
A Broader impacts and limitations.464

In this section, we discuss the broader impacts and limitations of our work.465

A.1 Broader impacts466

Automated systems that use human feedback are being used in an increasing number of contexts,467

spanning everything from predicting user preferences to finetuning language models. It is important468

to ensure that such systems are as accurate as possible; this naturally requires humans to respond in an469

accurate and consistent manner. Using the perceptual adjustment query to collect data in such settings470

could lead to more expressive responses without heavy cognitive burdens on users. Furthermore,471

providing a user the additional context of a continuous spectrum of items may result in more self-472

consistent responses. The downstream effects of collecting more expressive and self-consistent473

human responses could lead to improved models or entirely new paradigms of model development474

for a myriad of problem settings. With these advantages come associated risks as well. Due to how475

expressive the responses to PAQs are, the effects of adversarial responses may be magnified. That is,476

if an adversary purposely chooses to respond in an antagonistic manner, models trained with PAQs477

may be trained poorly or in opposition to the stated goal. Mitigating such effects likely requires a478

holistic approach from both the query design and robust model design perspectives.479

A.2 Limitations480

From a data collection perspective, the perceptual adjustment query requires access to a continuous481

space where each point corresponds to an item. In many applications, assuming access to this482

continuous space is reasonable. For example, if we use PAQs to characterize color blindness, then a483

natural continuous space is the RGB color space. In general, we situate our data collection within484

the latent space of a generative model, such as a GAN. While GANs are capable of producing485

extremely high fidelity images, these images are not always free of semantically meaningful artifacts.486

Our query design and modeling assumptions do not explicitly consider the case where a portion of487

the continuous spectrum of items may be corrupted. Furthermore, because our work is an initial488

exploration into low-rank matrix estimation from inverted measurements, we have not considered489

scenarios such as unbounded noise or heavier-tailed sensing vectors, and we have not established490

information-theoretic lower bounds for the inverted measurement paradigm. We hope that further491

exploration of the inverted measurement paradigm will lead to a rich line of follow-up work.492

B Preliminaries and Notation493

In this section, we provide an overview of the key tools that are utilized in our proofs. We first494

introduce notation which is used throughout our proofs.495

Notation. For two real numbers a and b, let a ^ b = min{a, b}. Given a vector x 2 Rd, denote496

kxk1 and kxk2 as the `1 and `2 norm, respectively. Denote Sd�1 := {x 2 Rd : kxk2 = 1} to be the497

set of vectors with unit `2 norm. Given a matrix A 2 Rd1⇥d2 , denote kAkF , kAk⇤, and kAkop as498

the Frobenius norm, nuclear norm, and operator norm, respectively. Denote Sd⇥d = {A 2 Rd⇥d :499

A = A>} to be the set of symmetric d⇥d matrices. Denote A ⌫ 0 to mean A is symmetric positive500

semi-definite. For A ⌫ 0, define the (pseudo-) inner product hx,yiA = x>Ay and the associated501

(pseudo-) norm kxkA =
p
x>Ax. For matrices A,B 2 Rd1⇥d2 , denote hA,Bi = tr

�
A>B

�
as502

the Frobenius inner product.503

We use the notation f(x) . g(x) to denote that there exists some universal positive constant c > 0,504

such that f(x)  c · g(x), and use the notation f(x) & g(x) when g(x) . f(x).505

We define random matrices506

Ā = �̄2aa> =
y + ⌘̄

a>⌃?a
aa> (13)

and507

eA = e�2aa> =

✓
y + ⌘̄

a>⌃?a
^ ⌧

◆
aa> (14)
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as the sensing matrix formed with the m-averaged responses �̄ and truncated responses e�, respectively.508

B.1 Inverted measurement sensing matrices result in estimation bias.509

Recall from Equation (4) that the random sensing matrix Ainv takes the form510

Ainv =
y + ⌘

a>⌃?a
aa>. (15)

Standard trace regression analysis requires that the bias term E [⌘A] = 0, typically by assuming (at511

least) that ⌘ is zero-mean conditioned on the sensing matrix A. The following lemma shows that512

the bias term associated with the inverted measurements sensing matrix Ainv is nonzero, resulting in513

biased estimation514

Lemma 1. Let Ainv be the random matrix defined in Eq. (4) and ⌘ be the measurement noise. Then,515

E
⇥
⌘Ainv

⇤
6= 0. (16)

The proof of Lemma 1 is provided in Appendix B.6.1. As a result, utilizing established low-rank516

matrix estimators will result in biased estimation.517

B.2 Sub-exponential random variables.518

Our analysis will depend on sub-exponential random variables, a class of random variables with519

heavier tails than Gaussian. While many definitions of sub-exponential random variables exist (see,520

for example, [43, Chapter 2.7]), we will make use of one particular property, presented below.521

If X is a sub-exponential random variable, then there exists some constant c (only dependent on the522

distribution underlying the random variable X) such that for all integers p � 1,523

(E|X|p)
1/p  cp. (17)

B.3 Bernstein’s inequality.524

A key ingredient in our proofs is the well-known Bernstein’s inequality, which is a concentration525

inequality for sums of independent sub-exponential random variables.526

Lemma 2 (Bernstein’s inequality, adapted from [44, Theorem 2.10]). Let X1, . . . , Xn be independent527

real-valued random variables. Assume exist positive numbers u1 and u2 such that528

E
⇥
X2

i

⇤
 u1 and E [|Xi|p] 

p!

2
u1u

p�2
2 for all integers p � 2, (18a)

Then for all t > 0,529

P
 �����

1

n

nX

i=1

(Xi � E [Xi])

����� �
r

2u1t

n
+

u2t

n

!
 2 exp(�t). (18b)

B.4 Moments of the ratios of quadratic forms.530

Because the quadratic term a>⌃?a appears in the denominator of our sensing matrices, our analysis531

depends on quantifying the moments of the ratios of quadratic forms. This is done in the following532

lemma.533

Lemma 3. There exists an absolute constant c > 0 such that the following is true. Let a ⇠ N (0, Id),534

⌃? 2 Rd⇥d be any PSD matrix with rank r, and U 2 Rd⇥d be an arbitrary symmetric matrix.535

(a) Suppose that r > 8. Then we have536

E
✓

1

aT⌃?a

◆4

 c

�4
rr

4
.

(b) Suppose that r > 2. Then we have537

E
✓

a>Ua

a>⌃?a

◆
 c

�rr
kUk⇤. (19)

The proof of Lemma 3 is presented in Appendix B.6.2.538
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B.5 A fourth moment bound for �̄2.539

Throughout our analysis, we will utilize the fact that �̄2 has a bounded fourth-moment. This bound is540

characterized in the following lemma.541

Lemma 4. Assume r > 8. Then the bound542

E
h�
�̄2
�4i .

✓
y + ⌘"

�rr

◆4

(20)

holds, where �r is the smallest non-zero singular value of ⌃?.543

The proof of Lemma 4 is presented in Appendix B.6.3. For notational simplicity of the proofs, we544

denote M = c
⇣

y+⌘"

�rr

⌘4
.545

B.6 Proofs of preliminary lemmas546

In this section, we present proofs for preliminary lemmas from Appendices B.1, B.4, and B.5.547

B.6.1 Proof of Lemma 1548

We show that E
⇥
⌘Ainv

⇤
6= 0. Using the independence of ⌘ and a and the assumption that ⌘ is zero549

mean, we have550

E
⇥
⌘Ainv

⇤
= E


⌘(y + ⌘)

a>⌃?a
aa>

�
(21)

= E [⌘(y + ⌘)]E


1

a>⌃?a
aa>

�
(22)

= ⌫2⌘ E


1

a>⌃?a
aa>

�
. (23)

This expectation is non-zero, as the random matrix 1
a>⌃?aaa

> is symmetric-positive semidefinite.551

Therefore, we have E
⇥
⌘Ainv

⇤
6= 0, as desired.552

B.6.2 Proof of Lemma 3553

Without loss of generality, we assume that ⌃? is diagonal for the remainder of this proof. To prove554

each part of Lemma 3, we utilize results on the moments of ratios of quadratic forms. For non-negative555

integers p and q, we first verify that the mixed moment E

(a>Ua)p

(a>⌃?a)q

�
exists. By [45, Proposition 1],556

the mixed moment exists if r
2 > q. This is assumed to be true for all parts of Lemma 3.557

By [45, Proposition 2], we have the following expression for the mixed moment E

(a>Ua)p

(a>⌃?a)q

�
:558

E
" �

a>Ua
�p

(a>⌃?a)q

#
=

1

�(q)

1Z

0

tq�1 |�t|E
h�
a>�tU�ta

�pi
dt, (24)

where �t = (Id + 2t⌃?)�1/2 and |�t| is the determinant of �t. Our results will depend on559

characterizing |�t|. We begin by noting that �t is a diagonal matrix of the following form560

�t =

2

666666664

1
(1+2t�1)

1/2

. . .
1

(1+2t�r)
1/2

1
. . .

1

3

777777775

. (25)
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It follows that the determinant |�t| can be written as the product |�t| =
Qr

j=1
1

(1+2t�r)
1/2

. Further-561

more, this product can be bounded as follows:562

1

(1 + 2t�1)
r/2

 |�t| 
1

(1 + 2t�j)
r/2

. (26)

We are now ready to prove parts (a) and (b).563

Part (a). This case corresponds to the case where p = 0 and q = 4. Using the integral expres-564

sion (24) and upper bound on determinant (26), with these values of p and q, we have565

E
"✓

1

a>⌃?a

◆4
#
=

1

�(4)

1Z

0

t3 |�t| dt (27)

 1

�(4)

1Z

0

t3
1

(1 + 2t�r)
r/2

dt (28)

Making the substitution s = 1 + 2t�r, we can evaluate the integral as follows.566

E
"✓

1

a>⌃?a

◆4
#
 1

2�(4)�r

1Z

1

✓
s� 1

2�r

◆3 1

sr/2
ds (29)

. 1

�4
r

1Z

1

(s� 1)3

sr/2
ds (30)

=
1

�4
r

1Z

1

✓
s3

sr/2
� 3

s2

sr/2
+ 3

s

sr/2
� 1

sr/2

◆
ds (31)

=
1

�4
r

✓
2

r � 8
� 6

r � 6
+

6

r � 4
� 2

r � 2

◆
. (32)

Therefore, we have that there exists some absolute constant c such that567

E
"✓

1

a>⌃?a

◆4
#
 c

�4
rr

4
, (33)

as desired.568

Part (b). This case corresponds to the case where p = q = 1. We begin again with the integral569

expression (24) and upper bound on determinant (26):570

E
✓

a>Ua

a>⌃?a

◆�
=

1

�(1)

1Z

0

|�t|E
⇥
a>�tU�ta

⇤
dt (34)

 1

�(1)

1Z

0

1

(1 + 2t�r)
r/2

E
⇥
a>�tU�ta

⇤
dt (35)

We now bound the expectation term E
⇥
a>�tU�ta

⇤
. Note that for a ⇠ N (0, Id), the expectation571

E
⇥
a>Ba

⇤
= tr (B) for any symmetric matrix B. Therefore, we have572

E
⇥
a>�tU�ta

⇤
= tr (�tU�t) (36)
 k�tU�tk⇤. (37)

Above, we have used the fact that tr (B)  kBk⇤ for any symmetric matrix B. By Hölder’s573

inequality for Schatten-p norms, we have that k�tU�tk⇤  k�tk2op kUk⇤. Because �t is diagonal574
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and the entries of �t are bounded between 0 and 1, we can bound the operator norm as k�tkop  1.575

Therefore576

E
⇥
a>�tU�ta

⇤
 kUk⇤ (38)

Substituting this upper bound for the expectation term into the integral, we obtain577

E

a>Ua

a>⌃?a

�
 kUk⇤

1Z

0

1

(1 + 2t�j)
r/2

dt. (39)

Evaluating this integral, we have for some absolute constant c,578

E

a>Ua

a>⌃?a

�
 c

�rr
kUk⇤, (40)

as desired.579

B.6.3 Proof of Lemma 4580

By the bounded noise assumption, y + ⌘̄  y + ⌘". Therefore, we have581

E
h�
�̄2
�4i

= E
"✓

y + ⌘̄

a>⌃?a

◆4
#

(41)

 (y + ⌘̄)4 · E
"✓

1

a>⌃?a

◆4
#
. (42)

It therefore suffices to bound the fourth moment of 1
a>⌃?a , which is done in Lemma 3. Therefore,582

E
"✓

1

a>⌃?a

◆4
#
.
✓

1

�rr

◆4

, (43)

as desired.583

C Proof of Theorem 1584

Our goal is to derive finite sample error bounds for the estimator in Equation (8). For our estimator,585

if the regularization parameter is set to be sufficiently large (which we will characterize later), then586

the error matrix is guaranteed to be in some error set E . For rank r symmetric positive semidefinite587

matrices, the error set E can be characterized as [24]588

E =
n
U 2 Sd⇥d : kUk⇤  4

p
2rkUkF

o
, (44)

where recall that Sd⇥d denotes the set of symmetric d⇥ d matrices.589

A key condition for estimation under these settings is to ensure that the shrunken sensing matrices590

satisfy a restricted strong convexity (RSC) condition over the error set E . That is, we must show that591

there exists some positive constant  such that592

1

n

nX

i=1

h eAi,Ui2 � kUk2F for all U 2 E . (45)

We begin by stating a proposition that characterizes the deterministic upper bound on the estimation593

error.594

Proposition 1 ([39, Theorem 1] with q = 0). Suppose that ⌃? has rank r and the shrunken sensing595

matrices satisfy the restricted strong convexity condition with positive constant . Then if the596

regularization parameter satisfies597

�n � 2

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

(46a)

any optimal solution b⌃ of the optimization program (8) satisfies598

kb⌃�⌃?kF  32
p
r�n


(46b)
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This theorem is a special case of Theorem 1 in [39], which is in turn adapted from Theorem 1 in599

[24] (see [24] or [39] for the proof). Proposition 1 is a deterministic and nonasymptotic result and600

provides a roadmap for proving upper bounds. First, we show that the operator norm (46a) can be601

upper bounded with high probability, allowing us to set the regularization parameter �n accordingly.602

Second, we show that the RSC condition (45) is satisfied with high probability. We begin by bounding603

the operator norm (46a) in the following proposition.604

Proposition 2. Let y" = y+⌘". Suppose that ⌃? has rank r, with r > 8. Then there exists a positive605

absolute constant C such that the bound606
�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

 Cy"
 

y"

�rr

r
d

n
+

d

n
⌧ +

✓
y"

�rr

◆2
1

⌧
+

1

�rr

⌫2⌘
m

!
(47)

holds with probability at least 1� 4 exp (�d).607

The proof of Proposition 2 is provided in Appendix C.1. Next, we show that the RSC condition (45)608

is satisfied with high probability, as is done in the following proposition.609

Proposition 3. Let y be the median of y + ⌘̄ and let E be the error set defined in Eq. (44). Suppose610

that the truncation threshold ⌧ satisfies ⌧ � y

tr(⌃?) . Then, there exist positive absolute constants L,611

c, and C such that if the number of effective measurements satisfy612

n � Crd (48a)

then we have613

1

n

nX

i=1

h eAi,Ui2 � L

✓
y

tr (⌃?)

◆2

kUk2F (48b)

simultaneously for all matrices U 2 E with probability greater than 1� exp(�cn).614

The proof of Proposition 3 is provided in Appendix C.2. We now utilize the results of Propositions 1, 2615

and 3 to derive our final error bounds. By Proposition 2, we know that the operator norm (46a) can616

be upper bounded with high probability. We set the regularization parameter �n to satisfy617

�n � C1y
"

 
y"

�rr

r
d

n
+

d

n
⌧ +

✓
y"

�rr

◆2
1

⌧
+

1

�rr

⌫2⌘
m

!
. (49)

for an appropriate constant C1. Furthermore, by Proposition 3, we have that there exists some618

universal constant C2 such that if the number of effective measurements satisfies n � C2rd, the619

RSC condition also holds for constant  = L

⇣
y

tr(⌃?)

⌘2
with high probability. Taking a union620

bound, we have that Proposition 2 and Proposition 3 hold simultaneously with probability at least621

1� 4 exp(�d)� exp(�cn). By Proposition 1, the bound622

kb⌃�⌃?kF  32
p
r

�n

L

⇣
y

tr(⌃?)

⌘2 (50)

 C

✓
tr (⌃?)

y

◆2 p
r�n (51)

holds with probability at least 1 � 4 exp(�d) � exp(�cn), as desired. Above, we have defined623

C = 32
L

.624

C.1 Proof of Proposition 2.625

Our goal is to derive an upper bound on the operator norm626

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

. (52)
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Step 1: decompose the error into five terms. We begin by adding and subtracting multiple quantities,627

as done below.628

1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi =

1

n

nX

i=1

y eAi � E
h
y eA
i
+ E

h
y eA
i
� E

⇥
yĀ
⇤

+ E
⇥
yĀ
⇤
� E

h
h eA,⌃?i eA

i
+ E

h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi

(53)

(i)
=

1

n

nX

i=1

y eAi � E
h
y eA
i
+ E

h
y eA
i
� E

⇥
yĀ
⇤

+ E
⇥
hĀ,⌃?iĀ

⇤
� E

h
h eA,⌃?i eA

i
� E

⇥
⌘̄Ā
⇤

+ E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi. (54)

Above, (i) follows from substituting in hĀ,⌃?i � ⌘̄ for y for the E
⇥
yĀ
⇤

term. To obtain our final629

bound, we bound the following operator norms.630

�����
1

n

nX

i=1

y eAi �
1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

 y

�����
1

n

nX

i=1

eAi � E
h
eA
i�����

op| {z }
Term 1

+ y
���E
h
eA
i
� E

⇥
Ā
⇤���

op| {z }
Term 2

+
���E
⇥
hĀ,⌃?iĀ

⇤
� E

h
h eA,⌃?i eA

i���
op| {z }

Term 3

+

�����E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op| {z }

Term 4

+
��E
⇥
⌘̄Ā
⇤��

op| {z }
Term 5

. (55)

In the remaining proof, we bound the five terms in (55) individually. We first discuss the nature of631

the five terms.632

• Terms 1 and 4: These two terms characterize the difference between the empirical mean633

of quantities involving eA and their true expectation. In the proof, we show that the em-634

pirical mean concentrates around the expectation with high probability (see Lemma 5 and635

Lemma 8).636

• Terms 2 and 3: These two terms characterize the difference in expectation introduced by637

truncating Ā to eA. Hence, these two terms characterize biases that arise from truncation.638

In the proof, these two terms diminish as ⌧ ! 1 (see Lemma 6 and Lemma 7). Note that639

setting ⌧ to 1 is equivalent to no thresholding, and in this case eA becomes identical to Ā,640

and both terms diminish.641

• Term 5: Term 5 is a bias term that arises from the fact that the mean of the noise ⌘642

conditioned on sensing matrix Ā is non-zero: E
⇥
⌘̄|Ā

⇤
6= 0. We will show that this bias643

scales like 1
m , allowing us to set the averaging number m to obtain consistent estimation.644

By setting the truncation threshold ⌧ carefully, we can make the Term 3 and 4 biases the same order645

as Terms 1 and 4.646
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Step 2: bound the five terms individually. In what follows, we provide five lemmas to bound each of647

the five terms individually. In the proofs of the five lemmas, we rely on an upper bound on the fourth648

moment of the m-sample averaged measurements �̄2. Recall from Lemma 4 in Appendix B.5 that649

we have E[(�̄2)4]  M = c
⇣

y+⌘"

�rr

⌘4
. We also rely heavily on the following truncation properties650

relating the m-sample averaged measurements �̄2 and truncated measurements �̃2:651

�̃2
i  ⌧ (TP1)

�̃2
i  �̄2

i (TP2)

�̄2
i � �̃2

i = (�̄2
i � �̃2

i ) · 1{�̄2
i � ⌧}. (TP3)

The following lemma provides a bound for Term 1.652

Lemma 5. Let eA1, . . . , eAn be i.i.d copies of a random matrix eA as defined in Eq. (14). There exists653

a universal constant c > 0 such that the following is true. For any t > 0, we have654
�����
1

n

nX

i=1

eAi � E
h
eAi

i�����
op

.
r

M 1/2t

n
+

⌧ t

n
(56)

with probability at least 1� 2 · 9d · exp (�t).655

The proof of Lemma 5 is provided in Appendix D.1. The next lemma provides a deterministic upper656

bound for Term 2.657

Lemma 6. Let Ā and eA be the random matrices defined in Eq. (13) and Eq. (14), respectively. Then658

the bound659

���E
h
eA
i
� E

⇥
Ā
⇤���

op
. M 1/2

⌧
(57)

holds.660

The proof of Lemma 6 is provided in Appendix D.2. The following lemma provides a deterministic661

upper bound for Term 3.662

Lemma 7. Let Ā and eA be the random matrices defined in Eq. (13) and Eq. (14), respectively. Then663

the bound664

���E
⇥
hĀ,⌃?iĀ

⇤
� E

h
h eA,⌃?i eA

i���
op

. (y + ⌘")M 1/2

⌧
(58)

holds.665

The proof of Lemma 7 is provided in Appendix D.3. The following lemma provides a bound for666

Term 4.667

Lemma 8. Let eA1, . . . , eAn be i.i.d copies of a random matrix eA as defined in Eq. (14). There exists668

a universal constant c > 0 such that the following is true. For any t > 0, we have669
�����E
h
h eA,⌃?i eA

i
� 1

n

nX

i=1

h eAi,⌃
?i eAi

�����
op

. (y + ⌘")

 r
M 1/2t

n
+

⌧ t

n

!
(59)

with probability at least 1� 2 · 9d · exp (�t).670

The proof of Lemma 8 is provided in Appendix D.4. We note that Terms 2 and 3 are bias that result671

from shrinkage, but crucially are inversely dependent on the shrinkage threshold ⌧ . This fact allows672

us to set ⌧ so that the order of Terms 2 and 3 match the order of Terms 1 and 4. In particular, with the673

choice of ⌧ = M 1/4
p

n
d , all terms are of order M 1/4

q
d
n .674

The final lemma bounds Term 5, which is a bias that arises from the dependence of the sensing matrix675

Ā on the noise ⌘.676

Lemma 9. Let Ā be the random matrix defined in Eq. (13). Suppose that ⌃? has rank r with r > 2.677

Then we have678

E
h��⌘̄Ā

��
op

i
. 1

�rr

⌫2⌘
m

. (60)
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The proof of Lemma 9 is provided in Appendix D.5. We note that the bias scales with the variance of679

the m-sample averaged noise ⌘̄, which scales inversely with m.680

Step 3: combine the five terms. We set t = (log 9 + 1)d and denote y" = y + ⌘". Utilizing681

Lemmas 5– 9, we arrive at an upper bound for the operator norm. We have that with probability at682

least 1� 4 exp(�d),683
�����
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h eAi,⌃
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⌧ +
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⌫2⌘
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(61)

(i)

. y"
 

y"

�rr

r
d

n
+

d

n
⌧ +

✓
y"

�rr

◆2
1

⌧
+

1

�rr

⌫2⌘
m

!
(62)

as desired. Above, (i) follows from substituting in the expression for M from Lemma 4.684

C.2 Proof of Proposition 3685

Our objective is to show that the there exists some constant  such that the RSC condition686

1

n

nX

i=1

h eAi,Ui2 � kUk2F (63)

holds uniformly for all matrices U in the error set687

E =
n
U 2 Sd⇥d : kUk⇤  4

p
2rkUkF

o
. (64)

Recall from the definition of eA that688

eAi = e�2
i aia

>
i (65)

=

✓
y + ⌘̄i
a>
i ⌃

?ai
^ ⌧

◆
aia

>
i (66)

so we have689

h eAi,Ui2 =

✓
y + ⌘̄i
a>
i ⌃

?ai
^ ⌧

◆4 �
a>
i Uai

�2
.

This implies that
nP

i=1
h eAi,Ui2 is nondecreasing in ⌧ when ⌧ > 0. As a result, defining the random690

matrix691

eA⌧ 0
=

✓
y + ⌘̄

a>⌃?a
^ ⌧ 0

◆
aa>, (67)

we have that the following lower bound holds for any ⌧ 0  ⌧ .692

1

n

nX

i=1

h eAi,Ui2 � 1

n

nX

i=1

h eA⌧ 0

i ,Ui2. (68)

Above eA⌧ 0

1 , . . . , eA⌧ 0

n are i.i.d copies of the random matrix (67). We will lower bound 1
n

nP
i=1

h eA⌧ 0

i ,Ui2693

for an appropriate value of ⌧ 0, which we will set later. To proceed, we will use a small-ball argument694

[46, 47] based on the following lemma.695

Lemma 10 ([47, Proposition 5.1], adapted to our notation). Let X1, . . . ,Xn 2 Rd⇥d be i.i.d. copies696

of a random matrix X 2 Rd⇥d. Let E ⇢ Rd⇥d. Let ⇠, Q > 0 be such that for every U 2 E,697

P (|hX,Ui| � 2⇠) � Q. (69)

Furthermore, denote the Rademacher width as698

W = E
"
sup
U2E

1

n

nX

i=1

"ihXi,Ui
#
,
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where "1, . . . , "n are i.i.d. Rademacher random variables independent of the Xi’s. Then, for any699

t > 0, with probability at least 1� exp
⇣
�nt2

2

⌘
,700

inf
U2E

 
1

n

nX

i=1

hXi,Ui2
!1/2

� ⇠(Q� t)� 2W.

We apply Lemma 10 with Xi = eA⌧ 0

i and with set E as701

E = E \ {U 2 Rd⇥d : kUkF = 1} (70)

= {U 2 Sd⇥d : kUkF = 1, kUk⇤  4
p
2r} (71)

The rest of the proof is comprised of two key steps. To invoke Lemma 10, the first step establishes702

the inequality (69) by lower bounding Q. The second step upper bounds the Rademacher width W .703

The following lemma provides the lower bound on Q.704

Lemma 11. Consider any ⌧ 0 2 (0, ⌧). There exist absolute constants c1, c2 > 0 such that for every705

U 2 E, we have706

P
✓���h eA⌧ 0

,Ui
��� � c1

✓
y

tr (⌃?)
^ ⌧ 0

◆◆
� c2. (72)

The proof of Lemma 11 is presented in Appendix E.1. We now turn to the second step of the proof,707

which is bounding the Rademacher width W . The next lemma characterizes this width.708

Lemma 12. Consider any ⌧ 0 2 (0, ⌧). Let eA⌧ 0

1 , . . . , eA⌧ 0

n 2 Rd⇥d be i.i.d. copies of the random709

matrix eA⌧ 0 2 Rd⇥d defined in Equation (67). Let E be the set defined in Equation (71). Then, there710

exists some absolute constants c1 and c2 such that if711

n � c1d (73a)
the bound712
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rd
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(73b)

holds.713

The proof of Lemma 12 is presented in Appendix E.2. Invoking Lemma 11 and Lemma 12, we have714

that for some constant c4, as long as n � c4d, the bound715
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with probability at least 1� exp
⇣
�nt2

2

⌘
. We set ⌧ 0 = y

tr(⌃?) , where y is the median of the random716

quantity y + ⌘̄. By the assumption ⌧ � y

tr(⌃?) , this choice of ⌧ 0 satisfies ⌧ 0  ⌧ . Setting t = c2
2 , we717

have for some constant c, that with probability at least 1� exp (�cn),718
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Therefore, if n � max

⇢⇣
4c3
c01c2

⌘2
, c4

�
rd, we have719
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with probability at least 1 � exp (�cn). We conclude by setting L =
⇣

c01c2
4

⌘2
and C =720

max
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4c3
c01c2

⌘2
, c4

�
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D Proof of supporting lemmas for Proposition 2722

In this section, we prove the supporting lemmas for Proposition 2.723

D.1 Proof of Lemma 5.724

Let S 1
4
✓ Sd�1 be a 1

4 -covering of unit-norm d-dimensional vectors. By a covering argument [43,725

Exercise 4.4.3], for any symmetric matrix U 2 Rd⇥d, its operator norm is bounded by kUkop 726

2 supv2S 1
4

��v>Uv
��. Hence, we have727
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4
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v> eAiv � E
h
v> eAv

i����� . (77)

We now apply Bernstein’s inequality to bound (77). We first assume the Bernstein condition holds728

with u1 = c1M
1
2 and u2 = c2⌧ for some universal positive constants c1, c2. Namely, for each integer729

p � 2, we show that for any unit vector v 2 Rd,730

E
h���v> eAv

���
pi

 p!

2
u1u

p�2
2 . (78)

We first provide the rest of the proof assuming that (78) holds, followed by proving (78). By731

Bernstein’s inequality (see Lemma 2), under condition (78), we have that for any unit vector v 2 Rd732

and any t > 0,733
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n
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n

!!
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By Vershynin [43, Corollary 4.2.13], the cardinality of the covering set S 1
4

is bounded above by 9d.734

Therefore, by a union bound,735
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Combining (77) and (80), for any t > 0, we have736
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(81)

with probability at least 1�2·9d ·exp (�t), as desired. It remains to prove the Bernstein condition (78).737

Proving the Bernstein condition (78) holds. We fix any unit vector v 2 Rd. Plugging in738

eA = e�2aa>, we have v> eAv = e�2(v>a)2. Since the random variable a ⇠ N (0, Id), and v739

is a unit vector, it follows that v>a ⇠ N (0, 1). Denote by G ⇠ N (0, 1) a standard normal random740

variable. For any integer p � 2, we have741
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where steps (i) and (ii) follow from TP1 and TP2, respectively, step (iii) follows from Cauchy–742

Schwarz, and step (iv) follows from the upper bound on the fourth moment of �̄2. Note that G2 follows743

a Chi-Square distribution with 1 degree of freedom, and hence sub-exponential. Recall from (17) in744

Appendix B.2 that there exists some constant c > 0 such that we have
�
E
⇥
(G2)p

⇤�1/p  cp for all745

p � 1. Hence, we have746
�
E
⇥
G4p

⇤�1/2  (2cp)p = (2ec)p · (p
e
)p

(i)
< p! · (2ec)p (83)

where step (i) is true by Stirling’s inequality that for all p � 1,747

p! >
p
2⇡p

⇣p
e

⌘p
e

1
12p+1 > (

p

e
)p.

Plugging (83) to (82) and rearranging terms completes the proof of Bernstein condition (78).748

D.2 Proof of Lemma 6.749

We first begin by showing that E
⇥
Ā
⇤
� E

h
eA
i
⌫ 0. Substituting in the definitions of Ā and eA,750

we have E
⇥
Ā
⇤
� E

h
eA
i
= E

⇥
(�̄2 � e�2)aa>⇤. By TP2, we have �̄2 � e�2, meaning that �̄2 � e�2751

is non-negative. The expectation of a non-negative quantity times an outer product is symmetric752

positive semidefinite. Therefore, we can write the operator norm as753 ���E
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We now show that there exists a uniform upper bound on the quantity754

v>
⇣
E
⇥
Ā
⇤
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h
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v (85)

for a unit-norm d-dimensional vector v, therefore bounding the operator norm. We again note755

(v>a) ⇠ N (0, 1) and denote G ⇠ N (0, 1). Then we rewrite the quantity (85) by substituting in the756

expression for sensing matrices Ā and eA, as follows.757
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We continue from here by utilizing properties of the shrunken measurements, as follows.758
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where step (i) follows from TP3, and (ii) and (iii) follow from Cauchy–Schwarz. We proceed by759

bounding each of the above terms separately. First, recall from Lemma 4 in Appendix B.5 that760

the fourth moment E
⇥
|�̄2|4

⇤
is bounded above by M . Second, G2 is a sub-exponential random761

variable. By Appendix B.2, we have that E
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|G2|4

⇤1/4  c for some constant c. It remains to bound762
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Above, (iv) follows from Markov’s inequality, (v) follows from Cauchy–Schwarz, and (vi) follows764

from the fourth moment bound on the averaged scaling �̄2. Putting everything together, we have that765

the bound766
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holds uniformly for all vectors v 2 Sd�1. Therefore,767

���E
h
eA
i
� E

⇥
Ā
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as desired768

D.3 Proof of Lemma 7.769

We begin by substituting in the definition Ā = �̄2aa>, the matrix hĀ,⌃?iĀ can be written as770

�̄4a>⌃?a. Similarly, we can re-write the matrix h eA,⌃?i eA as e�4
�
a>⌃?a

�
aa>. Therefore, our771

goal is to bound the operator norm772
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We note that the matrix
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�
aa> is symmetric positive semidefinite, as it is the773

product of a non-negative scalar
�
�̄4 � e�4

� �
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�
and an outer product. Similar to the proof of774

Lemma 6, we now show a uniform upper bound on the quantity v>E
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� �
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�
aa>⇤v775

for arbitrary unit-norm d-dimensional vector v.776

Again, note that v>a ⇠ N (0, 1) and denote G ⇠ N (0, 1). We begin by substituting in the777

expressions for G.778
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Next, we can proceed by manipulating the �̄4 � e�4 term to remove the term a>⌃?a, as follows.779
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Above, (i) follows from TP2, (ii) follows from the definition �̄2 = y+⌘̄
a>⌃?a , and (iii) follows from780

TP3 and the upper bound on noise ⌘.781

The rest of the proof follows the exact steps of the proof of Lemma 6, provided in Section D.2.782

Therefore, we have the bound783
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as desired.784

D.4 Proof of Lemma 8785

The proof follows the steps as the proof of Lemma 5, and we explain the difference where we now786

provide a Bernstein condition with u1 = c1(y + ⌘")2 and u2 = c2(y + ⌘")⌧ . Namely, for every787

integer p � 2, we have (cf. 78)788
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Plugging in eA = e�2aa>, we have789
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Plugging in (78) from Lemma 5 to bound the term E
h���v> eAv

���
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in (109) completes the proof of the790

Bernstein condition (106).791

Above, (i) follows from TP2, (ii) follows from the definition �̄2 = y+⌘̄
a>⌃?a , and (iii) follows from792

the upper bound on the noise ⌘. The rest of the proof follows in the same manner as the proof793

of Lemma 5, as presented in Section D.1, with an additional factor of y + ⌘". Therefore, like in794

Section D.1, the bound795 �����E
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holds with probability greater than 1� 2 · 9d · exp (�t), as desired.796

D.5 Proof of Lemma 9.797

Substituting in Ā = �̄2aa> = y+⌘̄
a>⌃?aaa

>, we have798
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To bound the operator norm term in (111), recall from Lemma 3(b) in Appendix B.4 that for any799

matrix U , we have800
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Note that aa>

a>⌃?a is symmetric positive semidefinite, so we have801
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where step (i) is true by plugging in (112), and step (ii) is true because kvv>k⇤ = 1 for any unit802

norm vector v. Plugging (113) back to (111), we have803
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as desired.804
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E Proof of supporting lemmas for Proposition 3805

In this section, we prove the supporting lemmas for Proposition 3.806

E.1 Proof of Lemma 11807

For the proof, we first fix any U 2 E \ {U 2 Sd⇥d : kUkF = 1}. Let y be the median of y + ⌘̄808

and let G be the event that y + ⌘ � y , which occurs with probability 1
2 . For any ⇠ > 0, because the809

averaged noise ⌘̄ and sensing vector a are independent,810
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P (G) (116)

=
1

2
P
✓✓

y + ⌘

a>⌃?a
^ ⌧ 0

◆ ��haa>,Ui
�� � ⇠

����G
◆

(117)

� 1

2
P
✓✓

y

a>⌃?a
^ ⌧ 0

◆ ��haa>,Ui
�� � ⇠

◆
(118)

We proceed by bounding the terms in (118) separately.811

Lower bound on P
���haa>,Ui

�� � c1
�
. We use the approach from [32, Section 4.1]. By Paley-812

Zygmund inequality,813

P
✓��haa>,Ui

��2 � 1

2
E
h��haa>,Ui

��2
i◆

� 1

4

⇣
E
h��haa>,Ui

��2
i⌘2

E
h
|haa>,Ui|4

i (119)

As noted in [32, Section 4.1], there exists some constant c02 such that for any matrix U with unit814

Frobenius norm,815

E
h��haa>,Ui

��2
i
� 1 and E

h��haa>,Ui
��4
i
 c02

⇣
E
h��haa>,Ui

��2
i⌘2

. (120)

Note that by the definition, every matrix U 2 E has unit Frobenius norm. Utilizing Paley-816

Zygmund (119) and the bounds on the second and fourth moment of haa>,Ui (120), there exist817

positive constants c1 and c2 such that818

P
���haa>,Ui

�� � c1
�
� c2. (121)

Upper bound on a>⌃?a. By Hanson-Wright inequality [48, Theorem 1.1], there exist some819

positive absolute constants c and c03 such that for any t > 0, we have820

a>⌃?a  c03

⇣
tr (⌃?) + k⌃?kF

p
t+ k⌃?kop t

⌘
(122)

with probability at least 1� 2 exp (�ct). Set t to be a constant such that 2 exp (�ct) = c2
2 and note821

that for symmetric positive semidefinite matrix ⌃?, the bounds k⌃?kF  tr (⌃?) and k⌃?kop 822

tr (⌃?) hold. As a result, we have that there exists some constant c3 such that823

P
⇣
a>⌃?a  c3 tr (⌃

?)
⌘
� 1� c2

2
. (123)

824

By a union bound of (121) and (123), we have825
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^ ⌧ 0
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�� � c1

✓
y
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^ ⌧ 0

◆◆

� P
✓

y

a>⌃?a
^ ⌧ 0 � y

c3 tr (⌃?)
^ ⌧ 0
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+ P
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�� � c1

�
� 1

� P
✓

y

a>⌃?a
� y

c3 tr (⌃?)

◆
+ P
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�
� 1 � c2
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(124)
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Redefining constants c1 and c2 appropriately, we have826

P
✓���h eA⌧ 0

,Ui
��� � c1

✓
y

tr (⌃?)
^ ⌧ 0

◆◆
� c2, (125)

as desired.827

E.2 Proof of Lemma 12828

We begin by noting that for any matrix U 2 E,829

E
"
sup
U2E

1

n

nX

i=1

"ih eA⌧ 0

i ,Ui
#

(i)
 E

2

4 sup
U2E

�����
1

n

nX

i=1

"i eA⌧ 0

i

�����
op

kUk⇤

3

5

(ii)
 4

p
2r E

2

4
�����
1

n

nX

i=1

"i eA⌧ 0

i

�����
op

3

5 , (126)

where step (i) follows from Hölder’s inequality, and step (ii) follows from the definition of the830

set E. It remains of the proof to bound the expected operator norm in (126). We do this with a831

trivial modification of the approaches in [49, Section 5.4.1], [47, Section 8.6], [32, Section 4.1] to832

accommodate the bounded term
⇣

y+⌘̄i

a>
i ⌃?ai

^ ⌧ 0
⌘

that appears in each of the matrices eA⌧ 0

i . As a result,833

there exist universal constants c1 and c2 such that if n satisfies n � c2d, then the bound834

E

2

4
�����
1

n

nX

i=1

"i eA⌧ 0

i

�����
op

3

5  c1⌧
0
r

d

n
(127)

holds. We conclude by re-defining c1 appropriately.835

F Proof of Corrollary 1836

The proof consists of two steps. We first verify that the choices of the averaging parameter m and837

truncation threshold ⌧ as838

m =

$ 
(⌫2⌘)

2N

d

!1/3 %
and ⌧ =

y"

�rr

r
N

md
, (128)

satisfy the assumptions n & rd and ⌧ � y

tr(⌃?) . We then invoke Theorem 1.839

Verifying the condition on n. We have840

n =
N

m

(i)
= N

 
(⌫2⌘)

2N

d

!�1/3

=

✓
N2 d

(⌫2⌘)
2

◆1/3

(129)

(ii)
&
✓
(⌫2⌘)

2r3d2
d

(⌫2⌘)
2

◆1/3

(130)

= rd, (131)

where step (i) is true by plugging in the choice of m from (128), and step (ii) is true by plugging in841

the assumption N & ⌫2⌘ r3/2d. Thus the condition n & rd of Theorem 1 is satisfied.842
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Verifying the condition on ⌧ . For the term
q

N
dm in the expression of ⌧ in (128), note that, by the843

previous point, N
m = n & rd (with a constant that, WLOG and by necessity, is greater than 1). Thus844 q

N
dm �

p
r > 1. Therefore, it suffices to verify that845

y"

�rr
� y

tr (⌃?)
. (132)

By definition, we have y" � y. Furthermore, since ⌃? is symmetric positive semidefinite, its846

eigenvalues are all non-negative and are the same as singular values, and hence �rr  tr (⌃?).847

Therefore, we have (132) holds, verifying the condition on ⌧ .848

Invoking Theorem 1. By setting �n to its lower bound in (9) and substituting in n = N/m and849

our choice of ⌧ from (128), we have850

�n = C1
(y")2

�rr

 r
md

N
+

⌫2⌘
m

!
. (133)

Substituting in our choice of m from (128), we have851

�n = C1
(y")2

�rr

 
⌫2⌘d

N

!1/3

. (134)

Substituting this expression for �n into the error bound (10) and absorbing C1 into the constant C,852

we have853

kb⌃�⌃?kF  C

 
tr (⌃?)2

�rr

!✓
y"

y

◆2 p
r

 
⌫2⌘d

N

!1/3

. (135)

Using the fact that tr (⌃?)  �1r, we have854

kb⌃�⌃?kF  C

✓
�2
1

�r

◆✓
y"

y

◆2

r
3/2

 
⌫2⌘d

N

!1/3

, (136)

as desired.855

G Choice of value y856

In this section, we discuss the scale-invariance of the learning from PAQs problem in more de-857

tail. Under the Mahalanobis model for human perception, there exists some ground truth metric—858

parameterized by ⌃?—that governs perception. Associated with ⌃?, is a (squared) distance y? such859

that for any two items x and x0 2 Rd, x,x0 are perceived to be similar if kx � x0k2⌃? < y? and860

dissimilar if kx� x0k2⌃? > y?.861

Our two-stage estimator for learning with PAQs assumes that the value of y? is known, which862

practitioners are unlikely to know a priori. However, this is not an issue in practice due to scale-863

invariance. That is, for any constant c > 0, if we use y = cy? in our estimation procedure, we will864

recover a scaled metric c⌃?. Therefore, by to the scale-invariance of the problem, we may set y to865

any positive value without loss of generality. In the main paper, for ease of exposition, we assume866

that ⌃? is the metric associated with the user’s choice for y, and derive estimation error bounds for867

this metric.868
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