, E., Levine, S., Finn, C., and Liang, P.
(2021). WILDS: A benchmark of in-the-wild distribution shifts. In International Conference on
Machine Learning. [Cited on pages 8, 27, and 32.]

[34] Krogel, M.-A. and Scheffer, T. (2004). Multi-relational learning, text mining, and semi-
supervised learning for functional genomics. Machine Learning, 57:61–81. [Cited on page 32.]

12

[35] Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D., Priol, R. L.,
and Courville, A. (2021). Out-of-distribution generalization via risk extrapolation (REx). In
International Conference on Machine Learning, volume 139, pages 5815–5826. [Cited on pages 1,
8, 10, 29, and 31.]

[36] Lee, D.-H. et al. (2013). Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML,
volume 3. [Cited on pages 2, 6, 10, and 30.]

[37] Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. (2017a). Deeper, broader and artier domain
generalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[Cited on page 27.]

[38] Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., and Li, L.-J. (2017b). Learning from noisy labels
with distillation. In Proceedings of the IEEE international conference on computer vision, pages
1910–1918. [Cited on page 32.]

[39] Liang, J., Hu, D., and Feng, J. (2020). Do we really need to access the source data? Source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning (ICML), pages 6028–6039. [Cited on page 2.]

[40] Makar, M., Packer, B., Moldovan, D., Blalock, D., Halpern, Y., and D’Amour, A. (2022).
Causally motivated shortcut removal using auxiliary labels. In International Conference on
Artificial Intelligence and Statistics, pages 739–766. PMLR. [Cited on pages 2, 8, and 29.]

[41] Mansour, Y., Mohri, M., and Rostamizadeh, A. (2008). Domain adaptation with multiple
sources. Advances in neural information processing systems, 21. [Cited on page 32.]

[42] Muandet, K., Balduzzi, D., and Schölkopf, B. (2013). Domain generalization via invariant
feature representation. In International Conference on Machine Learning, pages 10–18. [Cited on
page 3.]

[43] Nagarajan, V., Andreassen, A., and Neyshabur, B. (2021). Understanding the failure modes
of out-of-distribution generalization. In International Conference on Learning Representations.
[Cited on page 3.]

[44] Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. (2013). Learning with noisy
labels. Advances in neural information processing systems, 26. [Cited on pages 6, 19, and 32.]

[45] Peters, J., Bühlmann, P., and Meinshausen, N. (2016). Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society. Series
B (Statistical Methodology), pages 947–1012. [Cited on pages 1, 2, and 3.]

[46] Pezeshki, M., Kaba, O., Bengio, Y., Courville, A. C., Precup, D., and Lajoie, G. (2021). Gradient
starvation: A learning proclivity in neural networks. Advances in Neural Information Processing
Systems, 34:1256–1272. [Cited on page 29.]

[47] Puli, A. M., Zhang, L. H., Oermann, E. K., and Ranganath, R. (2022). Out-of-distribution gen-
eralization in the presence of nuisance-induced spurious correlations. In International Conference
on Learning Representations. [Cited on pages 3, 8, and 29.]

[48] Rame, A., Dancette, C., and Cord, M. (2022). Fishr: Invariant gradient variances for out-of-
distribution generalization. In International Conference on Machine Learning, pages 18347–18377.
[Cited on pages 10 and 29.]

[49] Rojas-Carulla, M., Schölkopf, B., Turner, R., and Peters, J. (2018). Invariant models for causal
transfer learning. The Journal of Machine Learning Research, 19(1):1309–1342. [Cited on pages 3,
5, 10, 25, and 26.]

[50] Rosenfeld, E., Ravikumar, P., and Risteski, A. (2022). Domain-adjusted regression or: ERM
may already learn features sufficient for out-of-distribution generalization. arXiv preprint
arXiv:2202.06856. [Cited on page 3.]

13

[51] Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. (2021). Anchor regression:
Heterogeneous data meet causality. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 83(2):215–246. [Cited on page 2.]

[52] Rusak, E., Schneider, S., Pachitariu, G., Eck, L., Gehler, P. V., Bringmann, O., Brendel, W., and
Bethge, M. (2022). If your data distribution shifts, use self-learning. Transactions on Machine
Learning Research. [Cited on pages 2 and 6.]

[53] Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. (2019). Distributionally robust neural
networks. In International Conference on Learning Representations. [Cited on page 29.]

[54] Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5:197–227. [Cited
on page 32.]

[55] Schölkopf, B. (2022). Causality for machine learning. In Probabilistic and Causal Inference:
The Works of Judea Pearl, pages 765–804. Association for Computing Machinery. [Cited on
pages 2 and 26.]

[56] Scott, C., Blanchard, G., and Handy, G. (2013). Classification with asymmetric label noise:
Consistency and maximal denoising. In Conference on learning theory, pages 489–511. PMLR.
[Cited on page 32.]

[57] Shi, Y., Seely, J., Torr, P., N, S., Hannun, A., Usunier, N., and Synnaeve, G. (2022a). Gradient
matching for domain generalization. In International Conference on Learning Representations.
[Cited on page 29.]

[58] Shi, Y., Seely, J., Torr, P., Siddharth, N., Hannun, A., Usunier, N., and Synnaeve, G. (2022b).
Gradient matching for domain generalization. In International Conference on Learning Represen-
tations. [Cited on pages 3, 8, 10, and 29.]

[59] Silva Filho, T., Song, H., Perello-Nieto, M., Santos-Rodriguez, R., Kull, M., and Flach, P.
(2023). Classifier calibration: a survey on how to assess and improve predicted class probabilities.
Machine Learning, pages 1–50. [Cited on page 10.]

[60] Song, H., Kim, M., Park, D., Shin, Y., and Lee, J.-G. (2022). Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems.
[Cited on page 32.]

[61] Sugiyama, M. and Kawanabe, M. (2012). Machine learning in non-stationary environments:
Introduction to covariate shift adaptation. MIT press. [Cited on page 26.]

[62] Sugiyama, M., Krauledat, M., and Müller, K.-R. (2007). Covariate shift adaptation by im-
portance weighted cross validation. Journal of Machine Learning Research, 8(5). [Cited on
page 26.]

[63] Sun, Q., Murphy, K., Ebrahimi, S., and D’Amour, A. (2022). Beyond invariance: Test-time label-
shift adaptation for distributions with" spurious" correlations. arXiv preprint arXiv:2211.15646.
[Cited on page 2.]

[64] Tanaka, D., Ikami, D., Yamasaki, T., and Aizawa, K. (2018). Joint optimization framework
for learning with noisy labels. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5552–5560. [Cited on page 32.]

[65] Vapnik, V. (1991). Principles of risk minimization for learning theory. Advances in Neural
Information Processing Systems, 4. [Cited on pages 3 and 26.]

[66] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York, NY. [Cited on page 3.]

[67] Veitch, V., D’Amour, A., Yadlowsky, S., and Eisenstein, J. (2021). Counterfactual invariance
to spurious correlations: Why and how to pass stress tests. In Advances in Neural Information
Processing Systems. [Cited on pages 2, 8, and 29.]

[68] von Kügelgen, J., Mey, A., and Loog, M. (2019). Semi-generative modelling: Covariate-shift
adaptation with cause and effect features. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1361–1369. PMLR. [Cited on pages 5, 10, 25, and 26.]

14

[69] von Kügelgen, J., Mey, A., Loog, M., and Schölkopf, B. (2020). Semi-supervised learning,
causality, and the conditional cluster assumption. In Conference on Uncertainty in Artificial
Intelligence, pages 1–10. PMLR. [Cited on pages 5 and 26.]

[70] Wald, Y., Feder, A., Greenfeld, D., and Shalit, U. (2021). On calibration and out-of-domain
generalization. Advances in neural information processing systems, 34:2215–2227. [Cited on
pages 3, 10, and 29.]

[71] Wang, D., Shelhamer, E., Liu, S., Olshausen, B., and Darrell, T. (2021a). Tent: Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations.
[Cited on page 2.]

[72] Wang, D.-B., Feng, L., and Zhang, M.-L. (2021b). Rethinking calibration of deep neural
networks: Do not be afraid of overconfidence. Advances in Neural Information Processing
Systems, 34:11809–11820. [Cited on page 10.]

[73] Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., and Oermann, E. K. (2018).
Variable generalization performance of a deep learning model to detect pneumonia in chest
radiographs: a cross-sectional study. PLoS Medicine, 15(11). [Cited on page 3.]

[74] Zhang, J., Lopez-Paz, D., and Bottou, L. (2022). Rich feature construction for the optimization-
generalization dilemma. In International Conference on Machine Learning. [Cited on pages 3
and 31.]

[75] Zhao, H., Des Combes, R. T., Zhang, K., and Gordon, G. (2019). On learning invariant
representations for domain adaptation. In International Conference on Machine Learning, pages
7523–7532. PMLR. [Cited on page 32.]

[76] Zhao, H., Zhang, S., Wu, G., Moura, J. M., Costeira, J. P., and Gordon, G. J. (2018). Adversarial
multiple source domain adaptation. Advances in Neural Information Processing Systems, 31.
[Cited on page 32.]

[77] Zheng, J. and Makar, M. (2022). Causally motivated multi-shortcut identification & removal.
Advances in Neural Information Processing Systems. [Cited on pages 2, 8, and 29.]

15

Appendices

Table of Contents
A Proof and Further Discussion of Theorem 4.4 17

A.1 Proof of Theorem 4.4 . 17
A.2 Further discussion of Theorem 4.4 . 19

B Proof of Theorem 4.6 20

C Multiclass Case 22

D Supplementary Results 24
D.1 Trivial solution to joint-risk minimization . 24
D.2 Causal perspectives . 25

E Datasets 26

F Further Experiments 27
F.1 ColorMNIST . 28
F.2 Camelyon17 . 29

G Implementation Details 30
G.1 Adaptive baselines . 30
G.2 Synthetic experiments . 31
G.3 ColorMNIST experiments . 31
G.4 PACS experiments . 31
G.5 Camelyon17 experiments . 32

H Further Related Work 32

I Performance When Complementarity is Violated 33

16

A Proof and Further Discussion of Theorem 4.4

A.1 Proof of Theorem 4.4

In this section, we prove our main results regarding the marginal generalization problem presented in
Section 4, namely Thm. 4.4. For the reader’s convenience, we restate Thm. 4.4 here:
Theorem 4.4 (Marginal generalization with for binary labels and complementary features). Consider
three random variables XS, XU , and Y, where

1. Y is binary ({0, 1}-valued),
2. XS and XU are complementary features for Y (i.e., XS ⊥⊥ XU |Y), and
3. XS is informative of Y (XS ⊥̸⊥ Y).

Then, the joint distribution of (XS, XU , Y) can be written in terms of the joint distributions of (XS, Y)
and (XS, XU). Specifically, if Ŷ|XS ∼ Bernoulli(Pr[Y = 1|XS]) is pseudo-label and

ϵ0 := Pr[Ŷ = 0|Y = 0] and ϵ1 := Pr[Ŷ = 1|Y = 1] (A.1)

are the conditional probabilities that Ŷ and Y agree, given Y = 0 and Y = 1, respectively, then,

1. ϵ0 + ϵ1 > 1,

2. Pr[Y = 1|XU] =
Pr[Ŷ = 1|XU] + ϵ0 − 1

ϵ0 + ϵ1 − 1
, and

3. Pr[Y = 1|XS, XU] = σ (logit(Pr[Y = 1|XS]) + logit(Pr[Y = 1|XU])− logit(Pr[Y = 1])).

Before proving Thm. 4.4, we provide some examples demonstrating that the complementarity and
informativeness assumptions in Thm. 4.4 cannot be dropped.
Example A.1. Suppose XS and XU have independent Bernoulli(1/2) distributions. Then, XS is
informative of both of the binary variables Y1 = XSXU and Y2 = XS(1− XU) and both have
identical conditional distributions given XS, but Y1 and Y2 have different conditional distributions
given XU:

Pr[Y1 = 1|XU = 0] = 0 ̸= 1/2 = Pr[Y2 = 1|XU = 0].
Thus, the complementarity condition cannot be omitted.

On the other hand, XS and XU are complementary for both Y3 = XU and an independent Y4 ∼
Bernoulli(1/2) and both Y3 and Y4 both have identical conditional distributions given XS, but Y1
and Y2 have different conditional distributions given XU:

Pr[Y3 = 1|XU = 1] = 1/2 ̸= 1 = Pr[Y4 = 1|XU = 1].

Thus, the informativeness condition cannot be omitted.

Before proving Thm. 4.4, we prove Lemma 4.5, which allows us to safely divide by the quantity
ϵ0 + ϵ1 − 1 in the formula for Pr[Y = 1|XU], under the condition that XS is informative of Y.
Lemma 4.5. In the setting of Thm. 4.4, let ϵ0 and ϵ1 be the class-wise pseudo-label accuracies
defined in as in Eq. (A.1). Then, ϵ0 + ϵ1 = 1 if and only if XS and Y are independent.

Note that the entire result also holds, with almost identical proof, in the multi-environment setting of
Sections 3 and 5, conditioned on a particular environment E.

Proof. We first prove the forward implication. Suppose ϵ0 + ϵ1 = 1. If Pr[Y = 1] ∈ {0, 1}, then
XS and Y are trivially independent, so we may assume Pr[Y = 1] ∈ (0, 1). Then,

E[Ŷ] = ϵ1 Pr[Y = 1] + (1− ϵ0)(1− Pr[Y = 1]) (Law of Total Expectation)

= (ϵ0 + ϵ1 − 1)Pr[Y = 1] + 1− ϵ0

= 1− ϵ0 (ϵ0 + ϵ1 = 1)

= E[Ŷ|Y = 0]. (Definition of ϵ0)

17

Since Y is binary and Pr[Y = 1] ∈ (0, 1), it follows that E[Ŷ] = E[Ŷ|Y = 0] = E[Ŷ|Y = 1]; i.e.,
E[Ŷ|Y] ⊥⊥ Y. Since Ŷ is binary, its distribution is specified entirely by its mean, and so Ŷ ⊥⊥ Y. It
follows that the covariance between Ŷ and Y is 0:

0 = E[(Y−E[Y])(Ŷ−E[Ŷ])]

= E[E[(Y−E[Y])(Ŷ−E[Ŷ])|XS]] (Law of Total Expectation)

= E[E[Y−E[Y]|XS]E[Ŷ−E[Ŷ]|XS]] (Y ⊥⊥ Ŷ|XS)

= E[(E[Y−E[Y]|XS])
2],

where the final equality holds because Ŷ and Y have identical conditional distributions given XS.
Since the L2 norm of a random variable is 0 if and only if the variable is 0 almost surely, it follows
that, PXS -almost surely,

0 = E[Y−E[Y]|XS] = E[Y|XS]−E[Y],
so that E[Y|XS] ⊥⊥ XS. Since Y is binary, its distribution is specified entirely by its mean, and so
Y ⊥⊥ XS, proving the forward implication.

To prove the reverse implication, suppose XS and Y are independent. Then Ŷ and Y are also
independent. Hence,

ϵ1 = E[Ŷ|Y = 1] = E[Ŷ|Y = 0] = 1− ϵ0,
so that ϵ0 + ϵ1 = 1.

We now use Lemma 4.5 to prove Thm. 4.4:

Proof. To begin, note that Ŷ has the same conditional distribution given XS as Y (i.e., PŶ|XS
= PY|XS

and that Ŷ is conditionally independent of Y given XS (Ŷ ⊥⊥ Y|XS). Then, since

Pr[Ŷ = 1] = E[Pr[Y = 1|XS]] = Pr[Y = 1], (A.2)
we have

ϵ1 = Pr[Ŷ = 1|Y = 1] =
Pr
[
Y = 1, Ŷ = 1

]
Pr[Y = 1]

(Definition of ϵ1)

=
Pr
[
Y = 1, Ŷ = 1

]
Pr[Ŷ = 1]

(Eq. (A.2))

=
EXS [Pr

[
Y = 1, Ŷ = 1|XS

]
]

EXS [Pr[Ŷ = 1|XS]]
(Law of Total Expectation)

=
EXS [Pr[Y = 1|XS]Pr[Ŷ = 1|XS]]

EXS [Pr[Ŷ = 1|XS]]
(Ŷ ⊥⊥ Y|XS)

=
EXS

[
(Pr[Y = 1|XS])

2
]

EXS [Pr[Y = 1|XS]]
(PŶ|XS

= PY|XS
)

entirely in terms of the conditional distribution PY|XS
and the marginal distribution PXS . Similarly,

ϵ0 can be written as ϵ0 =
EXS

[
(Pr[Y=0|XS])

2
]

EXS [Pr[Y=0|XS]]
. Meanwhile, by the law of total expectation, and the

assumption that XS (and hence Ŷ) is conditionally independent of XU given Y, the conditional
distribution PŶ|XU

of Ŷ given XU can be written as

Pr[Ŷ = 1|XU]

= Pr[Ŷ = 1|Y = 0, XU]Pr[Y = 0|XU] + Pr[Ŷ = 1|Y = 1, XU]Pr[Y = 1|XU]

= Pr[Ŷ = 1|Y = 0]Pr[Y = 0|XU] + Pr[Ŷ = 1|Y = 1]Pr[Y = 1|XU]

= (1− ϵ0)(1− Pr[Y = 1|XU]) + ϵ1 Pr[Y = 1|XU]

= (ϵ0 + ϵ1 − 1)Pr[Y = 1|XU] + 1− ϵ0.

18

By Lemma 4.5, the assumption XS ⊥̸⊥ Y implies ϵ0 + ϵ1 ̸= 1. Hence, re-arranging the above
equality gives us the conditional distribution PY|XU

of Y given XU purely in terms of the conditional
PY|XS

and PXS ,XU :

Pr[Y = 1|XU = XU] =
Pr[Ŷ = 1|XU = XU] + ϵ0 − 1

ϵ0 + ϵ1 − 1
.

It remains now to write the conditional distribution PY|XS ,XU
in terms of the conditional distributions

PY|XS
and PY|XU

and the marginal PY. Note that

Pr[Y = 1|XS, XU]

Pr[Y = 0|XS, XU]
=

Pr[XS, XU |Y = 1]Pr[Y = 1]
Pr[XS, XU |Y = 0]Pr[Y = 0]

(Bayes’ Rule)

=
Pr[XS|Y = 1]Pr[XU |Y = 1]Pr[Y = 1]
Pr[XS|Y = 0]Pr[XU |Y = 0]Pr[Y = 0]

(Complementarity)

=
Pr[Y = 1|XS]Pr[Y = 1|XU]Pr[Y = 0]
Pr[Y = 0|XS]Pr[Y = 0|XU]Pr[Y = 1]

. (Bayes’ Rule)

It follows that the logit of Pr[Y = 1|XS, XU] can be written as the sum of a term depending only on
XS, a term depending only on XU , and a constant term:

logit (Pr[Y = 1|XS, XU]) = log
Pr[Y = 1|XS, XU]

1− Pr[Y = 1|XS, XU]

= log
Pr[Y = 1|XS, XU]

Pr[Y = 0|XS, XU]

= log
Pr[Y = 1|XS]

Pr[Y = 0|XS]
+ log

Pr[Y = 1|XU]

Pr[Y = 0|XU]
− log

Pr[Y = 1]
Pr[Y = 0]

= logit (Pr[Y = 1|XS]) + logit (Pr[Y = 1|XU])− logit (Pr[Y = 1]) .

Since the sigmoid σ is the inverse of logit,

Pr[Y = 1|XS, XU] = σ (logit (Pr[Y = 1|XS]) + logit (Pr[Y = 1|XU])− logit (Pr[Y = 1])) ,

which, by Eq. (4.3), can be written in terms of the conditional distribution PY|XS
and the joint

distribution PXS ,XU .

A.2 Further discussion of Theorem 4.4

Connections to learning from noisy labels. Thm. 4.4 leverages two theoretical insights about the
special structure of pseudo-labels that complement results in the literature on learning from noisy
labels. First, Blanchard et al. [7] showed that learning from noisy labels is possible if and only
if the total noise level is below the critical threshold ϵ0 + ϵ1 > 1; in the case of learning from
pseudo-labels, we show (see Lemma 4.5 in Appendix A.1) that this is satisfied if and only if XS is
informative of Y (i.e., Y ⊥̸⊥ XS). Second, methods for learning under label noise commonly assume
knowledge of ϵ0 and ϵ1 [44], which may be unrealistic in applications where we have absolutely
no true (i.e., test-domain) labels; however, for pseudo-labels sampled from a known conditional
probability distribution PY|XS

, one can express these noise levels in terms of PY|XS
and PXS and

thereby estimate them without any true labels, as on line 3 of Alg. 1.

Possible applications of Thm. 4.4 beyond domain adaptation The reason we wrote Thm. 4.4 in the
more general setting of the marginal problem rather than in the specific context of domain adaptation
is that we envision possible applications to a number of problems besides domain adaptation. For
example, suppose that, after learning a calibrated machine learning model M1 using a feature XS, we
observe an additional feature XU . In the case that XS and XU are complementary, Thm. 4.4 justifies
using the student-teacher paradigm [11, 2, 27] to train a model for predicting Y from XU (or from
(XS, XU) jointly) based on predictions from M1. This could be useful if we don’t have access to
labeled pairs (XU , Y), or if retraining a model using XS would require substantial computational
resources or access to sensitive or private data. Exploring such approaches could be a fruitful direction
for future work

19

B Proof of Theorem 4.6

This appendix provides a proof of Thm. 4.6, which provides conditions under which our proposed
domain adaptation procedure (Alg. 1) is consistent.

We state a formal version of Thm. 4.6:
Theorem 4.6 (Consistency of the bias-corrected classifier). Assume

1. XS is stable,

2. XS and XU are complementary, and

3. XS is informative of Y (i.e., XS ⊥̸⊥ Y).

Let η̂n : XS × XU → [0, 1] given by

η̂n(xS, xU) = σ

(
fS(xS) + logit

(
η̂U,n(xU) + ϵ̂0,n − 1

ϵ̂0,n + ϵ̂1,n − 1

)
− β1

)
, for all (xS, xU) ∈ XS×XU ,

denote the bias-corrected regression function estimate proposed in Alg. 1, and let ĥn : XS ×XU →
{0, 1} given by

ĥn(xS, xU) = 1{η̂(xS, xU) > 1/2}, for all (xS, xU) ∈ XS ×XU ,
denote the corresponding hard classifier. Let ηU : XU → [0, 1], given by ηU(xU) = Pr[Y =
1|XU = xU , E = 1] for all xU ∈ XU , denote the true regression function over XU , and let η̂U,n
denote its estimate as assumed in Line 4 of Alg. 1. Then, as n→ ∞,

(a) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) in probability, then η̂n and ĥn are
weakly consistent (i.e., η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗) in
probability).

(b) if, for PXU -almost all xU ∈ XU , η̂U,n(xU)) → ηU(xU) almost surely, then η̂n and ĥn are
strongly consistent (i.e., η̂n(xS, xU)→ η(xS, xU) PXS ,XU -almost surely and R(ĥn)→ R(h∗)
a.s.).

Before proving Thm. 4.6, we provide a few technical lemmas. The first shows that almost-everywhere
convergence of regression functions implies convergence of the corresponding classifiers in classifi-
cation risk:

Lemma B.1. Consider a sequence of regression functions η, η1, η2, ... : X → [0, 1]. Let h, h1, h2, ... :
X → {0, 1} denote the corresponding classifiers

h(x) = 1{η(x) > 1/2} and hi(x) = 1{ηi(x) > 1/2}, for all i ∈N, x ∈ X .

(a) If ηn(x)→ η(x) for PX-almost all x ∈ X in probability, then R(hn)→ R(h∗) in probability.

(b) If ηn(x) → η(x) for PX-almost all x ∈ X almost surely as n → ∞, then R(hn) → R(h)
almost surely.

Proof. Note that, since hn(x) ̸= h(x) implies |ηn(x)− η(x)| ≥ |η(x)− 1/2|,
1{hn(x) ̸= h(x)} ≤ 1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}. (B.1)

We utilize this observation to prove both (a) and (b).

Proof of (a) Let δ > 0. By Inequality (B.1) and partitioning X based on whether |2η(X)− 1| ≤
δ/2,

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]
≤ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]
= EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| > δ/2}]

+ EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}1{|2η(X)− 1| ≤ δ/2}]
≤ EX [1{|ηn(X)− η(X)| > δ/2}] + δ/2.

20

Hence,

lim
n→∞

Pr
ηn

[EX [|2η(X)− 1|1{hn(X) ̸= h(X)}] > δ]

≤ lim
n→∞

Pr
ηn

[EX [1{|ηn(X)− η(X)| > δ/2}] > δ/2]

≤ lim
n→∞

2
δ

Eηn [EX [1{|ηn(X)− η(X)| > δ/2}]] (Markov’s Inequality)

= lim
n→∞

2
δ

EX
[
Eηn [1{|ηn(X)− η(X)| > δ/2}]

]
(Fubini’s Theorem)

=
2
δ

EX

[
lim

n→∞
Pr
ηn

[|ηn(X)− η(X)| > δ/2]
]

(Dominated Convergence Theorem)

= 0. (ηn(X)→ η(X), PX-a.s., in probability)

Proof of (b) For any x ∈ X with η(x) ̸= 1/2, if ηn(x) → η(x) then 1{|ηn(x) − η(x)| ≥
|η(x)− 1/2|} → 0. Hence, by Inequality (B.1), the dominated convergence theorem (with |2η(x)−
1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|} ≤ 1), and the assumption that ηn(x)→ η(x) for PX-almost
all x ∈ X almost surely,

lim
n→∞

EX [|2η(X)− 1|1{hn(X) ̸= h(X)}]

≤ lim
n→∞

EX [|2η(X)− 1|1{|ηn(X)− η(X)| ≥ |η(X)− 1/2|}]

= EX

[
lim

n→∞
|2η(X)− 1|1{|ηn(x)− η(x)| ≥ |η(x)− 1/2|}

]
= 0, almost surely.

Our next lemma concerns an edge case in which the features XS and XU provide perfect but
contradictory information about Y, leading to Equation (4.4) being ill-defined. We show that this can
happen only with probability 0 over (XS, XU) ∼ PXS ,XU can thus be safely ignored:

Lemma B.2. Consider two predictors XS and XY of a binary label Y. Then,

Pr
XS ,XU

[E[Y|XS] = 1 and E[Y|XU] = 0] = Pr
XS ,XU

[E[Y|XS] = 0 and E[Y|XU] = 1] = 0.

Proof. Suppose, for sake of contradiction, that the event

A := {(xS, xU) : E[Y|XS = xS] = 1 and E[Y|XU = xU] = 0}
has positive probability. Then, the conditional expectation E[Y|A] is well-defined, giving the
contradiction

1 = EXS [E[Y|E, XS]] = E[Y|A] = EXU [E[Y|E, XU]] = 0.
The case E[Y|XS] = 0 and E[Y|XU] = 1 is similar.

We now utilize Lemmas B.1 and B.2 to prove Thm. 4.6.

Proof. By Lemma B.1, it suffices to prove that η̂(xS, xU) → η(xS, xU), for PXS ,XU -almost all
(xS, xU) ∈ XS ×XU , in probability (to prove (a)) and almost surely (to prove (b)).

Finite case We first consider the case when both Pr[Y|XS = xS], Pr[Y|XU = xU] ∈ (0, 1), so

that fS(xS) and logit
(

η̃(xU)+ϵ0−1
ϵ0+ϵ1−1

)
are both finite. Since

η̂S,U(xS, xU)− ηS,U(xS, xU)

= σ

(
fS(xS) + logit

(
η̂U,1(xU) + ϵ̂0 − 1

ϵ̂0 + ϵ̂1 − 1

)
− β̂1,n

)
− σ

(
fS(xS) + logit

(
η̃(xU) + ϵ0 − 1

ϵ0 + ϵ1 − 1

)
− β1

)
,

where the sigmoid σ : R → [0, 1] is continuous, by the continuous mapping theorem and the
assumption that η̂U,1(xU)→ η̃(xU), to prove both of these, it suffices to show:

21

(i) ϵ̂0 → ϵ0 and ϵ̂1 → ϵ1 almost surely as n→ ∞.

(ii) β̂1,n → β1 ∈ (−∞, ∞) almost surely as n→ ∞.

(iii) The mapping (a, b, c) 7→ logit
(

a+b−1
b+c−1

)
is continuous at (η̃(xU), ϵ0, ϵ1).

We now prove each of these in turn.

Proof of (i) Since Ŷi ⊥⊥ Yi|XS and 0 < Pr[Ŷ = 1], by the strong law of large numbers and the
continuous mapping theorem,

ϵ̂1 =
1
n1

n

∑
i=1

Ŷiσ(fS(Xi)) =
1
n ∑n

i=1 Ŷiσ(fS(Xi))
1
n ∑n

i=1 Ŷi
→ E[σ(fS(X))1{Ŷ = 1}]

Pr[Ŷ = 1]
= E[σ(fS(X))|Ŷ = 1] = ϵ1,

almost surely as n→ ∞. Similarly, since Pr[Ŷ = 0] = 1− Pr[Ŷ = 1] > 0, ϵ̂0 → ϵ0 almost surely.

Proof of (ii) Recall that

β̂1,n = logit

(
1
n

n

∑
i=1

Ŷi

)
.

By the strong law of large numbers, 1
n ∑n

i=1 Ŷi → Pr[Ŷ = 1|E = 1] = Pr[Y = 1|E = 1].
Since we assumed Pr[Y = 1|E = 1] ∈ (0, 1), it follows that the mapping a 7→ logit(a) is
continuous at a = Pr[Y = 1|E = 1]. Hence, by the continuous mapping theorem, β̂1,n →
logit (Pr[Y = 1|E = 1]) = β1 almost surely.

Proof of (iii) Since the logit function is continuous on the open interval (0, 1) and we assumed
ϵ0 + ϵ1 > 1, it suffices to show that 0 < η̃(xU) + ϵ0 − 1 < ϵ0 + ϵ1 − 1. Since, according to
Thm. 4.4,

η̃(xU) = (ϵ0 + ϵ1 − 1)η∗(xU)) + 1− ϵ0,
this holds as long as 0 < η∗(xU) < 1, as we assumed for PXU -almost all xU ∈ XU .

Infinite case We now address the case where either Pr[Y|XS = xS] ∈ {0, 1} or Pr[Y|XU =
xU] ∈ {0, 1}. By Lemma B.2, only one of these can happen at once, PXS ,XU -almost surely. Hence,
since limn→∞ β̂1,n is also finite almost surely, if Pr[Y|XS = xS] ∈ {0, 1}, then η̂(xS, xU) =
σ(logit(Pr[Y|XS = xS])) = η(xS, xU), while, if Pr[Y|XU = xU] ∈ {0, 1}, then η̂(xS, xU) →
σ (logit(Pr[Y|XU = xU])) = η(xS, xU), in probability or almost surely, as appropriate.

C Multiclass Case

In the main paper, to simplify notation, we presented our unsupervised test-domain adaptation method
in the case of binary labels Y. However, in many cases, including several of our experiments in
Section 6, the label Y can take more than 2 distinct values. Hence, in this section, we show how to
generalize our method to the multiclass setting and then present the exact procedure (Alg. 2) used in
our multiclass experiments in Section 6.

Suppose we have K ≥ 2 classes. We “one-hot encode” these classes, so that Y takes values in the set

Y = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} ⊆ {0, 1}K.

Let ϵ ∈ [0, 1]Y×Y with
ϵy,y′ = Pr[Ŷ = y|Y = y′]

denote the class-conditional confusion matrix of the pseudo-labels. Then, we have

E[Ŷ|XU] = ∑
y∈Y

E[Ŷ|Y = y, XU]Pr[Y = y|XU] (Law of Total Expectation)

= ∑
y∈Y

E[Ŷ|Y = y]Pr[Y = y|XU] (Complementary)

= ϵ E[Y|XU]. (Definition of ϵ)

22

When ϵ is non-singular, this has the unique solution E[Y|XU] = ϵ−1 E[Ŷ|XU], giving a multiclass
equivalent of Eq. (4.3) in Thm. 4.4. In practice, however, it is numerically more stable to estimate
E[Y|XU] by the least-squares solution

arg min
p∈∆Y

∥∥∥ϵp−E[Ŷ|XU]
∥∥∥

2
,

which is what we will do in Algorithm 2. To estimate ϵ without observing the label Y in the test
domain, note that

ϵy,y′ = Pr[Ŷ = y|Y = y′] =
Pr[Ŷ = y, Y = y′]

Pr[Y = y′]

=
E
[
Pr[Ŷ = y, Y = y′|XS]

]
E [Pr[Y = y′|XS]]

=
E
[
Pr[Ŷ = y|XS]Pr[Y = y′|XS]

]
E [Pr[Y = y′|XS]]

=
E
[

f1,y(XS) f1,y′(XS)
]

E
[

f1,y′(XS)
] .

This suggests the estimate

ϵ̂y,y′ =
∑n

i=1 f̂S,y(XS,i) f̂S,y′(XS,i)

∑n
i=1 f̂S,y′(XS,i)

=
n

∑
i=1

f̂S,y(XS,i)
f̂S,y′(XS,i)

∑n
i=1 f̂S,y′(XS,i)

of each ϵy,y′ , or, in matrix notation,

ϵ̂ = f ⊺S (XS)Normalize(fS(XS)),

where Normalize(X) scales each column of X to sum to 1. This gives us a multiclass equivalent of
Line 3 in Alg. 1.

The multiclass versions of Eq. (4.4) and Line 6 of Alg. 1 are slightly less straightforward. Specifically,
whereas, in the binary case, we used the fact that Pr[XS, XU |Y ̸= 1] = Pr[XS, XU |Y = 0] =
Pr[XS|Y = 0]Pr[XU |Y = 0] = Pr[XS|Y ̸= 1]Pr[XU |Y ̸= 1] (by complementarity), in the
multiclass case, we do not have Pr[XS, XU |Y ̸= 1] = Pr[XS|Y ̸= 1]Pr[XU |Y ̸= 1]. However,
following similar reasoning as in the proof of Thm. 4.4, we have

Pr[Y = y|XS, XU , E]
Pr[Y ̸= y|XS, XU , E]

=
Pr[Y = y|XS, XU , E]

∑y′ ̸=y Pr[Y = y′|XS, XU , E]

=
Pr[XS, XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[Y ̸= y|XS, XU , E]Pr[Y = y′|E] (Bayes’ Rule)

=
Pr[XS|Y = y, E]Pr[XU |Y = y, E]Pr[Y = y|E]

∑y′ ̸=y Pr[XS|Y = y′, E]Pr[XU |Y = y′, E]Pr[Y = y′|E] (XS ⊥⊥ XU |Y)

=
Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]

. (Bayes’ Rule)

Hence,

logit(Pr[Y = y|XS, XU , E]) = log

 Pr[Y = y|XS, E]Pr[Y = y|XU , E]

∑y′ ̸=y Pr[Y = y′|XS, E]Pr[Y = y′|XU , E] · Pr[Y=y|E]
Pr[Y=y′ |E]

= log

(
Qy

∑y′ ̸=y Qy′

)
= log

 Qy
∥Q∥1

∑y′ ̸=y
Qy′
∥Q∥1

 = logit
(

Qy

∥Q∥1

)
,

23

for Q ∈ RY defined by

Qy =
fS,y(XS) fU,y(XU)

Pr[Y = y]
for each y ∈ Y .

In particular, applying the sigmoid function to each side, we have

Pr[Y|XS, XU] =
Q
∥Q∥1

.

We can estimate Qy by

Q̂y =
fS,y(XS) fU,y(XU)
1
n ∑n

i=1 fS,y(XS,i)
.

In matrix notation, this is

Q̂ =
fS(XS) ◦ fU(XU)

1
n ∑n

i=1 fS(XS,i)
,

where ◦ denotes element-wise multiplication. It follows that, for p ∈ ∆Y (we will use py = Pr[Y =

y]), we can use the multiclass combination function C : ∆Y × ∆Y → ∆Y with

Cp(pS, pU) = Normalize
(

pS pU
p

)
, (C.1)

where the multiplication and division are performed element-wise and Normalize(x) = x
∥x∥1

, to
generalize Eq. (4.5). Putting these derivations together gives us our multiclass version of Alg. 1,
presented in Alg. 2, where ∆Y = {z ∈ [0, 1]K : ∑y∈Y zy = 1} denotes the standard probability
simplex over Y .

Algorithm 2: Multiclass bias-corrected adaptation procedure.

Input: Calibrated stable classifier fS : X → ∆Y with fS,y(xS) = Pr[Y = y|XS = xS], n
unlabeled samples {(XS,i, XU,i)}n

i=1
Output: Joint classifier f̂ : XS ×XU → ∆Y estimating Pr[Y = y|XS = xS, XU = xU]

1 Compute soft pseudo-labels {Ŷi}n
i=1 with Ŷi = fS(XS,i)

2 Compute soft class counts n̂ = ∑n
i=1 Ŷi

3 Estimate class-conditional pseudo-label confusion matrix ϵ̂← f ⊺S (XS)Normalize(f ⊺S (XS))

4 Fit unstable classifier f̃U(xU) to pseudo-labelled data {(XU,i, Ŷi)}n
i=1 // ≈ Pr[Ŷ=y|XU]

5 Bias-correction f̂U(xU) 7→ arg minp∈∆Y ∥ϵp− f̃U(xU)∥2 // ≈ Pr[Y=y|XU]

6 return f̂ (xS, xU) 7→Cn̂/n(fS(xS), f̂U(xU)) // Eq. (C.1), ≈ Pr[Y=y|XS, XU]

D Supplementary Results

D.1 Trivial solution to joint-risk minimization

In Prop. D.1 below, we assume that the stable fS(X) and unstable fU(X) predictors output logits. In
contrast, throughout the rest of the paper, we assume that fS(X) and fU(X) output probabilities in
[0, 1].

Proposition D.1. Suppose Ŷ| fS(X) ∼ Bernoulli(σ(fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,

0 ∈ arg min
fU :X→R

E[ℓ(Ŷ, σ(fS(X) + fU(X)))],

where ℓ(x, y) = −x log y− (1− x) log(1− y) denotes the cross-entropy loss.

24

Proof. Suppose Ŷ| fS(X) ∼ Bernoulli(σ(fS(X))), such that Ŷ ⊥⊥ fU(X)| fS(X). Then,

−E[ℓ(Ŷ, σ(fS(X) + fU(X)))]

= E[E[ℓ(Ŷ, σ(fS(X) + fU(X))]] (Law of Total Expectation)

= E[E[Ŷ log σ(fS(X) + fU(X))

+ (1−Y) log(1− σ(fS(X) + fU(X)))| fS(X)]]

= E[E[Ŷ| fS(XS)]E[log σ(fS(X) + fU(X))| fS(XS)]

+ E[(1− Ŷ)| fS(XS)]E[log(1− σ(fS(X) + fU(X)))| fS(X)]] (Ŷ ⊥⊥ fU(X)| fS(X))

= E[σ(fS(X)) log σ(fS(X) + fU(X))

+ (1− σ(fS(X))) log(1− σ(fS(X) + fU(X)))]. (Ŷ| fS(X) ∼ Bernoulli(σ(fS(X)))).

Since the cross-entropy loss is differentiable and convex, any fU(X) satisfying 0 =
d

d fU(X)
E[ℓ(Ŷ, fS(X) + fU(X))] is a minimizer. Indeed, under the mild assumption that the ex-

pectation and derivative commute, for fU(X) = 0,

d
d fU(X)

E[ℓ(Ŷ, σ(fS(X) + fU(X)))] = −E

[
σ(fS(X))

σ(fS(X) + fU(X))
+

1− σ(fS(X))

1− σ(fS(X) + fU(X))

]
= −E

[
σ(fS(X))

σ(fS(X))
+

1− σ(fS(X))

1− σ(fS(X))

]
= 0.

D.2 Causal perspectives

The stability, complementarity, and informativeness assumptions in Thm. 4.4 can be interpreted
as constraints on the causal relationships between the variables XS, XU , Y, and E. We conclude
this section with a result with a characterization of causal, directed acyclic graphs (DAGs) that are
consistent with these assumptions. In particular, this result shows that our assumptions are satisfied
in the “anti-causal” and “cause-effect” settings assumed in prior work [49, 68, 31], as well as work
assuming only covariate shift (i.e., changes in the distribution of X without changes in the conditional
PY|X).

E

XS,C XS,E

XU

Y

XS,S

Figure 3: Causal DAGs over the environment E, three types of stable features (causes XS,C, effects XS,E, and
spouses XS,S), unstable features XU , and label Y, under conditions 1)-6). At least one, and possibly both, of the
dashed edges E→ XS,C and E→ XU must be included. The dotted edge E→ XS,S may or may not be included.

Proposition D.2 (Possible Causal DAGs). Consider an environment variable E, two covariates XU
and XS, and a label Y. Assume there are no other hidden confounders (i.e., causal sufficiency). First,
assume:

1) E is a root (i.e., none of XU , XS, and Y is an ancestor of E).
2) XS is informative of Y (i.e., XS ⊥̸⊥ Y|E).
3) XS and XU are complementary predictors of Y; i.e., XS ⊥⊥ XU |(Y, E).
4) XS is stable (i.e., E ⊥⊥ Y|XS).

25

These are the four structural assumptions under which Theorems 4.4 and 4.6 show that the SFB
algorithm learns the conditional distribution PY|XS ,XU

in the test domain. Additionally, suppose

5) XU is unstable (i.e., E ⊥̸⊥ Y|XU), This is the case in which empirical risk minimization [ERM;
65] may suffer bias due to distribution shift, and hence when SFB may outperform ERM.

6) XU contains some information about Y that is not included in XS (i.e., XU ⊥̸⊥ Y|XS). This is
information we expect invariant risk minimization [IRM; 1] is unable to learn, and hence when
we expect SFB to outperform IRM.

Then, XU consists of causal descendants (“effects”) of Y, while three types of stable features are
possible:

1. causal ancestors XS,C of Y,

2. causal descendants XS,E of Y that are not also descendants of E,

3. causal spouses XS,S of Y (i.e., causal ancestors of XS,E).

Notable special cases of the DAG in Figure 3 include:

1. the “cause-effect” settings, studied by Rojas-Carulla et al. [49], von Kügelgen et al. [68, 69],
where XS is a cause of Y, XU is an effect of Y, and E may affect both XS and XU but may affect
Y only indirectly through XS. Note that this generalizes the commonly used “covariate shift”
assumption, as not only the covariate distribution PXS ,XU but also the conditional distribution
PY|XU

can change between environments.

2. the “anti-causal” setting, studied by Jiang and Veitch [31], where XS and XU are both effects of
Y, but XS is unaffected by E.

3. the widely studied “covariate shift” setting [62, 23, 6, 61], which corresponds (see Sections 3 and
5 of Schölkopf [55]) to a causal factorization P(X, Y) = P(X)P(Y|X) (i.e., in which the only
stable components XS are causes XS,C) of Y or unconditionally independent (e.g., causal spouses
XS,S)) of Y.

However, this model is more general than these special cases. Also, for sake of simplicity, we assumed
causal sufficiency here; however, in the presence of unobserved confounders, other types of stable
features are also possible; for example, if we consider the possibility of unobserved confounders U
influencing Y that are independent of E (i.e., invariant across domains), then our method can also
utilize stable features that are descendants of U (i.e., “siblings” of Y).

E Datasets

In our experiments, we consider five datasets: two (synthetic) numerical datasets and three image
datasets. We now describe each dataset.

Synthetic: Anti-causal (AC). We consider an anti-causal synthetic dataset based on that of
Jiang and Veitch [31, §6.1] where data is generated according to the following structural equations:

Y ← Rad(0.5);
XS ← Y · Rad(0.75);
XU ← Y · Rad(βe),

βe

XS

Y

XU

where the input X = (XS, XU) and Rad(β) denotes a Rademacher random variable that is −1 with
probability 1− β and +1 with probability β. Following Jiang and Veitch [31, §6.1], we create two
training domains with βe ∈ {0.95, 0.7}, one validation domain with βe = 0.6 and one test domain
with βe = 0.1.

Synthetic: Cause-effect with a direct XS-XU dependence (CE-DD). We also consider a synthetic
cause-effect dataset in which there is a direct dependence between XS and XU . In particular, follow-
ing Jiang and Veitch [31, App. B], data is generated according to the following structural equations:

26

XS ← Bern(0.5);
Y ← XOR(XS, Bern(0.75));

XU ← XOR(XOR(Y, Bern(βe)), XS),

βe

XS

Y

XU

where the input X = (XS, XU) and Bern(β) denotes a Bernoulli random variable that is 1 with
probability β and 0 with probability 1− β. Note that XS ⊥̸⊥ XU |Y, since XS directly influences XU .
Following Jiang and Veitch [31, App. B], we create two training domains with βe ∈ {0.95, 0.8}, one
validation domain with βe = 0.2, and one test domain with βe = 0.1.

ColorMNIST. We next consider the ColorMNIST dataset [1]. This transforms the original MNIST
dataset into a binary classification task (digit in 0–4 or 5–9) and then: (i) flips the label with probability
0.25, meaning that, across all 3 domains, digit shape correctly determines the label with probability
0.75; and (ii) colorizes the digit such that digit color (red or green) is a more informative but spurious
feature (see Fig. 4).

PACS. We next consider the PACS dataset [37]—a 7-class image-classification dataset consisting of
4 domains: photos (P), art (A), cartoons (C) and sketches (S), with examples shown in Fig. 4. Model
performances are reported for each domain after training on the other 3 domains.

Camelyon17. Finally, in the additional experiments of App. F.2, we consider the Camelyon17 [3]
dataset from the WILDS benchmark [33]: a medical dataset with histopathology images from 5
hospitals which use different staining and imaging techniques (see Fig. 4). The goal is to determine
whether or not a given image contains tumor tissue, making it a binary classification task across 5
domains (3 training, 1 validation, 1 test).

Camelyon17

PACS

ColorMNIST

Dataset Domains

Figure 4: Examples from ColorMNIST [1], PACS [37] and Camelyon17 [3]. Figure and examples
based on Gulrajani and Lopez-Paz [24, Table 3] and Koh et al. [33, Figure 4]. For ColorMNIST, we
follow the standard approach [1] and use the first two domains for training and the third for testing.
For PACS [37], we follow the standard approach [37, 24] and use each domain in turn for testing,
using the remaining three domains for training. For Camelyon17 [3], we follow WILDS [33] and
use the first three domains for training, the fourth for validation, and the fifth for testing.

F Further Experiments

This appendix provides further experiments which supplement those in the main text. In particular,
it provides: (i) an ablation on the ColorMNIST dataset showing the effects of bias correction, post-
hoc calibration and multiple rounds of pseudo-labelling on SFB’s performance (F.1.1); (ii) the

27

performance of SFB on the ColorMNIST dataset when using different stability penalties (F.1.2); and
(iii) results on a real-world medical dataset, Camelyon17 [3], where we find that all methods perform
similarly when properly tuned (F.2).

F.1 ColorMNIST

We now provide ablations on the ColorMNIST dataset to illustrate the effectiveness of the different
components of SFB. In particular, we focus on bias correction and calibration, while also showing
how multiple rounds of pseudo-labeling can improve performance in practice.

F.1.1 Ablations

Bias correction. To adapt the unstable classifier in the test domain, SFB employs the bias-corrected
adaptation algorithm of Alg. 1 (or Alg. 2 for the multi-class case) which corrects for biases caused by
possible disagreements between the stable-predictor pseudo-labels Ŷ and the true label Y. In this
(sub)section, we investigate the performance of SFB with and without bias correction (BC).

Calibration. As discussed in § 4.2, correctly combining the stable and unstable predictions post-
adaptation requires them to be properly calibrated. In particular, it requires the stable predictor fS to be
calibrated with respect to the true labels Y and the unstable predictor fU to be calibrated with respect
to the pseudo-labels Ŷ. In this (sub)section, we investigate the performance of SFB with and without
post-hoc calibration (in particular, simple temperature scaling [25]). More specifically, we investigate
the effect of calibrating the stable predictor (CS) and calibrating the unstable predictor (CU).

Multiple rounds of pseudo-labeling. While SFB learns the optimal unstable classifier he
U in the

test domain given enough unlabelled data, § 4.1 discussed how more accurate pseudo-labels Ŷ
improve the sample efficiency of SFB. In particular, in a restricted-sample setting, more accurate
pseudo-labels result in an unstable classifier he

U which better harnesses XU in the test domain. With
this in mind, note that, after adapting, we expect the joint predictions of SFB to be more accurate
than its stable-only predictions. This raises the question: can we use these improved predictions to
form more accurate pseudo-labels, and, in turn, an unstable classifier he

U that leads to even better
performance? Furthermore, can we repeat this process, using multiple rounds of pseudo-labelling to
refine our pseudo-labels and ultimately he

U? While this multi-round approach loses the asymptotic
guarantees of § 4.2, we found it to work quite well in practice. In this (sub)section, we thus investigate
the performance of SFB with and without multiple rounds of pseudo-labeling (PL rounds).

Table 4: SFB ablations on CMNIST. Means and standard errors are over 3 random seeds. BC: bias
correction. CS: post-hoc calibration of the stable classifier. CU: post-hoc calibration of the unstable
classifier. PL Rounds: Number of pseudo-labeling rounds used. GT adpt: “ground-truth” adaptation
using true labels in the test domain.

Algorithm Bias Calibration PL Rounds Test Acc.
Correction Stable Unstable

SFB no adpt. 1 70.6± 1.8

SFB 1 78.0± 2.9
+BC 1 83.4± 2.8
+CS 1 80.6± 3.4
+CU 1 76.6± 2.4
+BC+CS+CU 1 84.4± 2.2
+BC+CS 1 84.9± 2.6
+BC+CS 2 87.4± 1.9
+BC+CS 3 88.1± 1.8
+BC+CS 4 88.6± 1.3
+BC+CS 5 88.7± 1.3

SFB GT adpt. 1 89.0± 0.3

28

Results. Table 4 reports the ablations of SFB on ColorMNIST. Here we see that: (i) bias correction
significantly boosts performance (+BC); (ii) calibrating the stable predictor also boosts performance
without (+CS) and with (+BC+CS) bias correction, with the latter leading to the best performance;
(iii) calibrating the unstable predictor (with respect to the pseudo-labels) slightly hurts performance
without (+CU) and with (+BC+CS+CU) bias correction and stable-predictor calibration; (iv) multiple
rounds of pseudo-labeling boosts performance, while also reducing the performance variation across
random seeds; (v) using bias correction, stable-predictor calibration and 5 rounds of pseudo-labeling
results in near-optimal adaptation performance, as indicated by the similar performance of SFB when
using true labels Y to adapt he

U (denoted “SFB GT adpt.” in Table 4).

F.1.2 Different stability penalties

In our experiments of § 6, we used IRM for the stability term of our SFB method, given in Eq. (5.1).
However, as discussed in § 5, many other approaches exist for enforcing stability [35, 58, 47, 15,
67, 40, 77], and, in principle, any of these could be used. To illustrate this point, we now evaluate
the performance of SFB when using different stability penalties, namely IRM [1], VREx [35],
EQRM [15] and CLOvE [70]. For all penalties, we use SFB with bias correction, post-hoc calibration
of the stable predictor, and 5 rounds of pseudo-labeling (see the ablation study of App. F.1.1).

Table 5: CMNIST test-domain accuracies for SFB with different stability penalties. Shown are the
mean and standard error over 10 seeds.

Algorithm Without Adaptation With Adaptation
SFB w. IRM 70.6± 1.8 88.7± 1.3
SFB w. VREx 72.5± 1.0 88.7± 1.5
SFB w. EQRM 69.0± 2.8 88.2± 2.5
SFB w. CLOvE 67.0± 3.7 77.0± 6.6

F.1.3 Full results

We now provide extended/full results of those provided in the main text. In particular, Table 6
represents an extended version of Table 3 in the main text, comparing against many more baseline
methods. In addition, Table 7 provides the full numerical results for all adaptive baseline methods
(described in App. G.1), which correspond to the plots of Fig. 2 in the main text.

Table 6: CMNIST test-domain accuracies. Mean and standard error are over 10 seeds. Extended/full
version of Table 3 in the main text.

Algorithm Test Acc.
ERM 27.9± 1.5
GroupDRO [53] 29.0± 1.1
IRM [1] 69.7± 0.9
SD [46] 70.3± 0.6
IGA [57] 57.7± 3.3
Fishr [48] 70.1± 0.7
V-REx [35] 71.6± 0.5
EQRM [15] 71.4± 0.4
SFB no adpt. 70.6± 1.8
SFB 88.1± 1.8

Oracle no adpt. 72.1± 0.7
Oracle 89.9± 0.1

F.2 Camelyon17

We now provide results on the Camelyon17 [3] dataset. See App. E for a description of the dataset,
and App. G.5 for implementation details.

29

Algorithm Domain (Color-Label Correlation)

1.0 0.9 0.8 0.7 0.6 0.5 -0.6 -0.7 -0.8 -0.9 -1.0

ERM 97.5± 0.3 88.5± 0.4 79.7± 0.4 70.6± 0.5 61.4± 0.7 52.5± 0.4 43.5± 0.7 34.7± 0.7 25.1± 0.5 16.4± 0.4 7.6± 0.6
ERM+T3A 98.1± 0.2 88.9± 0.4 79.8± 0.4 70.4± 0.5 61.0± 0.8 51.7± 0.4 42.3± 0.7 33.0± 0.6 23.1± 0.4 13.8± 0.5 4.5± 0.5
ERM+PL (last) 97.6± 0.2 88.6± 0.3 79.7± 0.4 70.6± 0.5 61.4± 0.8 52.5± 0.4 43.4± 0.7 34.6± 0.7 25.0± 0.5 16.2± 0.3 7.4± 0.6
ERM+PL (all) 100.0± 0.0 90.0± 0.4 80.2± 0.4 70.1± 0.4 59.9± 0.8 50.1± 0.4 40.0± 0.5 30.1± 0.6 19.6± 0.3 9.9± 0.3 0.0± 0.1

IRM 70.6± 2.1 70.3± 1.9 70.4± 1.7 70.2± 1.1 69.9± 0.7 69.9± 0.7 70.1± 0.5 69.7± 0.6 69.8± 1.2 69.6± 1.6 69.4± 1.7
IRM+T3A 72.3± 1.7 71.2± 1.6 70.7± 1.6 70.2± 1.0 69.8± 0.7 69.9± 0.7 70.3± 0.6 70.6± 0.5 71.6± 1.1 72.4± 1.7 73.4± 1.9
IRM+PL (last) 70.8± 2.2 70.5± 1.9 70.5± 1.7 70.2± 1.1 69.9± 0.7 69.9± 0.6 70.0± 0.6 69.7± 0.6 69.9± 1.2 69.8± 1.6 69.7± 1.7
IRM+PL (all) 99.6± 1.2 89.4± 1.2 79.5± 1.3 68.7± 3.8 63.3± 4.7 63.5± 5.3 63.8± 4.5 67.5± 2.8 76.4± 4.2 87.2± 5.0 98.2± 3.0

SFB 100.0± 0.1 90.5± 0.5 79.8± 0.8 71.0± 1.1 70.9± 0.3 69.2± 0.4 68.4± 1.3 71.2± 0.3 79.3± 1.2 88.7± 1.3 98.9± 1.5

Table 7: CMNIST comparison with other test-time/source-free unsupervised domain adaptation
methods. Means and standard errors are over 10 seeds. The largest mean per column/domain is in
bold. “last”: only last-layer updated. “all”: all layers updated. Fig. 2 gives the corresponding plot.

Table 2 shows that ERM, IRM and SFB perform similarly on Camelyon17. In line with [24], we
found that a properly-tuned ERM model can be difficult to beat on real-world datasets, particularly
when the model is pre-trained on ImageNet and the dataset doesn’t contain severe distribution shift.
While we conducted this proper tuning for ERM, IRM, and SFB (see App. G.5), doing so for ACTIR
was non-trivial. We thus report the result from their paper [31, Table 1], which is likely lower due to
sub-optimal hyperparameters. In particular, we found that, for ERM and IRM, using a lower learning
rate (1e-5 vs 1e-4) and early stopping (1 vs 25 epochs) improved performance by 20 percentage
points, from around 70% [31, Table 1] to around 90% (Table 8 below). It remains to be seen whether
or not ACTIR can improve over a properly-tuned ERM model on Camelyon17.

While it may seem disappointing that SFB does not outperform the simpler methods of IRM and
ERM on Camelyon17, we note that SFB can only be expected to do well when there is some gain
in out-of-distribution performance from enforcing stability, e.g., when IRM outperforms ERM. The
identical performances of IRM and ERM in Table 8 indicate that, with ImageNet pre-training and
proper hyperparameter tuning, this is not the case for Camelyon17. Finally, despite the similar
performances, we note that adapting SFB on Camelyon17 still gives a small performance boost and
reduces the variance across random seeds.

Table 8: Camelyon17 test-domain accuracies. Mean and standard errors are over 5 random seeds. †:
Result taken from [31, Tab. 1] and is likely lower due to sub-optimal hyperparameters (they report
≈70% for ERM and IRM).

Algorithm Accuracy
ERM 90.2± 1.1
IRM 90.2± 1.1
ACTIR 77.7± 1.7†

SFB no adpt. 89.8± 1.2
SFB 90.3± 0.7

G Implementation Details

Below we provide further implementation details for the experiments of this work. Code is available
at: https://github.com/cianeastwood/sfb.

G.1 Adaptive baselines

For both the synthetic and CMNIST datasets, we compare against adaptive baseline methods by using
pseudo-labeling (PL, [36]) and test-time classifier adjustment (T3A, [30]) on top of both ERM and
IRM, choosing all adaptation hyperparameters using leave-one-domain-out cross-validation:

• ERM/IRM + PL (last): After training with ERM/IRM, we update the last layer using the model’s
own pseudo-labels [36].

• ERM/IRM + PL (all): After training with ERM/IRM, we update all layers using the model’s own
pseudo-labels [36].

30

https://github.com/cianeastwood/sfb

• ERM/IRM + T3A: After training with ERM/IRM, we replace the classifier (final layer) with the
template-based classifier of T3A [30]. This means: (i) computing template representations for each
class using pseudo-labeled test-domain data; and (ii) classifying each example based on its distance
to these templates.

G.2 Synthetic experiments

Following Jiang and Veitch [31], we use a simple three-layer network with 8 units in each hidden
layer and the Adam optimizer, choosing hyperparameters using the validation domain.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsuper-
vised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using
post-hoc temperature scaling, choosing the temperature to minimize the expected calibration er-
ror (ECE, [25]) on the validation domain. In addition, we use the Adam optimizer with an adaptation
learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via early stopping) using the
validation domain. Finally, we report the mean and standard error over 100 random seeds.

G.3 ColorMNIST experiments

Training details. We follow the setup of Eastwood et al. [15, §6.1] and build on their open-source
code5. In particular, we use the original MNIST training set to create training and validation sets for
each domain, and the original MNIST test set for the test sets of each domain. For all methods, we
use a 2-hidden-layer MLP with 390 hidden units, the Adam optimizer, a learning rate of 0.0001 with
cosine scheduling, and dropout with p=0.2. In addition, we use full batches (size 25000), 400 steps
for ERM pre-training (which directly corresponds to the delicate penalty “annealing” or warm-up
periods used by penalty-based methods on ColorMNIST [1, 35, 15, 74]), and 600 total steps. We
sweep over stability-penalty weights in {50, 100, 500, 1000, 5000} for IRM, VREx and SFB and
α’s in 1− {e−100, e−250, e−500, e−750, e−1000} for EQRM. As the stable (shape) and unstable (color)
features are conditionally independent given the label, we fix SFB’s conditional-independence penalty
weight λC = 0. As is the standard for ColorMNIST, we use a test-domain validation set to select
the best settings (after the total number of steps), and then report the mean and standard error over
10 random seeds on a test-domain test set. As in previous works, the hyperparameter ranges of all
methods are selected by peeking at test-domain performance. While far from ideal, this is quite
difficult to avoid with ColorMNIST and highlights a core problem with hyperparameter selection in
DG—as discussed by many previous works [1, 35, 24, 74, 15].

SFB adaptation details. For SFB’s unsupervised adaptation in the test domain, we use a batch
size of 2048 and employ the bias correction of Alg. 1. In addition, we calibrate the stable predictor
using post-hoc temperature scaling, choosing the temperature to minimize the expected calibration
error (ECE, [25]) across the two training domains. Again using the two training domains for
hyperparameter selection, we sweep over adaptation learning rates in {0.1, 0.01}, choose the best
adaptation step in [5, 20] (via early stopping), and sweep over the number of pseudo-labeling rounds
in [1, 5]. Finally, we report the mean and standard error over 3 random seeds for adaptation.

G.4 PACS experiments

We follow the setup of Jiang and Veitch [31, § 6.4] and build on their open-source code6. This
means using an ImageNet-pretrained ResNet-18, the Adam optimizer with a learning rate of 10−4,
and choosing hyperparameters using leave-one-domain-out cross-validation (akin to K-fold cross-
validation, except with domains). In particular, for each held-out test domain, we train 3 models—each
time leaving out 1 of the 3 training domains for validation—and then select hyperparameters based
on the best average performance across the held-out validation domains. Finally, we use the selected
hyperparameters to retrain the model using all 3 training domains.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20}, λC in {0.01, 0.1, 1}, and learning rates in
{10−4, 50−4}. For SFB’s unsupervised adaptation, we employ the multi-class bias correction of
Alg. 2 and calibrate the stable predictor using post-hoc temperature scaling, choosing the temperature

5https://github.com/cianeastwood/qrm/tree/main/CMNIST
6https://github.com/ybjiaang/ACTIR.

31

https://github.com/cianeastwood/qrm/tree/main/CMNIST
https://github.com/ybjiaang/ACTIR

to minimize the expected calibration error (ECE, [25]) across the three training domains. In addition,
we use the Adam optimizer with an adaptation learning rate of 0.01, choosing the number of adaptation
steps in [1, 20] (via early stopping) using the training domains. Finally, we report the mean and
standard error over 5 random seeds.

G.5 Camelyon17 experiments

We follow the setup of Jiang and Veitch [31, § 6.3] and build on their open-source code7. This
means using an ImageNet-pretrained ResNet-18, the Adam optimizer, and, following [33], choosing
hyperparameters using the validation domain (hospital 4). In contrast to [31], we use a learning rate
of 10−5 for all methods, rather than 10−4, and employ early stopping using the validation domain.
We found this to significantly improve all methods. E.g., the baselines of ERM and IRM improve by
approximately 20 percentage points, jumping from ≈ 70% to ≈ 90%.

For SFB, we sweep over λS in {0.01, 0.1, 1, 5, 10, 20} and λC in {0.01, 0.1, 1}. For SFB’s unsuper-
vised adaptation, we employ the bias correction of Alg. 1 and calibrate the stable predictor using
post-hoc temperature scaling, choosing the temperature to minimize the expected calibration er-
ror (ECE, [25]) on the validation domain. In addition, we use the Adam optimizer with an adaptation
learning rate of 0.01, choosing the number of adaptation steps in [1, 20] (via early stopping) using the
validation domain. Finally, we report the mean and standard error over 5 random seeds.

H Further Related Work

Learning with noisy labels. An intermediate goal in our work, namely learning a model to
predict Y from XU using pseudo-labels based on XS, is an instance of learning with noisy labels,
a widely studied problem [56, 44, 7, 60, 38, 64]. Specifically, under the complementarity assumption
(XS ⊥⊥ XU |Y), the accuracy of the pseudo-labels on each class is independent of XU , placing
us in the so-called class-conditional random noise model [56, 44, 7]. As we discuss in Section 4,
our theoretical insights about the special structure of pseudo-labels complement existing results on
learning under this model. Our bias-correction (Eq. (4.3)) for PY|XU

is also closely related to the
“method of unbiased estimators” [44]. However, rather than correcting the loss used in ERM, our
post-hoc bias correction applies to any calibrated classifier. Moreover, our ultimate goal, learning
a predictor of Y jointly using XS and XU , is not captured by learning with noisy labels.

Co-training. Our use of stable-feature pseudo-labels to train a classifier based on a disjoint subset of
(unstable) features is reminiscent of co-training [10]. Both methods benefit from conditional indepen-
dence of the two feature subsets given the label to ensure that they provide complementary informa-
tion.8 The key difference is that while co-training requires (a small number of) labeled samples from
the same distribution as the test data, our method instead uses labeled data from a different distribu-
tion (training domains), along with the assumption of a stable feature. Additionally, while co-training
iteratively refines two pre-trained classifiers symmetrically based on each other’s predictions, our
method only trains the unstable classifier, in a single iteration, using the stable classifier’s predictions.

Boosting. Our method of building a strong (albeit unstable) classifier using a weak (but stable)
one is reminiscent of boosting, in which one ensembles weak classifiers to create a single strong
classifier [54] and which inspires the name of our approach, “stable feature boosting (SFB)”. However,
whereas traditional boosting improves weak classifiers by examining how their predictions differ
from true labels, our adaptation method utilizes only pseudo-labels and needs no true labels from the
test domain. For example, while traditional boosting only refines functions of existing features, SFB
can utilize new features that are only available in the test domain.

Learning theory for domain generalization. In addition to often assuming particular kinds of
distribution shifts (e.g., covariate shift), existing error bounds for domain generalization often depend
on some notion of distance between training and test domains (which does not vanish as more data
is collected within domains) [9, 5, 76, 75] or assume that the test domain has a particular structural
relationship with the training domains (e.g., is a convex combination of training domains [41]).

7See Footnote 6.
8See Krogel and Scheffer [34], Blum and Mitchell [10, Theorem 1] for discussion of this assumption.

32

In contrast, under the structure of invariant and complementary features, we show that consistent
generalization (i.e., with generalization error vanishing as more data is collected within domains) is
possible in any test domain. Additionally, whereas these prior works derive uniform convergence
bounds (implying good generalization for ERM), our results demonstrate the benefit of an additional
bias-correction step after training. We also note that, in much of this literature, “invariance” refers to
invariance of the covariate marginal distribution PX across domains; in contrast, our notion of stable
features (Defn. 4.1) refers to invariance of the conditional PY|X .

I Performance When Complementarity is Violated

Thm. 4.4 justifies the bias correction of Eq. (4.3) under the assumption that stable XS and unstable
XU features are complementary, i.e., conditionally independent given the label Y. In this section,
we discuss what happens if this assumption is relaxed and provide some intuition for why the bias
correction appears to help even when complementarity is violated (as we observed in some of our
experiments). In particular, we provide an argument that, in most cases, the bias correction should
improve the accuracy of a naive classifier by making it agree more often with the Bayes-optimal
classifier. While not a rigorous proof, we believe that this argument provides some insight into SFB’s
strong performance even when complementarity is violated.

In the absence of complementarity, the quantity Pr[Ŷ = 1|Y = 1, Xu = xU] no longer reduces to
the class-wise accuracy Pr[Ŷ = 1|Y = 1]; thus we write more generally ϵ1(xU) = Pr[Ŷ = 1|Y =

1, Xu = xU], and we write ϵ1 = EXU [ϵ1(XU)] = Pr[Ŷ = 1|Y = 1] instead of simply ϵ1 for the
accuracy on class 1. Similarly, we write ϵ0(xU) = Pr[Ŷ = 0|Y = 0, Xu = xU], and we write
ϵ0 = EXU [ϵ0(XU)] = Pr[Ŷ = 0|Y = 0] instead of simply ϵ0 for the accuracy on class 0.

Let f∗(xU) = Pr[Y = 1|XU = xU] denote the true regression function, and let h∗(xU) =
1{ f∗(xU) > 0.5} denote the Bayes-optimal classifier. It is well known that the Bayes-optimal
classifier h∗ has the maximum possible accuracy out of all classifiers. Thus, the sub-optimality of a
classifier h can be measured by the probability S(h) = PrXU [h(XU) ̸= h∗(XU)] that it disagrees
with the Bayes-optimal classifier. Our next result expresses S(h) in terms of the true regression
function f∗, the functions ϵ0 and ϵ1, and the distribution of XU , when h is the bias-corrected classifier

hBC(xU) := 1

{
Pr[Ŷ = 1|XU = xU] + ϵ0 − ϵ1

ϵ0 + ϵ1 − 1
> 0.5

}
from Thm. 4.4 or when h is the “naive” classifier

hNaive(xU) := 1
{

Pr[Ŷ = 1|XU = xU] > 0.5
}

that simply treats the pseudo-labels as true labels.

Proposition I.1.

S (hBC) = Pr
XU

[
| f∗(XU)− 0.5| ≤

∣∣ϵ0(XU)− ϵ1(XU)−EXU [ϵ0(XU)− ϵ1(XU)]
∣∣

2(ϵ0(XU) + ϵ1(XU)− 1)

]
,

and

S (hNaive) = Pr
XU

[
| f∗(XU)− 0.5| ≤ |ϵ0(XU)− ϵ1(XU)|

2(ϵ0(XU) + ϵ1(XU)− 1)

]
.

These two formulae for S (hBC) and S (hNaive) differ only in the numerator of the right-hand side;
letting Z := ϵ0(XU)− ϵ1(XU), the sub-optimality of hBC scales with |Z − E[Z]|, whereas the
sub-optimality of hNaive scales with |Z|. Intuitively, for all except very pathological random variables
Z, |Z−E[Z]| is typically smaller than |Z|. Although not a rigorous proof that the bias correction is
always better than the naive classifier, this analysis provides an argument that, in most cases, the bias
correction should improve on the accuracy of the naive classifier, by making it agree more often with
the Bayes-optimal classifier.

We conclude by sketching the proof of Proposition I.1:

33

Proof. By construction, a thresholding classifier h(x) = 1{ f (x) > 0.5} disagress with the Bayes-
optimal classifier if and only if

f (x) ≤ 0.5 < f∗(x) or f∗(x) ≤ 0.5 < f (x).

Expanding these inequalities in the cases f (x) = Pr[Ŷ=1|XU=x]+ϵ0−ϵ1
ϵ0+ϵ1−1 and f (x) = Pr[Ŷ = 1|XU =

x] and solving for the quantity f∗(x)− 0.5 in each case gives Proposition I.1.

34

	Introduction
	Related Work
	Problem Setup: Extracting and Harnessing Unstable Features
	Harnessing unstable features with labels
	Harnessing unstable features without labels

	Theory: When Can We Safely Harness Unstable Features Without Labels?
	Solving the marginal problem with complementary features
	A provably consistent algorithm for unsupervised test-domain adaptation

	Algorithm: Stable Feature Boosting (SFB)
	Experiments
	Conclusion & Future Work
	Appendices
	 Appendices
	Proof and Further Discussion of Theorem 4.4
	Proof of Theorem 4.4
	Further discussion of Theorem 4.4

	Proof of Theorem 4.6
	Multiclass Case
	Supplementary Results
	Trivial solution to joint-risk minimization
	Causal perspectives

	Datasets
	Further Experiments
	ColorMNIST
	Ablations
	Different stability penalties
	Full results

	Camelyon17

	Implementation Details
	Adaptive baselines
	Synthetic experiments
	ColorMNIST experiments
	PACS experiments
	Camelyon17 experiments

	Further Related Work
	Performance When Complementarity is Violated

