
Supplement to “Energy-Based Sliced Wasserstein Distance"495

We first provide skipped proofs in the main text in Appendix A. We then provide additional materials496

including additional background, detailed algorithms, and discussion in Appendix B. Additional497

experimental results in point-cloud gradient flows, color transfer, and deep point-cloud reconstruction498

in Appendix C. Finally, we report the computational infrastructure in Appendix D.499

A Proofs500

A.1 Proof of Theorem 1501

Non-negativity and Symmetry. the non-negativity and symmetry properties of the EBSW follow502

directly by the non-negativity and symmetry of the Wasserstein distance since it is an expectation of503

the one-dimensional Wasserstein distance.504

Identity. We need to show that EBSWp(µ, ⌫; f) = 0 if and only if µ = ⌫. First, from the definition of505

EBSW, we obtain directly µ = ⌫ implies EBSWp(µ, ⌫; f) = 0. For the reverse direction, we use the506

same proof technique in [4]. If EBSWp(µ, ⌫; f) = 0, we have
R
Sd�1 Wp (✓]µ, ✓]⌫) d�µ,⌫(✓; f) = 0.507

Hence, we have Wp(✓]µ, ✓]⌫) = 0 for �µ,⌫(✓; f)-almost surely ✓ 2 Sd�1. Since �µ,⌫(✓; f) is508

continuous, we have Wp(✓]µ, ✓]⌫) = 0 for all ✓ 2 Sd�1 . From the identity property of the509

Wasserstein distance, we obtain ✓]µ = ✓]⌫ for �µ,⌫(✓; f)-a.e ✓ 2 Sd�1. Therefore, for any t 2 R510

and ✓ 2 Sd�1, we have:511

F [µ](t✓) =

Z

Rd

e�ith✓,xidµ(x) =

Z

R
e�itzd✓]µ(z) = F [✓]µ](t)

= F [✓]⌫](t) =

Z

R
e�itzd✓]⌫(z) =

Z

Rd

e�ith✓,xid⌫(x) = F [⌫](t✓),

where F [�](w) =
R
Rd0 e�ihw,xid�(x) denotes the Fourier transform of � 2 P(Rd0

). By the injectiv-512

ity of the Fourier transform, we obtain µ = ⌫ which concludes the proof.513

A.2 Proof of Proposition 1514

(a) We first provide the proof for the inequality SWp(µ, ⌫)  EBSWp(µ, ⌫; f). It is equivalent to515

prove that516

E✓⇠U(Sd�1)

⇥
Wp

p(✓]µ, ✓]⌫)
⇤
 E✓⇠�µ,⌫(✓;f)

⇥
Wp

p(✓]µ, ✓]⌫)
⇤
.

From the law of large number, it is sufficient to demonstrate that517

1

L

LX

i=1

W p
p (✓i]µ, ✓i]⌫) 

LX

i=1

W p
p (✓i]µ, ✓i]⌫)f(W

p
p (✓i]µ, ✓i]⌫))PL

i=1 f(W
p
p (✓i]µ, ✓i]⌫))

, (4)

for any L � 1 and ✓1, . . . , ✓L
i.i.d.
⇠ U(Sd�1). To ease the presentation, we denote ai = W p

p (✓i]µ, ✓i]⌫)518

and bi = f(W p
p (✓i]µ, ✓i]⌫)) for all 1  i  L. The inequality (4) becomes:519

1

L
(

LX

i=1

ai)(
LX

i=1

bi) 
LX

i=1

aibi. (5)

We prove the inequality (5) via an induction argument. It is clear that this inequality holds when520

L = 1. We assume that this inequality holds for any L. We now verify that the inequality (5) also521

holds for L + 1. Without loss of generality, we assume that a1  a2  . . .  aL  aL+1. Since522

the function f is an increasing function, it indicates that b1  b2  . . .  bL  bL+1. Applying the523

induction hypothesis for a1, . . . , aL and b1, . . . , bL, we find that524

(
LX

i=1

ai)(
LX

i=1

bi)  L
LX

i=1

aibi.
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This inequality leads to525

(
L+1X

i=1

ai)(
L+1X

i=1

bi)  L
LX

i=1

aibi + (
LX

i=1

ai)bL+1 + (
LX

i=1

bi)aL+1 + aL+1bL+1

Therefore, to obtain the conclusion of the hypothesis for L+ 1, it is sufficient to demonstrate that526

L
LX

i=1

aibi + (
LX

i=1

ai)bL+1 + (
LX

i=1

bi)aL+1 + aL+1bL+1  (L+ 1)(
L+1X

i=1

aibi),

which is equivalent to show that527

(
LX

i=1

ai)bL+1 + (
LX

i=1

bi)aL+1 

LX

i=1

aibi + LaL+1bL+1. (6)

Since aL+1 � ai and bL+1 � bi for all 1  i  L, we have (aL+1 � ai)(bL+1 � bi) � 0, which is528

equivalent to aL+1bL+1 + aibi � aL+1bi + bL+1ai for all 1  i  L. By taking the sum of these529

inequalities over i from 1 to L, we obtain the conclusion of inequality (6). Therefore, we obtain the530

conclusion of the induction argument for L+ 1, which indicates that inequality (5) holds for all L.531

As a consequence, we obtain the inequality SWp(µ, ⌫)  EBSWp(µ, ⌫; f).532

(b) We recall the definition of the Max-SW:533

Max-SWp(µ, ⌫) = max
✓2Sd�1

Wp(✓]µ, ✓]⌫).

Since Sd�1 is compact and the function ✓ ! Wp(✓]µ, ✓]⌫) is continuous, we have ✓? =534

argmax✓2Sd�1Wp(✓]µ, ✓]⌫). From Definition 2, for any p � 1, dimension d � 1, energy-function f ,535

and µ, ⌫ 2 Pp(Rd) we have:536

EBSWp(µ, ⌫) =
�
E✓⇠�µ,⌫(✓;f))

⇥
W p

p (✓]µ, ✓]⌫)
⇤� 1

p


�
E✓⇠�µ,⌫(✓;f))

⇥
W p

p (✓?]µ, ✓?]⌫)
⇤� 1

p = W p
p (✓⇤]µ, ✓⇤]⌫) = Max-SWp(µ, ⌫).

Furthermore, by applying the Cauchy-Schwartz inequality, we have:537

Max-SWp
p(µ, ⌫) = max

✓2Sd�1

✓
inf

⇡2⇧(µ,⌫)

Z

Rd

��✓>x� ✓>y
��p d⇡(x, y)

◆

 max
✓2Sd�1

✓
inf

⇡2⇧(µ,⌫)

Z

Rd⇥Rd

k✓kpkx� ykpd⇡(x, y)

◆

= inf
⇡2⇧(µ,⌫)

Z

Rd⇥Rd

k✓kpkx� ykpd⇡(x, y)

= inf
⇡2⇧(µ,⌫)

Z

Rd⇥Rd

kx� ykpd⇡(x, y)

 inf
⇡2⇧(µ,⌫)

Z

Rd⇥Rd

|x� y|pd⇡(x, y)

= W p
p (µ, ⌫),

after taking the p-rooth, we completes the proof.538

A.3 Proof of Theorem 2539

We aim to show that for any sequence of probability measures (µk)k2N and µ in Pp(Rd),540

limk!+1 EBSWp(µk, µ; f) = 0 if and only if for any continuous and bounded function f : Rd
! R,541

limk!+1
R
f dµk =

R
f dµ. We follow the proof techniques in [26]. We first state the following542

lemma.543

Lemma 1. For any p � 1, energy function f , and dimension d � 1, a sequence of probability544

measures (µk)k2N satisfies limk!+1 EBSWp(µk, µ; f) = 0 with µ in Pp(Rd), there exists an545

increasing function � : N ! N such that the subsequence
�
µ�(k)

�
k2N converges weakly to µ.546
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Proof. Since limk!+1 EBSWp(µk, µ; f) = 0, we have547

limk!1
R
Sd�1 Wp (✓]µk, ✓]µ) d�µ,⌫(✓; f) = 0. From Theorem 2.2.5 in [1], there exists an548

increasing function � : N ! N such that limk!1 Wp(✓]µ�(k), ✓]⌫) = 0 for �µ,⌫(✓; f)-a.e549

✓ 2 Sd�1. From [39], the Wasserstein distance of order p implies weak convergence in Pp(Rd),550

hence,
�
✓]µ�(k)

�
k2N converges weakly to ✓]µ for �µ,⌫(✓; f)-a.e ✓ 2 Sd�1.551

Let �µ =
R
Rd eihv,widµ(w) be the characteristic function of µ 2 Pp(Rd), the weak convergence552

implies the convergence of characteristic function (Theorem 4.3 [17]): limk!1 �✓]µ�(k)
(s) =553

�✓]µ(s), 8s 2 R, for �µ,⌫(✓; f)-a.e ✓ 2 Sd�1. Therefore, limk!1 �µ�(k)
(z) = �µ(z), for554

almost most every z 2 Rd.555

We denote f�(x) = f ⇤ g�(x) =
�
2⇡�2

��d/2 R
Rd f(x � z) exp

�
�kzk2/

�
2�2
��

dz for any � > 0556

and a continuous function f : Rd
! R with compact support, and g� is the density function of557

N (0, �Id). Now, we have:558

Z

Rd

f�(z)dµ�(k)(z) =

Z

Rd

Z

Rd

f(w)g�(z � w)dw dµ�(k)(z)

=

Z

Rd

Z

Rd

f(w)
�
2⇡�2

��d/2
exp(�||z � w||2/(2�2))dw dµ�(k)(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

eihz�w,xig1/�(x)dx dw dµ�(k)(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

e�ihw,xieihz,xig1/�(x)dx dw dµ�(k)(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xig1/�(x)

Z

Rd

eihz,xi dµ�(k)(z)dx dw

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xig1/�(x)�µ�(k)
(x)dx dw

=
�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ�(k)
(x)dx,

where the third equality is because
R
Rd eihz�w,xig1/�(x)dx = exp(�||z � w||2/(2�2)), and559

F [f ](w) =
R
Rd0 f(x)e�ihw,xidx denotes the Fourier transform of the bounded function f . Similarly,560

we have:561

Z

Rd

f�(z)dµ(z) =

Z

Rd

Z

Rd

f(w)g�(z � w)dw dµ(z)

=

Z

Rd

Z

Rd

f(w)
�
2⇡�2

��d/2
exp(�||z � w||2/(2�2))dw dµ(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

eihz�w,xig1/�(x)dx dw dµ(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)

Z

Rd

e�ihw,xieihz,xig1/�(x)dx dw dµ(z)

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xig1/�(x)

Z

Rd

eihz,xi dµ(z)dx dw

=
�
2⇡�2

��d/2
Z

Rd

Z

Rd

f(w)e�ihw,xig1/�(x)�µ(x)dx dw

=
�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ(x)dx.

We know that F [f ] exists and is bounded by
R
Rd |f(w)|dw < +1 since f has compact562

support. Hence, for any x 2 Rd and k 2 R, we have
��F [f ](x)g1/�(x)�µ�(k)

(x)
�� 563

g1/�(x)
R
Rd |f(w)|dw and

��F [f ](x)g1/�(x)�µ(x)
��  g1/�(x)

R
Rd |f(w)|dw. Using the proved564
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result of limk!1 �µ�(k)
(z) = �µ(z) and Lebesgue’s Dominated Convergence Therefore, we obtain565

lim
k!1

Z

Rd

f�(z)dµ�(k)(z) = lim
k!1

�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ�(k)
(x)dx

=
�
2⇡�2

��d/2
Z

Rd

F [f ](x)g1/�(x)�µ�(k)
(x)dx

=

Z

Rd

f�(z)dµ(z).

Moreover, we have:566

lim
�!0

lim sup
k!+1

����
Z

Rd

f(z)dµ�(k)(z)�

Z

Rd

f(z)dµ(z)

����

 lim
�!0

lim sup
k!+1


2 sup
z2Rd

|f(z)� f�(z)|+

����
Z

Rd

f�(z)dµ�(k)(z)�

Z

Rd

f�(z)dµ(z)

����

�

= lim
�!0

2 sup
z2Rd

|f(z)� f�(z)| = 0,

which implies
�
µ�(k)

�
k2N converges weakly to µ.567

Continuing the proof of Theorem 2, we show that limk!1 EBSWp(µk, µ; f) = 0 implies (µk)k2N568

converges weakly to µ. Let
�
µ�(k)

�
k2N be a sequence such that limk!1 EBSWp(µk, µ; f) = 0,569

we suppose
�
µ�(k)

�
k2N does not converge weakly to µ. So, let DP be the Lévy-Prokhorov metric,570

limk!1 DP(µk,µ) 6= 0 that implies there exists " > 0 and a subsequence
�
µ (k)

�
k2N with an571

increasing function  : N ! N such that for any k 2 N: DP(µ (k), µ) � ". Using the Holder572

inequality with µ, ⌫ 2 Pp(Rd), we have:573

EBSWp(µ, ⌫; f) =
�
E✓⇠�µ,⌫(✓;f)

⇥
W p

p (✓]µ, ✓]⌫)
⇤� 1

p

� E✓⇠�µ,⌫(✓;f) [Wp (✓]µ, ✓]⌫)]

� E✓⇠�µ,⌫(✓;f) [W1 (✓]µ, ✓]⌫)]

= EBSW1(µ, ⌫; f).

Therefore, limk!1 EBSW1(µ (k), µ; f) = 0 which implies that there exists s a subsequence574 �
µ�( (k))

�
k2N with an increasing function � : N ! N such that

�
µ�( (k))

�
k2N converges weakly to575

µ by Lemma 1. Therefore a contradiction appears, namely, limk!1 dP
�
µ�( (k)), µ

�
= 0. Therefore,576

limk!1 EBSWp(µk, µ; f) = 0, (µk)k2N converges weakly to µ.577

We have (✓]µk)k2N converges weakly to ✓]µ for any ✓ 2 Sd�1 by the continuous mapping theorem.578

From [39], the weak convergence implies the convergence under the Wasserstein distance. So, we579

have limk!1 Wp(✓]µk, µ) = 0. Moreover, using the fact that the Wasserstein distance is also580

bounded, hence, the bounded convergence theorem implies:581

lim
k!1

EBSWp
p(µk, µ; f) = E✓⇠�µ,⌫(✓;f)

⇥
W p

p (✓]µk, ✓]µ)
⇤

= E✓⇠�µ,⌫(✓;f) [0] = 0.

Again, usingthe continuous mapping theorem with function x ! x1/p, we have582

limk!1 EBSWp(µk, µ; f) ! 0. We conclude the proof.583

A.4 Proof of Proposition 2584

We first show that the following inequality holds

E[Max-SWp(µn, µ)]  C
p
(d+ 1) log n/n

where C > 0 is some universal constant and the outer expectation is taken with respect to the random585

variables X1, . . . , Xn. We now follow the proof technique from in [28]. Let F�1
n,✓ and F�1

✓ be the586
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Algorithm 1 Computational algorithm of the SW distance
Input: Probability measures µ and ⌫, p � 1, and the number of projections L.
for l = 1 to L do

Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp(✓l]µ, ✓l]⌫)

end for

Compute dSW p(µ, ⌫;L) =
⇣

1
L

PL
l=1 vl

⌘ 1
p

Return: dSW p(µ, ⌫;L)

inverse cumulative distributions of two push-forward measures ✓]µn and ✓]µ. Using the closed-form587

expression of the Wasserstein distance in one dimension, we obtain to the following equations and588

inequalities:589

Max-SWp
p(µn, µ) = max

✓2Sd�1

Z 1

0
|F�1

n,✓(u)� F�1
✓ (u)|pdu

= max
✓2Rd:k✓k=1

Z 1

0
|F�1

n,✓(u)� F�1
✓ (u)|pdu

 diam(X ) max
✓2Rd:k✓k1

|Fn,✓(x)� F✓(x)|
p.

where X ⇢ Rd is the compact set of the probability measure µ. We can check that590

max
✓2Rd:k✓k1

|Fn,✓(x)� F✓(x)| = sup
A2B

|µn(A)� µ(A)|,

where B is the set of half-spaces {z 2 Rd : ✓>z  x} for all ✓ 2 Rd such that k✓k  1. We know591

that the Vapnik-Chervonenkis (VC) dimension of B is at most d+ 1 [40]. Therefore, using the VC592

inequality, we obtain:593

sup
A2A

|µn(A)� µ(A)| 

r
32

n
[(d+ 1) log(n+ 1) + log(8/�)],

with probability at least 1� �. Therefore, we obtain that594

E[Max-SWp(µn, µ)]  C
p

(d+ 1) log n/n,

where C > 0 is some universal constant. Moreover, we have E[EBSWp(µn, µ; f)] 595

E [Max-SWp(µn, µ)] from Proposition 1. Therefore, As a consequence, we obtain:596

E[EBSWp(µn, µ; f)]  C
p

(d+ 1) log n/n,

which completes the proof.597

B Additional Materials598

B.1 Additional Background599

Sliced Wasserstein. When two probability measures are empirical probability measures on n600

supports: µ = 1
n

Pn
i=1 �xi and ⌫ = 1

n

Pn
i=1 �yi , the SW distance can be computed by sort-601

ing projected supports. In particular, we have ✓]µ = 1
n

Pn
i=1 �✓>xi

, ✓]⌫ = 1
n

Pn
i=1 �✓>yi

, and602

Wp
p(✓]µ, ✓]⌫) =

1
n

Pn
i=1(✓

>x(i) � ✓>y(i))
p where ✓>x(i) is the ordered projected supports. We603

provide the pseudo-code for computing the SW in Algorithm 1.604

Max sliced Wasserstein. The Max-SW is often computed by the projected gradient ascent. The605

sub-gradient is used when the one-dimensional optimal matching is not unique e.g., in discrete cases.606

We provide the projected (sub)-gradient ascent algorithm for computing the Max-SW in Algorithm 2.607

Compared to the SW, the Max-SW needs two hyperparameters which are the number of iterations T608

and the step size ⌘. Moreover, the empirical estimation of the Max-SW might not converge to the609

Max-SW when T ! 1.610
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Algorithm 2 Computational algorithm of the Max-SW distance
Input: Probability measures µ and ⌫, p � 1, the number of iterations T , and the step size ⌘.
Sample ✓̂0 ⇠ U(Sd�1)
for t = 1 to T do

Compute ✓̂t = ✓̂t�1 + ⌘r✓̂t�1
Wp(✓̂t�1]µ, ✓̂t�1]⌫)

Compute ✓̂t = ✓̂t
||✓̂t||2

end for

Compute \Max-SWp(µ, ⌫;T ) = Wp(✓̂T ]µ, ✓̂T ]⌫)

Return: \Max-SWp(µ, ⌫;T )

Algorithm 3 Computational algorithm of the DSW distance
Input: Probability measures µ and ⌫, p � 1, the number of projections L, the number of iterations
T , and the step size ⌘.
Initialize  ̂0

for t = 1 to T do

r = 0
for l = 1 to L do

Sample ✓l, ⇠ � ̂t�1(✓)
via reparameterization.

Compute ✓̂t = ✓̂t
||✓̂t||2

end for

Compute  ̂t =  ̂t�1 + ⌘ 1
p

⇣
1
L

PL
l=1 Wp

p(✓l, ]µ, ✓l, ]⌫)
⌘ 1�p

p 1
L

Pl
l=1 r Wp

p(✓l, ]µ, ✓l, ]⌫))

end for

for l = 1 to L do

Sample ✓l ⇠ � ̂T (✓) via reparameterization.
end for

Compute [DSWp(µ, ⌫;T, L) =
⇣

1
L

PL
l=1 Wp

p(✓l]µ, ✓l]⌫)
⌘ 1

p

Return: [DSWp(µ, ⌫;T, L)

Distributional sliced Wasserstein. To solve the optimization of the DSW, we need to use the611

stochastic (sub)-gradient ascent algorithm. In particular, we first need to estimate the gradient612

r 

�
E✓⇠� (✓)Wp

p(✓]µ, ✓]⌫)
� 1

p :613

r 

�
E✓⇠� (✓)Wp

p(✓]µ, ✓]⌫)
� 1

p =
1

p

�
E✓⇠� (✓)Wp

p(✓]µ, ✓]⌫)
� 1�p

p
r E✓⇠� (✓)Wp

p(✓]µ, ✓]⌫).

To estimate the gradient r E✓⇠� (✓)Wp
p(✓]µ, ✓]⌫), we need to use reparameterization trick for614

� (✓) e.g., the vMF distribution. After using the reparameterization trick, we can approximate615

the gradient r E✓⇠� (✓)Wp
p(✓]µ, ✓]⌫) =

1
L

Pl
l=1 r Wp

p(✓l, ]µ, ✓l, ]⌫) where ✓1, , . . . , ✓L, are616

i.i.d reparameterized samples from � (✓). Similarly, we approximiate E✓⇠� (✓)Wp
p(✓]µ, ✓]⌫) =617

1
L

PL
l=1 Wp

p(✓l]µ, ✓l]⌫) . We refer to the details in the following papers [7, 30]. We review the618

algorithm for computing the DSW in Algorithm 3. Compared to the SW, the DSW needs three619

hyperparameters i.e., the number of projections L, the number of iterations T , and the step size ⌘.620

Minimum Distance Estimator and Gradient Estimation. In statistical inference, we are given the621

empirical samples X1, . . . , Xn from the interested distribution ⌫. Since we do not know the form622

of ⌫, we might want to find an alternative representation. In particular, we want to find the best623

member µ� in a family of distribution parameterized by � 2 �. To do that, we want to minimize the624

distance between µ� and the empirical distribution ⌫n = 1
n

Pn
i=1 �Xi . This framework is named the625

minimum distance estimator [41]:626

min
�2�

D(µ�, ⌫n),

where D is a discrepancy between two distributions. The gradient ascent algorithm is often used to627

solve the problem. To do so, we need to compute the gradient r�D(µ�, ⌫n). When using sliced628
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Algorithm 4 Computational algorithm of the IS-EBSW distance
Input: Probability measures µ and ⌫, p � 1, the number of projections L, the energy function f .
for l = 1 to L do

Sample ✓l ⇠ U(Sd�1)
Compute vl = Wp(✓l]µ, ✓l]⌫)
Compute wl = f(Wp(✓l]µ, ✓l]⌫))

end for

Compute \IS-EBSWp(µ, ⌫;L, f) =
⇣

1
L

PL
l=1 vl

wlPL
i=1 wi

⌘ 1
p

Return: \IS-EBSWp(µ, ⌫;L, f)

Wasserstein distances, the gradient r�D(µ�, ⌫n) is often approximated by a stochastic gradient since629

the SW distances involve an intractable expectation. In previous SW variants, the expectation does not630

depend on �, hence, we can use directly the Leibniz rule to exchange the gradient and the expectation,631

then perform the Monte Carlo approximation. In particular, we have r�E✓⇠�(✓)[Wp
p(✓]µ, ✓]⌫)] =632

E✓⇠�(✓)[r�Wp
p(✓]µ, ✓]⌫)] ⇡

1
L

PL
l=1 r�Wp

p(✓l]µ, ✓l]⌫) for ✓1, . . . , ✓L
i.i.d
⇠ �(✓).633

B.2 Importance Sampling634

Derivation. We first provide the derivation of the importance sampling estimation of EBSW. From635

the definition of the EBSW, we have:636

EBSWp(µ, ⌫; f) =
�
E✓⇠�µ,⌫(✓;f)

⇥
Wp

p(✓]µ, ✓]⌫)
⇤� 1

p

=

✓R
Sd�1 Wp

p(✓]µ, ✓]⌫)f(W
p
p(✓]µ, ✓]⌫))d✓R

Sd�1 f(Wp
p(✓]µ, ✓]⌫))d✓

◆ 1
p

=

0

@
R
Sd�1 Wp

p(✓]µ, ✓]⌫)
f(Wp

p(✓]µ,✓]⌫))

�0(✓)
�0(✓)d✓

R
Sd�1

f(Wp
p(✓]µ,✓]⌫))
�0(✓)

�0(✓)d✓

1

A

1
p

=

0

@
E✓⇠�0(✓)

h
Wp

p(✓]µ, ✓]⌫)
f(Wp

p(✓]µ,✓]⌫))

�0(✓)

i

E✓⇠�0(✓)

h
f(Wp

p(✓]µ,✓]⌫))
�0(✓)

i

1

A

1
p

=

 
E✓⇠�0(✓)

⇥
Wp

p(✓]µ, ✓]⌫)wµ,⌫,�0(✓)
⇤

E✓⇠�0(✓) [wµ,⌫,�0(✓)]

! 1
p

.

Algorithms. We provide the algorithm for the IS estimation of the EBSW in Algorithm 4. Compared637

to the algorithm of the SW in Algorithm 1, the IS-EBSW can be obtained by only adding one or638

two lines of code in practice. Therefore, the computation of the IS-EBSW is as fast as the SW while639

being more meaningful.640

Gradient Estimators. Let µ� be parameterized by �, we derive now the gradient estimator641

r�EBSWp(µ, ⌫; f) through importance sampling. We have:642

r�EBSWp(µ�, ⌫; f) =
1

p

 
E✓⇠�0(✓)

⇥
Wp

p(✓]µ�, ✓]⌫)wµ�,⌫,�0,f (✓)
⇤

E✓⇠�0(✓)

⇥
wµ�,⌫,�0,f (✓)

⇤
! 1�p

p

r�
E✓⇠�0(✓)

⇥
Wp

p(✓]µ�, ✓]⌫)wµ�,⌫,�0,f (✓)
⇤

E✓⇠�0(✓)

⇥
wµ�,⌫,�0,f (✓)

⇤ .

We denote A(�) = E✓⇠�0(✓)

⇥
Wp

p(✓]µ�, ✓]⌫)wµ�,⌫,�0,f (✓)
⇤
, B(�) = E✓⇠�0(✓)

⇥
wµ�,⌫,�0,f (✓)

⇤
, we643

have644

r�
A(�)

B(�)
=

B(�)r�A(�)�A(�)r�B(�)

B2(�)
.
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Using Monte Carlo samples ✓1, . . . , ✓L ⇠ �0(✓) after using the Lebnitz rule to exchange the645

differentiation and the expectation, we obtain:646

 
E✓⇠�0(✓)

⇥
Wp

p(✓]µ�, ✓]⌫)wµ�,⌫,�0,f (✓)
⇤

E✓⇠�0(✓)

⇥
wµ�,⌫,�0,f (✓)

⇤
! 1�p

p

⇡

 
1
L

PL
l=1

⇥
Wp

p(✓l]µ�, ✓l]⌫)wµ�,⌫,�0,f (✓l)
⇤

1
L

PL
l=1

⇥
wµ�,⌫,�0,f (✓l)

⇤

! 1�p
p

,

r�A(�) ⇡
1

L

LX

l=1

r�

�
Wp

p(✓l]µ�, ✓l]⌫)wµ�,⌫,�0,f (✓)
�
,

r�B(�) ⇡
1

L

LX

l=1

r�wµ�,⌫,�0,f (✓),

which yields the gradient estimation. If we construct the slicing distribution by using a copy of µ�647

i.e., µ�0 with �0 = � in terms of value, the gradient estimator can be derived by:648

r�EBSWp(µ�, ⌫; f) =
1

p

0

@
E✓⇠�0(✓)

h
Wp

p(✓]µ�, ✓]⌫)wµ�0 ,⌫,�0,f (✓)
i

E✓⇠�0(✓)

h
wµ�0 ,⌫,�0,f (✓)

i

1

A

1�p
p

r�E✓⇠�0(✓)

h
Wp

p(✓]µ�, ✓]⌫)wµ�0 ,⌫,�0,f (✓)
i

E✓⇠�0(✓)

h
wµ�0 ,⌫,�0,f (✓)

i ,

Using Monte Carlo samples ✓1, . . . , ✓L ⇠ �0(✓) after using the Lebnitz rule to exchange the649

differentiation and the expectation, we obtain:650

0

@
E✓⇠�0(✓)

h
Wp

p(✓]µ�, ✓]⌫)wµ�0 ,⌫,�0,f (✓)
i

E✓⇠�0(✓)

h
wµ�0 ,⌫,�0,f (✓)

i

1

A

1�p
p

⇡

0

@
1
L

PL
l=1

h
Wp

p(✓l]µ�, ✓l]⌫)wµ�0 ,⌫,�0,f (✓l)
i

1
L

PL
l=1

h
wµ�0 ,⌫,�0,f (✓l)

i

1

A

1�p
p

,

r�E✓⇠�0(✓)

h
Wp

p(✓]µ�, ✓]⌫)wµ�0 ,⌫,�0,f (✓)
i
⇡

1

L

LX

l=1

�
r�Wp

p(✓l]µ�, ✓l]⌫)
�
wµ�,⌫0,�0,f (✓),

E✓⇠�0(✓)

h
wµ�0 ,⌫,�0,f (✓)

i
⇡

1

L

LX

l=1

wµ�0 ,⌫,�0,f (✓).

It is worth noting that using a copy of µ� does not change the value of the distance. This trick will651

show its true benefit when dealing with the SIR, and the MCMC methods. However, we still discuss652

it in the IS case for completeness. We refer to the "copy" trick is the "parameter-copy" gradient653

estimator while the original one is the conventional estimator.654

Importance Weighted sliced Wasserstein distance. Although the IS estimation of the EBSW is not655

an unbiased estimation for finite L, it is an unbiased estimation of a valid distance on the space of656

probability measures. We refer to the distance as the importance weighted sliced Wasserstein distance657

(IWSW) which has the following definition.658

Definition 3. For any p � 1, dimension d � 1, energy function f , a continuous proposal distribution659

�0(✓) ⇠ P(Sd�1) and two probability measures µ 2 Pp(Rd) and ⌫ 2 Rd, the importance weighted660

sliced Wasserstein (IWSW) distance is defined as follows:661

IWSWp(µ, ⌫; f) =

 
E
"

1
L

PL
l=1

⇥
Wp

p(✓l]µ, ✓l]⌫)wµ,⌫,�0,f (✓l)
⇤

1
L

PL
l=1 [wµ,⌫,�0,f (✓l)]

#! 1
p

, (7)

where the expectation is with respect to ✓1, . . . , ✓L
i.i.d
⇠ �0(✓), and wµ,⌫,�0,f (✓) =

f(Wp
p(✓]µ,✓]⌫))

�0(✓)
.662

The IWSW is semi-metric, it also does not suffer from the curse of dimensionality, and it induces663

weak convergence. The proofs can be derived by following directly the proofs of the EBSW in664

Appendix A.1, Apendix A.3, and Appendix A.4. Therefore, using the IS estimation of the EBSW is665

as safe as the SW.666
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Algorithm 5 Computational algorithm of the SIR-EBSW distance
Input: Probability measures µ and ⌫, p � 1, the number of projections L, the energy function f .
for l = 1 to L do

Sample ✓l ⇠ U(Sd�1)
Compute wl = f(Wp(✓l]µ, ✓l]⌫))

end for

for l = 1 to L do

Compute ŵl =
f(Wp(✓l]µ,✓l]⌫))PL

i=1 f(Wp(✓i]µ,✓i]⌫))

end for

for l = 1 to L do

Sample ✓l ⇠ Cat(ŵ1, . . . , ŵL)
Compute vl = Wp(✓l]µ, ✓l]⌫)

end for

Compute \SIR-SWp(µ, ⌫;L, f) =
⇣

1
L

PL
l=1 vl

⌘ 1
p

Return: \SIR-SWp(µ, ⌫;L, f)

Algorithm 6 Computational algorithm of the SW distance and the IMH-EBSW distance
Input: Probability measures µ and ⌫, p � 1, the number of projections L, the energy function f .
Sample ✓1 ⇠ U(Sd�1)
Compute v1 = Wp(✓1]µ, ✓1]⌫)
for l = 2 to L do

Sample ✓0l ⇠ U(Sd�1)

Compute ↵ = min
⇣
1,

f(Wp
p(✓

0
l]µ,✓

0
l]⌫)))

f(Wp
p(✓l�1]µ,✓l�1]⌫)))

⌘

Sample u ⇠ U([0, 1])
if ↵ � u then

Set ✓l = ✓0l
else if ↵ < u then

Set ✓l = ✓l�1

end if

vl = Wp(✓l]µ, ✓l]⌫)
end for

Compute \IMH-EBSWp(µ, ⌫;L, f) =
⇣

1
L

PL
l=1 vl

⌘ 1
p

Return: \IMH-EBSWp(µ, ⌫;L)

B.3 Sampling Importance Resampling and Markov Chain Monte Carlo667

Algorithms. We first provide the algorithm for computing the EBSW via the SIR, the IMH, and the668

RMH in Algorithm 5-7.669

Gradient estimators. We derive the reinforce gradient estimator of the EBSW for the SIR, the IMH,670

and the RHM sampling.671

r�EBSWp(µ�, ⌫; f) =
1

p

⇣
E✓⇠�µ�,⌫(✓;f)

⇥
Wp

p(✓]µ�, ✓]⌫)
⇤⌘ 1�p

p
r�E✓⇠�µ�,⌫(✓;f)

⇥
Wp

p(✓]µ�, ✓]⌫)
⇤
.

We have:672

r�E✓⇠�µ�,⌫(✓;f)

⇥
Wp

p(✓]µ�, ✓]⌫)
⇤
= E✓⇠�µ�,⌫;f (✓)

⇥
Wp

p(✓�]µ, ✓]⌫)r� log
�
Wp

p(✓]µ�, ✓]⌫)�µ�,⌫(✓; f)
�⇤
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Algorithm 7 Computational algorithm of the SW distance and the RMH-EBSW distance
Input: Probability measures µ and ⌫, p � 1, the number of projections L, the energy function f ,
the concentration parameter .
Sample ✓1 ⇠ U(Sd�1)
Compute v1 = Wp(✓1]µ, ✓1]⌫)
for l = 2 to L do

Sample ✓0l ⇠ vMF(✓l�1,)

Compute ↵ = min
⇣
1,

f(Wp
p(✓

0
l]µ,✓

0
l]⌫)))

f(Wp
p(✓l�1]µ,✓l�1]⌫)))

⌘

Sample u ⇠ U([0, 1])
if ↵ � u then

Set ✓l = ✓0l
else if ↵ < u then

Set ✓l = ✓l�1

end if

vl = Wp(✓l]µ, ✓l]⌫)
end for

Compute \RMH-EBSWp(µ, ⌫;L, f) =
⇣

1
L

PL
l=1 vl

⌘ 1
p

Return: \RMH-EBSWp(µ, ⌫;L)

and673

r� log
�
Wp

p(✓]µ�, ✓]⌫)�µ�,⌫(✓; f)
�
= r� log(Wp

p✓]µ�, ✓]⌫)) +r� log(f(Wp
p(✓]µ�, ✓]⌫)))

�r� log

✓Z

Sd�1

f(Wp
p(✓]µ�, ✓]⌫))d✓

◆

=
1

Wp
p(✓]µ�, ✓]⌫))

r�Wp
p(✓]µ�, ✓]⌫)

+
1

f(Wp
p(✓]µ�, ✓]⌫))

r�f(Wp
p(✓]µ�, ✓]⌫))

�r� log

✓Z

Sd�1

f(Wp
p(✓]µ�, ✓]⌫))d✓

◆
,

and674

r� log

✓Z

Sd�1

f(Wp
p(✓]µ�, ✓]⌫))d✓

◆
= r� log

✓
E✓⇠U(Sd�1)


f(Wp

p(✓]µ�, ✓]⌫))
2⇡d/2

�(d/2)

�◆

= r� log
�
E✓⇠U(Sd�1)

⇥
f(Wp

p(✓]µ�, ✓]⌫))
⇤�

=
1

E✓⇠U(Sd�1)

⇥
f(Wp

p(✓]µ�, ✓]⌫))
⇤r�E✓⇠U(Sd�1)
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f(Wp

p(✓]µ�, ✓]⌫)
⇤
.

Using L Monte Carlo samples from the SIR (or the IMH or the RMH) to approximate the expectation675

E✓⇠�µ�,⌫(✓;f), and L samples from U(Sd�1) to approximate the expectation E✓⇠U(Sd�1), we obtain676

the gradient estimator of the EBSW. However, the reinforce gradient estimator is unstable in practice,677

especially with the energy function fe(x) = ex. Therefore, we propose a more simple gradient678

estimator which is679

r�EBSWp(µ�, ⌫; f) ⇡
1

p

⇣
E✓⇠�µ�0 ,⌫

(✓;f)

⇥
Wp

p(✓]µ�, ✓]⌫)
⇤⌘ 1�p

p E✓⇠�µ�0 ,⌫
(✓;f)

⇥
r�Wp

p(✓]µ�, ✓]⌫)
⇤
.

The key is to use a copy of the parameter �0 for constructing the slicing distribution �µ�0 ,⌫(✓; f),680

hence, we can exchange directly the differentiation and the expectation. It is worth noting that using681

the copy also affects the gradient estimation, it does not change the value of the distance. We refer to682

the "copy" trick is the "parameter-copy" gradient estimator while the original one is the conventional683

estimator.684

Population distance. The approximated values of p-power EBSW from using the SIR, the IMH,685

and the RMH can be all written as 1
L

PL
l=1 Wp

p(✓l]µ, ✓l]⌫). Here, the distributions of ✓1, . . . , ✓L686
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are different. Therefore, they are not an unbiased estimation of the EBSWp
p(µ, ⌫; f). However, the687

population distance of the estimation can be defined as in Definition 4.688

Definition 4. For any p � 1, dimension d � 1, energy function f , and two probability measures689

µ 2 Pp(Rd) and ⌫ 2 Rd, the projected sliced Wasserstein (PSW) distance is defined as follows:690

PSWp(µ, ⌫; f) =

 
E
"
1

L

LX

l=1

Wp
p(✓l]µ, ✓]⌫)

#! 1
p

, (8)

where the expectation is with respect to (✓1, . . . , ✓L) ⇠ �(✓1, . . . , ✓L) which is a distribution defined691

by the SIR (the IMH or the RHM).692

The PSW is a valid metric since it satisfies the triangle inequality in addition to the symmetry, the693

non-negativity, and the identity. In particular, given three probability measures µ1, µ2, µ3 2 Pp(Rd)694

we have:695

PSWp(µ1, µ3) =
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LX

t=1
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p

#! 1
p


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"
1

L

LX
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#! 1
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"
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TX
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W p
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#! 1
p

= PSWp(µ1, µ2) + PSWp(µ2, µ3),

where the first inequality is due to the triangle inequality of Wasserstein distance and the second696

inequality is due to the Minkowski inequality. The PSW also does not suffer from the curse of697

dimensionality, and it induces weak convergence. The proofs can be derived by following directly698

the proofs of the EBSW in Appendix A.1, Apendix A.3, and Appendix A.4. Therefore, using the699

SIR, the IMH, and the RMH estimation of the EBSWs are as safe as the SW.700

C Additional Experiments701

In this section, we provide additional results for point-cloud gradient flows in Appendix C.1, color702

transfer in Appendix C.2, and deep point-cloud reconstruction in Appendix C.3.703

C.1 Point-Cloud Gradient Flows704

We provide the full experimental results including the IS-EBSW, the SIR-EBSW, the IMH-EBSW,705

and the RMH-EBSW with both the exponential energy function and the identity energy function in706

Table 3. In the table, we also include the results for the number of projections L = 10. In Table 3,707

we use the conventional gradient estimator for the IS-EBSW while the "parameter-copy" estimator708

is used for other variants of the EBSW. Therefore, we also provide the ablation studies comparing709

the gradient estimators in Table 4 by adding the results for the "parameter-copy" estimator for the710

IS-EBSW and the conventional estimator for other variants. Experimental settings are the same as in711

the main text.712

Quantitative Results. From the two tables, we observe that the IS-EBSW is the best variant of the713

EBSW in both performance and computational time. Also, we observe that the exponential energy714

function is better than the identity energy function in this application. It is worth noting that the715

EBSW variants of all computational methods and energy functions are better than the baselines in716

terms of Wasserstein-2 distances at the last epoch. For all sliced Wasserstein variants, we see that717

reducing the number of projections leads to worsening performance which is consistent with previous718
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Table 3: Summary of Wasserstein-2 scores (multiplied by 104) from three different runs, computational time in
second (s) to reach step 500 of different sliced Wasserstein variants in gradient flows.

Distances Step 0 (W2 #) Step 100 (W2 #) Step 200 (W2 #) Step 300 (W2 #) Step 400(W2 #) Step 500 (W2 #) Time (s #)

SW L=100 2048.29± 0.0 986.93± 9.55 350.66± 5.32 99.69± 1.85 27.03± 0.65 9.41± 0.27 17.06± 0.45
Max-SW T=100 2048.29± 0.0 506.56± 9.28 93.54± 3.39 22.2± 0.79 9.62± 0.22 6.83± 0.22 28.38± 0.05
v-DSW L*T=100 2048.29± 0.0 649.33± 8.77 127.4± 5.06 29.44± 1.25 10.95± 1.0 5.68± 0.56 21.2± 0.02
IS-EBSW-e L=100 2048.29± 0.0 419.09± 2.64 71.02± 0.46 18.2± 0.05 6.9± 0.08 3.3± 0.08 17.63± 0.02
SIR-EBSW-e L=100 2048.29± 0.0 435.02± 1.1 85.26± 0.11 21.96± 0.12 7.9± 0.22 3.79± 0.17 29.8± 0.04
IMH-EBSW-e L=100 2048.29± 0.0 460.19± 3.46 91.28± 1.19 23.35± 0.52 8.26± 0.26 3.93± 0.14 49.3± 0.54
RMH-EBSW-e L=100 2048.29± 0.0 454.92± 3.25 87.92± 0.69 22.66± 0.46 8.14± 0.31 3.82± 0.24 62.5± 0.09
IS-EBSW-1 L=100 2048.29± 0.0 692.63± 7.21 167.75± 3.12 41.8± 0.93 12.31± 0.27 5.35± 0.1 17.91± 0.28
SIR-EBSW-1 L=100 2048.29± 0.0 704.08± 2.75 169.88± 0.47 41.85± 0.28 12.58± 0.24 5.64± 0.18 30.56± 0.05
IMH-EBSW-1 L=100 2048.29± 0.0 715.97± 4.49 171.42± 1.25 42.05± 0.42 12.6± 0.1 5.63± 0.06 50.01± 0.01
RMH-EBSW-1 L=100 2048.29± 0.0 712.11± 1.64 173.47± 1.49 42.94± 0.4 12.68± 0.15 5.54± 0.09 64.01± 0.08

SW L=10 2048.29± 0.0 988.57± 14.01 351.63± 2.63 101.54± 2.45 28.19± 1.04 10.11± 0.34 3.84± 0.04
Max-SW T=10 2048.29± 0.0 525.72± 7.35 134.8± 4.6 34.07± 0.34 10.77± 0.15 7.36± 0.31 6.55± 0.06
IS-EBSW-e L=10 2048.29± 0.0 519.73± 8.63 92.14± 1.29 23.94± 0.07 9.03± 0.33 4.59± 0.22 5.57± 0.03
SIR-EBSW-e L=10 2048.29± 0.0 508.86± 8.49 104.47± 1.93 28.27± 0.68 10.56± 0.08 5.61± 0.16 6.84± 0.06
IMH-EBSW-e L=10 2048.29± 0.0 621.51± 22.49 131.75± 7.09 34.42± 1.89 11.55± 0.38 5.56± 0.09 8.41± 0.04
RMH-EBSW-e L=10 2048.29± 0.0 642.87± 5.25 135.91± 8.39 36.11± 2.13 12.57± 0.75 5.94± 0.31 9.69± 0.04
IS-EBSW-1 L=10 2048.29± 0.0 713.65± 5.68 177.16± 1.19 45.07± 0.17 13.6± 0.26 6.16± 0.22 5.69± 0.0
SIR-EBSW-1 L=10 2048.29± 0.0 731.4± 9.37 181.28± 5.05 44.99± 1.07 13.59± 0.51 6.68± 0.27 6.9± 0.03
IMH-EBSW-1 L=10 2048.29± 0.0 772.86± 28.09 199.29± 7.02 48.73± 1.69 14.1± 0.49 6.25± 0.35 8.61± 0.02
RMH-EBSW-1 L=10 2048.29± 0.0 810.1± 10.2 212.11± 9.53 54.62± 2.63 15.44± 0.93 6.74± 0.32 9.86± 0.06

Table 4: Summary of Wasserstein-2 scores (multiplied by 104) from three different runs, computational time in
second (s) to reach step 500 of different sliced Wasserstein variants in gradient flows.

Distances Step 0 (W2 #) Step 100 (W2 #) Step 200 (W2 #) Step 300 (W2 #) Step 400(W2 #) Step 500 (W2 #) Time (s #)

IS-EBSW-e L=100 (c) 2048.29± 0.0 435.39± 1.82 85.31± 0.44 21.9± 0.09 7.81± 0.06 3.68± 0.07 17.51± 0.01
IS-EBSW-1 L=100 (c) 2048.29± 0.0 711.33± 7.2 170.69± 2.91 42.2± 0.79 12.62± 0.2 5.7± 0.11 17.72± 0.02
SIR-EBSW-1 L=100 2048.29± 0.0 685.87± 8.35 166.39± 2.65 41.52± 0.56 12.29± 0.32 5.56± 0.1 44.51± 0.16
IMH-EBSW-1 L=100 2048.29± 0.0 700.47± 9.13 173.25± 1.26 44.08± 0.52 13.03± 0.18 5.93± 0.2 63.83± 0.02
RMH-EBSW-1 L=100 2048.29± 0.0 711.0± 10.98 175.76± 1.45 44.5± 0.56 13.39± 0.13 6.06± 0.05 77.32± 0.2

IS-EBSW-e L=10 (c) 2048.29± 0.0 524.69± 7.38 107.37± 2.18 28.46± 0.35 10.13± 0.38 4.93± 0.37 5.54± 0.04
IS-EBSW-1 L=10 (c) 2048.29± 0.0 729.53± 6.74 179.35± 1.7 45.03± 0.79 13.32± 0.82 6.15± 0.46 5.7± 0.03
SIR-EBSW-1 L=10 2048.29± 0.0 762.23± 9.66 202.2± 5.23 56.48± 1.55 19.05± 0.83 10.42± 0.53 8.45± 0.02
IMH-EBSW-1 L=10 2048.29± 0.0 762.67± 14.63 200.3± 6.48 54.28± 1.17 18.11± 0.36 9.29± 0.26 10.02± 0.02
RMH-EBSW-1 L=10 2048.29± 0.0 817.92± 23.86 220.66± 2.55 60.15± 1.53 20.0± 0.7 9.8± 0.36 11.35± 0.03

studies in previous works [27, 19]. In Table 3, the IS-EBSW uses the conventional gradient estimator719

while the SIR-EBSW, the IMH-EBSW, and the RMH-EBSW use the "parameter-copy" estimator.720

Therefore, we report the IS-EBSW with the "parameter-copy" estimator and the SIR-EBSW, the721

IMH-EBSW, and the RMH-EBSW with the Reinforce estimator (conventional estimator) in Table 4.722

From the table, we observe the "parameter-copy" estimator is worse than the conventional estimator723

in the case of IS-EBSW. For the SIR-EBSW, the IMH-EBSW, and the RMH-EBSW, we cannot use724

the exponential energy function due to the numerically unstable Reinforce estimator. In the case of725

the identity energy function, the exponential energy function is also worse than the "parameter-copy"726

estimator. Therefore, we recommend to use the IS-EBSW-e with the conventional gradient estimator.727

Qualitative Results. We provide the visualization of the gradient flows from SW (L=100), Max-728

SW (T=100), v-DSW (L=10,T=10), and all the EBSW-e variants in Figure 4. Overall, we see729

that EBSW-e variants give smoother flows than other baselines. Despite having slightly different730

quantitative scores due to the approximation methods, the visualization from the EBSW-e variants731

is consistent. Therefore, the energy-based slicing function helps to improve the convergence of the732

source point-cloud to the target point-cloud.733

C.2 Color Transfer734

Similar to the point-cloud gradient flow, we follow the same experimental settings of color transfer in735

the main text. We provide the full experimental results including the IS-EBSW, the SIR-EBSW, the736

IMH-EBSW, and the RMH-EBSW with both the exponential energy function and the identity energy737

function, with both L = 10 and L = 100, and with both gradient estimators in Figure 5.738

Results. From the figure, we observe that IMH-EBSW-e gives the best Wasserstein-2 distance739

among all EBSW variants. Between the exponential energy function and the identity energy function,740

we see that the exponential energy function yields a better result for all EBSW variants. Similar741

to the gradient flow, reducing the number of projections to 10 also leads to worse results for all742
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Figure 4: Gradient flows from the SW, the Max-SW, the v-DSW, the IS-EBSW-e, the SIR-EBSW-e, the
IMH-EBSW-e, and the RMH-EBSW-e in turn.

Figure 5: The first two rows are with L = 100, (c) denotes the "parameter-copy" (the SIR-EBSW-e, the
IMH-EBSW-e, the RMH-EBSW always use the "parameter-copy" estimator since the conventional estimator is
not stable for them), and the last row is with L = 10.

sliced Wasserstein variants For the gradient estimators, the conventional estimator is preferred for the743

IS-EBSW while the "parameter-copy" estimator is preferred for other EBSW variants.744

C.3 Deep Point-cloud Reconstruction745

We follow the same experimental settings as in the main text. We provide the full experimental746

results including the IS-EBSW, the SIR-EBSW, the IMH-EBSW, and the RMH-EBSW with both747

the exponential energy function and the identity energy function, with both L = 10 and L = 100748
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Table 5: Reconstruction errors of different autoencoders measured by the (sliced) Wasserstein distance (⇥100).
The results are from three different runs.

Distance Epoch 20 Epoch 100 Epoch 200

SW2(#) W2(#) SW2 (#) W2(#) SW2 (#) W2(#)

SW L=100 2.97± 0.14 12.67± 0.18 2.29± 0.04 10.63± 0.05 2.15± 0.04 9.97± 0.08
Max-SW T=100 2.91± 0.06 12.33± 0.05 2.24± 0.05 10.40± 0.06 2.14± 0.10 9.84± 0.12
v-DSW L*T=100 2.84± 0.02 12.64± 0.02 2.21± 0.01 10.52± 0.04 2.07± 0.09 9.81± 0.05
IS-EBSW-e L=100 2.68± 0.03 11.90± 0.04 2.18± 0.04 10.27± 0.01 2.04± 0.09 9.69± 0.14
SIR-EBSW-e L=100 2.77± 0.01 12.16± 0.04 2.24± 0.04 10.40± 0.01 2.00± 0.03 9.72± 0.04
IMH-EBSW-e L=100 2.75± 0.03 12.15± 0.04 2.19± 0.08 10.39± 0.09 1.99± 0.05 9.72± 0.10
RMH-EBSW-e L=100 2.83± 0.02 12.21± 0.03 2.20± 0.03 10.38± 0.07 2.02± 0.02 9.72± 0.03
IS-EBSW-1 L=100 2.83± 0.01 12.37± 0.01 2.27± 0.06 10.59± 0.07 2.11± 0.04 9.90± 0.02
SIR-EBSW-1 L=100 2.81± 0.02 12.32± 0.03 2.26± 0.08 10.56± 0.14 2.07± 0.01 9.81± 0.08
IMH-EBSW-1 L=100 2.82± 0.01 12.32± 0.02 2.28± 0.11 10.55± 0.13 2.03± 0.02 9.81± 0.02
RMH-EBSW-1 L=100 2.88± 0.04 12.42± 0.06 2.22± 0.07 10.37± 0.06 2.01± 0.02 9.73± 0.02

SW L=10 2.99± 0.12 12.70± 0.16 2.30± 0.01 10.64± 0.04 2.17± 0.06 10.01± 0.09
Max-SW T=10 3.00± 0.07 12.68± 0.05 2.31± 0.08 10.67± 0.06 2.14± 0.04 9.95± 0.05
IS-EBSW-e L=10 2.76± 0.04 12.15± 0.06 2.20± 0.08 10.39± 0.10 2.04± 0.07 9.77± 0.10
SIR-EBSW-e L=10 2.79± 0.03 12.26± 0.05 2.26± 0.08 10.53± 0.09 2.08± 0.11 9.87± 0.16
IMH-EBSW-e L=10 2.82± 0.02 12.33± 0.02 2.26± 0.12 10.53± 0.20 2.07± 0.02 9.86± 0.03
RMH-EBSW-e L=10 2.86± 0.04 12.37± 0.03 2.21± 0.01 10.45± 0.05 2.02± 0.02 9.78± 0.01
IS-EBSW-1 L=10 2.84± 0.01 12.43± 0.01 2.28± 0.10 10.63± 0.11 2.10± 0.05 9.91± 0.05
SIR-EBSW-1 L=10 2.84± 0.01 12.38± 0.01 2.28± 0.07 10.59± 0.10 2.07± 0.07 9.88± 0.12
IMH-EBSW-1 L=10 2.82± 0.01 12.36± 0.03 2.28± 0.08 10.52± 0.05 2.08± 0.06 9.86± 0.09
RMH-EBSW-1 L=10 2.89± 0.04 12.47± 0.03 2.21± 0.03 10.45± 0.08 2.03± 0.03 9.80± 0.02

Table 6: Reconstruction errors of different autoencoders measured by the (sliced) Wasserstein distance (⇥100).
We use (c) for the "parameter-copy" gradient estimator. The results are from three different runs.

Distance Epoch 20 Epoch 100 Epoch 200

SW2(#) W2(#) SW2 (#) W2(#) SW2 (#) W2(#)

IS-EBSW-e L=100 (c) 2.74± 0.04 12.14± 0.12 2.22± 0.07 10.42± 0.05 2.07± 0.01 9.77± 0.07
IS-EBSW-1 L=100 (c) 2.83± 0.01 12.34± 0.03 2.30± 0.05 10.60± 0.09 2.05± 0.07 9.83± 0.11
SIR-EBSW-1 L=100 2.80± 0.02 12.29± 0.01 2.21± 0.05 10.46± 0.08 2.04± 0.02 9.81± 0.07
IMH-EBSW-1 L=100 2.96± 0.05 12.67± 0.08 2.35± 0.05 10.82± 0.07 2.20± 0.11 10.20± 0.16
RMH-EBSW-1 L=100 3.00± 0.06 12.67± 0.10 2.27± 0.02 10.66± 0.06 2.15± 0.05 10.11± 0.11

IS-EBSW-e L=10 (c) 2.77± 0.01 12.22± 0.04 2.28± 0.09 10.63± 0.11 2.07± 0.07 9.80± 0.15
IS-EBSW-1 L=10 (c) 2.86± 0.02 12.42± 0.02 2.24± 0.08 10.52± 0.13 2.05± 0.04 9.84± 0.10
SIR-EBSW-1 L=10 2.87± 0.02 12.43± 0.08 2.36± 0.11 10.67± 0.19 2.08± 0.10 9.88± 0.14
IMH-EBSW-1 L=10 2.98± 0.02 12.65± 0.04 2.35± 0.05 10.84± 0.06 2.21± 0.11 10.22± 0.11
RMH-EBSW-1 L=10 3.01± 0.04 12.82± 0.05 2.37± 0.03 10.87± 0.03 2.11± 0.02 10.13± 0.06

in Table 5. In Table 5, we use the conventional gradient estimator for the IS-EBSW while other749

variants of EBSW use the "parameter-copy" gradient estimator. We also compare gradient estimators750

for the EBSW by adding the results for the "parameter-copy" gradient estimator for the IS-EBSW751

(denoted as (c)), and the conventional gradient estimator for the SIR-EBSW, the IMH-EBSW, and the752

RMH-EBSW in Table 6.753

Quantitative Results. From the two tables, we observe that the IS-EBSW-e performs the best for754

both settings of the number of projections L = 10 and L = 100 in terms of the Wasserstein-2755

reconstruction errors. For the SW reconstruction error, it is only slightly worse than the SIR-EBSW-e756

at epoch 200. Comparing the exponential energy function and the identity energy function, we757

observe that the exponential function is better in both settings of the number of projections. For758

the same number of projections, the EBSW variants with both types of energy function give lower759

errors than the baseline including the SW, the Max-SW, and the v-DSW. For all sliced Wasserstein760

variants, a higher value of the number of projections gives better results. For the gradient estimator of761

the EBSW, we see that the conventional gradient estimator is preferred for the IS-EBSW while the762

"parameter-copy" estimator is preferred for other EBSW variants.763

Qualitative Results. We show some ground-truth point-clouds ModelNet40 and their corresponding764

reconstructed point-clouds from different models (L = 100) at epochs 200 and 20 in Figure 6- 7765

respectively. From the top to the bottom is the ground truth, the SW, the Max-SW, the v-DSW, the766

IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e, and the RMH-EBSW-e.767
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Figure 6: From the top to the bottom is the ground truth, the reconstructed point-clouds at epoch 200 of the
SW, the Max-SW, the v-DSW, the IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e, and the RMH-EBSW-e
respectively.

D Computational Infrastructure768

For the point-cloud gradient flows and the color transfer, we use a Macbook Pro M1 for conducting769

experiments. For deep point-cloud reconstruction, experiments are run on a single NVIDIA V100770

GPU.771
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Figure 7: From the top to the bottom is the ground truth, the reconstructed point-clouds at epoch 20 of the
SW, the Max-SW, the v-DSW, the IS-EBSW-e, the SIR-EBSW-e, the IMH-EBSW-e, and the RMH-EBSW-e
respectively.
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