
Supplementary Material
Transfer Learning with Affine Model Transformation

A Other Perspectives on Affine Model Transfer

A.1 Transformation Functions for General Loss Functions

Here we discuss the optimal transformation function for general loss functions.

Let ℓ(y, y′) ≥ 0 be a convex loss function that returns zero if and only if y = y′, and let g∗(x) be the
optimal predictor that minimizes the expectation of ℓ with respect to the distribution pt followed by x
and y transformed by ϕ:

g∗(x) = argmin
g

Ept
[
ℓ(g(x), ϕfs(y))

]
.

The function g that minimizes the expected loss

Ept
[
ℓ(g(x), ϕfs(y))

]
=

∫∫
ℓ(g(x), ϕfs(y))pt(x, y)dxdy

should be a solution to the Euler-Lagrange equation

∂

∂g(x)

∫
ℓ(g(x), ϕfs(y))pt(x, y)dy =

∫
∂

∂g(x)
ℓ(g(x), ϕfs(y))pt(y|x)dy pt(x) = 0. (S.1)

Denote the solution of Eq. (S.1) by G(x;ϕfs). While G depends on the loss ℓ and distribution pt,
we omit those from the argument for notational simplicity. Using this function, the minimizer of
the expected loss Ex,y[ℓ(g(x), y)] can be expressed as G(x; id), where id represents the identity
function.

Here, we consider the following assumption to hold, which generalizes Assumption 2.3 in the main
text:
Assumption 2.3(b). For any distribution on the target domain pt(x, y) and all x ∈ X , the following
relationship holds:

ψfs(g
∗(x)) = argmin

g
Ex,y[ℓ(g(x), y)].

Equivalently, the transformation functions ϕfs and ψfs satisfy

ψfs
(
G(x;ϕfs)

)
= G(x; id). (S.2)

Assumption 2.3(b) states that if the optimal predictor G(x;ϕfs) for the data transformed by ϕ is given
to the model transformation function ψ, it is consistent with the overall optimal predictor G(x; id)
in the target region in terms of the loss function ℓ. We consider all pairs of ψ and ϕ that satisfy this
consistency condition.

Here, let us consider the following proposition:

Proposition A.1. Under Assumption 2.1, 2.2 and 2.3(b), ψ−1
fs

= ϕfs .

Proof. The proof is analogous to that of Theorem 2.4 in the main text. For any y0 ∈ Y , let
pt(y|x) = δy0 . Combining this with Eq. (S.1) leads to

∂

∂g(x)
ℓ(g(x), ϕfs(y0)) = 0 (∀y0 ∈ Y).

Because ℓ(y, y′) returns the minimum value zero if and only if y = y′, we obtain G(x;ϕfs) =
ϕfs(y0). Similarly, we have G(x; id) = y0. From these two facts and Assumption 2.3(b), we have
ψfs(ϕfs(y0)) = y0, proving that the proposition is true.

1

Proposition A.1 indicates that the first statement of Theorem 2.4 holds for general loss functions.
However, the second claim of Theorem 2.4 generally depends on the type of loss function. Through
the following examples, we describe the optimal class of transformation functions for several loss
functions.
Example A.1 (Squared loss). Let ℓ(y, y′) = |y − y′|2. As a solution of Eq. (S.1), we can see that
the optimal predictor is the conditional expectation Ept [ϕfs(Y)|X = x]. As discussed in Section 2
in the main paper, the transformation functions ϕfs and ψfs should be affine transformations.
Example A.2 (Absolute loss). Let ℓ(y, y′) = |y − y′|. Substituting this into Eq. (S.1), we have

0 =

∫
∂

∂g(x)

∣∣g(x)− ϕfs(y)∣∣pt(y|x)dy
=

∫
sign

(
g(x)− ϕfs(y)

)
pt(y|x)dy

=

∫
ϕfs (y)≥g(x)

pt(y|x)dy −
∫
ϕfs (y)<g(x)

pt(y|x)dy.

Assuming that ϕfs is monotonically increasing, we have

0 =

∫
y≥ϕ−1

fs
(g(x))

pt(y|x)dy −
∫
y<ϕ−1

fs
(g(x))

pt(y|x)dy.

This yields ∫ ∞

ϕ−1
fs

(g(x))

pt(y|x)dy =

∫ ϕ−1
fs

(g(x))

−∞
pt(y|x)dy.

The same result is obtained even if ϕfs is monotonically decreasing. Consequently,

ϕ−1
fs

(g(x)) = Median[Y |X = x],

which results in
G(x;ϕfs) = ϕfs

(
Median[Y |X = x]

)
.

This implies that Eq. (S.2) holds for any ϕfs including an affine transformation, and the function
form cannot be identified. from this analysis.
Example A.3 (Exponential-squared loss). As an example where the affine transformation is not
optimal, consider the loss function ℓ(y, y′) = |ey − ey′ |2. Substituting this into Eq. (S.1), we have

0 =

∫
∂

∂g(x)

∣∣exp(g(x))− exp(ϕfs(y))
∣∣2pt(y|x)dy

= 2 exp(g(x))

∫ (
exp(g(x))− exp(ϕfs(y))

)
pt(y|x)dy.

Therefore,
G(x;ϕfs) = logE

[
exp(ϕfs(Y))|X = x

]
.

Consequently, Eq. (S.2) becomes

logE
[
exp(ϕfs(Y))

]
= ϕfs

(
logE

[
exp(Y)

])
.

Even if ϕfs is an affine transformation, this equation does not generally hold.

A.2 Analysis of the Optimal Function Class Based on the Upper Bound of the Estimation
Error

Here, we discuss the optimal class for the transformation function based on the upper bound of the
estimation error.

In addition to Assumptions 2.1 and 2.2, we assume the following in place of Assumption 2.3:
Assumption A.2. The transformation functions ϕ and ψ are Lipschitz continuous with respect to the
first argument, i.e., there exist constants µϕ and µψ such that,

ϕ(a, c)− ϕ(a′, c) ≤ µϕ∥a− a′∥2, ψ(b, c)− ψ(b′, c) ≤ µψ∥b− b′∥2,
for any a, a′ ∈ Y and b, b′ ∈ R with any given c ∈ Fs.

2

Note that each Lipschitz constant is a function of the second argument fs, i.e., µϕ = µϕ(fs) and
µψ = µψ(fs).

Under Assumptions 2.1, 2.2 and A.2, the estimation error is upper bounded as follows:

E
x,y

[
|ft(x)− f̂t(x)|2

]
= E
x,y

[∣∣ψ(g(x), fs(x))− ψ(ĝ(x), fs(x))∣∣2]
≤ E
x,y

[
µψ(fs(x))

2
∣∣g(x)− ĝ(x)∣∣2]

≤ 3 E
x,y

[
µψ(fs(x))

2
(∣∣g(x)− ϕ(ft(x), fs(x))∣∣2

+
∣∣ϕ(ft(x), fs(x))− ϕ(y, fs(x))∣∣2

+
∣∣ϕ(y, fs(x))− ĝ(x)∣∣2)]

≤ 3 E
x,y

[
µψ(fs(x))

2
∣∣ψ−1(ft(x), fs(x))− ϕ(ft(x), fs(x))

∣∣2]
+ 3 E

x,y

[
µψ(fs(x))

2µϕ(fs(x))
2
∣∣ft(x)− y∣∣2]

+ 3 E
x,y

[
µψ(fs(x))

2
∣∣z − ĝ(x)∣∣2]

= 3 E
x,y

[
µψ(fs(x))

2
∣∣ψ−1(ft(x), fs(x))− ϕ(ft(x), fs(x))

∣∣2]
+ 3σ2 E

x,y

[
µψ(fs(x))

2µϕ(fs(x))
2
]

+ 3 E
x,y

[
µψ(fs(x))

2
∣∣z − ĝ(x)∣∣2].

The derivation of this inequality is based on [1]. We use the Lipschitz property of ψ and ϕ for
the first and third inequalities, and the second inequality comes from the inequality (a − d)2 ≤
3(a− b)2 + 3(b− c)2 + 3(c− d)2 for a, b, c, d ∈ R.

According to this inequality, the upper bound of the estimation error is decomposed into three
terms: the discrepancy between the two transformation functions, the variance of the noise, and the
estimation error for the transformed data. Although it is intractable to find the optimal solution of
ϕ, ψ, ĝ that minimizes all these terms together, it is possible to find a solution that minimizes the
first and second terms expressed as the functions of ϕ and ψ only. Obviously, the first term, which
represents the discrepancy between the two transformation functions, reaches its minimum (zero)
when ϕfs = ψ−1

fs
. The second term, which is related to the variance of the noise, is minimized when

the differential coefficient ∂
∂uψfs(u) is a constant, i.e., when ψfs is a linear function. This is verified

as follows. From ϕfs = ψ−1
fs

and the continuity of ψfs , it follows that

µψ = max
∣∣∣ ∂
∂u
ψfs(u)

∣∣∣, µϕ = max
∣∣∣ ∂
∂u
ψ−1
fs

(u)
∣∣∣ = 1

min | ∂∂uψfs(u)|
,

and thus the product µϕµψ takes the minimum value (one) when the maximum and minimum of the
differential coefficient are the same. Therefore, we can write

ϕ(y, fs) =
y − g1(fs)
g2(fs)

, ψ(g(x), fs) = g1(fs) + g2(fs)g(x),

where g1, g2 : Fs → R are arbitrarily functions. Thus, the minimization of the third term in the upper
bound of the estimation error can be expressed as

min
g1,g2,g

E
x,y
|y − g1(fs) + g2(fs)g(x)|2.

As a result, the suboptimal function class for the upper bound of the estimated function is given as

H =
{
x 7→ g1(fs) + g2(fs) · g3(x) | g1 ∈ G1, g2 ∈ G2, g3 ∈ G3

}
.

This is the same function class derived in Section 2 in the main paper.

3

(a) Direct learning (b) Feature extraction (c) HTL-offset (d) Affine model transfer

Figure S.1: Model architectures for the affine model transfer and related procedures. (a) Direct
learning predicts outputs using only the original inputs x, while (b) feature extraction-based neural
transfer predicts outputs using only the source features fs. (c) The HTL procedure proposed in
[2] (HTL-offset) constructs the predictor as the sum of g1(fs) and g3(x). (d) The affine model
transfer encompasses these procedures, computing g1 and g2 as functions of the source features and
constructing the predictor as an affine combination with g3.

B Additional Experiments

B.1 Eigenvalue Decay of the Hadamard Product of Two Gram Matrices

We experimentally investigated how the decay rate s2 in Theorem 4.4 is related to the overlap degree
in the spaces spanned by the original input x and source features fs.

For the original input x ∈ R100, we randomly constructed a set of 10 orthonormal bases, and then
generated 100 samples from their spanning space. For the source features fs ∈ R100, we selected d
bases randomly from the 10 orthonormal bases selected for x and the remaining 10− d bases from
their orthogonal complement space. We then generated 100 samples of fs from the space spanned by
these 10 bases. The overlap number d can be regarded as the degree of overlap of two spaces spanned
by the samples of x and fs. We generated the 100 different sample sets of x and fs.

We calculated the Hadamard product of the Gram matrices K2 and K3 using the samples of x and fs,
respectively. For the computation of K2 and K3, all combinations of the following five kernels were
tested:

Linear kernel k(x, x′) =
x⊤x

2γ2
+ 1,

Matérn kernel k(x, x′)=
21−ν

Γ(ν)

(√
2ν∥x−x′∥2

γ

)ν
Kν

(√
2ν∥x−x′∥2

γ

)
for ν=

1

2
,
3

2
,
5

2
,∞,

where Kν(·) is a modified Bessel function and Γ(·) is the gamma function. Note that for ν =∞, the
Matérn kernel is equivalent to the Gaussian RBF kernel. The scale parameter γ of both kernels was
set to γ =

√
dim(x) =

√
10. For a given matrix K, the decay rate of the eigenvalues was estimated

as the smallest value of s that satisfies λi ≤ ∥K∥2F · i−
1
s where ∥ · ∥F denotes the Frobenius norm.

Note that this inequality holds for any matrices K with s = 1 [3].

Figure S.2 shows the change of the decay rates with respect to varying d for various combinations of
the kernels. In all cases, the decay rate of K2 ◦K3 showed a clear trend of monotonically decreasing
as the degree of overlap d increases. In other words, the greater the overlap between the spaces
spanned by x and fs, the smaller the decay rate, and the smaller the complexity of the RKHSH2⊗H3.

B.2 Lattice Thermal Conductivity of Inorganic Crystals

Here, we describe the relationship between the qualitative differences in source features and the
learning behavior of the affine model transfer, in contrast to ordinary feature extraction using neural
networks.

4

0 2 4 6 8 10

0.52

0.54

0.56

0.58

0.60

0.62

Li
ne

ar

Linear

0 2 4 6 8 10

0.55

0.60

0.65

0.70

0.75

0.80

Matérn-1/2

0 2 4 6 8 10

0.55

0.60

0.65

0.70

Matérn-3/2

0 2 4 6 8 10

0.55

0.60

0.65

0.70

Matérn-5/2

0 2 4 6 8 10

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Gaussian

0 2 4 6 8 10

0.55

0.60

0.65

0.70

0.75

0.80

M
at

ér
n-

1/
2

0 2 4 6 8 10

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0 2 4 6 8 10

0.70

0.75

0.80

0.85

0 2 4 6 8 10

0.65

0.70

0.75

0.80

0.85

0 2 4 6 8 10

0.60

0.65

0.70

0.75

0.80

0.85

0 2 4 6 8 10

0.55

0.60

0.65

0.70

M
at

ér
n-

3/
2

0 2 4 6 8 10

0.70

0.75

0.80

0.85

0 2 4 6 8 10

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0 2 4 6 8 10

0.65

0.70

0.75

0.80

0 2 4 6 8 10

0.60

0.65

0.70

0.75

0.80

0 2 4 6 8 10

0.55

0.60

0.65

0.70

M
at

ér
n-

5/
2

0 2 4 6 8 10

0.65

0.70

0.75

0.80

0.85

0 2 4 6 8 10

0.65

0.70

0.75

0.80

0 2 4 6 8 10

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0 2 4 6 8 10

0.60

0.65

0.70

0.75

0 2 4 6 8 10

0.525

0.550

0.575

0.600

0.625

0.650

0.675

G
au

ss
ia

n

0 2 4 6 8 10

0.60

0.65

0.70

0.75

0.80

0.85

0 2 4 6 8 10

0.60

0.65

0.70

0.75

0.80

0 2 4 6 8 10

0.60

0.65

0.70

0.75

0 2 4 6 8 10

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Kernel function for k2

K
er

ne
lf

un
ct

io
n

fo
r

k 3

Figure S.2: Decay rates of eigenvalues of K2 (blue lines), K3 (green lines) and K2 ◦K3 (red lines)
for all combinations of the five different kernels. The vertical axis represents the decay rate, and the
horizontal axis represents the overlap dimension d in the space where x and fs are distributed.

The target task is to predict the lattice thermal conductivity (LTC) of inorganic crystalline materials,
where the LTC is the amount of vibrational energy propagated by phonons in a crystal. In general,
LTC can be calculated ab initio by performing many-body electronic structure calculations based on
quantum mechanics. However, it is quite time-consuming to perform the first-principles calculations
for thousands of crystals, which will be used as a training sample set to create a surrogate statistical
model. Therefore, we perform TL with the source task of predicting an alternative, computationally
tractable physical property called scattering phase space (SPS), which is known to be physically
related to LTC.

B.2.1 Data

We used the dataset from [4] that records SPS and LTC for 320 and 45 inorganic compounds,
respectively. The input compounds were translated to 290-dimensional compositional descriptors
using XenonPy [5]1.

B.2.2 Model Definition and Hyperparameter Search

Fully connected neural networks were used for both the source and target models, with a LeakyReLU
activation function with α = 0.01. The model training was conducted using the Adam optimizer
[6]. Hyperparameters such as the width of the hidden layer, learning rate, number of epochs,
and regularization parameters were adjusted with 5-fold cross-validation. For more details on the
experimental conditions and procedure, refer to the provided Python code.

Source Model For the preliminary step, neural networks with three hidden layers that predict SPS
were trained using 80% of the 320 samples. 100 models with different numbers of neurons were
randomly generated and the top 10 source models that showed the highest generalization performance
in the source domain were selected. The hidden layer width L was randomly chosen from the range
[50, 100], and we trained a neural network with a structure of (input)-L-L-L-1. Each of the three
hidden layers of the source model was used as an input to the transfer models, and we examined the
difference in prediction performance for the three layers.

Target Model In the target task, an intermediate layer of a source model was used as the feature
extractor. A model was trained using 40 randomly chosen samples of LTC, and its performance
was evaluated with the remaining 5 samples. For each of the 10 source models, we performed the

1https://github.com/yoshida-lab/XenonPy

5

https://github.com/yoshida-lab/XenonPy

1st layer 2nd layer 3rd layer
Extracted layer

25

30

35

40

45

50

R
oo

tm
ea

n
sq

ua
re

d
er

ro
r(

W
/m

K
)

Feature extractor
Affine transfer
Without transfer
Fine-tuning

Figure S.3: Change of RMSE values between the affine transfer model and the ordinary feature
extractor when using different levels of intermediate layers as the source features. The line plot
shows the mean and 95% confidence interval. As a baseline, RMSE values for direct learning without
transfer and fine-tuned neural networks are shown as dotted and dashed lines, respectively.

training and testing 10 times with different sample partitions and compared the mean values of RMSE
among four different methods: (i) the affine model transfer using neural networks to model the three
functions g1, g2 and g3, (ii) a neural network using the XenonPy compositional descriptors as input
without transfer, (iii) a neural network using the source features as input, and (iv) fine-tuning of
the pre-trained neural networks. The width of the layers of each neural network, the number of
training epochs, and the dropout rate were optimized during 5-fold cross-validation looped within
each training set. For the affine model transfer, the functions g1, g2, and g3 were modeled by neural
networks. We used neural networks with one hidden layer for g1, g2 and g3.

B.2.3 Results

Figure S.3 shows the change in prediction performance of TL models using source features obtained
from different intermediate layers from the first to the third layers. The affine transfer model and
the ordinary feature extractor showed opposite patterns. The performance of the feature extractor
improved when the first intermediate layer closest to the input layer was used as the source features
and gradually degraded when layers closer to the output were used. When the third intermediate layer
was used, a negative transfer occurred in the feature extractor as its performance became worse than
that of the direct learning. In contrast, the affine transfer model performs better as the second and
third intermediate layers closer to the output were used. The affine transfer model using the third
intermediate layer reached a level of accuracy slightly better than fine-tuning, which intuitively uses
more information to transfer than the extracted features.

In general, the features encoded in an intermediate layer of a neural network are more task-independent
as the layer is closer to the input, and the features are more task-specific as the layer is closer to the
output [7]. Because the first layer does not differ much from the original input, using both x and
fs in the affine model transfer does not contribute much to performance improvement. However,
when using the second and third layers as the feature extractors, the use of both x and fs contributes
to improving the expressive power of the model, because the feature extractors have acquired
different representational capabilities from the original input. In contrast, a model based only on fs
from a source task-specific feature extractor could not account for data in the target domain, so its
performance would become worse than direct learning without transfer, i.e., a negative transfer would
occur.

B.3 Heat Capacity of Organic Polymers

We highlight the benefits of separately modeling and estimating domain-specific factors through a
case study in polymer chemistry. The objective is to predict the specific heat capacity at constant
pressure CP of any given organic polymer with its chemical structure in the polymer’s repeating unit.
Specifically, we conduct TL to bridge the gap between experimental values and physical properties
calculated from molecular dynamics (MD) simulations.

6

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Experimentally-observed heat capacity (log J/kg·K)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

M
D

-c
al

cu
la

te
d

he
at

ca
pa

ci
ty

(l
og

J/
kg
·K

)

Correlation : 0.7788

Figure S.4: MD-calculated (vertical axis) and experimental values (horizontal axis) of the specific
heat capacity at constant pressure for various amorphous polymers.

Table S.1: Force field parameters that form the General AMBER force field [8] version 2 (GAFF2),
and their detailed descriptions.

Parameter Description
mass Atomic mass
σ Equilibrium radius of van der Waals (vdW) interactions
ϵ Depth of the potential well of vdW interactions
charge Atomic charge of Gasteiger model
r0 Equilibrium length of chemical bonds
Kbond Force constant of bond stretching
polar Bond polarization defined by the absolute value of charge difference between atoms in a bond
θ0 Equilibrium angle of bond angles
Kangle Force constant of bond bending
Kdih Rotation barrier height of dihedral angles

As shown in Figure S.4, there was a large systematic bias between experimental and calculated
values; the MD-calculated properties CMD

P exhibited an evident overestimation with respect to their
experimental values. As discussed in [9], this bias is inevitable because classical MD calculations do
not reflect the presence of quantum effects in the real system. According to Einstein’s theory for the
specific heat in physical chemistry, the logarithmic ratio between Cexp

P and CMD
P can be calibrated

by the following equation:

logCexp
P = logCMD

P + 2 log

(
ℏω
kBT

)
+ log

exp
(ℏω
kBT

)[
exp
(ℏω
kBT

)
− 1
]2 , (S.3)

where kB is the Boltzmann constant, ℏ is the Planck constant, ω is the frequency of molecular
vibrations, and T is the temperature. The bias is a monotonically decreasing function of frequency ω,
which is described as a black-box function of polymers with their molecular features. Hereafter, we
consider the calibration of this systematic bias using the affine transfer model.

B.3.1 Data

Experimental values of the specific heat capacity of the 70 polymers were collected from PoLyInfo
[10]. The MD simulation was also applied to calculate their heat capacities. For models to predict the
log-transformed heat capacity, a given polymer with its chemical structure was translated into the
190-dimensional force field descriptors, using RadonPy [9]2.

The force field descriptor represents the distribution of the ten different force field parameters (
t ∈ T = {mass, σ, ϵ, charge, r0,Kbond, polar, θ0,Kangle,Kdih} that make up the empirical potential
(i.e., the General AMBER force field [8] version 2 (GAFF2)) of the classical MD simulation. The

2https://github.com/RadonPy/RadonPy

7

https://github.com/RadonPy/RadonPy

Algorithm S.1 Block relaxation algorithm for the model in Eq. (S.4).

Initialize: α0 ← α̂0,olr, α1 ← α̂1,olr, β ← 0, γ ← γ̂diff
repeat
α← argminα Fα,β,γ
β ← argminβ Fα,β,γ
γ ← argminγ Fα,β,γ

until convegence

detailed descriptions for each parameter are listed in Table S.1. For each t, pre-defined values are
assigned to their constituent elements in a polymer, such as individual atoms (mass, charge, σ, and ϵ),
bonds (r0, Kbond, and polar), angles (θ0 and Kangle), or dihedral angles (Kdih), respectively. The
probability density function of the assigned values of t is then estimated and discretized into 10 points
corresponding to 10 different element species such as hydrogen and carbon for mass, and 20 equally
spaced grid points for the other parameters.

The source feature fs was given as the log-transformed value of CMD
P . Therefore, fs is no longer a

function of x; this modeling was intended for calibrating the MD-calculated properties.

We randomly sampled 60 training polymers and tested the prediction performance of a trained model
on the remaining 10 polymers 20 times. The PoLyInfo sample identifiers for the selected polymers
are listed in the code.

B.3.2 Model Definition and Hyperparameter Search

As described above, the 190-dimensional force field descriptor consists of ten blocks corresponding
to different types of features. The Jt features that make up block t represent discretized values of
the density function of the force field parameters assigned to the atoms, bonds, or dihedral angles
that constitute the given polymer. Therefore, the regression coefficients of the features within a block
should be estimated smoothly. To this end, we imposed fused regularization on the parameters as

λ1∥γ∥22 + λ2
∑
t∈T

Jt∑
j=2

(
γt,j − γt,j−1

)2
,

where T = {mass, charge, ϵ, σ,Kbond, r0,Kangle, θ,Kdih}, and Jt = 10 for t = mass and Jt = 20
otherwise. The regression coefficient γt,j corresponds to the j-th feature of block t.

Ordinary Linear Regression The experimental heat capacity y = logCexp
P was regressed on the

MD-calculated property, without regularization, as ŷ = α0 + α1fs where ŷ denotes the conditional
expectation and fs = logCMD

P .

Learning the Log-Difference We calculated the log-difference logCexp
P − logCMD

P and trained
the linear model with the ridge penalty. The hyperparameters λ1 and λ2 for the scale- and smoothness-
regularizers were determined based on 5-fold cross validation across 25 equally space grids in the
interval [10−2, 102] for λ1 and across the set {50, 100, 150} for λ2.

Affine Transfer The log-transformed value of Cexp
p is modeled as

y := logCexp
P = α0 + α1fs︸ ︷︷ ︸

g1

− (βfs + 1)︸ ︷︷ ︸
g2

·x⊤γ︸︷︷︸
g3

+ϵσ, (S.4)

where ϵσ represents observation noise, and α0, α1, β and γ are unknown parameters to be estimated.
When α1 = 1 and β = 0, Eq. (S.4) is consistent with the theoretical equation in Eq. (S.3) in which
the quantum effect is linearly modeled as α0 + x⊤γ.

8

Table S.2: Mean and standard deviation of RMSE of three prediction models.

Model RMSE (log J/kg ·K)
y = α0 + α1fs + ϵσ 0.1403 ± 0.0461
y = fs + x⊤γ + ϵσ 0.1368 ± 0.04265
y = α0 + α1fs − (βfs + 1)x⊤γ + ϵσ 0.1357 ± 0.04173

In the model training, the objective function was given as follows:

Fα,β,γ =
1

n

n∑
i=1

{
yi − (α0 + α1fs,i − (βfs,i + 1)x⊤γ)

}2
+ λββ

2 + λγ,1∥γ∥22 + λγ,2
∑
t∈T

Jt∑
j=2

(
γt,j − γt,j−1

)2
,

where α = [α0 α1]
⊤. With a fixed λβ = 1, the remaining hyperparameters λγ,1 and λγ,2 were

optimized through 5-fold cross validation over 25 equally space grids in the interval [10−2, 102] for
λγ,1 and across the set {50, 100, 150} for λγ,2.

The algorithm to estimate the parameters α, β and γ is described in Algorithm S.1, where α0,olr and
α1,olr are the estimated parameters of the ordinary linear regression model, and γ̂diff is the estimated
parameter of the log-difference model. For each step, the full conditional minimization of Fα,β,γ
with respect to each parameter can be made analytically as

argmin
α
Fα,β,γ = (F⊤

s Fs)
−1y⊤s (y + (βfs,1:n + 1) ◦ (Xγ)),

argmin
β
Fα,β,γ = −(f⊤s,1:ndiag(Xγ)2fs,1:n + nλ2)

−1f⊤s,1:ndiag(Xγ)(y − Fsα+Xγ),

argmin
γ
Fα,β,γ = −(X⊤diag(βfs,1:n + 1)2X + Λ)−1X⊤diag(βfs,1:n + 1)(y − Fsα),

where X denote the matrix in which the i-th row is xi, y = [y1 · · · yn]⊤, fs,1:n = [fs,1 · · · fs,n]⊤,
Fs = [fs,1:n 1], and d = 190. Λ is a matrix including the two regularization parameters λγ,1 and
λγ,2 as

Λ = D⊤D, where D =

[
λγ,1Id
λγ,2M

]
, M =



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

 ← m-th rows ,

where m ∈ {10, 30, 50, 70, 90, 110, 130, 150, 170}. Note that the matrix M is the same as the matrix
[0 I189]− [I189 0] except that the m-th row is all zeros. Note also that M ∈ R189×190, and therefore
D ∈ R279×190 and Λ ∈ R190×190.

The stopping criterion of the algorithm was set as

max
θ∈{a,b,c}

maxi
∣∣θ(new)
i − θ(old)i

∣∣
maxi

∣∣θ(old)i

∣∣ < 10−4, (S.5)

where θi denotes the i-th element of the parameter θ. This convergence criterion is employed in
several existing machine learning libraries, e.g., scikit-learn 3.

B.3.3 Results

Table S.2 summarizes the prediction performance (RMSE) of the three models. The ordinary linear
model y = α0 + α1fs + ϵσ , which ignores the force field descriptors, exhibited the lowest prediction

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.
html

9

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

m
as

s
H

m
as

s
C

m
as

s
N

m
as

s
O

m
as

s
F

m
as

s
P

m
as

s
S

m
as

s
C

l
m

as
s

B
r

m
as

s
I

ch
ar

ge
0

ch
ar

ge
1

ch
ar

ge
2

ch
ar

ge
3

ch
ar

ge
4

ch
ar

ge
5

ch
ar

ge
6

ch
ar

ge
7

ch
ar

ge
8

ch
ar

ge
9

ch
ar

ge
10

ch
ar

ge
11

ch
ar

ge
12

ch
ar

ge
13

ch
ar

ge
14

ch
ar

ge
15

ch
ar

ge
16

ch
ar

ge
17

ch
ar

ge
18

ch
ar

ge
19

ep
si

lo
n

0
ep

si
lo

n
1

ep
si

lo
n

2
ep

si
lo

n
3

ep
si

lo
n

4
ep

si
lo

n
5

ep
si

lo
n

6
ep

si
lo

n
7

ep
si

lo
n

8
ep

si
lo

n
9

ep
si

lo
n

10
ep

si
lo

n
11

ep
si

lo
n

12
ep

si
lo

n
13

ep
si

lo
n

14
ep

si
lo

n
15

ep
si

lo
n

16
ep

si
lo

n
17

ep
si

lo
n

18
ep

si
lo

n
19

si
gm

a
0

si
gm

a
1

si
gm

a
2

si
gm

a
3

si
gm

a
4

si
gm

a
5

si
gm

a
6

si
gm

a
7

si
gm

a
8

si
gm

a
9

si
gm

a
10

si
gm

a
11

si
gm

a
12

si
gm

a
13

si
gm

a
14

si
gm

a
15

si
gm

a
16

si
gm

a
17

si
gm

a
18

si
gm

a
19

k
bo

nd
0

k
bo

nd
1

k
bo

nd
2

k
bo

nd
3

k
bo

nd
4

k
bo

nd
5

k
bo

nd
6

k
bo

nd
7

k
bo

nd
8

k
bo

nd
9

k
bo

nd
10

k
bo

nd
11

k
bo

nd
12

k
bo

nd
13

k
bo

nd
14

k
bo

nd
15

k
bo

nd
16

k
bo

nd
17

k
bo

nd
18

k
bo

nd
19

r0
0

r0
1

r0
2

r0
3

r0
4

r0
5

r0
6

r0
7

r0
8

r0
9

r0
10

r0
11

r0
12

r0
13

r0
14

r0
15

r0
16

r0
17

r0
18

r0
19

po
la

r
0

po
la

r
1

po
la

r
2

po
la

r
3

po
la

r
4

po
la

r
5

po
la

r
6

po
la

r
7

po
la

r
8

po
la

r
9

po
la

r
10

po
la

r
11

po
la

r
12

po
la

r
13

po
la

r
14

po
la

r
15

po
la

r
16

po
la

r
17

po
la

r
18

po
la

r
19

k
an

gl
e

0
k

an
gl

e
1

k
an

gl
e

2
k

an
gl

e
3

k
an

gl
e

4
k

an
gl

e
5

k
an

gl
e

6
k

an
gl

e
7

k
an

gl
e

8
k

an
gl

e
9

k
an

gl
e

10
k

an
gl

e
11

k
an

gl
e

12
k

an
gl

e
13

k
an

gl
e

14
k

an
gl

e
15

k
an

gl
e

16
k

an
gl

e
17

k
an

gl
e

18
k

an
gl

e
19

th
et

a0
0

th
et

a0
1

th
et

a0
2

th
et

a0
3

th
et

a0
4

th
et

a0
5

th
et

a0
6

th
et

a0
7

th
et

a0
8

th
et

a0
9

th
et

a0
10

th
et

a0
11

th
et

a0
12

th
et

a0
13

th
et

a0
14

th
et

a0
15

th
et

a0
16

th
et

a0
17

th
et

a0
18

th
et

a0
19

k
di

h
0

k
di

h
1

k
di

h
2

k
di

h
3

k
di

h
4

k
di

h
5

k
di

h
6

k
di

h
7

k
di

h
8

k
di

h
9

k
di

h
10

k
di

h
11

k
di

h
12

k
di

h
13

k
di

h
14

k
di

h
15

k
di

h
16

k
di

h
17

k
di

h
18

k
di

h
19

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

Va
lu

e

mass charge ε σ Kbond r0 polar Kangle θ0 Kdih

Figure S.5: Bar plot of regression coefficients γ of linear calibrator filling the discrepancy between
experimental and MD-calculated specific heat capacity of amorphous polymers.

performance. The other two calibration models y = fs + x⊤γ + ϵσ and the full model in Eq. (S.4)
reached almost the same accuracy, but the latter had achieved slightly better prediction accuracy. The
estimated parameters of the full model were α1 ≈ 0.889 and β ≈ −0.004. The model form is highly
consistent with the theoretical equation in Eq. (S.3) as well as the restricted model (α1 = 1, β = 0).
This supports the validity of the theoretical model in [9].

It is expected that physicochemical insights can be obtained by examining the estimated coefficient
γ, which would capture the contribution of the force field parameters to the quantum effects. The
magnitude of the quantum effect is a monotonically increasing function of the frequency ω, and
is known to be highly related to the descriptors ϵ, Kdih, Kbond, Kangle and mass. According to
physicochemical intuition, it is considered that as ϵ, Kbond, Kangle, and Kdih decrease, their potential
energy surface becomes shallow, which leads to the decrease of ω, and in turn the decrease of quantum
effects. Furthermore, because the molecular vibration of light-weight atoms is faster than that of
heavy atoms, ω and quantum effects should theoretically increase with decreasing mass.

Figure S.5 shows the mean values of the estimated parameter γ for the full calibration model. The
physical relationships described above can be captured consistently with the estimated coefficients.
The coefficients in lower regions of ϵ, Kbond, Kangle and Kdih showed large negative values, indicating
that polymers containing more atoms, bonds, angles, and dihedral angles with lower values will have
smaller quantum effects. Conversely, the coefficients in lower regions of mass showed positive large
values, meaning that polymers containing more atoms with smaller masses will have larger quantum
effects. As illustrated in this example, separate inclusion of the domain-common and domain-specific
factors in the affine transfer model enables us to infer the features relevant to the cross-domain
differences.

C Experimental Details

Instructions for obtaining the datasets used in the experiments are described in the code.

C.1 Kinematics of the Robot Arm

C.1.1 Data

We used the SARCOS dataset in [11]. The task is to predict the feed-forward torque required to
follow the desired trajectory in the seven joints of the SARCOS anthropomorphic robot arm. The
twenty one features representing the joints’ position, velocity, and acceleration were used as x. The
observed values of six torques other than the torque at the joint in the target domain were given to the
source features fs. The dataset includes 44,484 training samples and 4,449 test samples. We selected
{5, 10, 15, 20, 30, 40, 50} samples randomly from the training set. The prediction performances
of the trained models were evaluated using the 4,449 test samples. Repeated experiments were
conducted 20 times with different independently sampled datasets.

C.1.2 Model Definition and Hyperparameter Search

Source model For each target task, a multi-task neural network was trained to predict the torque
values of the remaining six source tasks. The source model shares four layers (256-128-64-32) up to
the final layer, and only the output layer is task-specific. We used all training data and Adagrad [12]
with learning rate of 0.01.

10

Algorithm S.2 Block relaxation algorithm for AffineTL-full.

Initialize: a0 ← (K1 + λ1In)
−1y, b0 ∼ N (0, In), c0 ∼ N (0, In), d0 ← 0.5

repeat
a← (K1 + λ1In)

−1(y − (K2b+ 1) ◦ (K3c)− d1)
b← (Diag(K3c)

2K2 + λ2In)
−1((K3c) ◦ (y −K1a−K3c− d1))

c← (Diag(K2b+ 1)2K3 + λ3In)
−1((K2b+ 1) ◦ (y −K1a− d1))

d← ⟨y −K1a− (K2b+ 1) ◦ (K3c),1⟩/n
until convergence

Direct, Only source, Augmented, HTL-offset, HTL-scale For each procedure, we used kernel
ridge regression with the RBF kernel k(x, x′) = exp(− 1

2ℓ2 ∥x− x′∥22). The scale parameter ℓ was
set to the square root of the input dimension as ℓ =

√
21 for Direct, HTL-offset and HTL-scale,

ℓ =
√
6 for Only source and ℓ =

√
27 for Augmented. The regularization parameter λ was selected

in 5-fold cross-validation in which the grid search was performed over 50 grid points in the interval
[10−4, 102].

AffineTL-full, AffineTL-const We considered the following kernels:

k1(fs(x), fs(x
′)) = exp

(
− 1

2ℓ2
∥fs(x)− fs(x′)∥22

)
(ℓ =

√
6),

k2(fs(x), fs(x
′)) = exp

(
− 1

2ℓ2
∥fs(x)− fs(x′)∥22

)
(ℓ =

√
6),

k3(x, x
′) = exp

(
− 1

2ℓ2
∥x− x′∥22

)
(ℓ =

√
27),

for g1, g2 and g3 in the affine transfer model, respectively.

Hyperparameters to be optimized are the three regularization parameters λ1, λ2 and λ3. We per-
formed 5-fold cross-validation to identify the best hyperparameter set from the candidate points;
{10−3, 10−2, 10−1, 1} for λ1 and {10−2, 10−1, 1, 10} for each of λ2 and λ3.

To learn the AffineTL-full and AffineTL-const, we used the following objective functions:

AffineTL-full ∥y− (K1a+ (K2b+ 1) ◦ (K3c) + d)∥22 + λ1a
⊤K1a+ λ2b

⊤K2b+ λ3c
⊤K3c,

AffineTL-const
1

n
∥y − (K1a+K3c+ d)∥22 + λ1a

⊤K1a+ λ3c
⊤K3c.

Algorithm S.2 summarizes the block relaxation algorithm for AffineTL-full. For AffineTL-const,
we found the optimal parameters as follows:[â

ĉ

d̂

]
=

([
K1

K3

1⊤

]
[K1 K3 1] +

[
λ1K1

λ3K3

0

])−1[K1

K3

1⊤

]
y

The stopping criterion for the algorithm was the same as Eq. (S.5).

Fine-tuning The target network was constructed by adding a one-dimensional output layer to the
shared layers of the source network. As initial values for the training, we used the weights of the source
neural network for the shared layer and the average of the multidimensional output layer of the source
network for the output layer. Adagrad [12] was used for the optimization. The learning rate was fixed
at 0.01 and the number of training epochs was selected from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100}
through 5-fold cross-validation.

MAML A fully connected neural network with 256-64-32-16-1 layer width was used, and the initial
values were searched through MAML [13] using the six source tasks. The obtained base model was
fine-tuned with the target samples. Adam [14] with a fixed learning rate of 0.01 was used for the opti-
mization. The number of training epochs was selected from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100}
through 5-fold cross-validation.

11

L2-SP L2-SP is a regularization method proposed by [15] in which the following regularization
term is added so that the weights of the target network are estimated in the neighborhood of the
weights of the source network:

Ω(w) =
α

2
∥w − ws∥22, (S.6)

where w and ws are the weights of the target and source model, respectively, and α > 0 is a
hyperparameter. We used the weights of the source network as the initial point for the training
of the target model, and added a regularization parameter as in (S.6). Adagrad [12] were used
for the optimizer, and the regularization parameters and learning rate were fixed at 0.01 and 0.001,
respectively. The number of training epochs was selected from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100}
through 5-fold cross-validation.

PAC-Net PAC-Net, proposed in [16], is a TL method that leverages pruning of the weights of the
source network. Its training strategy consists of three steps: identifying the important weights in the
source model, fine-tuning them using the source samples, and updating the remaining weights using
the target samples.

Firstly, we pruned the bottom 10% of weights, based on absolute value, from the pre-trained source
network. Following this, the remaining weights were retrained using the stochastic gradient descent
(SGD). Finally, the pruned weights were retrained using target samples. For the final training phase,
SGD with learning rate 0.01, was employed, and the number of training epochs was selected from
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100} through 5-fold cross-validation.

12

Table S.3: Performance on predicting the torque values at the first and seventh joints of the SARCOS
robot arm. Definitions of an asterisk and bold type are the same as in Table 1 in the main paper.

Target Model
Number of training samples

n < d n ≈ d n > d

5 10 15 20 30 40 50

Torque 1

Direct 21.3 ± 2.04 18.9 ± 2.11 17.4 ± 1.79 15.8 ± 1.70 13.7 ± 1.26 12.2 ± 1.61 10.8 ± 1.23
Only source 24.0 ± 6.37 22.3 ± 3.10 21.0 ± 2.49 19.7 ± 1.34 18.5 ± 1.92 17.6 ± 1.59 17.3 ± 1.31
Augmented 21.8 ± 2.88 19.2 ± 1.37 17.8 ± 2.30 15.7 ± 1.53 13.3 ± 1.19 11.9 ± 1.37 10.7 ± 0.954
HTL-offset 23.7 ± 6.50 21.2 ± 3.85 19.8 ± 3.23 17.8 ± 2.35 16.2 ± 3.31 15.0 ± 3.16 15.1 ± 2.76
HTL-scale 23.3 ± 4.47 22.1 ± 5.31 20.4 ± 3.84 18.5 ± 2.72 17.6 ± 2.41 16.9 ± 2.10 16.7 ± 1.74

AffineTL-full 21.2 ± 2.23 18.8 ± 1.31 18.6 ± 2.83 15.9 ± 1.65 13.7 ± 1.53 12.3 ± 1.45 11.1 ± 1.12
AffineTL-const 21.2 ± 2.21 18.8 ± 1.44 17.7 ± 2.44 15.9 ± 1.58 13.4 ± 1.15 12.2 ± 1.54 10.9 ± 1.02

Fine-tune 25.0 ± 7.11 20.5 ± 3.33 18.6 ± 2.10 17.6 ± 2.55 14.1 ± 1.39 12.6 ± 1.13 11.1 ± 1.03
MAML 29.8 ± 12.3 22.5 ± 3.21 20.8 ± 2.12 20.3 ± 3.14 16.7 ± 3.00 14.4 ± 1.85 13.4 ± 1.19
L2-SP 24.9 ± 7.09 20.5 ± 3.30 18.8 ± 2.04 18.0 ± 2.45 14.5 ± 1.36 13.0 ± 1.13 11.6 ± 0.983

PAC-Net 25.2 ± 8.68 22.7 ± 5.60 20.7 ± 2.65 20.1 ± 2.16 18.5 ± 2.77 17.6 ± 1.85 17.1 ± 1.38

Torque 2

Direct 15.8 ± 2.37 13.0 ± 1.41 11.5 ± 0.985 10.4 ± 0.845 9.20 ± 0.827 8.35 ± 0.802 7.78 ± 0.780
Only source 14.9 ± 1.77 13.6 ± 2.51 12.3 ± 1.77 11.2 ± 1.16 10.6 ± 1.22 9.74 ± 0.920 9.06 ± 0.785
Augmented 15.2 ± 1.95 12.3 ± 0.923 11.4 ± 1.48 10.2 ± 0.813 9.07 ± 0.983 8.06 ± 0.862 7.23 ± 0.629
HTL-offset 14.8 ± 1.71 13.4 ± 2.41 12.2 ± 1.81 10.9 ± 1.29 10.4 ± 1.37 9.32 ± 1.11 8.78 ± 0.829
HTL-scale 14.8 ± 1.71 13.4 ± 2.47 12.2 ± 1.82 11.0 ± 1.32 10.5 ± 1.28 9.39 ± 1.01 8.91 ± 0.946

AffineTL-full 14.7 ± 1.83 13.0 ± 1.34 11.9 ± 1.22 11.3 ± 1.39 9.38 ± 0.842 8.25 ± 0.932 7.34 ± 0.605
AffineTL-const 14.6 ± 1.47 12.6 ± 1.09 11.5 ± 0.807 10.5 ± 1.19 9.28 ± 0.828 8.35 ± 1.06 7.33 ± 0.57

Fine-tune 24.4 ± 5.87 15.0 ± 2.01 13.6 ± 2.31 11.9 ± 1.21 10.7 ± 0.897 9.52 ± 0.774 8.43 ± 0.907
MAML 21.8 ± 7.33 14.8 ± 4.51 13.1 ± 2.69 11.5 ± 2.24 9.77 ± 1.24 8.90 ± 1.10 7.89 ± 0.713
L2-SP 24.4 ± 5.87 15.1 ± 2.02 13.6 ± 2.29 12.0 ± 1.22 10.8 ± 0.886 9.70 ± 0.78 8.68 ± 0.868

PAC-Net 24.0 ± 6.94 16.7 ± 4.14 13.7 ± 2.36 13.2 ± 2.49 12.4 ± 2.05 11.6 ± 0.844 11.2 ± 0.706

Torque 3

Direct 9.91 ± 1.65 8.15 ± 1.01 7.39 ± 1.21 6.84 ± 0.878 5.90 ± 0.850 5.26 ± 0.774 4.66 ± 0.523
Only source 9.00 ± 1.44 7.51 ± 1.05 6.90 ± 1.15 6.51 ± 0.930 5.67 ± 0.890 5.29 ± 0.840 4.89 ± 0.604
Augmented 9.47 ± 1.35 7.72 ± 1.05 6.99 ± 1.25 6.29 ± 0.967 5.42 ± 0.938 4.76 ± 0.826 4.32 ± 0.592
HTL-offset 8.96 ± 1.42 7.47 ± 1.06 6.88 ± 1.15 6.39 ± 0.952 5.58 ± 0.856 5.18 ± 0.821 4.83 ± 0.603
HTL-scale 9.05 ± 1.40 7.49 ± 1.08 6.89 ± 1.18 6.63 ± 1.03 5.60 ± 0.955 5.21 ± 0.836 4.86 ± 0.503

AffineTL-full 9.24 ± 1.46 7.45 ± 1.25 6.85 ± 1.23 6.28 ± 0.930 5.54 ± 1.15 4.89 ± 0.907 4.46 ± 0.733
AffineTL-const 9.08 ± 1.21 7.55 ± 0.974 6.67 ± 1.00 6.17 ± 0.916 5.42 ± 0.971 4.85 ± 0.752 4.42 ± 0.614

Fine-tune 9.00 ± 2.14 7.38 ± 1.09 6.72 ± 1.01 *5.91 ± 0.734 *5.26 ± 0.541 4.86 ± 0.488 4.41 ± 0.325
MAML 9.50 ± 4.94 *7.11 ± 0.966 *6.44 ± 1.01 *5.92 ± 0.793 *5.22 ± 0.626 4.87 ± 0.539 4.79 ± 0.525
L2-SP 9.00 ± 2.14 7.39 ± 1.08 6.73 ± 1.02 *5.91 ± 0.73 5.39 ± 0.633 4.89 ± 0.493 4.46 ± 0.319

PAC-Net 9.14 ± 2.11 *7.31 ± 1.03 *6.33 ± 0.841 *5.96 ± 0.926 5.34 ± 0.633 5.17 ± 0.474 5.05 ± 0.371

Torque 4

Direct 14.2 ± 2.30 11.1 ± 2.28 9.49 ± 2.19 7.78 ± 1.02 6.86 ± 0.768 6.13 ± 0.714 5.48 ± 0.592
Only source 13.1 ± 3.36 9.62 ± 2.05 8.38 ± 2.06 7.06 ± 1.32 6.36 ± 1.24 5.79 ± 0.768 5.37 ± 0.897
Augmented 13.5 ± 2.83 9.69 ± 1.89 8.51 ± 1.84 *6.96 ± 1.03 *6.09 ± 0.931 *5.39 ± 0.685 *4.87 ± 0.618
HTL-offset 13 ± 3.38 9.62 ± 2.05 8.34 ± 2.00 7.02 ± 1.24 6.26 ± 1.17 5.76 ± 0.764 5.36 ± 0.897
HTL-scale 13.0 ± 3.35 9.63 ± 2.07 8.30 ± 1.95 7.01 ± 1.16 6.30 ± 1.17 5.77 ± 0.758 5.37 ± 0.902

AffineTL-full 13.0 ± 2.69 9.48 ± 2.10 8.38 ± 1.85 7.14 ± 1.62 *5.91 ± 0.838 *5.45 ± 0.777 *4.94 ± 0.603
AffineTL-const 13.2 ± 3.16 *9.32 ± 1.99 8.39 ± 1.84 *6.88 ± 1.00 *5.85 ± 0.710 *5.55 ± 0.679 *4.94 ± 0.581

Fine-tune *11.7 ± 2.70 *8.24 ± 1.31 *6.71 ± 1.02 *5.90 ± 0.971 *5.17 ± 0.785 *4.59 ± 0.442 *4.21 ± 0.376
MAML 14.3 ± 7.75 10.9 ± 3.44 9.55 ± 1.99 9.41 ± 2.33 7.98 ± 2.36 6.70 ± 1.25 6.18 ± 1.35
L2-SP *11.7 ± 2.70 *8.24 ± 1.31 *6.73 ± 1.01 *5.92 ± 0.959 *5.22 ± 0.765 *4.67 ± 0.45 *4.28 ± 0.363

PAC-Net 11.2 ± 5.24 *8.84 ± 2.75 *7.64 ± 1.17 7.34 ± 1.56 6.77 ± 0.966 6.29 ± 0.536 6.02 ± 0.446

Torque 5

Direct 1.07 ± 0.157 0.993 ± 0.0903 0.910 ± 0.119 0.847 ± 0.129 0.744 ± 0.113 0.686 ± 0.0996 0.623 ± 0.0944
Only source 1.15 ± 0.214 1.04 ± 0.0775 0.998 ± 0.145 0.975 ± 0.133 0.863 ± 0.111 0.826 ± 0.155 0.775 ± 0.106
Augmented 1.04 ± 0.113 0.987 ± 0.109 0.907 ± 0.120 0.874 ± 0.136 0.755 ± 0.130 0.710 ± 0.110 0.637 ± 0.0893
HTL-offset 1.14 ± 0.221 1.02 ± 0.0864 0.965 ± 0.157 0.925 ± 0.141 0.837 ± 0.104 0.800 ± 0.156 0.738 ± 0.101
HTL-scale 1.13 ± 0.194 1.01 ± 0.0786 0.980 ± 0.177 0.914 ± 0.132 0.830 ± 0.114 0.844 ± 0.171 0.785 ± 0.123

AffineTL-full 1.04 ± 0.121 0.989 ± 0.175 0.907 ± 0.162 0.860 ± 0.170 0.747 ± 0.117 0.691 ± 0.0924 0.654 ± 0.0716
AffineTL-const 1.05 ± 0.106 0.974 ± 0.102 0.899 ± 0.123 0.854 ± 0.121 0.756 ± 0.106 0.700 ± 0.0869 0.638 ± 0.0796

Fine-tune 1.22 ± 0.356 1.04 ± 0.105 0.976 ± 0.0878 0.913 ± 0.137 0.749 ± 0.111 0.688 ± 0.103 0.598 ± 0.0697
MAML 1.45 ± 0.479 1.18 ± 0.183 1.07 ± 0.208 0.999 ± 0.193 0.816 ± 0.211 0.703 ± 0.124 0.613 ± 0.0634
L2-SP 1.22 ± 0.355 1.04 ± 0.105 0.973 ± 0.0873 0.917 ± 0.133 0.756 ± 0.109 0.699 ± 0.113 0.606 ± 0.0644

PAC-Net 1.27 ± 0.319 1.10 ± 0.115 1.03 ± 0.108 0.985 ± 0.145 0.881 ± 0.151 0.806 ± 0.118 0.781 ± 0.124

Torque 6

Direct 1.86 ± 0.248 1.67 ± 0.192 1.50 ± 0.162 1.36 ± 0.159 1.22 ± 0.163 1.12 ± 0.102 1.05 ± 0.0916
Only source 1.91 ± 0.230 1.87 ± 0.357 1.76 ± 0.179 1.64 ± 0.190 1.53 ± 0.255 1.36 ± 0.153 1.26 ± 0.0883
Augmented 1.86 ± 0.180 1.66 ± 0.17 1.55 ± 0.219 1.45 ± 0.231 1.27 ± 0.265 1.11 ± 0.130 1.01 ± 0.0944
HTL-offset 1.88 ± 0.214 1.81 ± 0.369 1.67 ± 0.246 1.54 ± 0.239 1.46 ± 0.267 1.33 ± 0.142 1.21 ± 0.133
HTL-scale 2.05 ± 0.649 1.88 ± 0.389 1.71 ± 0.241 1.60 ± 0.308 1.62 ± 0.474 1.37 ± 0.158 1.25 ± 0.0922

AffineTL-full 1.82 ± 0.232 1.74 ± 0.209 1.55 ± 0.242 1.43 ± 0.231 1.27 ± 0.230 1.13 ± 0.122 1.06 ± 0.191
AffineTL-const 1.83 ± 0.173 1.68 ± 0.207 1.55 ± 0.236 1.40 ± 0.227 1.23 ± 0.198 1.12 ± 0.113 1.02 ± 0.0953

Fine-tune 2.41 ± 0.375 2.03 ± 0.387 1.71 ± 0.463 1.49 ± 0.297 1.27 ± 0.257 1.15 ± 0.110 1.07 ± 0.0817
MAML 2.69 ± 0.676 2.17 ± 0.511 1.96 ± 0.526 1.68 ± 0.373 1.42 ± 0.365 1.23 ± 0.111 1.16 ± 0.0829
L2-SP 2.41 ± 0.375 2.03 ± 0.371 1.72 ± 0.455 1.49 ± 0.299 1.28 ± 0.254 1.16 ± 0.108 1.09 ± 0.0777

PAC-Net 2.47 ± 0.385 2.22 ± 0.550 2.22 ± 0.599 1.99 ± 0.372 1.91 ± 0.355 1.74 ± 0.144 1.69 ± 0.0595

Torque 7

Direct 2.66 ± 0.307 2.13 ± 0.420 1.85 ± 0.418 1.54 ± 0.353 1.32 ± 0.200 1.18 ± 0.138 1.05 ± 0.111
Only source 2.31 ± 0.618 *1.73 ± 0.560 *1.49 ± 0.513 *1.22 ± 0.269 *1.09 ± 0.232 *0.969 ± 0.144 *0.927 ± 0.170
Augmented 2.47 ± 0.406 1.90 ± 0.515 1.67 ± 0.552 *1.31 ± 0.214 1.16 ± 0.225 *0.984 ± 0.149 *0.897 ± 0.138
HTL-offset 2.29 ± 0.621 *1.69 ± 0.507 *1.49 ± 0.513 *1.22 ± 0.269 *1.09 ± 0.233 *0.969 ± 0.144 *0.925 ± 0.171
HTL-scale 2.32 ± 0.599 *1.71 ± 0.516 1.51 ± 0.513 *1.24 ± 0.271 *1.12 ± 0.234 *0.999 ± 0.175 0.948 ± 0.172

AffineTL-full *2.23 ± 0.554 *1.71 ± 0.501 *1.45 ± 0.458 *1.21 ± 0.256 *1.06 ± 0.219 *0.974 ± 0.164 *0.870 ± 0.121
AffineTL-const *2.30 ± 0.565 *1.73 ± 0.420 *1.48 ± 0.527 *1.20 ± 0.243 *1.04 ± 0.217 *0.963 ± 0.161 *0.884 ± 0.136

Fine-tune *2.33 ± 0.511 *1.62 ± 0.347 *1.35 ± 0.340 *1.12 ± 0.165 *0.959 ± 0.12 *0.848 ± 0.0824 *0.790 ± 0.0547
MAML 2.54 ± 1.29 1.90 ± 0.507 1.67 ± 0.313 1.63 ± 0.282 1.28 ± 0.272 1.20 ± 0.199 1.06 ± 0.111
L2-SP *2.33 ± 0.509 *1.65 ± 0.378 *1.35 ± 0.340 *1.12 ± 0.165 *0.968 ± 0.114 *0.858 ± 0.0818 *0.802 ± 0.0535

PAC-Net 2.24 ± 0.706 *1.61 ± 0.394 *1.43 ± 0.389 *1.24 ± 0.177 *1.18 ± 0.100 1.13 ± 0.0726 1.100 ± 0.0589

13

C.2 Evaluation of Scientific Papers

C.2.1 Data

We used SciRepEval benchmark dataset for scientific documents, proposed in [11]. This dataset com-
prises abstracts, review scores, and decision statuses of papers submitted to various machine learning
conferences. We conducted two primary tasks: predicting the average review score (a regression task)
and determining the acceptance or rejection status of each paper (a binary classification task). The
original input x, was represented as a two-gram bag-of-words vector derived from the abstract. As
for source features fs, we employed text embeddings from the abstracts, which were generated by
various pre-trained language models, including BERT [17], SciBERT [18], T5 [19], and GPT-3 [20].
When building the vocabulary for the bag-of-words, we ignore phrases with document frequencies
strictly higher than 0.9 or strictly lower than 0.01. Additionally, we eliminated certain stop-words
using the default settings in scikit-learn [21]. The sentences containing URLs were removed from the
abstracts because accepted papers tend to include GitHub links in their abstracts after acceptance,
which may cause leakage of information to the prediction. The models were trained on a dataset
comprising 8,166 instances, and their performance were subsequently evaluated on a test dataset of
2,043 instances.

C.2.2 Model Definition and Hyperparamter Search

For both the affine model transfer and feature extraction, we employed neural networks with ReLU
activation and dropout layer with 0.1 dropout rate. The parameters were optimized using Adagrad
[12] with 0.01 learning rate.

Affine Model Transfer For functions g1 and g2 in the affine model transfer, we used a neural
network composed of layers with widths 128, 64, 32, and 16, wherein the source features fs were
used as inputs. The number of layers of each width was determined based on Bayesian optimization.
Sigmoid activation was employed to the output of g2 in order to facilitate the interpretation of g3. For
g3, we employed a linear model with the input x. To prevent overfitting and promote model simplicity,
we applied ℓ1 regularization to the parameters of g3 with a regularization parameter of 0.01. The final
output of the model was computed as g1 + g2 · g3. In the case of the binary classification task, we
applied sigmoid activation function to this final output.

Feature Extraction As in the affine model transfer, we used a neural network composed of layers
with widths 128, 64, 32, and 16, wherein the source features fs were used as inputs. The number
of layers of each width was determined based on Bayesian optimization. In the case of the binary
classification task, we applied sigmoid activation function to the final output.

D Proofs

D.1 Proof of Theorem 2.4

Proof. According to Assumption 2.3, it holds that for any pt(y|x),

ψfs

(∫
ϕfs(y)pt(y|x)dy

)
=

∫
ypt(y|x)dy. (S.7)

(i) Let δy0 be the Dirac delta function supported on y0. Substituting pt(y|x) = δy0 into Eq. (S.7), we
have

ψfs(ϕfs(y0)) = y0 (∀y0 ∈ Y).
Under Assumption 2.2, this implies the property (i).

(ii) For simplicity, we assume the inputs x are fixed and pt(y|x) > 0. Applying the property (i) to
Eq. (S.7) yields ∫

ϕfs(y)pt(y|x)dy = ϕfs

(∫
ypt(y|x)dy

)
.

14

We consider a two-component mixture pt(y|x) = (1 − ϵ)q(y|x) + ϵh(y|x) with a mixing rate
ϵ ∈ [0, 1], where q and h denote arbitrary probability density functions. Then, we have∫

ϕfs(y)
{
(1− ϵ)q(y|x) + ϵh(y|x)

}
dy = ϕfs

(∫
y
{
(1− ϵ)q(y|x) + ϵh(y|x)

}
dy

)
.

Taking the derivative at ϵ = 0, we have∫
ϕfs(y)

{
h(y|x)− q(y|x)

}
dy = ϕ′fs

(∫
yq(y|x)dy

)(∫
y
{
h(y|x)− q(y|x)

}
dy

)
,

which yields ∫ {
h(y|x)− q(y|x)

}{
ϕfs(y)− ϕ′fs

(
Eq[Y |X]

)
y
}
dy = 0. (S.8)

For Eq. (S.8) to hold for any q and h, ϕfs(y)−ϕ′fs
(
Eq[Y |X = x]

)
y must be independent of y. Thus,

the function ϕfs and its inverse ψfs = ϕ−1
fs

are limited to affine transformations with respect to y.
Since ϕ depends on y and fs(x), it takes the form ϕ(y, fs(x)) = g1(fs(x)) + g2(fs(x))y.

D.2 Proof of Theorem 4.1

To bound the generalization error, we use the empirical and population Rademacher complexity
R̂S(F) and R(F) of hypothesis class F , defined as:

R̂S(F) = Eσ sup
f∈F

1

n

n∑
i=1

σif(xi), R(F) = ESR̂S(F),

where {σi}ni=1 is a set of Rademacher variables that are independently distributed and each take one
of the values in {−1,+1} with equal probability, and S denotes a set of samples. The following
proof is based on the one of Theorem 11 shown in [22].

Proof of Theorem 4.1. For any hypothesis classF with feature map Φ where ∥Φ∥2 ≤ 1, the following
inequality holds:

Eσ sup
∥θ∥2≤Λ

1

n

n∑
i=1

σi⟨θ,Φ(xi)⟩ ≤
√

Λ

n
.

The proof is given, for example, in Theorem 6.12 of [23]. Thus, the empirical Rademacher complexity
of H̃ is bounded as

R̂S(H̃) = Eσ sup
∥α∥2H1

≤ λ−1
α R̂s,

∥β∥2H2
≤ λ−1

β
R̂s,

∥γ∥2H3
≤ λ−1

γ R̂s

1

n

n∑
i=1

σi

{
⟨α,Φ1(fs(xi))⟩H1 + ⟨β,Φ2(fs(xi))⟩H2⟨γ,Φ(xi)⟩H3

}

≤ Eσ sup
∥α∥2

H1
≤λ−1

α R̂s

1

n

n∑
i=1

σi⟨α,Φ1(fs(xi))⟩H1

+ sup
∥β∥2H2

≤ λ−1
β

R̂s,

∥γ∥2H3
≤ λ−1

γ R̂s

1

n

n∑
i=1

σi⟨β ⊗ γ,Φ2(fs(xi))⊗ Φ(xi)⟩H2⊗H3

≤ Eσ sup
∥α∥2

H1
≤λ−1

α R̂s

1

n

n∑
i=1

σi⟨α,Φ1(fs(xi))⟩H1

+ sup
∥β⊗γ∥2

H2⊗H3
≤λ−1

β λ−1
γ R̂2

s

1

n

n∑
i=1

σi⟨β ⊗ γ,Φ2(fs(xi))⊗ Φ(xi)⟩H2⊗H3

≤

√
R̂s
λαn

+

√
R̂2
s

λβλγn
(S.9)

≤

√
R̂s
n

{√
1

λα
+

√
L

λβλγ

}
.

15

The first inequality follows from the subadditivity of supremum. The last inequality follows from the
fact that R̂s ≤ Pnℓ(y, ⟨0,Φ1⟩) + λα∥0∥2 ≤ L.

Let C =
√

1
λα

+
√

L
λβλγ

, and applying Talagrand’s lemma [23] and Jensen’s inequality, we obtain

R(L) = ER̂S(L) ≤ µℓER̂S(H̃) ≤ CµℓE

√
R̂s
n
≤ Cµℓ

√
ER̂s
n

.

To apply Corollary 3.5 of [24], we should solve the equation

r = Cµℓ

√
r

n
, (S.10)

and obtain r∗ =
µ2
ℓC

2

n . Thus, for any η > 0, with probability at least 1− e−η , there exists a constant
C ′ > 0 that satisfies

Pnℓ(y, h) ≤ C ′
(
ER̂s +

µ2
ℓC

2

n
+
η

n

)
≤ C ′

(
Rs +

µ2
ℓC

2

n
+
η

n

)
. (S.11)

Note that, for the last inequality, because R̂s ≤ Pnℓ(y, ⟨α,Φ1⟩) + λα∥α∥2 for any α, taking
the expectation of both sides yields ER̂s ≤ Pℓ(y, ⟨α,Φ1⟩) + λα∥α∥2 , and this gives ER̂s ≤
infα{Pℓ(y, ⟨α,Φ1⟩) + λα∥α∥2} = Rs. Consequently, applying Theorem 1 of [25], we have

Pℓ(y, h(x)) ≤ Pnℓ(y, h(x)) + Õ

((√
Rs
n

+
µℓC +

√
η

n

)(√
LC +

√
Lη

)
+
C2L+ Lη

n

)
.

(S.12)

Here, we use R̂S(H̃) ≤ C
√

R̂s

n ≤ C
√

L
n .

Remark D.1. As in [22], without the estimation of the parameters α and β, the right-hand side
of Eq. (S.9) becomes 1√

n

(
c1 + c2

√
R̂s

)
with some constant c1 > 0 and c2 > 0, and Eq. (S.10)

becomes
r =

1√
n
(c1 + c2

√
r).

This yields the solution

r∗ =

(
c2

2
√
n
+

√(
c2

2
√
n

)2

+
c1√
n

)2

≤ c22
n

+
c1√
n
,

where we use the inequality
√
x+
√
x+ y ≤ √4x+ 2y. Thus, Eq. (S.11) becomes

Pnℓ(y, h) ≤ C ′
(
Rs +

c22
n

+
c1√
n
+
η

n

)
.

Consequently, we have the following result:

Pℓ(y, h(x)) ≤ Pnℓ(y, h(x))

+ Õ

((√
Rs
n

+

√
c1

n3/4
+
c2 +

√
η

n

)(
c1 + c2

√
L+

√
Lη

)
+

(c1 + c2
√
L)2 + Lη

n

)
.

This means that even if Rs = Õ(n−1), the resulting rate only improves to Õ(n−3/4).

D.3 Proof of Theorem 4.4

Recall that loss function ℓ(·, ·) is assumed to be µℓ-Lipschitz for the first argument. In addition, we
impose the following assumption.
Assumption D.2. There exists a constant B ≥ 1 such that for every h ∈ H, P (h − h∗) ≤
BP (ℓ(y, h)− ℓ(y, h∗)).

16

Because we consider ℓ(y, y′) = (y − y′)2 in Theorem 4.4, Assumption D.2 holds as stated in [24].

First, we show the following corollary, which is a slight modification of Theorem 5.4 of [24].

Corollary D.3. Let ĥ be any element of H satisfying Pnℓ(y, ĥ) = infh∈H Pnℓ(y, h), and let ĥ(m)

be any element ofH(m) satisfying Pnℓ(y, ĥ(m)) = infh∈H(m) Pnℓ(y, h). Define

ψ̂(r) = c1R̂S{h ∈ H : max
m∈{1,2}

Pn(h
(m) − ĥ(m))2 ≤ c3r}+

c2η

n
,

where c1, c2 and c3 are constants depending only on B and µℓ. Then, for any η > 0, with probability
at least 1− 5e−η ,

Pℓ(y, ĥ)− Pℓ(y, h∗) ≤ 705

B
r̂∗ +

(11µℓ + 27B)η

n
,

where r̂∗ is the fixed point of ψ̂.

Proof. Define the function ψ as

ψ(r) =
c1
2
R{h ∈ H : µ2

ℓ maxP (h(m) − h(m)∗)2 ≤ r}+ (c2 − c1)η
n

.

BecauseH,H(1) andH(2) are all convex and thus star-shaped around each of its points, Lemma 3.4
of [24] implies that ψ is a sub-root. Also, define the sub-root function ψm as

ψm(r) =
c
(m)
1

2
R{h(m) ∈ H(m) : µ2

ℓP (h
(m) − h(m)∗)2 ≤ r}+ (c2 − c1)η

n
.

Let r∗m be the fixed point of ψm(rm). Now, for rm ≥ ψm(rm), Corollary 5.3 of [24] and the
condition on the loss function imply that, with probability at least 1− e−η ,

µ2
ℓP (ĥ

(m) − h(m)∗)2 ≤ Bµ2
ℓP (ℓ(y, ĥ

(m))− ℓ(y, ĥ(m)∗)) ≤ 705µ2
ℓrm +

(11µℓ + 27B)Bµ2
ℓη

n
.

Denote the right-hand side by sm, and define r = max rm and s = max sm. Because s ≥ sm ≥
rm ≥ r∗m, we obtain s ≥ ψm(s) according to Lemma 3.2 of [24], and thus,

s ≥ 10µ2
ℓR{h(m) ∈ H(m) : µ2

ℓP (h
(m) − h(m)∗)2 ≤ s}+ 11µ2

ℓη

n
.

Therefore, applying Corollary 2.2 of [24] to the class µℓH(m), it follows that with probability at least
1− e−η ,

{h(m) ∈ H(m) : µ2
ℓP (h

(m) − h(m)∗)2 ≤ s} ⊆ {h(m) ∈ H(m) : µ2
ℓPn(h

(m) − h(m)∗)2 ≤ 2s}.

This implies that with probability at least 1− 2e−η ,

Pn(ĥ
(m) − h(m)∗)2 ≤ 2

(
705r +

(11µℓ + 27B)Bη

n

)
≤ 2

(
705 +

(11µℓ + 27B)B

n

)
r,

where the second inequality follows from r ≥ ψ(r) ≥ c2η
n . Define 2

(
705 + (11µℓ+27B)B

n

)
= c′.

According to the triangle inequality in L2(Pn), it holds that

Pn(h
(m) − ĥ(m))2 ≤

(√
Pn(h(m) − h(m)∗)2 +

√
Pn(h(m)∗ − ĥ(m))2

)2
≤
(√

Pn(h(m) − h(m)∗)2 +
√
c′r
)2
.

17

Again, applying Corollary 2.2 of [24] to µℓH(m) as before, but now for r ≥ ψm(r), it follows that
with probability at least 1− 4e−η ,

{h ∈ H : µ2
ℓ maxP (h(m) − h(m)∗)2 ≤ r}

=

2⋂
m=1

{h(m) ∈ H(m) : µ2
ℓP (h

(m) − h(m)∗)2 ≤ r}

⊆
2⋂

m=1

{h(m) ∈ H(m) : µ2
ℓPn(h

(m) − h(m)∗)2 ≤ 2r}

⊆
2⋂

m=1

{h(m) ∈ H(m) : µ2
ℓPn(h

(m) − ĥ(m))2 ≤ (
√
2r +

√
c′r)2}

= {h ∈ H : µ2
ℓ maxPn(h

(m) − ĥ(m))2 ≤ c3r},

where c3 = (
√
2 +
√
c′)2. Combining this with Lemma A.4 of [24] leads to the following inequality:

with probability at least 1− 5e−x

ψ(r) =
c1
2
R{h ∈ H : µ2

ℓ maxP (h(m) − h(m)∗)2 ≤ r}+ (c2 − c1)η
n

≤ c1R̂S{h ∈ H : µ2
ℓ maxP (h(m) − h(m)∗)2 ≤ r}+ c2η

n

≤ c1R̂S{h ∈ H : µ2
ℓ maxPn(h

(m) − ĥ(m))2 ≤ c3r}+
c2η

n

= ψ̂(r).

Letting r = r∗ and using Lemma 4.3 of [24], we obtain r∗ ≤ r̂∗, thus proving the statement.

Under Assumption 4.2, we obtain the following excess risk bound for the proposed model class using
Corollary D.3. The proof is based on [24].

Theorem D.4. Let ĥ be any element ofH satisfying Pnℓ(y, ĥ(x)) = infh∈H Pnℓ(y, h(x)). Suppose
that Assumption 4.2 is satisfied, then there exists a constant c depending only on µℓ such that for any
η > 0, with probability at least 1− 5e−η ,

P (y − ĥ(x))2 − P (y − h∗(x))2

≤ c

 min
0≤κ1,κ2≤n

κ1 + κ2
n

+

 1

n

n∑
j=κ1+1

λ̂
(1)
j +

n∑
j=κ2+1

λ̂
(2)
j

 1
2

+
η

n

 .

Theorem D.4 is a multiple-kernel version of Corollary 6.7 of [24], and a data-dependent version of
Theorem 2 of [26] which considers the eigenvalues of the Hilbert-Schmidt operators onH andH(m).
Theorem D.4 concerns the eigenvalues of the Gram matrices K(m) computed from the data.

Proof of Theorem D.4. DefineR = maxm suph∈H(m) Pn(y−h(x))2. For any h ∈ H(m), we obtain

Pn(h
(m)(x)−ĥ(m)(x))2 ≤ 2Pn(y−h(m)(x))2+2Pn(y−ĥ(m)(x))2 ≤ 4 sup

h∈H(m)

Pn(y−h(x))2 ≤ 4R.

18

From the symmetry of the σi and the fact thatH(m) is convex and symmetric, we obtain the following:

R̂S{h ∈ H : maxPn(h
(m) − ĥ(m))2 ≤ 4R}

= Eσ sup
h(m)∈H(m)

Pn(h
(m)−ĥ(m))2≤4R

1

n

n∑
i=1

σi

2∑
m=1

h(m)(xi)

= Eσ sup
h(m)∈H(m)

Pn(h
(m)−ĥ(m))2≤4R

1

n

n∑
i=1

σi

2∑
m=1

(h(m)(xi)− ĥ(m)(xi))

≤ Eσ sup
h(m),g(m)∈H(m)

Pn(h
(m)−g(m))2≤4R

1

n

n∑
i=1

σi

2∑
m=1

(h(m)(xi)− g(m)(xi))

= 2Eσ sup
h(m)∈H(m)

Pnh
(m)2≤R

1

n

n∑
i=1

σi

2∑
m=1

h(m)(xi)

≤ 2

2∑
m=1

Eσ sup
h(m)∈H(m)

Pnh
(m)2≤R

1

n

n∑
i=1

σih
(m)(xi)

≤ 2

2∑
m=1

 2

n

n∑
j=1

min{R, λ̂(m)
j }


1
2

≤

16

n

2∑
m=1

n∑
j=1

min{R, λ̂(m)
j }


1
2

.

The second inequality comes from the subadditivity of supremum and the third inequality follows
from Theorem 6.6 of [24]. To obtain the last inequality, we use

√
x+
√
y ≤

√
2(x+ y). Thus, we

have

2c1R̂S{h ∈ H : maxPn(h
(m) − ĥ(m))2 ≤ 4R}+ (c2 + 2)η

n

≤ 4c1

16

n

2∑
m=1

n∑
j=1

min
{
R, λ̂

(m)
j

}
1
2

+
(c2 + 2)η

n
,

for some constants c1 and c2. To apply Corollary D.3, we should solve the following inequality for r

r ≤ 4c1

16

n

2∑
m=1

n∑
j=1

min
{
r, λ̂

(m)
j

}
1
2

.

For any integers κm ∈ [0, n], the right-hand side is bounded as

4c1

16

n

2∑
m=1

n∑
j=1

min
{
r, λ̂

(m)
j

}
1
2

≤ 4c1

16

n

2∑
m=1

 κm∑
j=1

r +

n∑
j=κm+1

λ̂
(m)
j


1
2

=


(
256c21
n

2∑
m=1

κm

)
r +

256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j


1
2

,

19

and we obtain the solution r∗ as

r∗ ≤ 128c21
n

2∑
m=1

κm +

{128c21
n

2∑
m=1

κm

}2

+
256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

 1
2

≤ 256c21
n

2∑
m=1

κm +

256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

 1
2

.

Optimizing the right-hand side with respect to κ1 and κ2, we obtain the solution as

r∗ ≤ min
0≤κ1,κ2≤n

256c21
n

2∑
m=1

κm +

256c21
n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

 1
2

 .

Furthermore, according to Corollary D.3, there exists a constant c such that with probability at least
1− 5e−η ,

P (y − ĥ(x))2 − P (y − h∗(x))2

≤ c

 min
0≤κ1,κ2≤n

 1

n

2∑
m=1

κm +

 1

n

2∑
m=1

n∑
j=κm+1

λ̂
(m)
j

 1
2

+
η

n

 .

With Theorem D.4 and Assumption 4.3, we prove Theorem 4.4 as follows.

Proof of Theorem 4.4. Using the inequality
√
x+ y ≤ √x+

√
y for x ≥ 0, y ≥ 0, we have

P (y − ĥ(x))2 − P (y − h∗(x))2

= O

(
min

0≤κ1,κ2≤n

{
κ1 + κ2

n
+

 1

n

n∑
j=κ1+1

λ̂
(1)
j +

1

n

n∑
j=κ2+1

λ̂
(2)
j

 1
2 }

+
η

n

)

≤ O

 min
0≤κ1,κ2≤n

κ1 + κ2
n

+

 1

n

n∑
j=κ1+1

j−
1
s1 +

1

n

n∑
j=κ2+1

j−
1
s2

 1
2

+
η

n


≤ O

 min
0≤κ1,κ2≤n

κ1 + κ2
n

+

 1

n

n∑
j=κ1+1

j−
1
s1

 1
2

+

 1

n

n∑
j=κ2+1

j−
1
s2

 1
2

+
η

n

 .

Because it holds that
n∑

j=κm+1

j−
1

sm <

∫ ∞

κm

x−
1

sm dx <

[
1

1− 1
sm

x1−
1

sm

]∞
κm

=
sm

1− sm
κ
1− 1

sm
m ,

for m = 1, 2, we should solve the following minimization problem:

min
0≤κ1,κ2≤n

{
κ1 + κ2

n
+

(
1

n

s1
1− s1

κ
1− 1

s1
1

) 1
2

+

(
1

n

s1
1− s1

κ
1− 1

s1
2

) 1
2

}
≡ g(κ).

Taking the derivative, we have

∂g(κ)

∂κ1
=

1

n
+

1

2

(
1

n

s1
1− s1

κ
1− 1

s1
1

)− 1
2
(
− κ

− 1
s1

1

n

)
.

20

Setting this to zero, we find the optimal κ1 as

κ1 =

(
s1

1− s1
4

n

) s1
1+s1

.

Similarly, we have

κ2 =

(
s2

1− s2
4

n

) s2
1+s2

,

and

P (y − ĥ(x))2 − P (y − h∗(x))2

≤ O
(
1

n

(
s1

1− s1
4

n

) s1
1+s1

+
1

n

(
s2

1− s2
4

n

) s2
1+s2

+ 2
1−s1
1+s1

(
s1

1− s1
1

n

) 1
1+s1

+ 2
1−s2
1+s2

(
s2

1− s2
1

n

) 1
1+s2

+
η

n

)
= O

(
n−

1
1+s1 + n−

1
1+s2

)
= O

(
n
− 1

1+max{s1,s2}
)
.

References
[1] S. S. Du, J. Koushik, A. Singh, and B. Póczos, “Hypothesis transfer learning via transformation

functions,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[2] I. Kuzborskij and F. Orabona, “Stability and hypothesis transfer learning,” International Confer-
ence on Machine Learning, pp. 942–950, 2013.

[3] R. Vershynin, High-dimensional probability: An introduction with applications in data science,
vol. 47. Cambridge university press, 2018.

[4] S. Ju, R. Yoshida, C. Liu, K. Hongo, T. Tadano, and J. Shiomi, “Exploring diamond-like lattice
thermal conductivity crystals via feature-based transfer learning,” Physical Review Materials,
vol. 5, no. 5, p. 053801, 2021.

[5] C. Liu, E. Fujita, Y. Katsura, Y. Inada, A. Ishikawa, R. Tamura, K. Kimura, and R. Yoshida,
“Machine learning to predict quasicrystals from chemical compositions,” Advanced Materials,
vol. 33, no. 36, p. 2102507, 2021.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Confer-
ence for Learning Representations, 2015.

[7] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural
networks?,” Advances in Neural Information Processing Systems, vol. 27, 2014.

[8] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and
testing of a general amber force field,” Journal of Computational Chemistry, vol. 25, no. 9,
pp. 1157–1174, 2004.

[9] Y. Hayashi, J. Shiomi, J. Morikawa, and R. Yoshida, “Radonpy: automated physical property
calculation using all-atom classical molecular dynamics simulations for polymer informatics,”
npj Computational Materials, vol. 8, no. 222, 2022.

[10] S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, and M. Yamazaki, “Polyinfo: Polymer database for
polymeric materials design,” 2011 International Conference on Emerging Intelligent Data and
Web Technologies, pp. 22–29, 2011.

21

[11] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol. 2. MIT
press Cambridge, MA, 2006.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7, 2011.

[13] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep
networks,” International Conference on Machine Learning, 2017.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Confer-
ence for Learning Representations, 2015.

[15] L. Xuhong, Y. Grandvalet, and F. Davoine, “Explicit inductive bias for transfer learning with
convolutional networks,” International Conference on Machine Learning, pp. 2825–2834, 2018.

[16] S. Myung, I. Huh, W. Jang, J. M. Choe, J. Ryu, D. Kim, K.-E. Kim, and C. Jeong, “PAC-Net: A
model pruning approach to inductive transfer learning,” International Conference on Machine
Learning, pp. 16240–16252, 2022.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[18] I. Beltagy, K. Lo, and A. Cohan, “SciBERT: A pretrained language model for scientific text,” in
Conference on Empirical Methods in Natural Language Processing, 2019.

[19] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,
“Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of
Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

[20] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, pp. 1877–1901, 2020.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[22] I. Kuzborskij and F. Orabona, “Fast rates by transferring from auxiliary hypotheses,” Machine
Learning, vol. 106, no. 2, pp. 171–195, 2017.

[23] M. Mohri, A. Rostamizadeh, and A. S. Talwalkar, Foundations of Machine Learning. MIT
press, 2018.

[24] P. L. Bartlett, O. Bousquet, and S. Mendelson, “Local Rademacher complexities,” Annals of
Statistics, vol. 33, pp. 1497–1537, 2005.

[25] N. Srebro, K. Sridharan, and A. Tewari, “Smoothness, low noise and fast rates,” Advances in
Neural Information Processing Systems, vol. 23, 2010.

[26] M. Kloft and G. Blanchard, “The local Rademacher complexity of lp-norm multiple kernel
learning,” Advances in Neural Information Processing Systems, vol. 24, 2011.

22

	Other Perspectives on Affine Model Transfer
	Transformation Functions for General Loss Functions
	Analysis of the Optimal Function Class Based on the Upper Bound of the Estimation Error

	Additional Experiments
	Eigenvalue Decay of the Hadamard Product of Two Gram Matrices
	Lattice Thermal Conductivity of Inorganic Crystals
	Data
	Model Definition and Hyperparameter Search
	Results

	Heat Capacity of Organic Polymers
	Data
	Model Definition and Hyperparameter Search
	Results

	Experimental Details
	Kinematics of the Robot Arm
	Data
	Model Definition and Hyperparameter Search

	Evaluation of Scientific Papers
	Data
	Model Definition and Hyperparamter Search

	Proofs
	Proof of Theorem 2.4
	Proof of Theorem 4.1
	Proof of Theorem 4.4

