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Abstract
In the domain of audio processing, Transfer Learning has facilitated the rise of
Self-Supervised Learning and Zero-Shot Learning techniques. These approaches
have led to the development of versatile models capable of tackling a wide array
of tasks, while delivering state-of-the-art performance. However, current models
inherently lack the capacity to produce the requisite language for open-ended tasks,
such as Audio Captioning or Audio Question Answering. We introduce Pengi,
a novel Audio Language Model that leverages Transfer Learning by framing all
audio tasks as text-generation tasks. It takes as input, an audio recording, and
text, and generates free-form text as output. The input audio is represented as a
sequence of continuous embeddings by an audio encoder. A text encoder does
the same for the corresponding text input. Both sequences are combined as a
prefix to prompt a pre-trained frozen language model. The unified architecture
of Pengi enables open-ended tasks and close-ended tasks without any additional
fine-tuning or task-specific extensions. When evaluated on 21 downstream tasks,
our approach yields state-of-the-art performance in several of them. Our results
show that connecting language models with audio models is a major step towards
general-purpose audio understanding 1.

Figure 1: Examples of audio and text prompt inputs and their corresponding textual responses. Images
are for illustration purposes only. Our proposed model Pengi enables close-ended tasks, such as
classification or retrieval and open-ended tasks, such as captioning or question & answering.

1 Introduction
Machine Listening breaks down audio understanding into separate and independent audio tasks. For
example, Sound Event and Scene Classification, Audio Retrieval, and Audio Captioning. Because
these audio tasks are intrinsically related, we can leverage from Transfer Learning (TL). TL focuses
on applying knowledge gained while solving one task to solve a related task. The learning method
involves pre-training a model with a large compilation of datasets from different tasks followed by
fine-tuning on a target dataset. These models have shown the potential to learn general-purpose audio

1Code is available here: https://github.com/microsoft/Pengi
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representations [53] that can successfully be used in a variety of downstream tasks. To leverage
from larger amounts of audio that is unlabeled, the community has employed Self-Supervised and
Unsupervised Learning [50, 51, 44, 19]. These methods do not require labels [53, 7] and have
achieved state-of-the-art performance. However, both methods require an additional fine-tuning step
before they can be applied to any downstream task.

To address this drawback, another Transfer Learning (TL) method called Zero-Shot Learning provides
direct inference capabilities and removes the need of fine-tuning. These models use contrastive
objectives to learn the similarity between natural language descriptions and audio content to provide a
score that identifies the most probable class label for a given testing audio. Examples are CLAP [15],
Mulan [26], and LAION-CLAP [58]. Despite not seeing the training data of a target task, Zero-Shot
models achieve surprising performance in close-ended tasks, such as classification and retrieval.
However, these models inherently lack the capacity to produce the requisite language for open-ended
tasks, such as Audio Captioning or Audio Question Answering (AQA).

Current audio models that can perform open-ended tasks do not support or have not been evaluated
on closed-ended tasks [37, 31]. It is yet to be explored how to leverage TL to enable both types of
tasks in the audio domain. We drew inspiration from recent advances in Natural Language Processing
(NLP) and Visual Language Models (VLM). In NLP, Raffel et. al. [49] explored a unified framework
called T5 where all text-based tasks are framed as text input to text output problems. T5 was trained
with a single objective function and supported a diverse set of tasks, like translation, question &
answering, and classification. FLAN [8] showed that language models trained on a collection of text
tasks phrased as instructions, enabled models to respond better to similar instructions at inference
time. This TL technique showed performance improvement across a range of models, prompting
setups, and evaluation tasks. On the other hand, VLM incorporates visual information by combining
a language model and an image encoder to transfer knowledge across modalities. Tasks are framed
as text and image input to text output problems. Captioning training consists of optimizing a text
generation objective, and can transfer moderately well to visual question & answering in the zero-shot
settings. Examples include, Frozen [52], Flamingo [2], and other models [54, 52, 2, 42, 39]. But their
performance on close-ended tasks still lags behind contrastive models [47, 59]. In the audio domain,
there are no models that resemble any of these capabilities, let alone that support both close-ended
and open-ended audio tasks simultaneously.

In this paper, we introduce Pengi, a novel Audio Language Model (ALM) that takes as input, an audio
recording and a text prompt, and generates free-form text as output. To the best of our knowledge,
the following contributions are achieved for the first time in the literature:

• A novel Audio Language Model capable of supporting multiple close-ended and open-ended
audio tasks without any additional fine-tuning or task-specific extensions of the architecture.
Pengi draws inspiration from VLM but tackles intrinsic challenges in the audio domain.

• We propose a new learning framework where we frame all audio tasks as audio and text
input to text output tasks. Our framework uses a single training procedure and a caption-
ing objective function. For training, we designed new audio task templates inspired by
Instruction Tuning.

• We extensively evaluated Pengi on 21 downstream tasks across various audio domains
yielding state-of-the-art performance in several of them. Thus, establishing a baseline for
general-purpose ALM.

2 Related Work
Audio Language Models. In the domain of audio processing, Transfer Learning has facilitated the
rise of Self-Supervised Learning and Zero-Shot Learning techniques [50, 51, 43, 22, 25, 24, 3, 15,
26, 23, 57, 58, 41, 12, 14, 16]. These approaches have led to the development of versatile models
capable of tackling a wide array of tasks, while delivering SoTA performance. However, current
models can tackle either close-ended tasks or open-ended tasks. ALM pose a new learning paradigm
for audio processing that can support all tasks. The language modeling approaches to audio find
utility in generating audio given an input description [4, 1]. But it is yet to be explored how to train
them for general-purpose audio understanding and what their performance would be.

Language Models. Transfer Learning has been extensively utilized in Natural Language Processing
with the recent shift to Zero-Shot and Few-Shot Learning [29, 48, 5, 55]. The work by Raffel et. al.
[49] explored a unified framework for text tasks by converting all text-based tasks into the text-to-text
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format. The experimental results showed the methods can achieve SoTA results when combined and
scaled. FLAN [55] released in 2022 uses instruction fine-tuning to fine-tune an existing language
model on a large set of varied instructions. Pengi adapts a similar idea for the audio domain, where
each audio-tasks is considered a text generation task conditional on the input text and input audio.
This allows audio tasks to be represented in (audio-text)-text format and enables learning a single
unified model for all the tasks. For training, we created (audio-text)-text templates for audio tasks
and trained Pengi with them.

Visual Language Models. Inspired by the success of Transfer Learning and Few-Shot Learning
in NLP, a host of VLM were proposed for vision tasks. VLM intend to extend the pre-trained
language model and adapt them to incorporate visual information. VisualBERT [35] and SimVLM
[54] explored different ways to convert images into tokens and jointly train the model on interleaved
images and text. Inspired by prefix-tuning [36] and prompt-tuning [34], Frozen [52] and Clipcap
[42], use a frozen language model and align the image embeddings for the language model. To better
fuse image information, Flamingo [2] uses a gated-cross-attention dense layer in the language model.
The interleaved image-text training also enables Flamingo to do few-shot learning. Drawing parallels
with VLM, Pengi can be considered an ALM based on audio conditional prefix tuning where the
prompt is produced by an audio encoder.

3 Approach
In this section, we describe Pengi, a novel Audio Language Model that leverages Transfer Learning by
framing all audio tasks as text generation tasks. It takes as input, an audio recording and a text prompt,
and generates free-form text as output. The unified architecture in Figure 2 enables open-ended
tasks and close-ended tasks without any additional fine-tuning or task-specific extensions of the
architecture.

3.1 Unified Architecture

Figure 2: Pengi has a unified architecture that takes as input, an audio recording and a text prompt, and
generates free-form text as output. At training, the architecture learns an audio encoder aϕ and a mapping
network m1 to represent an input audio as a sequence of continuous embeddings. A frozen text encoder gψ and
a learnable mapping m2 do the same for the corresponding text input. Both sequences are concatenated as a
prefix to leverage from a pre-trained frozen autoregressive language model fθ to perform multiple tasks. At
inference, the language model generates tokens autoregressively conditioned on the audio and text input.

Audio Encoder. The audio encoder aϕ transforms the raw audio input into an audio embedding.
We used the audio transformer backbone from CLAP [15] as our audio encoder due to its success
in diverse audio and multimodal tasks. Models in Computer Vision [42, 2, 39] use a frozen image
encoder like CLIP, but CLAP is trained on a magnitude smaller collection of audio-text pairs.
Therefore, we unfroze its weights for our training procedure.
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Text Encoder. The text encoder gψ transforms the input text prompt into a text embedding. The
prompt can be any form of natural language, such as a task-specific prompt or a question. The
text encoder is frozen so its weights are not updated during training. The text encoder can be any
off-the-shelf text encoder and allows our architecture to learn and perform well in close-ended tasks.

Mapping Networks and Prefix. To construct the prefix to be fed to the causal language model, we
used two mapping networks (m1 and m2). The mapping networks [42] convert an embedding into a
sequence of k embeddings. The audio embedding is transformed by m1 and the text embedding by
m2, both are trainable. Both sequences are concatenated to form the fixed-length prefix.

Causal Language Model. To generate the text output we used a pre-trained autoregressive causal
language model which is kept frozen during training and inference [52]. Even though the language
model is frozen, the audio prefix receives gradients enabling the parameters of mapping network
(m1) and audio encoder aϕ to be optimized with gradient descent and backpropagation. At inference,
the language model generates tokens autoregressively conditioned on the audio and text prefix.

3.2 Training and Inference
We propose a new learning framework where we frame all audio tasks as audio and text input to text
output tasks. Our framework uses a single training procedure and objective function. Let the training
data in audio-text-to-text format be referred to as {xi,ti,ci} where xi, ti and ci are the ith audio file,
ith input text, and ith output text or caption respectively.

To create a prefix, the audio encoder aϕ and mapping network m1 projects the audio xi into a
sequence of k embeddings. Similarly, the text encoder gψ and mapping network m2 projects the
input text ti into a sequence of k embeddings. Both sequences are concatenated to form prefix pi for
the pre-trained frozen language model fθ.

pi = pi1, ..., p
i
2k = concat{m1(aϕ(x

i)),m2(gψ(t
i))} (1)

The language model fθ is fed with the prefix-caption concatenation of all {zi}Ni=1, where zi is:

zi = pi1, ..., p
i
2k, c

i
1, ..., c

i
l (2)

The model is trained as a standard captioning system, where it learns to predict a caption (text tokens)
ci conditioned on the prefix in an autoregressive fashion. We used Cross-Entropy as the loss function:

L = −
N∑
i=1

l∑
j=1

log pγ(c
i
j |pi1, ..., pi2k, ci1, ..., cij−1) (3)

where γ denotes model’s trainable parameters which include audio encoder parameters ϕ and
parameters from both mapping networks. The text encoder and the causal language model are frozen.

At inference time, the prefix is constructed using the test audio and a text prompt. The causal language
model fθ generates the next token sequentially conditioned on the prefix. The language model assigns
probabilities to all vocabulary tokens at each prediction, which are used to determine the next token
depending on the choice of decoding. In our experiments, we used beam search decoding with a
beam size of 5 for inference and downstream tasks.

4 Experiments
4.1 Training Datasets and Templates
Our Audio Language Model Pengi is trained on a collection of audio-text tasks phrased as instruction
templates. The templates are inspired by instruction tuning and enable models to respond better to
similar instructions at inference time. This TL technique is novel for audio and yielded performance
improvement across a range of input prompting examples and downstream tasks.

The training datasets are modified to adapt to our proposed framework (audio-text)-to-text format by
constructing 8 audio-task templates. Before our study, there was no evidence that the templates could
lead to good performance across open- and close-ended tasks. Each template consists of audio input,
input text prompt, and text output. Examples are "this is the sound of", “this emotion is" or “question:
{question}". All the templates are in Table 1, out of which one template is the Auxiliary task “generate
metadata". With it, we add audio-text pairs that are not task-specific. Drawing parallels, this training
data setup is inspired by instruction tuning format of FLAN [55, 8]. Defining new templates or
variations of the ones proposed here is a promising direction to explore.
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Task Input prompt Output format
Audio

Captioning generate audio caption {caption}

Audio
QA question: {question} {answer}

Sound Event
Classification this is a sound of {event a}, {event b}, ..

Acoustic Scene
Classification this acoustic scene is {scene}

Task Input prompt Output format
Speech Emotion

Recognition this emotion is {emotion}

Speech Sentiment
Recognition this sentiment is {sentiment}

Music
Analysis music analysis

this is a sound of music
in language {language}

and genre {genre} ..
Music

Note Analysis this music note is produced by {instrument},
pitch {pitch}, ..

Auxiliary generate metadata {metadata}

Table 1: The training datasets are modified to adapt to our proposed framework (audio-text)-to-text format by
constructing 8 audio-task templates. Each template consists of audio input, input text prompt, and text output.
The {} symbol indicates variable content. The Auxiliary task template allowed us to add audio-text pairs that are
not task-specific.

The training data is collected from multiple audio datasets coming from different sources. In all, we
collected 3.4 million audio-text pairs and mapped them to the 8 templates. The number of training
pairs makes this model one of the largest if not the largest non-speech audio model in literature. We
use only the training set of each dataset. The datasets and their mapping to a task are the following.
Sound Event Classification: AudioSet [21], FSD50K[20]; Acoustic Scene Classification: CochlScene
[27]; Speech Emotion and Sentiment Recognition: MSP Podcast [38], CMU MOSI [60], CMU
MOSEI [61], MELD [46]; Music Analysis: NSynth [17], FMA [9]; Audio Captioning: AudioCaps
[30], ClothoV2 [13]; Audio Question and Answering: ClothoAQA [37]; Auxiliary: WavText5K [11],
SoundDescs [33], MACS [40], WavCaps [41], FreeSound [18] and FindSound2.

4.2 Downstream Tasks
The unified architecture of Pengi enables open-ended tasks and close-ended tasks.

Open-ended tasks. This task type requires free-form text generation and there is flexibility in the
correctness of the output. Examples are Audio Captioning and AQ&A. Pengi will take as input the
testing audio and the desired prompt to generate the text output. It does not require any additional
fine-tuning or task-specific components.

Close-ended tasks. This task type is restricted to predefined values that can be classes or numbers.
Examples are classification and retrieval. Pengi will take as input the testing audio and the desired
prompt. Ideally, the free-form text output from Pengi should contain the exact predefined value. For
example, a predefined class is “dog" but Pengi may output “dog barking" or “canine". Although
these answers are reasonable, they are incorrect under most metrics. To evaluate the correctness, we
proposed two methods: Log-likelihood and Text matching (Fig. 3). Unless explicitly mentioned, all
experiments in our paper use the Text-matching method for evaluation.

Figure 3: Text-matching method used during inference
for close-ended tasks. TE indicates Text Embedding.

Log-likelihood: We take the concatenated prefix
from a testing audio, the prompt, and append
one of the predefined values (e.g class name,
number) to create a candidate output. We would
have N candidate outputs corresponding to N
predefined values. For example in classification,
if we have 100 testing audios and 5 classes, we
would have 5 output candidates per audio. The
outputs and the predefined values are used to
compute Log-likelihood scores and determine
the model’s prediction. This method is expen-
sive for the extensive evaluation in our study.

Text-matching: In this setup, the free-form output is matched to the predefined values using text em-
beddings (Fig.3). For example, in a classification setting, we compute sentence-level text embeddings
for Pengi’s output and for all the class labels in a given dataset. Then, we calculate cosine similarity
to determine the model’s prediction. We used Pengi’s text encoder to compute the embeddings, but
any off-the-shelf text encoder could be used.

2https://www.findsounds.com
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Downstream tasks. We used 21 downstream tasks (Table 2) to benchmark the open-ended and
close-ended capabilities of Pengi. The open-ended tasks consist of Audio Captioning and AQA.
The close-ended tasks consist of classification, regression, and retrieval. Datasets like Clotho have
more than one type of annotations, so they are used for multiple tasks like Audio Captioning and
Text-to-Audio Retrieval.

Domain Dataset Files Dur. (secs) Output Type Metric Setup
Audio

Captioning
Clotho 7k 15 - 30 Cap. SPIDEr train/val/test

AudioCaps 39k 10 Cap. SPIDEr train/val/test
Audio Question

Answering ClothoAQA 2k 15 - 30 Q&A ACC train/val/test

Sound Event
Classification

ESC50 2k 5 MC (50) ACC 5 folds
FSD50K 51k 0.3 - 30 ML (200) mAP train/val/test

UrbanSound8K 8k ≤ 4 MC (10) ACC 10 folds
DCASE2017 Task4 52k 10 MC (17) ACC train/val/test

Music Analysis GT. Music Speech 120 30 B (2) ACC 10 folds
GT. Music Genre 1k 30 MC (10) ACC 10 folds

Instrument
Classification

Beijing Opera 236 4.77 MC (4) ACC 5 folds
NS. Instruments 305k 4 MC (11) ACC train/val/test

Music Note Analysis
NS. Pitch 305k 4 Reg. ACC train/val/test

NS. Velocity 305k 4 MC (11) ACC train/val/test
NS. Sonic 305k 4 ML (10) ACC train/val/test

Acoustic Scene
Classification TUT 2017 6.3k 10 MC (15) ACC train/val/test

Emotion
Recognition

CREMA-D 7k 5 MC (6) ACC 5 folds
RAVDESS 2.5k ≤ 5 MC (8) ACC 5 folds

Vocal Sound
Classification Vocal Sound 21k 5 MC (6) ACC train/val/test

Surveillance Surveil.
Applications 585 ≤ 33 MC (6) ACC train/val/test

Text-to-Audio
Retrieval

Clotho 7k 15 - 30 Ret. R@1 train/val/test
AudioCaps 39k 10 Ret. R@1 train/val/test

Table 2: We extensively evaluated Pengi across 21 downstream tasks from various domains. The first two
domains are open-ended tasks and the rest are close-ended tasks. For the “Output Type" column, Cap. refers to
captioning, MC to multiclass, B indicates binary, Reg. indicates regression, and Ret. retrieval.

4.3 Implementation details
Encoders and mappers. We used the audio transformer HTSAT[6] as our audio encoder and
CLIP’s [47] text encoder. The audio is sampled at 44.1 kHz and is converted to a log Mel spectrograms
with 64 Mel bins, a hop size of 320 ms, and a window size of 1024 ms in the range of 50-8000 Hz.
We randomly truncated all audio files to 7 seconds in length for HTSAT. The max length of the text
encoder is set to 40 for computational efficiency. We performed another step of CLAP (Contrastive
Language-Audio Pretraining) training using the above two encoders [15]. This enables experiments
where the audio encoder can be kept frozen to see the utility of CLAP’s [15] audio embeddings
similar to VLM [42, 52, 2]. The mapping networks m1 and m2 each use an 8-layer transformer
with a prefix length of 40. The total prefix length after concatenating the audio and text is 80. The
hyper-parameters of the encoders and the CLAP training are mostly left as in the original papers, the
details are in Appendix D.

Causal Language Model. We used the GPT2 line of models, specifically GPT2-base (124M). The
model is kept frozen through all the experiments.

Pre-training. We used Adam Optimiser [32] for 60 epochs and with a batch size of 384 on 20 V100
GPUs. We used a linear schedule with 2000 warmup steps and a base learning rate of 1e-4.

5 Results
5.1 Benchmarking Pengi
We assessed Pengi on 21 downstream tasks covering various domains. Pengi is the first audio model
that can perform both, open-ended and close-ended tasks. A fair comparison against another model
that can perform both is not possible. We chose CLAP [15] as the baseline because it is the only
Zero-Shot model with a comprehensive evaluation (16 downstream tasks). The next best evaluation
was only on 8 tasks. Thus, providing no evidence of performance across domains like speech and
music, which tend to be the most difficult. Moreover, we compared against SoTA results even if it
came from different models and learning methods. We compared against SoTa Zero-Shot models
in Table 8, a subset of Table 3, for Sound Event Classification. Even against SoTA from supervised
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Audio Captioning ↑ AQA ↑ Sound Event Classification ↑

Model AudioCaps Clotho ClothoAQA ESC50 FSD50K US8K DCASE17
Task 4

CLAP ✗ ✗ ✗ 0.826 0.3024 0.7324 0.3
Pengi 0.4667 0.2709 0.6453 0.9195 0.4676 0.7185 0.338

Acoustic Scene
Classification↑ Music ↑ Instrument Classification ↑ Music Note Analysis↑

Model TUT2017 Music
Speech

Music
Genres

Beijing
Opera

Instrument
family

NS.
Pitch

NS.
Velocity

NS.
Qualities

CLAP 0.2963 1.0 0.252 0.2963 0.2949 - - -
Pengi 0.3525 0.9688 0.3525 0.6229 0.5007 0.8676 0.3728 0.386

Emotion Recognition↑ Vocal Sound
Classification↑

Action
Recog.↑

Survei
llance.↑

Model CRE
MA-D

RAV
DESS

Vocal
Sound

ESC50
Actions SESA

CLAP 0.1784 0.1599 0.4945 0.497 0.7487
Pengi 0.1846 0.2032 0.6035 0.5277 0.5402

Table 3: We used CLAP [15] as a baseline comparison because of its strong performance on a wide range of
downstream tasks. The ‘-’ symbol indicates numbers were not available, whole ‘✗’ indicates that the model
cannot support the task. Higher is better for all numbers. The evaluation metric is mAP for FSD50k, AudioSet,
ESC50-Actions, and NSynth sonic; F1 score for DCASE17; and SPIDEr for AudioCaps and Clotho captioning.
All other downstream tasks use Accuracy.

learning models in Tables 5 and 7 for AQ&A and Audio Captioning respectively. Table 9, against
SSL, supervised and trained on speech audio models.

Open-ended tasks. Pengi sets new state-of-the-art performance for open-ended tasks. We used
Audio Captioning and AQA for open-ended tasks. The CLAP model can only support close-ended
tasks and cannot perform open-ended tasks without additional modules and fine-tuning. Therefore,
we compared against supervised trained models in Section 5.2.

Close-ended tasks. Pengi performs better than CLAP on most audio classification tasks, and can also
outperform the literature. Although CLAP and Pengi employed different learning methods and used
a different amount of training data, it is to be noted that Pengi can compete with strong contrastive
methods like CLAP and other methods in the literature.
5.2 Audio Captioning and AQA
Audio Captioning. Pengi’s performance outperformed supervised models in the two captioning tasks
AudioCaps and Clotho, as shown in Table 7. The captioning competition IEEE DCASE 2022 3 ranks
models based on the metric SPIDEr, a combination of CIDEr and SPICE. Specifically, for AudioCaps
Pengi outperformed the literature by a relative 6.6% and for Clotho by a relative 26%. All models
used both, AudioCaps and Clotho datasets in training. One of the best captioning models is from
Kim et al. [31]. The authors followed a similar training procedure to ours with audio encoders and
a language model. Unlike Pengi, which uses a single audio encoder, they employed two mapping
networks to capture both global and temporal features from the audio. Despite having two audio
representations, the model underperformed our approach.

Similar to Multi-Task Learning [62, 10], we hypothesize that learning a shared audio encoder and
mapping networks helps Pengi to solve individual tasks better. We addressed this hypothesis by
conducting an ablation study in Table 4. In experiment A, we trained and evaluated Pengi only on
audio-captioning data with text prompts of “generate audio caption". Then, we contrasted audio
captioning performance against experiment B, where we trained on data across different tasks, in
other words, our proposed setup in this paper. From Table 4, we see consistent improvement in both
AudioCaps and Clotho downstream tasks. Specifically, experiment B outperforms experiment A by a
relative 2.5% and 2.3% on AudioCaps and Clotho respectively. This indicates that Pengi’s shared
architecture does help in improving performance on individual tasks.

Audio Captioning ↑

Exp. Eval.
dataset BLUE1 SPIDEr

A AudioCaps 0.6439 0.4551
B AudioCaps 0.6912 0.4667
A Clotho 0.5619 0.2648
B Clotho 0.5702 0.2709

Table 4: Effect of shared audio
encoder training

Audio Q&A ↑
Model Acc
M1 0.575
M2 0.627
M3 0.635
Pengi 0.645

Table 5: AQ&A results

Text-to-Audio Retrieval ↑
Model Retr. R@1 R@5 R@10

Chen et al. Clotho 1.5 4.4 7.5
Gont. et al. Clotho 2.1 7.0 12.0
Mei et al. Clotho 4.0 14.1 21.6
Kim et al. Clotho 7.6 19.6 28.8
Soham et al. Clotho 16.7 41.0 54.1
Pengi Clotho 9.4 26.1 36.7

Table 6: T2A Retrieval results

3https://dcase.community/challenge2022/task-automatic-audio-captioning
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Model Eval.
dataset BLUE1 BLUE2 BLUE3 BLUE4 METEOR ROUGEL CIDEr SPICE SPIDEr

Chen et al. AudioCaps 0.489 0.292 0.178 0.106 0.152 0.346 0.265 0.093 0.179
Gontier et al. AudioCaps 0.635 0.461 0.322 0.219 0.208 0.450 0.612 0.153 0.383
Mei et al. AudioCaps 0.682 0.507 0.369 0.266 0.238 0.488 0.701 0.166 0.434
Kim et al. AudioCaps 0.708 0.547 0.402 0.283 0.238 0.499 0.710 0.167 0.438
Pengi AudioCaps 0.691 0.419 0.371 0.253 0.232 0.482 0.752 0.182 0.467
Chen et al. Clotho 0.516 0.325 0.215 0.141 0.153 0.350 0.314 0.102 0.208
Gontier et al. Clotho 0.461 0.282 0.182 0.117 0.136 0.318 0.251 0.083 0.167
Mei et al. Clotho 0.516 0.318 0.204 0.127 0.157 0.351 0.313 0.105 0.209
Kim et al. Clotho 0.539 0.346 0.227 0.142 0.159 0.366 0.319 0.111 0.215
Pengi Clotho 0.57 0.369 0.242 0.15 0.172 0.375 0.416 0.126 0.271

Table 7: Pengi outperforms the best Audio Captioning performance from supervised models. All models used
both, AudioCaps and Clotho datasets in training. SPIDEr is the metric used to rank models in IEEE DCASE
Challenge. Higher is better for all metrics.

AQA. Pengi outperformed the existing literature [37]. Authors in [37] collected the only dataset
available (ClothoAQA). They converted the AQA task into a classification task, instead of a generation
task. Authors trained and fine-tuned a model in a supervised setup. In contrast, we used the free-form
text from Pengi, where the answer is correct only when it directly matches the human response.
Note that Pengi includes the training set of ClothoAQA among its training sets, but there is no
further fine-tuning on this task. The results are shown in Table 5. The first column indicates three
different baseline models from [37]. Pengi achieved 64.5% and outperformed the existing supervised
benchmark by a relative 1.5%.

5.3 Zero-Shot Sound Event Classification
We compared Pengi’s classification performance against Zero-Shot contrastive models in the literature.
The existing literature restricts the training and evaluation tasks to a few sound event datasets. Hence,
we matched our comparisons to sound event datasets. The downstream datasets of ESC50, US8k,
DCASE17 Task4 contain audio files and labels not seen by Pengi during training. We considered
these three datasets to constitute a zero-shot setup for Pengi. For FSD50k, the audio files in the
training split have been used for training Pengi. Hence, we do not consider this a pure zero-shot setup
but nonetheless, report numbers for insights.

On Zero-Shot ESC50 performance, Pengi beats AudioCLIP [23], CLAP [15], and LAION CLAP
[58] by 32%, 11%, and 1% respectively (See Table 8). Interestingly, human performance on ESC50
is 81% accuracy and Pengi’s performance is 92%. Mei et. al. [41] added ChatGPT augmented
audio-text pairs to CLAP training [58] and showed an improvement in performance from 91% to 94%
on ESC50. On US8k, Pengi performed better than Wav2CLIP and AudioCLIP but lower than CLAP
and LAION CLAP. Overall, even though Pengi is a text generation model, its Zero-Shot performance
on close-ended Sound Event Classification is competitive.

Zero-Shot Sound Event Classification ↑

Model ESC50 FSD50K US8K DCASE17
Task 4

Wav2CLIP 0.414 0.030 0.404 -
AudioCLIP 0.694 - 0.653 -

CLAP 0.826 0.302 0.732 0.3
LAION 0.91 - 0.77 -
Pengi 0.92 0.468 0.719 0.338

Table 8: The literature on Zero-Shot audio models only reports performance on Sound Event Classification
datasets. Pengi’s classification performance is competitive. The ‘-’ indicates numbers are not available. The
evaluation metric for DCASE17 is the F1 score while FSD50K employs mAP, ESC50 and US8K use Accuracy.

5.4 Text-to-Audio Retrieval
For Text-to-Audio Retrieval in a contrastive learning setup, the user query is converted into a text
embedding which is then used to retrieve the top k audios by their audio embeddings [11, 58]. Pengi
is a generative model and does not allow a contrastive setup. Although Pengi has an audio encoder
and a text encoder that could replicate the contrastive setup, we wanted to evaluate our model from
the generative perspective. First, Pengi is used to index a database by generating audio captions for
all the audio recordings. Second, the user text query is matched directly to the dataset captions. The
associated audio files of the top k dataset captions are considered to be the top k retrieved audio.
Note that the cosine similarity computation is between two text embeddings and not audio and text
embeddings. Thus, the quality of generated captions for indexing the dataset is important for retrieval
performance.
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In Table 6, we compared Pengi’s Text-to-Audio retrieval performance against the literature. The
models used for comparison are audio captioning models using the above-described procedure of
indexing and query matching, and not the contrastive-like setup. Pengi outperforms the literature on
R@1. However, contrastive models [15],[58], [11] are substantially better than generative models for
the task of directly matching text to audio for retrieval. An example of contrastive model performance
is shown in Table 6 as a gray row.

5.5 Next text-token prediction for learning audio representations
Pengi uses next-text token prediction to learn audio representations, hence a natural question is:

“Can next text-token prediction objective help in learning general purpose audio representations?".
To answer this question, we performed linear probe [47] and shallow learning [53] experiments.
After Pengi’s pre-training, we took the audio encoder aϕ in Fig 2 and trained one, two, or three
fully-connected linear layer(s) with cross-entropy on top. Note that, we kept Pengi’s audio encoder
frozen and it did not include the mapping network m1. We selected representative datasets from
the domain of Sound Events, Music, and Speech Emotion for the linear probe experiment. Pengi’s
linear probe (one layer) and shallow learning (two or three layers) numbers are compared against the
best single model submissions from the HEAR challenge [53] in Table 9. The results from HEAR
challenge reported the maximum of both settings (L1 or L2, L3). Apart from Wav2vec2 which is
trained on speech data, all other models were trained on non-speech audio. Pengi’s linear probe L1

and L3 performance is consistently better than CLAP [15]. In the Sound Events and Music domain,
Pengi outperformed other models. In the Speech Emotion domain, Pengi performed better than
non-speech models but lower than models trained on speech (Wav2vec2). The experiment indicates
that the next token prediction does help in learning audio representations useful for various domains.

Sound Events ↑ Music ↑ Speech Emotion ↑
Model ESC50 FSD50k GTZAN Genres Opera RAVDESS CREMA-D

YAMNet 0.8375 - 0.847 0.9405 0.479 0.4533
Open L3 0.7505 0.4470 0.879 0.9746 0.604 0.5497
Wav2CLIP 0.7589 0.3617 0.748 0.9363 0.684 0.5116
PaNN 0.9085 - 0.860 0.9112 0.429 0.5550
Wav2Vec2 0.5610 0.3417 0.780 0.9067 - 0.6562
CLAP (L1) 0.8995 0.5024 0.73 0.6399 0.4044 0.2315
CLAP (L3) 0.9310 0.5690 0.8330 0.8263 0.4512 0.2830
Pengi (ZS) 0.9195 0.4676 0.3525 0.6229 0.2032 0.1846
Pengi (L1) 0.8915 0.5608 0.8000 0.9193 0.4774 0.5057
Pengi (L3) 0.9485 0.6235 0.9010 0.9883 0.6108 0.5916

Table 9: Shallow learning experiment where the audio encoder is frozen in all the experiments. ZS is zero-shot
and Li indicates i linear layers used. Unless specified, each model reports the best of L1, L2, and L3.

6 Limitations
Trade-off between close-ended and open-ended tasks performance. The classification and text
generation performance of Pengi is competitive against contrastive models. However, text-based
retrieval performance lags behind that of contrastive models [11, 58]. Although these models excel
at retrieval, they are limited to close-ended tasks. Thus, there is a trade-off between both types of
learning methods proposed so far in the literature.

Limitations inherent to Language Models. Pengi benefits from the encyclopedic knowledge of
pre-trained Language Models (LM). However, as pretrained LM is a component of Pengi, they also
inherit their limitations. For example, LM are known to hallucinate [28] and specific to Pengi, can
produce responses not grounded or conditioned on audio. Similarly, Pengi falls back to LM behavior
if no audio is provided or if the audio knowledge is limited. Therefore, the risks of LM, namely
propagating stereotypes, and biases and potentially producing offensive language are still applicable
to Pengi. The recent works [48, 56] in the NLP field try to address these issues. However, specifically
studying risks and limitations can uncover new insights that can accelerate the development of ALMs.

7 Conclusions
We proposed Pengi, a novel Audio Language Model that leverages Transfer Learning by framing
all audio tasks as text-generation tasks. It takes as input, an audio recording, and a text prompt, and
generates free-form text as output. Pengi is capable of handling both, close-ended and open-ended
audio tasks. We benchmarked Pengi on 21 downstream tasks and show it yields SoTA performance
in several of them. Our findings break ground in prompting language models with audio for general-
purpose audio understanding.
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The appendix is organized as follows: In the first few sections (A - C), we describe a set of additional
experiments. In Section D, we discuss the contrastive model and its training details. In Section E, we
evaluate Pengi’s performance with the audio encoder kept frozen. In Section F, we analyze the effect
of text encoder on zero-shot performance. In Section G, we analyze and highlight types of Pengi
errors. Lastly, in section H, we compare contrastive and generative pretraining.

Figure 4: More examples of audio and text prompt input and their corresponding textual responses.
Images are for illustration purposes only.

Figure 5: The user can also add an additional second text input and guide the output of Pengi. For
example, the user can add "in the background" after the audio and text prefix and Pengi produces the
output "a person is speaking". Compared to Fig 2, the output of Pengi changes to what the user has
prompted in the second text input which is about background sounds.

14



A Additional text input
Pengi takes as input, an audio recording and text, and generates free-form text as output. During
inference, an audio encoder aϕ and a mapping network m1 represent each audio recording as a
sequence of continuous embeddings. Similarly, a text encoder gϕ and a mapping network m2 does
the same for the corresponding text input. Both sequences are combined as a prefix to prompt a
pre-trained frozen language model fθ. The language model generates tokens starting from the prefix.

The text input acts as task induction and helps guide the language model to produce the desired
output. Let’s take an example of human speech recording. A text input of "generate audio caption"
will generate a caption like "a person speaking with a car moving in the background", while a text
input of "this sentiment is" will produce a response like "negative". However, there are instances
where we want to guide the language model further to answer or complete a specific query we
had. We can do this by additional text input. This is depicted in Fig 5. The second text input gets
tokenized by the frozen language model’s tokenizer and converted into continuous embedding by the
frozen language model’s embedding function. Therefore, the new prefix consists of a sequence of
embeddings associated with audio, first text input, and second text input which originates from the
audio encoder, text encoder, and frozen language model’s embedding function respectively.

Some examples and the effects of the second text input are shown in Fig 6. Empirically, we have seen
the additional second input produces meaningful output only when used with text input of "generate
metadata". The examples shown in Fig 6 are cherry-picked. The additional text input often causes
Pengi to lose track of the audio data and hallucinate its own text or fall back to frozen language model
behavior. It is not clear how to ground the output in audio information when additional text input
is provided. Further investigation in this direction will enable new scenarios including in-context
learning.

Figure 6: Examples of audio-text input with additional text input and their corresponding textual
responses. Images are for illustration purposes only. The ‘-’ symbol indicates additional text input
was not used.

B Inferring audio prefix
The audio encoder and text encoder followed by mapping networks, jointly forms the prefix which
prompts the frozen language model. To understand more about Pengi’s natural language response,
we try to interpret prefixes as a sequence of tokens or words. Each prefix embedding is mapped to
the highest similarity token from the GPT2 vocabulary [42]. The similarity method used is cosine
similarity. This is possible as the prefix and GPT2 embeddings occupy the same latent space. We
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use this method on a few examples from the ESC50 dataset [45]. The examples of Pengi’s generated
output and the inferred audio prefix are shown in Table 10. The interpretations are hard to follow but
do contain salient words that are related to audio content. For example, each inferred audio prefix
contains words associated with content of audio like babies, thunder, chicken, etc which also appear
in corresponding Pengi’s natural language output.

One reason interpreted prefix does not have a clear structure is that the mapping network has to do
two things at once - comprehend both the audio and text input and guide the fixed language model.
Mokady et. al.[42] observed that the interpreted prefix is more comprehensible when GPT2 is also
fine-tuned. A similar method can be followed to infer the text input prefix, but we didn’t find any
interpretable insights there.

Text output Inferred audio prefix

a baby is crying loudly and loudly
and, the my’s the first the and and fixme the the supern the. coma

the BST in in improvis the babies in in the noises from noises
in the ( the the and innovative for

a thunder claps and then a thunderstorm hits
and- the bigHUD the the the and as"]

the theth P the. weather the close andscape. thunder in- the
Audiostorms interview click in the the and i unsettling,

a rooster is crowing loudly
and at the newone the new the and to OUR the theron the. chickens

theities the in imperson the chickens to in the Audio sitcom.
chickens in the ( the the, Mumbai the

a bird is singing in the background
and, the great bird the first the and and OUR the the number La

the in bird the one great and photography and bird that. in
Audio owl interview singing being: the and I innovative,

Table 10: Examples of Pengi output and their corresponding inferred audio prefix. The input text prompt is
"generate audio caption" for all examples. We bold the salient words relating to the input audio and text output.

C Effect of text prompts
The choice of input text prompt changes Pengi’s downstream task performance. We analyze the
performance of seven of the input text prompts defined in Section 4.1 for downstream tasks. For some
tasks, only specific prompts are applicable, for example, ‘question: {}’ prompt for AQA and ‘this
emotion is’ for emotion recognition. Pengi’s performance on each downstream task corresponding to
the different input text prompts is shown in Table 11). In summary, we see that the prompt ‘generate
metadata’ works well on average for close-ended downstream tasks.

Text prompts ↑
Downstream

Dataset
question:

{}
generate audio

caption
generate
metadata

this is a
sound of

this acoustic
scene is

this music
note is

this emotion
is

Clotho Cap. - 0.2709 - - - - -
AudioCaps Cap. - 0.4667 - - - - -

ClothoAQA 0.6453 - - - - - -
ESC50 - 0.8870 0.9195 0.6910 - - -
FSD50k - 0.4676 0.4504 0.4572 - - -

US8k - 0.7185 0.6585 0.5731 - - -
DCASE17 - 0.3150 0.3143 0.3506 - - -
AudioSet - 0.1216 0.1230 0.1635 - - -
TUT 2017 - 0.2562 0.3525 0.2216 0.1716 - -

GTZAN Genres - 0.3230 0.3420 0.3180 - - -
GTZAN MS - 0.9440 0.9606 0.9922 - - -

Opera - 0.2373 0.6229 0.4449 - - -
NSynth Instrument - - - - - 0.5007 -

NSynth Pitch - - - - - 0.8676 -
NSynth Velocity - - - - - 0.3728 -
NSynth Qualities - - - - - 0.3860 -

RAVDESS - - - - - - 0.1846
CREMAD - - - - - - 0.2032

Vocal Sounds - 0.5778 0.6035 0.5688 - - -
SESA - 0.5162 0.5402 0.5350 - - -

ESC50 Actions - 0.5277 0.5111 0.4846 - - -
Clotho Ret. (T2A) - 0.0938 - - - - -

AudioCaps Ret. (T2A) - 0.1771 0.1407 - - - -
Clotho Ret. (A2T) - 0.1148 - - - - -

AudioCaps Ret. (A2T) - 0.1819 0.1771 - - - -

Table 11: We use different text prompts and observe the performance on downstream tasks. ‘-’ indicates the
prompt is not used. The metrics used for each downstream tasks are same as Table 3.
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D Constrastive Learning model details
We follow and train a CLAP [15] model for the choice of contrastive model used in our experiments.
We use transformer-based audio and text encoder. The audio encoder is HTSAT [6] and the text
encoder is from CLIP [47]. Both the encoders are followed by a linear transformation called the
projection layer. We finetune both the encoder and their projection layers. After contrastive training,
the audio encoder and text encoder are used in Pengi.

Consider a batch size of N . Let the audio and text embedding be represented by Et ∈ RN×d and
Ea ∈ RN×d. Then the resulting similarity matrix C is:

C = τ(Et · EaT ) (4)

We use the loss function (L) of symmetric cross-entropy: projections

L = 0.5(ℓtext(C) + ℓaudio(C)) (5)

where ℓk = 1
N

∑N
i=0 log diag(softmax(C)) along text and audio axis respectively.

implementation details. The audio is sampled at 44.1 kHz and is converted to a log Mel spectrogram
with 64 Mel bins, a hop size of 320 secs, and a window size of 1024 secs in the range of 50-8000 Hz.
We randomly truncate all audio files to 7 seconds in length for HTSAT. All models are trained with
Adam Optimiser [32] for 45 epochs with a batch size of 1536 on 20 V100 GPUs. We use a linear
schedule with 2000 warmup steps and a base learning rate of 1e-4.

Results. To verify the training, we check our CLAP’s performance on the ESC50 dataset. The results
are shown in Table 15.

Model ESC50
Wav2CLIP 0.414
AudioCLIP 0.694

CLAP 0.826
LAION 0.91

CLAP (ours) 0.89
Table 12: CLAP zero-shot performance on ESC50

E Frozen audio encoder
The audio encoder aϕ transforms the raw audio input into an audio embedding. We used the audio
transformer backbone from CLAP trained in Section D as our audio encoder in our experiments. In
Computer Vision, Visual Language Models [42, 2, 39] use an image encoder from CLIP [47] which is
frozen throughout experiments. However, there is a magnitude order difference in data collection of
image-text vs audio-text pairs. Therefore, for Pengi we train the audio encoder as well. Nonetheless,
we report numbers on Pengi’s performance if the audio encoder is kept frozen. The results are shown
in Table 13. Frozen Pengi underperforms Pengi across all downstream tasks.

Audio Captioning ↑ Audio Q&A ↑ Sound Event Classification ↑

Model AudioCaps Clotho ClothoAQA ESC50 FSD50K US8K DCASE17
Task 4

Frozen Pengi 0.4535 0.2577 0.6395 0.8950 0.4117 0.6319 0.3225
Pengi 0.4667 0.2709 0.6453 0.9195 0.4676 0.7185 0.338

Acoustic Scene
Classification↑ Music ↑ Instrument Classification ↑ Music Note Analysis↑

Model TUT2017 Music
Speech

Music
Genres

Beijing
Opera

Instrument
family

NS.
Pitch

NS.
Velocity

NS.
Qualities

Frozen Pengi 0.3449 0.9219 0.2550 0.4814 0.2949 0.7131 0.3330 0.3830
Pengi 0.3525 0.9688 0.3525 0.6229 0.5007 0.8676 0.3728 0.3860

Emotion Recognition↑ Vocal Sound
Classification↑

Action
Recog.↑

Survei
llance.↑

Model CRE
MA-D

RAV
DESS

Vocal
Sound

ESC50
Actions SESA

Frozen Pengi 0.1816 0.1312 0.5371 0.5196 0.5316
Pengi 0.1846 0.2032 0.6035 0.5277 0.5402

Table 13: The model ‘Frozen Pengi’ indicates Pengi with audio encoder frozen. The ‘-’ symbol indicates
numbers were not available while ‘✗’ indicates that the model cannot support the task. Higher is better for all
numbers. The evaluation metric is mAP for FSD50k, AudioSet, and NSynth sonic; F1 score for DCASE17; and
SPIDEr for AudioCaps and Clotho captioning. All other downstream tasks use Accuracy.
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Audio Captioning ↑ Audio Q&A ↑ Sound Event Classification ↑

Model AudioCaps Clotho ClothoAQA ESC50 FSD50K US8K DCASE17
Task 4

Exp B 0.4857 0.2545 0.6316 0.9215 0.4478 6882 0.3314
Pengi 0.4667 0.2709 0.6453 0.9195 0.4676 0.7185 0.3380

Acoustic Scene
Classification↑ Music ↑ Instrument Classification ↑ Music Note Analysis↑

Model TUT2017 Music
Speech

Music
Genres

Beijing
Opera

Instrument
family

NS.
Pitch

NS.
Velocity

NS.
Qualities

Exp B 0.3241 0.9609 0.317 0.6864 0.5 0.8591 0.3708 0.377
Pengi 0.3525 0.9688 0.3525 0.6229 0.5007 0.8676 0.3728 0.386

Emotion Recognition↑ Vocal Sound
Classification↑

Action
Recog.↑

Survei
llance.↑

Model CRE
MA-D

RAV
DESS

Vocal
Sound

ESC50
Actions SESA

Exp B 0.1728 0.1769 0.5798 0.5282 0.4923
Pengi 0.1846 0.2032 0.6035 0.5277 0.5402

Table 14: Exp B is Pengi with mapper m2 but without the text encoder. The evaluation metric is mAP for
FSD50k, AudioSet, ESC50-Actions, and NSynth sonic; F1 score for DCASE17; and SPIDEr for AudioCaps and
Clotho captioning. All other downstream tasks use Accuracy.

F Effect of text encoder
Pengi’s architecture in Figure 2 consists of a text encoder gψ that transforms the input text into
text embeddings. Then a mapping network m2 converts these embeddings into a sequence of k
embeddings. A natural question that arises here is "Why is an explicit mapping needed for input
text?". We conducted two experiments to evaluate the effect of omitting m2 and/or the text encoder.
We denote Exp A as Pengi without the text encoder and m2 (input text directly to LM), and Exp B as
Pengi without the text encoder but with m2 (input text to m2). In Exp A, we found that removing
resulted in a loss of coherence between the input text prompt and the output text. For example, an
input prompt about identifying an emotion class "the emotion is " resulted in random text output
and thus random performance. In Exp B, we removed the text encoder but retained m2. The Exp B
architecture is depicted in Fig 7 and its results are shown in Table 14. By removing the text encoder,
the model performs slightly lower than the proposed architecture with both components.

Figure 7: Pengi architecture without the text encoder gψ . The text prompt is tokenized and embedded
by text embedder, followed by the mapping network m2. The results of this architecture are shown in
Table 13
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Audio Captioning ↑ Audio Q&A ↑ Sound Event Classification ↑

Model AudioCaps Clotho ClothoAQA ESC50 FSD50K US8K DCASE17
Task 4

CLAP* ✗ ✗ ✗ 0.8916 0.3398 0.7661 0.3387
Pengi 0.4667 0.2709 0.6453 0.9195 0.4676 0.7185 0.3380

Acoustic Scene
Classification↑ Music ↑ Instrument Classification ↑ Music Note Analysis↑

Model TUT2017 Music
Speech

Music
Genres

Beijing
Opera

Instrument
family

NS.
Pitch

NS.
Velocity

NS.
Qualities

CLAP* 0.3037 1.0 0.479 0.4025 0.415 0.1337 0.2185 0.2545
Pengi 0.3525 0.9688 0.3525 0.6229 0.5007 0.8676 0.3728 0.386

Emotion Recognition↑ Vocal Sound
Classification↑

Action
Recog.↑

Survei
llance.↑

Model CRE
MA-D

RAV
DESS

Vocal
Sound

ESC50
Actions SESA

CLAP* 0.1512 0.1692 0.5522 0.508 0.7094
Pengi 0.1846 0.2032 0.6035 0.5277 0.5402

Table 15: We train a new CLAP* model on the same 3.4M pairs training data used Pengi. The ‘✗’ indicates that
the model cannot support the task. Higher is better for all numbers. The evaluation metric is mAP for FSD50k,
AudioSet, ESC50-Actions, and NSynth sonic; F1 score for DCASE17; and SPIDEr for AudioCaps and Clotho
captioning. All other downstream tasks use Accuracy.

G Different type of Pengi errors
There are three types of errors that lead to a drop in Pengi’s performance. We categorize them into
audio concept errors, hierarchy errors, and text-matching errors.

Audio concept errors. These types of errors are when the model gets the base audio concepts wrong.
For example, while generating an audio caption, the model predicts it as "a sound of a dog barking in
a neighboring field" instead of "a sound of door knocks with cars moving nearby". This indicates the
model fails to detect the sound event of a door knock and confuses it with dog barking. These are
Pengi model errors stemming from the audio encoder.

Heirarchy errors. The hierarchy error comes from a mismatch between Pengi’s model prediction
and the target domain classification. For example, in classifying sound events, Pengi predicts the
sound as "domestic sounds", however for ESC50, the target classification requires a more fine-grained
classification within domestic sounds like Vaccum cleaner, Toilet flush, brushing teeth, etc. If text
matching is used for classification, then the model will not be able to categorize "domestic sounds"
into any of the fine-grained classes. To solve this error and get a more fine-grained response, we can
use improved text prompts or switch to the log-likelihood method.

Text-matching errors. The text-matching errors are the errors that result from the text embeddings or
the text-matching method used. This means depending on the text embedding and similarity method
used, the performance of Pengi on close-ended tasks will change.

H Constrastive Learning and Generative Pretraining
We compare our model Pengi with CLAP [15], a state-of-the-art Zero-Shot model that has been
evaluated on 16 downstream tasks. However, CLAP is trained on a smaller amount of audio-text data.
This leads us to ask: “Is the improved performance due to the larger training data or the generative
pretraining?”. We already know that generative pretraining allows us to perform open-ended tasks
like Audio Captioning, AQA, which are not possible with contrastive models. But this does not tell
us if: generative pretraining is beneficial for close-ended tasks like classification?. To answer this
question, we train a CLAP model with the same data 4.1) that we use to train Pengi. We call this
model CLAP*.

Results. The results are shown in Table 15. We see generative pertaining (Pengi) outperforming
contrastive learning (CLAP*) on average. Moreover, with generative pretraining, the model can
perform open-ended tasks like Audio Captioning and Audio Question Answering.

An interesting observation is Pengi outperforms human performance (81%) on ESC50. Humans
have limitations inherent to how much information a participant can handle at once. In the case of
ESC50, humans listen to the audio once, and have to remember the audio content, task description,
and choose among 50 different classes. Moreover, listeners have different degrees of familiarity with
prototypical content from different sound classes, whereas Pengi has been exposed to similar content
during training. In a sense, Pengi is an expert listener, whereas the humans in the listening experiment
were not.
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