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A Broader impacts and limitations.

In this section, we discuss the broader impacts and limitations of our work.

A.1 Broader impacts

Automated systems that use human feedback are being used in an increasing number of contexts,
spanning everything from predicting user preferences to finetuning language models. It is important
to ensure that such systems are as accurate as possible; this naturally requires humans to respond in an
accurate and consistent manner. Using the perceptual adjustment query to collect data in such settings
could lead to more expressive responses without heavy cognitive burdens on users. Furthermore,
providing a user the additional context of a continuous spectrum of items may result in more self-
consistent responses. The downstream effects of collecting more expressive and self-consistent
human responses could lead to improved models or entirely new paradigms of model development
for a myriad of problem settings. With these advantages come associated risks as well. Due to how
expressive the responses to PAQs are, the effects of adversarial responses may be magnified. That is,
if an adversary purposely chooses to respond in an antagonistic manner, models trained with PAQs
may be trained poorly or in opposition to the stated goal. Mitigating such effects likely requires a
holistic approach from both the query design and robust model design perspectives.

A.2 Limitations

From a data collection perspective, the perceptual adjustment query requires access to a continuous
space where each point corresponds to an item. In many applications, assuming access to this
continuous space is reasonable. For example, if we use PAQs to characterize color blindness, then a
natural continuous space is the RGB color space. In general, we situate our data collection within
the latent space of a generative model, such as a GAN. While GANs are capable of producing
extremely high fidelity images, these images are not always free of semantically meaningful artifacts.
Our query design and modeling assumptions do not explicitly consider the case where a portion of
the continuous spectrum of items may be corrupted. Furthermore, because our work is an initial
exploration into low-rank matrix estimation from inverted measurements, we have not considered
scenarios such as unbounded noise or heavier-tailed sensing vectors, and we have not established
information-theoretic lower bounds for the inverted measurement paradigm. We hope that further
exploration of the inverted measurement paradigm will lead to a rich line of follow-up work.

B Preliminaries and Notation

In this section, we provide an overview of the key tools that are utilized in our proofs. We first
introduce notation which is used throughout our proofs.

Notation. For two real numbers a and b, let a A b = min{a, b}. Given a vector x € R?, denote
|lz||1 and ||z||> as the ¢1 and 5 norm, respectively. Denote S¢~! := {z € R?: ||z, = 1} to be the
set of vectors with unit £ norm. Given a matrix A € R4*% _denote || A||r, ||A||«, and A, as
the Frobenius norm, nuclear norm, and operator norm, respectively. Denote Sdxd — {A € Rdxd .
A = AT} tobe the set of symmetric d x d matrices. Denote A = 0 to mean A is symmetric positive
semi-definite. For A > 0, define the (pseudo-) inner product (z,y) , = x " Ay and the associated
(pseudo-) norm ||z| 4 = V& Az. For matrices A, B € R%*%2 denote (A, B) = tr (A" B) as
the Frobenius inner product.

We use the notation f(z) < g(z) to denote that there exists some universal positive constant ¢ > 0,
such that f(x) < c¢- g(x), and use the notation f(x) = g(x) when g(z) < f(x).

‘We define random matrices

T -2 T _ Yy+n T
and -
A= ﬁzaaT = (%1 A 7') aa’ (14)
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as the sensing matrix formed with the m-averaged responses 7 and truncated responses 7, respectively.

B.1 Inverted measurement sensing matrices result in estimation bias.

Recall from Equation (4)) that the random sensing matrix A™ takes the form

i y+n T
AN = aa'. 15
a’Y*a 1%
Standard trace regression analysis requires that the bias term E [ A] = 0, typically by assuming (at
least) that 7 is zero-mean conditioned on the sensing matrix A. The following lemma shows that
the bias term associated with the inverted measurements sensing matrix A" is nonzero, resulting in
biased estimation

Lemma 1. Let A™ be the random matrix defined in Eq. (@) and ) be the measurement noise. Then,
E [A™] # 0. (16)

The proof of Lemmal|Iis provided in Appendix [B.6.1. As a result, utilizing established low-rank
matrix estimators will result in biased estimation.

B.2 Sub-exponential random variables.

Our analysis will depend on sub-exponential random variables, a class of random variables with
heavier tails than Gaussian. While many definitions of sub-exponential random variables exist (see,
for example, [43, Chapter 2.7]), we will make use of one particular property, presented below.

If X is a sub-exponential random variable, then there exists some constant ¢ (only dependent on the
distribution underlying the random variable X') such that for all integers p > 1,

(E|X[")"" < ep. (17)

B.3 Bernstein’s inequality.

A key ingredient in our proofs is the well-known Bernstein’s inequality, which is a concentration
inequality for sums of independent sub-exponential random variables.

Lemma 2 (Bernstein’s inequality, adapted from [44) Theorem 2.10]). Let X1, ..., X,, be independent
real-valued random variables. Assume exist positive numbers uy and uq such that

|
E[XP) <w and E[|X") < Duiuh ™ for all integers p > 2, (18a)

Then for all t > 0,
it ust
Y s W) < 2exp(—t). (18b)
n n

B.4 Moments of the ratios of quadratic forms.

n

L Z (X; —E[X3])

P(
n-
=1

Because the quadratic term a " X*a appears in the denominator of our sensing matrices, our analysis
depends on quantifying the moments of the ratios of quadratic forms. This is done in the following
lemma.

Lemma 3. There exists an absolute constant ¢ > 0 such that the following is true. Let a ~ N (0, 1),
>* € R¥? be any PSD matrix with rank r, and U € R be an arbitrary symmetric matrix.

(a) Suppose that r > 8. Then we have

o 1 4 < ¢
a’>*a) — oirt

(b) Suppose that r > 2. Then we have

a'Ua
E() < —|U].. (19)

a’X*a o

The proof of Lemma [3]is presented in Appendix

14



539

540
541

542

543

544

545

546

547

548

549
550

552

553

554
555

556

557

558

559
560

B.5 A fourth moment bound for 72.

Throughout our analysis, we will utilize the fact that 42 has a bounded fourth-moment. This bound is
characterized in the following lemma.

Lemma 4. Assume r > 8. Then the bound

E[(+*)] 5 (M)4 0)

orr
holds, where o, is the smallest non-zero singular value of X*.
The proof of Lemmaf4 is presented in Appendix [B.6.3] For notational simplicity of the proofs, we
4
denote M = ¢ (M) .

orr

B.6 Proofs of preliminary lemmas
In this section, we present proofs for preliminary lemmas from Appendices[B.T}[B.4, andB.5.

B.6.1 Proof of Lemmalll

We show that E [nA™] +# 0. Using the independence of 1 and a and the assumption that 7 is zero
mean, we have

E [pA™] = E {maﬁ] @1
_ 1 T
=En(y +n)] LTE*aaa } (22)
1
=12 E [Maa—r} . (23)

This expectation is non-zero, as the random matrix ——=-——aa ' is symmetric-positive semidefinite.

al Z*a
Therefore, we have E [nA™] £ 0, as desired.

B.6.2 Proof of Lemma[3

Without loss of generality, we assume that 3* is diagonal for the remainder of this proof. To prove
each part of Lemma|[3] we utilize results on the moments of ratios of quadratic forms. For non-negative
(aT p

integers p and g, we first verify that the mixed moment E a s exists. By [45] Proposition 1],

the mixed moment exists if 5 > ¢. This is assumed to be true for all parts of Lemma

-
By [45] Proposition 2], we have the following expression for the mixed moment E [M’] :

_ 1 r —1 T P
- g /tq \At\E[(a AUA) }dt, (24)

0

(aTUa)p

E
(aTZ*a)?

where A; = (I; + 2tX*)~"/2 and |A,| is the determinant of A,. Our results will depend on
characterizing |A¢|. We begin by noting that A is a diagonal matrix of the following form

- 1 -
(1+2to) /2

1
A, = [rato)7% . (25)
1
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It follows that the determinant |A;| can be written as the product |A;| = [
more, this product can be bounded as follows:
1 1
— <A<
(1+2toy)72 — A = (14 2to;)7?
We are now ready to prove parts (a) and (b).

1
J=1 (142tc,) /2"

Further-

(26)

Part (a). This case corresponds to the case where p = 0 and ¢ = 4. Using the integral expres-

sion and upper bound on determinant (26)), with these values of p and ¢, we have

e

oo

<5 / 3 dt
(1+ 2to, T/ 2
0

Making the substitution s = 1 + 2¢o,., we can evaluate the integral as follows.

1\ 1 [/s—1\° 1
aTX*a 2I'(4)oy 20, ) s"?
1

A
| —
g~ T—g
>

|

=

&‘w

V)

Therefore, we have that there exists some absolute constant ¢ such that

1 4
- <«
(aTZ*a) ] = oirt’

as desired.

27)

(28)

(29)

(30)

3D

(32)

(33)

Part (b). This case corresponds to the case where p = ¢ = 1. We begin again with the integral

expression and upper bound on determinant (26):
E a'Ua 1
a'¥*a)| T(1

<

) /\At\ Ela"AUAa]dt

r'(1) / 1+2w T2
0

Ela"AUA;a] dt

(34)

35)

We now bound the expectation term E [a " AU A;a]. Note that for a ~ N(0, I), the expectation

E [a" Ba] = tr (B) for any symmetric matrix B. Therefore, we have

Ela"AUAa] =tr (AUA,)
< [AUA-.

(36)
(37

Above, we have used the fact that tr (B) < || B)||. for any symmetric matrix B. By Holder’s
inequality for Schatten-p norms, we have that || AU Ay, < || A ||(2)p ||U || Because A is diagonal
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and the entries of A, are bounded between 0 and 1, we can bound the operator norm as [|A¢[[,, < 1.
Therefore

E[a"AUAa] < ||U|. (38)

Substituting this upper bound for the expectation term into the integral, we obtain

a' Ua
E dt. 39
[aTE* ]_II H/ 1+2t (39)
Evaluating this integral, we have for some absolute constant c,
T
a Ua c

< —||U ||+, 40
|:G,T2*a:| - O'TTH I (40)

as desired.

B.6.3 Proof of Lemmald]

By the bounded noise assumption, iy + ) < y + 1. Therefore, we have

of6)] -2 [(25L) ] @

1 4
(aTza) 1 : “42)

, which is done in Lemma Therefore,

<(y+n)*E

It therefore suffices to bound the fourth moment of Tz:*

1\ 1\*
<UITE*(I> ‘| S <O'T’I") 9 (43)

as desired.

C Proof of Theorem [1]

Our goal is to derive finite sample error bounds for the estimator in Equation (8)). For our estimator,
if the regularization parameter is set to be sufficiently large (which we will characterize later), then
the error matrix is guaranteed to be in some error set £. For rank r symmetric positive semidefinite
matrices, the error set £ can be characterized as [24]]

¢ ={Ues™ U, <42 |Ullr} . (44)
where recall that S?*¢ denotes the set of symmetric d x d matrices.

A key condition for estimation under these settings is to ensure that the shrunken sensing matrices
satisfy a restricted strong convexity (RSC) condition over the error set £. That is, we must show that
there exists some positive constant « such that

I, &
- Y (AU > kU7 forallU € €. (45)
i=1
We begin by stating a proposition that characterizes the deterministic upper bound on the estimation
error.

Proposition 1 ([39, Theorem 1] with ¢ = 0). Suppose that 32* has rank r and the shrunken sensing
matrices satisfy the restricted strong convexity condition with positive constant k. Then if the
regularization parameter satisfies

lemw ~ 1~ ~+ ~
An > 21— ;i — — TV ¥
n22( 03 A S (AT A (46a)
=1 1=1 op
any optimal solution s of the optimization program (8) satisfies
IS 32y/r\,
I - ) < 2V (46b)
K
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This theorem is a special case of Theorem 1 in [39], which is in turn adapted from Theorem 1 in
[24]] (see [24] or [39] for the proof). PropositionEis a deterministic and nonasymptotic result and
provides a roadmap for proving upper bounds. First, we show that the operator norm (6a) can be
upper bounded with high probability, allowing us to set the regularization parameter \,, accordingly.
Second, we show that the RSC condition (#3)) is satisfied with high probability. We begin by bounding
the operator norm (46a) in the following proposition.

Proposition 2. Let y" = y+n'. Suppose that =* has rank r, with r > 8. Then there exists a positive
absolute constant C' such that the bound

tofd o d LA B 7
<CyT<y +T+<y ) S @
orrVn  n o) T oprm

op

holds with probability at least 1 — 4 exp (—d).

n

% Zyzaz - %Z@Zu E*>Avi
i=1

i=1

The proof of Proposition [2is provided in Appendix [C.I\ Next, we show that the RSC condition
is satisfied with high probability, as is done in the following proposition.

Proposition 3. Let k., be the median of y + 7] and let E be the error set defined in Eq. {44). Suppose

that the truncation threshold T satisfies T > JTy*) Then, there exist positive absolute constants k.,
¢, and C' such that if the number of effective measurements satisfy
n > Crd (48a)
then we have
1 n " s 2
~ A;,U)? > Y U|J> 48b
DA 2 ke (i) 01 (48b)

i=1
simultaneously for all matrices U € £ with probability greater than 1 — exp(—cn).

The proof of Proposition [3]is provided in Appendix|C.2] We now utilize the results of Propositions|I] [2]
and[3 to derive our final error bounds. By Proposition 2, we know that the operator norm (46a) can
be upper bounded with high probability. We set the regularization parameter \,, to satisfy

v fd o d U T 7
/\nzclyT<y \/>+r+(y > S, (49)

orVn n opr) T oprm
for an appropriate constant C;. Furthermore, by Proposition [3, we have that there exists some
universal constant C5 such that if the number of effective measurements satisfies n > Csyrd, the

2
RSC condition also holds for constant Kk = k¢ (UE{T@’*)) with high probability. Taking a union
bound, we have that Proposition[2 and Proposition[3 hold simultaneously with probability at least
1 — 4exp(—d) — exp(—cn). By Proposition [} the bound

An

IE - =*||p < 32V7 (50)

2
Ky
ke tr(E*))

<c (“(E*))Q\/;An 51)

Ky

holds with probability at least 1 — 4 exp(—d) — exp(—cn), as desired. Above, we have defined
C=3

Ke '
C.1 Proof of Proposition

Our goal is to derive an upper bound on the operator norm

lemw ~ 1~ ~ ~
- > YA - -~ > (A, T A;
=1

i=1

(52)

op
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Step 1: decompose the error into five terms. We begin by adding and subtracting multiple quantities,

as done below.

n

nyA —72 (A, SNA; = ZyA E[yA}—i—E{yA} E [yA]
+E[yA] —E [(ﬁ, 2*>A} [(A ) } %zn: A, S9A
BRCEY
® %Z A, —E {yﬁ} +E yA} —E [yA]
+ E_[<A, =)A] ~E[(4,=)A] - E [74]
+E [@, 2*)2} - ii@&, THA, (54)

Above, (i) follows from substituting in (A, $*)

— i for y for the E [y A] term. To obtain our final

bound, we bound the following operator norms.

n

1 *
nZyA 772 (A;, 3*)

=1

op

ZA EH

Term 1

+y|E[4] -E[4]

op

op

Term 2

+ HE [(A,Z*)A] - F [(A,E*pﬂ

op

Term 3

E [@Z, 2*>A} _ -

op

+ ||E [24]]],, (55)
N————

Term 5

In the remaining proof, we bound the five terms in individually. We first discuss the nature of

the five terms.

* Terms 1 and 4: These two terms characterize the difference between the empirical mean

of quantities involving A and their true expectation. In the proof, we show that the em-
pirical mean concentrates around the expectation with high probability (see Lemma[5 and

Lemmalg).

* Terms 2 and 3: These two terms characterize the difference in expectation introduced by

truncating Ato A. Hence, these two terms characterize biases that arise from truncation.
In the proof, these two terms diminish as 7 — co (see LemmaE and Lemma @. Note that

setting 7 to oo is equivalent to no thresholding, and in this case A becomes identical to A,

and both terms diminish.

e Term S5: Term 5 is a bias term that arises from the fact that the mean of the noise 7,
conditioned on sensing matrix A is non-zero: E [77|A] # 0. We will show that this bias

scales like %, allowing us to set the averaging number m to obtain consistent estimation.

By setting the truncation threshold 7 carefully, we can make the Term 3 and 4 biases the same order

as Terms 1 and 4.
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Step 2: bound the five terms individually. In what follows, we provide five lemmas to bound each of
the five terms individually. In the proofs of the five lemmas, we rely on an upper bound on the fourth
moment of the m-sample averaged measurements 2. Recall from Lemma W in Appendix Etbat

4
we have E[(32)4 < M =¢ <y+m) . We also rely heavily on the following truncation properties

orr

relating the m-sample averaged measurements 42 and truncated measurements

R <r (TP1)
V<A (TP2)
Y- =0G-3) 1% =7} (TP3)

The following lemma provides a bound for Term 1.

Lemma 5. Let Avl, ceey Avn be i.i.d copies of a random matrix A as defined in Eq. (14). There exists
a universal constant ¢ > 0 such that the following is true. For any t > 0, we have

1 ~ . M?/?
ni:l

< +— (56)
with probability at least 1 — 2 - 9% - exp (—t).

n n

op

The proof of Lemma3]is provided in Appendix The next lemma provides a deterministic upper
bound for Term 2.

Lemma 6. Let A and A be the random matrices defined in Eq. and Eq. (14), respectively. Then
the bound

= (4] -2 4]

1/2
< M

op T

(57)
holds.

The proof of Lemma 6]is provided in Appendix The following lemma provides a deterministic
upper bound for Term 3.

Lemma 7. Let A and A be the random matrices defined in Eq. and Eq. (14), respectively. Then
the bound

Ny
< (y+n")M/?

op T

HE [(A,Z*)A] —E {@Z, z*)j}

(58)
holds.

The proof of Lemmal(7 is provided in Appendix The following lemma provides a bound for
Term 4.

Lemma 8. Let fil, ceey Avn be i.i.d copies of a random matrix A as defined in Eq. (14). There exists

a universal constant ¢ > 0 such that the following is true. For any t > 0, we have
MVttt

S+n) ( +—

n

E [(ﬁ, 2*)2} - %Z(&,EJ*)&

1=

(59)

op

with probability at least 1 — 2 - 9% - exp (—t).

The proof of Lemmal§]is provided in Appendix We note that Terms 2 and 3 are bias that result
from shrinkage, but crucially are inversely dependent on the shrinkage threshold 7. This fact allows
us to set 7 so that the order of Terms 2 and 3 match the order of Terms 1 and 4. In particular, with the

choice of 7 = M"/* /% all terms are of order MY+ \/%.

The final lemma bounds Term 5, which is a bias that arises from the dependence of the sensing matrix
A on the noise 7.

Lemma 9. Let A be the random matrix defined in Eq. (13). Suppose that * has rank v with v > 2.
Then we have
2

E[[74],,] s = -2 (60)

orTm
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The proof of Lemmal9]is provided in Appendix We note that the bias scales with the variance of
the m-sample averaged noise 7, which scales inversely with m.

Step 3: combine the five terms. We set t = (log9 + 1)d and denote y" = y + n'. Utilizing
Lemmas[5—[9, we arrive at an upper bound for the operator norm. We have that with probability at

least 1 — 4 exp(—d),
MY2d d M 1 v
S(yT+1)<\/ — T+ >+O_M’; (61)

<yl (y\/+r+<y> 1) (6
oorVmn n o,r) T  o.rm

as desired. Above, (4) follows from substituting in the expression for M from Lemma

n

% Zygi - % Z(gm ) A;
=1

i=1

op

C.2  Proof of Proposition

Our objective is to show that the there exists some constant  such that the RSC condition

i;@i,w? > s|UI% (63)
holds uniformly for all matrices U in the error set
£={Ues™: |U|. <4v2r|U|r}. (64)
Recall from the definition of A that
Avi = %zaia;r (65)
_ (ayT; Lonr)asa] (66)

so we have

_ 4
Avi,UQZ M/\7' aTUai2
TE* z
a,; a;

This implies that | <14L, U)? is nondecreasing in 7 when 7 > 0. As a result, defining the random

n

i=1
matrix
AT y+1 T
AT = <aTE*a /\7") aa ', (67)
we have that the following lower bound holds for any 7/ < 7.
IR 2 1 - AT 2
~Y (AU > ) (AT U (68)

i=1 i=1

Above AT, ..., A7 arei.i.d copies of the random matrix (67). We will lower bound L (AT U)?
i=1

for an appropriate value of 7/, which we will set later. To proceed, we will use a small-ball argument

[46.,!47] based on the following lemma.

Lemma 10 ([47] Proposition 5.1], adapted to our notation). Let X1,..., X, € R%*¢ bei.i.d. copies
of a random matrix X € R¥?, Let E C R™%. Let £,Q > 0 be such that for every U € E,

P((X,U)| = 2¢) > Q. (69)

Furthermore, denote the Rademacher width as

1 n
W =E]|sup — e X;,U) |,
Ue% ”; < >
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where €1, . .. ,€, are i.i.d. Rademacher random variables independent of the X;’s. Then, for any
t > 0, with probability at least 1 — exp (—%ﬁ),

n 1/2
inf (; > (X, U>2> >¢(Q —t) —2W.

UcE P
We apply Lemmawith X; = Av:, and with set F as
E=n{U eR™ . |U||p =1} (70)

={U eS™: |U||r =1, ||U|. <4V2r} (71)

The rest of the proof is comprised of two key steps. To invoke Lemma[I0, the first step establishes
the inequality by lower bounding (). The second step upper bounds the Rademacher width W.
The following lemma provides the lower bound on Q).

Lemma 11. Consider any 7' € (0, 7). There exist absolute constants ¢y, ca > 0 such that for every

U € E, we have
~ K
P ‘AT, ‘> Y 1) > co. 2
(( U)|>a (tr(E*) AT > ¢y (72)

The proof of Lemmal|IT is presented in Appendix We now turn to the second step of the proof,
which is bounding the Rademacher width W. The next lemma characterizes this width.
Lemma 12. Consider any 7' € (0,7). Let AT ,... AT € R pe i.id. copies of the random

matrix A7 € RIxd defined in Equation (67). Let E be the set defined in Equation (71). Then, there
exists some absolute constants ci and co such that if

n > cid (73a)

the bound

E

1 " ~_ Td
sup — (AT U)| < cot’y| — 73b
Ue%n; < >] 27 (73b)
holds.

The proof of Lemma|[I2]is presented in Appendix [E.2] Invoking Lemma[TT|and Lemma|[I2] we have
that for some constant c4, as long as n > c4d, the bound

n 1/2 n 12
. 1 e 2 . 1 AT 2
,}%%(nzmw) Zégz(nz <A1’U>>

i=1
> ¢ AT} (cg —t) — 37’4/ rd (74)
= 1 \tr (T n

with probability at least 1 — exp <7"7’52) We set 7/ = UE{Ty*) where k,, is the median of the random

quantity y + 7. By the assumption 7 > tr('{%*), this choice of 7/ satisfies 7/ < 7. Setting t = %, we
have for some constant c, that with probability at least 1 — exp (—cn),

1/2
1 (S, ceo K K rd
inf — AT U? | >2 Y 3 —. 75
Uern <;< 00 > -2 tr (¥ “r (Z)V n (75)
2
Therefore, if n > max { (310632) ,04} rd, we have
7 2
inf li@ s (a2 ) gpe (76)
Ueen v 4 (T F

i=1

!’ 2
with probability at least 1 — exp (—cn). We conclude by setting Ky = (ﬂ) and C =

4
4 2
Cc3
max (0,162) ,C4 (-
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D Proof of supporting lemmas for Proposition
In this section, we prove the supporting lemmas for Proposition

D.1 Proof of Lemmalf3]

LetS 1 C S%1lbea %—covering of unit-norm d-dimensional vectors. By a covering argument [43|
Exercise 4.4.3], for any symmetric matrix U € R%*?, its operator norm is bounded by U, <
25Upyes, |v' Uv|. Hence, we have

4

iéﬁ; —E {A] B < ZUSEuSp% v (iégz —E {A]) v
= 2vs€usp% % éUTAViU —E [’UTAV’U} . amn

We now apply Bernstein’s inequality to bound (77). We first assume the Bernstein condition holds
withu, = ey M 3 and ug = coT for some universal positive constants c;, co. Namely, for each integer
p > 2, we show that for any unit vector v € R?,

~ |
E HvTAv‘p] < ‘%ulugﬁ. (78)

We first provide the rest of the proof assuming that holds, followed by proving (78). By
Bernstein’s inequality (see Lemma , under condition (78), we have that for any unit vector v € R?

and any ¢t > 0,
M'/2t t
IP( 22<\/“1n+“j; >>§26Xp(—t). (79)

By Vershynin [43], Corollary 4.2.13], the cardinality of the covering set Si is bounded above by 9¢.

Therefore, by a union bound,
M2t t
> 9 <\/“1+“27> <2.9%. exp(—t). (80)
n n

Combining and (80), for any ¢ > 0, we have
1 e ~ ~
~3 A -E[4]

with probability at least 1 —2-9%-exp (—t), as desired. It remains to prove the Bernstein condition (78)).

1 — ~ ~
-~ Z v Ajv—E {’UTA’U}
i=1

P | sup
vES 1
4

l i UT_»LU —E [UTAVU:|
i=1

n-

M2t t
+ = (81)
n n

S

op

Proving the Bernstein condition holds. We fix any unit vector v € R?. Plugging in

A = 32aa”, we have vT Av = 32(v'a)?. Since the random variable @ ~ N(0, I,), and v
is a unit vector, it follows that v " a ~ N(0, 1). Denote by G ~ N(0, 1) a standard normal random
variable. For any integer p > 2, we have
~ P @
Ello” Ao| ] = E[(5°G?)] < 7B [(5%)* 6]
(i)
<2 E[(7%) 6]

<oz (2] -Elov)) "

(iv) 1/5
)

<2 (0 E[GY)) (82)
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where steps (i) and (ii) follow from and [TP2] respectively, step (iii) follows from Cauchy—
Schwarz, and step (iv) follows from the upper bound on the fourth moment of 52. Note that G? follows
a Chi-Square distribution with 1 degree of freedom, and hence sub-exponential. Recall from in

Appendixthat there exists some constant ¢ > 0 such that we have (E [(G?)?]) 7 < ep for all
p > 1. Hence, we have

(E[G7])" < @) = 2ec - (2

()
< pl- (2ec)? (83)
where step (i) is true by Stirling’s inequality that for all p > 1,

P
p! > +/27p (B) eTHIT > (B)p.
e e
Plugging to and rearranging terms completes the proof of Bernstein condition (78).

D.2 Proof of Lemmal6l

We first begin by showing that E [A] — E {ﬁ} > 0. Substituting in the definitions of A and A,

we have E [A] — E {AV} =E [(7* —7*)aa']. By[TP2| we have ¥° > 52, meaning that 52 — 3*

is non-negative. The expectation of a non-negative quantity times an outer product is symmetric
positive semidefinite. Therefore, we can write the operator norm as

|E[4] -E[4]| = sw o (E[4] -E[A])v. (84)

op ,vesdfl

We now show that there exists a uniform upper bound on the quantity

vl (IE [A] - E [AVD v (85)
for a unit-norm d-dimensional vector v, therefore bounding the operator norm. We again note
(v"a) ~ N(0,1) and denote G ~ N(0, 1). Then we rewrite the quantity by substituting in the

expression for sensing matrices A and A, as follows.

" (E[A] ~E[4])v=E[v" (4~ 4) ] (86)
=E[v' (%aa’ —3F%aa’)v] (87)
=E [(72 -75%) GQ] . (88)
We continue from here by utilizing properties of the shrunken measurements, as follows.

E[(7-7) ] LyE[(7* -7) U7 = 7}] (89)
<E[y’G*1{5* > 7}] 0
< (BE[(26*7]-E[1{3* = 7}] ) " oD

(i) 1/ 1/
< (B[] -E[6*]) (P(*=7)) " ©2)

where step (i) follows from [TP3] and (ii) and (iii) follow from Cauchy—Schwarz. We proceed by
bounding each of the above terms separately. First, recall from Lemma [ in Appendix that
the fourth moment E |f72|4} is bounded above by M. Second, G? is a sub-exponential random

variable. By Appendix|B.2, we have that E [|G2 \4] 7 < c for some constant c. It remains to bound

(B(5227) )/ which we do below.

Y2 (i) /I [|152]2]\ V2
(pe720)" e (B
v 524 1/4
2 E[r) o
vi 1/a
<§> M . ©5)
:
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Above, (iv) follows from Markov’s inequality, (v) follows from Cauchy—Schwarz, and (vi) follows
from the fourth moment bound on the averaged scaling 72. Putting everything together, we have that
the bound

_ ~ MY?
T — <
v (E[4] -E[4])vs = (96)
holds uniformly for all vectors v € S d=1_Therefore,
— _ 1/2
|e[4]-E[4])] s M 97)
op T

as desired

D.3 Proof of Lemmalf7l

We begin by substituting in the definition A = §%aa ', the matrix (A, ¥*) A can be written as
'74aTE*a. Similarly, we can re-write the matrix (A, 3*) A as o (aTE*a) aa'. Therefore, our
goal is to bound the operator norm

13" =7%) (a"=%a) aa™|| (98)

We note that the matrix (7* —3*) (a"¥*a) aa’ is symmetric positive semidefinite, as it is the
product of a non-negative scalar (y* —5*) (a” $*a) and an outer product. Similar to the proof of
Lemma@ we now show a uniform upper bound on the quantity v " E [(*74 — 54) (aTE*a) aaT]
for arbitrary unit-norm d-dimensional vector v.

Again, note that v'a ~ N(0,1) and denote G ~ N(0,1). We begin by substituting in the
expressions for G.

v'E [(5/4 — 74) (aTE*a) aa—w v=E [('y -7 ) ( T>*a )v aaTv} (99)
=E[(%*'-7") (a"=%a) G?] (100)

v

Next, we can proceed by manipulating the ¥* — 5% term to remove the term a ' *a, as follows.

E[(7 —-7") (a'=%a) G*1{»* 2 7}] =E[(3* +7°) (3° -7°) (a"=*a) G?]  (10D)
(2113[25 (¥ —7%) (a"*a) G?] (102)
DI [y +1) (37 - 77) 6] (103)
oy B[P 2] a0

Above, (i) follows from TP2} (i1) follows from the definition % = aZTJ-;za , and (#i7) follows from
and the upper bound on noise 7.

The rest of the proof follows the exact steps of the proof of Lemma [6, provided in Section
Therefore, we have the bound

~ +n")MY?
IE[(+ -~ 3" (a"S*a)aa’]|,, < % (105)

as desired.

D.4 Proof of Lemmal§]

The proof follows the steps as the proof of Lemma |§, and we explain the difference where we now
provide a Bernstein condition with u; = ¢1(y + n7)? and us = ca2(y + n')7. Namely, for every
integer p > 2, we have (cf. [7§]

H (A, =) Av ‘ E fuluQ -2, (106)
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78s  Plugging in A = 32aa’, we have

E Hv*(ﬁ, z:*)éiv‘p] ~E [WaTz*a)” : "UTX’U p}
CE[(a"5a) - |oT Au|] (107)
DE [+ o7 Av|] (108)
Ly -E HvTﬁvm . (109)

~ P
790 Plugging in from Lemmato bound the term E HUTA’U‘ } in (109) completes the proof of the
791 Bernstein condition (106).
y+7

792 Above, (i) follows from|TP2] (i) follows from the definition 7° = —#ZI—. and (i) follows from

793 the upper bound on the noise 1. The rest of the proof follows in the same manner as the proof
794 of Lemmal|5, as presented in Section with an additional factor of y + nT. Therefore, like in
795 Section[D.1| the bound

- ~ 1O~ ~ M*/2t t
E[(4,=9A] - — 3 (A, =04 S y+a) ( + ) (110)
n
i=1 op
796 holds with probability greater than 1 — 2 - 9¢ - exp (—t), as desired.
797 D.5 Proof of Lemma[9
768 Substitutingin A = ¥%aa’ = ¥Z-aa’, we have
- aa’
E|[7A = ||E |7 N)————
e, = |2 i+ g ||
aa’
= |E[iy+7)] E |22
RIE
ol aa’
=g 22 11
m {aTZ*a] op (1

799 To bound the operator norm term in (111, recall from Lemma [3(b)]in Appendix [B.4]that for any

goo matrix U, we have
a'Ua 1
E < Ul.. 112
(aTE*a) Narr” I 12)

-
go1  Note that % is symmetric positive semidefinite, so we have

T T
aa aa
E|l—=c— = sup [0 E|———|wv
H [aTE*a] op ves?—l [aTE*a}
T(onT
a (vv')a
= Sup E[m}
veSa-1
0O 1
S sup [[vv ||,
Orr veESI—1
a 1
@ 2 113
orr (113)

02 where step (i) is true by plugging in (I12), and step (ii) is true because ||[vv ||, = 1 for any unit
803 norm vector v. Plugging (113) back to (111]), we have

- 1 2
|E[74]]|,, S — - =2, (114)

~J
op orr m
go4 as desired.
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E Proof of supporting lemmas for Proposition
In this section, we prove the supporting lemmas for Proposition

E.1 Proof of Lemmal[I1l

For the proof, we first fix any U € €N {U € S™? : ||U||r = 1}. Let &, be the median of y + 7

and let G be the event that y + 1 > r,, which occurs with probability % For any ¢ > 0, because the
averaged noise 7 and sensing vector a are independent,

P(‘(AVT/7U>‘ > 5) _p ((ayT;”a /\T’) [(aa”, U)| > g) (115)
—p(<ayT;7a AT') l(aa™,U)| zg‘gﬁ»(g) (116)
_ %1@ <(aﬁ;’7a m') (aa™, U)| > g‘g) (117)
> %IP ((GT’;@’*G M') [(aa™,U)| > g) (118)

We proceed by bounding the terms in (118) separately.

Lower bound on P (|(aa™,U)| > ¢;). We use the approach from [32] Section 4.1]. By Paley-
Zygmund inequality,

g <!<aa1U>!2 > 5E U<aaT7U>!2D > (¢ Jee” 1) (119)

"4 E[j(aa0)]

As noted in [32] Section 4.1], there exists some constant ¢/, such that for any matrix U with unit
Frobenius norm,

E[[{aa”0)]| 21 and E[|(aa”,0)]"] <& (E U(aaT,U>]2D2. (120)

Note that by the definition, every matrix U & F has unit Frobenius norm. Utilizing Paley-
Zygmund (119) and the bounds on the second and fourth moment of (aa’,U) (120), there exist
positive constants ¢; and ¢y such that

P([(aa”,U)| > c1) > ca. (121)

Upper bound on a’ X*a. By Hanson-Wright inequality [48, Theorem 1.1], there exist some
positive absolute constants ¢ and ¢ such that for any ¢ > 0, we have

o S*a < ¢ (tr () + IS #vE+ 1], t) (122)

with probability at least 1 — 2 exp (—ct). Set ¢ to be a constant such that 2 exp (—ct) = <% and note
that for symmetric positive semidefinite matrix 3*, the bounds [|X*||p < tr (X*) and [[X*[|,, <

tr (3*) hold. As a result, we have that there exists some constant c3 such that

P(aTE*a < e tr(E*)) >1— %2 (123)

By a union bound of (121)) and (123)), we have
K K
]P) Y /\ !/ T U > 7?//\ !
((aTE*a T>|<aa Uz a <03tr(2*) ’
K K
> P Y AT > — A7) 4P TU)|>¢)-1
27 (g 2 e 1)+ a0 2 )

K K
> Y > Y T > _1> 22
= (aTE*a ~ 3 tr(E*)> F (Raa ’U>’ 2e) -1z (129
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Redefining constants c¢; and ¢y appropriately, we have

AT "{y !/
P(‘<A 7U>‘261 <tr(2*)/\T>)>02’ (125)

as desired.

E.2 Proof of Lemmal[12]

We begin by noting that for any matrix U € E,

) e~
sup — g <E |sup ||— AT Ul|l.
UcE TLZ ‘ UeE n; e 0p|| ”
(ii) 1 < ,
<4V2rE |||— g g A7 , (126)
n
i=1 op

where step (i) follows from Holder’s inequality, and step (ii) follows from the definition of the
set F. It remains of the proof to bound the expected operator norm in (126). We do this with a
trivial modification of the approaches in [49, Section 5.4.1], [47, Section 8.6], [32, Section 4.1] to

accommodate the bounded term ( -‘?ngl AT ) that appears in each of the matrices AVZT/. As aresult,

there exist universal constants ¢ and Co such that if n satisfies n > cod, then the bound

[N d
— E 51AZ— § ClT/\/7 (127)
n = n

holds. We conclude by re-defining c¢; appropriately.

op

F Proof of Corrollary

The proof consists of two steps. We first verify that the choices of the averaging parameter m and
truncation threshold 7 as

1/3
V2 2N o N
m = K( w) and =2\~ (128)
d o.r V md
satisfy the assumptions n 2 rd and 7 > + (';i‘* We then invoke Theoreml

Verifying the condition on n. We have

N
ao N
m
3
0 (v7)?
()
1/3
_ ( ;l ) (129)
V'r]
(ii) 1/3
Z ( 2 3d2 2) (130)

= (131

where step (i) is true by plugging in the choice of m from (128)), and step (ii) is true by plugging in
the assumption N > 1/3, 7%/2d. Thus the condition n > rd of Theoremis satisfied.
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Verifying the condition on 7. For the term 4/ % in the expression of 7 in (128)), note that, by the
previous point, % =n 2 rd (with a constant that, WLOG and by necessity, is greater than 1). Thus
N> /T > 1. Therefore, it suffices to verify that

dm

+
Y Ry
AN 132
opr — tr(X¥) (132)
By definition, we have y" > ky. Furthermore, since X* is symmetric positive semidefinite, its
eigenvalues are all non-negative and are the same as singular values, and hence o,.r < tr (3*).
Therefore, we have (132) holds, verifying the condition on 7.

Invoking Theorem[l. By setting \,, to its lower bound in (9) and substituting in n = N/m and
our choice of 7 from (128), we have

™2 d y2
A”:CI(cym)a < ”;,er") (133)
Substituting in our choice of m from (128)), we have
1/3
M2 (vid
An :Cl(gi <]<7> : (134)

Substituting this expression for A,, into the error bound (10) and absorbing C into the constant C,

we have
1/3
PN tr (2*)2 2 v2d
HE—EWFSC<E”)>(Z) ﬁ(}; . (135)
T y

Using the fact that tr (X*) < o7, we have

R 9 1 2 ' 2d 1/3
HE—E*FSC<“>(y)r%<”’> : (136)
oy Ky N

G Choice of value y

as desired.

In this section, we discuss the scale-invariance of the learning from PAQs problem in more de-
tail. Under the Mahalanobis model for human perception, there exists some ground truth metric—
parameterized by 3*—that governs perception. Associated with 3*, is a (squared) distance y, such
that for any two items x and ' € R%, &, x’ are perceived to be similar if |z — z'||%. < y, and
dissimilar if |z — @'||%. > y,-

Our two-stage estimator for learning with PAQs assumes that the value of y, is known, which
practitioners are unlikely to know a priori. However, this is not an issue in practice due to scale-
invariance. That is, for any constant ¢ > 0, if we use y = cy, in our estimation procedure, we will
recover a scaled metric ¢3*. Therefore, by to the scale-invariance of the problem, we may set y to
any positive value without loss of generality. In the main paper, for ease of exposition, we assume
that 3* is the metric associated with the user’s choice for y, and derive estimation error bounds for
this metric.
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