A Illustration of RCL

We consider the management of charging stations in the Netherlands from January to June of 2019. Each transaction record contains the charging rate (kW) of all the EVs connected to the charging stations. Assuming that the initial efficiency of each battery unit, the self-degradation of the battery system, and protect the connected grid. Thus, properly managing battery charging/discharging decisions is crucial for reliability, lifespan, and safety of batteries and grids.

We illustrate the online optimization process of RCL in Fig. 1.

Figure 1: Robustness-constrained online optimization using RCL. The expert algorithm and ML model run independently. At each time \(t = 1, \cdots, T \), RCL projects the ML prediction \(\tilde{x}_t \) into a robustified action set.

B Case Study: Battery Management for EV Charging Stations

We now explore the performance of RCL using a case study focused on battery management in electric vehicle (EV) charging stations \[49, 50\]. We first formulate the problem as an instance of SOCO, and then present the baseline algorithms. Finally, we discuss the performance of RCL. Our results highlight the advantage of RCL in terms of robustness guarantees compared to pure ML models, as well as the benefit of training a robustification-aware ML model in terms of the average cost.

B.1 Problem Formulation

Batteries are routinely used in EV charging stations to handle the rapidly fluctuating charging demands and protect the connected grid. Thus, properly managing battery charging/discharging decisions is crucial for reliability, lifespan, and safety of batteries and grids.

We consider the management of \(N \) batteries. At each time step \(t \), suppose that \(x_t \in \mathbb{R}^N \) represents the State of Charge (SoC) and \(u_t \in \mathbb{R}^N \) represents the battery charging/discharging schedule, depending on the sign of \(u_t \) (i.e., positive means charging, and vice versa). The canonical form of the battery dynamics can be written as \(x_{t+1} = A x_t + B u_t - w_t \), where \(A \) is a \(N \times N \) matrix which models the self-degradation of the \(N \)-battery system, \(B \) is a \(N \times 2 \) matrix which represents the charging efficiency of each battery unit, \(w_t \) is a \(N \times 1 \) vector which denotes the current demand in terms of the charging rate (kW) of all the EVs connected to the charging stations. Assume that the initial SoC as \(x_0 \), the goal is to control the batteries to minimize the difference between the current SoC of all batteries and a nominal value \(\bar{x} \) plus a charging/discharging cost to account for battery usage \[51\] which can be expressed mathematically as

\[
\min_{u_1, u_2, \cdots, u_T} \sum_{t=1}^{T+1} \|x_t - \bar{x}\|^2 + b \|u_t\|^2.
\]

This problem falls into SOCO based on the reduction framework described in \[49\]. Specifically, at time step \(t + 1 \), we can expand \(x_{t+1} \) based on the battery dynamics as \(x_{t+1} = A^t x_1 + \sum_{j=1}^{t} A^{t-j} B u_j - \sum_{j=1}^{t} A^{t-j} w_j \). We define the context parameter as \(y_t = \bar{x} - A^t x_1 + \sum_{i=1}^{t} A^{t-i} w_i \) and the action as \(a_t = \sum_{i=1}^{t} A^{t-i} B u_i \). Then, assuming an identity matrix \(B \) (ignoring charging loss), the optimization problem becomes

\[
\min_{a_1, a_2, \cdots, a_T} \|x_1 - \bar{x}\|^2 + b \|u_T\|^2 + \sum_{t=1}^{T} \|a_t - y_t\|^2 + b \|a_t - A a_{t-1}\|^2.
\]

Given an initial value of \(x_1 \), this problem can be further simplified and reformulated as

\[
\min_{a_1, a_2, \cdots, a_T} \frac{1}{b} \sum_{t=1}^{T} \|a_t - y_t\|^2 + \|a_t - A a_{t-1}\|^2,
\]

which is in a standard SOCO form by considering \(y_t \) as the context and \(a_t \) as the action at time \(t \).

To validate the effectiveness of RCL, we use a public dataset \[51\] provided by ElaadNL, a Dutch EV charging infrastructure company. We collect a dataset containing transaction records from ElaadNL charging stations in the Netherlands from January to June of 2019. Each transaction record contains
the energy demand, transaction start time and charging time. As the data does not specify the details
of battery units, we consider the battery units as a single combine battery by summing up the energy
demand within each hour to obtain the hourly energy demand.

We use the January to February data as the training dataset, March to April data as the validation
dataset for tuning the hyperparameters such as learning rate, and May to June as the testing dataset.
We consider each problem instance as one day (\(T = 24\) hours, plus an initial action). Thus, a sliding
window of 25 is applied, moving one hour ahead each time, on the raw data to generate 1416 problem
instances, where the first demand of each instance is used as the initial action of all the algorithms.
We set \(b = 10\) and \(A = 1\) for the cost function in Eqn. (4).

All the algorithms use the same ML architecture, when applicable, with the same initialized weights
in our experiments for fair comparison. To be consistent with the literature [52, 53], all the ML
models are trained offline. Specifically, we use a recurrent neural network (RNN) model that contains
2 hidden layers, each with 8 neurons, and implement the model using PyTorch. We train the RNN for
140 epochs with a batch size of 50. When the RNN model is trained as a standalone optimizer in a
robustification-oblivious manner, it takes around 1 minute on a 2020 MacBook Air with 8GB memory and a M1 chipset. When RNN is trained in a robustification-aware manner, it
takes around 2 minutes. The testing process is almost instant and takes less than 1 second.

B.2 Baseline Algorithms

By default, RCL uses a robustification-aware ML model due to the advantage of average cost perfor-
mance compared to a robustification-oblivious model. We compare RCL with several representative
baseline algorithms as summarized below.

- **Offline Optimal Oracle (OPT):** This is the optimal offline algorithm that has all the contextual
 information and optimally solves the problem.

- **Regularized Online Balanced Descent (ROBD):** ROBD is the state-of-the-art order-optimal online
 algorithm with the best-known competitive ratio for our SOCO setting [52, 53]. The parameters of
 ROBD are all optimally set according to [59]. By default, RCL uses ROBD as its expert for robustness.

- **Hitting Cost Minimizer (HitMin):** HitMin is a special instance of ROBD by setting the parameters
 such that it greedily minimizing the hitting cost at each time. This minimizer can be empirically
effective and hence also used in ROBD as a regularizer.

- **Machine Learning Only (ML):** ML is trained as a standalone optimizer in a robustification-oblivious
 manner. It does not use robustification during online optimization.

- **Expert-Calibrated Learning (EC-L2O):** It is an ML-augmented algorithm that applies to our SOCO
 setting by using an ML model to regularize online actions without robustness guarantees [55]. We
 set its parameters based on the validation dataset to have the optimal average performance with an
 empirical competitive ratio less than \((1 + \lambda)CR^\ast\).

- **RCL with a robustification-oblivious ML model (RCL-O):** To differentiate the two forms of RCL, we
 use RCL to refer to RCL with a robustification-aware ML model and RCL-O for the robustification-
oblivious ML model, where “-O” represents robustification-obliviousness.

To highlight our key contribution to the SOCO literature, the baseline algorithms we choose are
representative of the state-of-the-art expert algorithms, effective heuristics, and ML-augmented
algorithms for the SOCO setting we consider. While there are a few other ML-augmented algorithms
for SOCO [56, 57, 58], they do not apply to our problem as they consider unsquared switching costs
in a metric space and exploit the natural triangular inequality. Adapting them to the squared switching
costs is non-trivial.

B.3 Results

We now present the results of our case study and begin with the case in which the hitting cost function
(parameterized by \(y_t\)) is immediately known without feedback delay. The results for the case with
feedback delay are presented in Section B.4. Throughout the discussion, the reported values are
normalized with respect to those of the respective OPT. The average cost (AVG) and competitive
ratio (CR) are all empirical results reported on the testing dataset.
By Theorem 4.1, there is a trade-off (governed by $\lambda > 0$) between exploiting ML predictions for good average performance and following the expert for robustness. Here, we begin with the default setting of $\lambda = 1$ and investigate the impact of different choices of λ on both RCL and RCL-O in Section B.3.3.

B.3.1 The performance of RCL

As shown in Table 1, with $\lambda = 1$, both RCL and RCL-O have a good average cost, but RCL has a lower average cost than RCL-O and is outperformed only by ML in terms of the average cost. RCL and RCL-O have the same competitive ratio (i.e., $(1 + \lambda)$ times the competitive ratio of ROBD).

Empirically, RCL has the lowest competitive ratio than all the other algorithms, demonstrating the practical power of RCL for robustifying, potentially untrusted, ML predictions. In this experiment, RCL outperforms ROBD in terms of the empirical competitive ratio because it exploits the good ML predictions for those problem instances that are adversarial to ROBD. This result complements Theorem 4.1, where we show theoretically that RCL can outperform ROBD in terms of the cost by properly setting λ.

By comparison, ML performs well on average by exploiting the historical data, but has the highest competitive ratio due to its expected lack of robustness. The two alternative baselines, EC-L2O and HitMin, are empirically good on average and also in the worst case, but they do not have guaranteed robustness. On the other hand, ROBD is very robust, but its average cost is also the worst among all the algorithms under consideration.

We further show in Fig. 2(a) the box plots for cost ratios with $\lambda = 1$, providing a detailed view of the algorithms’ performance. The key message is that RCL obtains the best of both worlds — a good average cost and a good competitive ratio (empirically even better than the expert ROBD).

![Figure 2: Cost ratio distributions ($\lambda = 1$ by default).](image)

(a) ROBD as the expert
(b) HitMin as the expert
(c) RCL-O w/ different λ
(d) RCL w/ different λ

B.3.2 Utilizing HitMin as the expert

RCL is flexible and can work with any expert online algorithm, even an expert that does not have good or bounded competitive ratios. Thus, it is interesting to see how RCL performs given an alternative expert. For example, in Table 1, HitMin empirically outperforms ROBD in terms of the average, although it is not as robust as ROBD. Thus, using $\lambda = 1$, we leverage HitMin as the expert for RCL and RCL-O, and show the cost ratio distributions in Fig. 2(b). Comparing Fig. 2(b) with Fig. 2(a), we see that RCL and RCL-O both have many low cost ratios by using HitMin as the expert, but the worst case for RCL is not as good as when using ROBD as the expert. For example, the average cost and competitive ratio are 1.0515 and 1.6035, respectively, for RCL. This result is not surprising, as the new expert HitMin has a better average performance but worse competitive ratio than the default expert ROBD.

<table>
<thead>
<tr>
<th>λ</th>
<th>RCL</th>
<th>RCL-O</th>
<th>ML</th>
<th>EC-L2O</th>
<th>ROBD</th>
<th>HitMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>1.4704</td>
<td>1.3014</td>
<td>1.0784</td>
<td>1.0441</td>
<td>1.4780</td>
<td>1.2432</td>
</tr>
<tr>
<td>CR</td>
<td>1.1672</td>
<td>1.2905</td>
<td>1.4405</td>
<td>2.4200</td>
<td>2.4200</td>
<td>2.4200</td>
</tr>
</tbody>
</table>

Table 1: Competitive ratio and average cost comparison of different algorithms.
B.3.3 Impact of λ

Theorem 4.1 shows the point that we need to set a large enough λ in order to provide enough flexibility for RCL to exploit good ML predictions. With a small $\lambda > 0$, despite the stronger competitiveness against the expert, it is possible that RCL may even empirically perform worse than both the ML model and the expert. Thus, we now investigate the impact of λ.

We see from Table 1 that the empirical average cost and competitive ratio of RCL are both worse with $\lambda = 0.6$ than with the default $\lambda = 1$. More interestingly, by setting $\lambda = 5$, the average cost of RCL is even lower than that of ML. This is because ML in our experiment performs fairly well on average. Thus, by setting a large $\lambda = 5$, RCL is able to exploit the benefits of good ML predictions for many typical cases, while using the expert ROBD as a safeguard to handle a few bad problem instances for which ML cannot perform well. Also, the empirical competitive ratio of RCL is better with $\lambda = 5$ than with $\lambda = 3$, supporting Theorem 4.1 that a larger λ may not necessarily increase the competitive ratio as RCL can exploit good ML predictions. In addition, given each λ, RCL outperforms RCL-O, which highlights the importance of training the ML model in a robustification-aware manner to avoid the mismatch between training and testing objectives.

We also show in Fig. 2(c) and Fig. 2(d) the cost ratio distributions for RCL-O and RCL, respectively, under different λ. The results reaffirm our main Theorem 4.1 as well as the importance of training the ML model in a robustification-aware manner.

Next, we show the bi-competitive cost ratios of RCL-O against both the expert ROBD and the ML predictions. We focus on RCL-O as its ML model is trained as a standalone optimizer, whereas RCL uses a robustification-aware ML model that is not specifically trained to produce good pre-robustification predictions. According to Theorem 4.1, RCL-O obtains a potentially better competitiveness against ML but a worse competitive against the expert ROBD when λ increases, and vice versa. To further validate the theoretical analysis, we test RCL-O with different λ and obtain the 2D histogram of its bi-competitive cost ratios against ROBD and ML, respectively. The results are shown in Fig. 3. In agreement with our analysis, the cost ratio of RCL-O against ROBD never exceeds $(1 + \lambda)$ for any $\lambda > 0$. Also, with a small $\lambda = 0.6$, the cost ratio of RCL-O against ROBD concentrates around 1, while it does not exploit the benefits of ML predictions very well. On the other hand, with a large $\lambda = 5$, the cost ratio of RCL-O against ROBD can be quite high, although it follows (good) ML predictions more closely for better average performance. Most importantly, by increasing $\lambda > 0$, we can see the general trend that RCL-O follows the ML predictions more closely while still being able to guarantee competitiveness against ROBD. Again, this confirms the key point of our main insights in Theorem 4.1.

B.3.4 Larger distributional shifts

In our dataset, ML performs very well on average as the testing distribution matches well with its training distribution. To consider more challenging cases as a stress test, we manually increase the testing distributional shifts by adding random noise following $\mathcal{N}(0, \sigma)$ to a certain faction ρ_c of the testing samples. Note that, as we intentionally stress test RCL and RCL-O under a larger distributional shift, their ML models remain unchanged as in the default setting and are not re-trained by adding noisy data to the training dataset.
We now turn to the case when there is a one-step feedback delay, i.e., the context parameter is not revealed to the agent until time $t+1$. For this setting, we consider the best-known online algorithm iROBD as the expert that handles the feedback delay with a guaranteed competitive ratio with respect to OPT. The other baseline online algorithms — ROBD, EC-L2O, and HitMin — presented in Section B.2 require the immediate revelation of y_t without feedback delay and hence do not directly apply to this case. Thus, for comparison, we use the predicted context, denoted by \hat{y}_t, with up to 15% prediction errors in the baseline online algorithms, and reuse the algorithm names (e.g., EC-L2O uses predicted \hat{y}_t as if it were the true context for decision making). We train ML using the same architecture as in Section B.3, with the exception that only delayed context is provided as input for both training and testing. The reported values are normalized with respect to those of the respective offline optimal algorithm OPT. The average cost (AVG) and competitive ratio (CR) are all empirical results reported on the testing dataset.

We show the results in Table 3 and Fig. 4. We see that with the default $\lambda = 1$, both RCL and RCL-0 have a good average cost, but RCL has a lower average cost than RCL-0 and is outperformed only by ML in terms of the average cost. RCL and RCL-0 have the same competitive ratio guarantee (i.e., $(1 + \lambda)$ times the competitive ratio of iROBD). Nonetheless, RCL has the lowest competitive ratio than all the other algorithms, demonstrating the power of RCL to leverage both ML prediction and the robust expert. In this experiment, both RCL and RCL-0 outperform iROBD in terms of the empirical competitive ratio because they are able to exploit the good ML predictions for those problem instances that are difficult for iROBD.

By comparison, ML performs well on average by exploiting the historical data, but has a high competitive ratio. The alternative baselines — ROBD, EC-L2O and HitMin — use predicted context \hat{y}_t as the true context. Except for the good empirical competitive ratio of ROBD, they do not have good average performance or guaranteed robustness due to their naively trusting the predicted context (that can potentially have large prediction errors). Note that the empirical competitive ratio of ROBD with predicted context is still much higher than that with the true context in Table 1. These results reinforce the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcing the point that blindly using ML predictions (i.e., predicted context in this example) without reinforcement.
To prove Theorem 4.1, we first give some technical lemmas about the smoothness of cost functions.

Lemma C.1 (Lemma 4 in [59]). Assume \(f(x) \) is \(\beta \) smooth, for any \(\lambda > 0 \), we have
\[
f(x) \leq (1 + \lambda)f(y) + (1 + \frac{1}{\lambda})\frac{\beta}{2} \|x - y\|^2 \quad \forall x, y \in \mathcal{X}
\]

Lemma C.2. Assume \(f(x) \) is \(\beta_1 \) smooth and \(d(x) \) is \(\beta_2 \) smooth, then \(f(x) + d(x) \) is \(\beta_1 + \beta_2 \) smooth.

Lemma C.3. Suppose that the hitting cost \(f(x, y_t) \) is \(\beta_h \)-smooth with respect to \(x \), The switching cost is \(d(x_t, x_{t-1}) = \frac{1}{2} \|x_t - \delta(x_{t-p:t-1})\|^2 \), where \(\delta(\cdot) \) is \(L_1 \)-Lipschitz with respect to \(x_{t-1} \). Then for any two action sequences \(x_{1:T} \) and \(x'_{1:T} \), we must have
\[
\text{cost}(x_{1:T}) - (1 + \lambda)\text{cost}(x'_{1:T}) \leq \frac{\beta + (1 + \sum_{k=1}^{p} L_k)^2}{2} (1 + \frac{1}{\lambda})\|x_{1:T} - x'_{1:T}\|^2, \quad \forall \lambda > 0 \tag{8}
\]

Proof. The objective to be bounded can be decomposed as
\[
\text{cost}(x_{1:T}) - (1 + \lambda)\text{cost}(x'_{1:T}) = \left(\sum_{t=1}^{T} f(x_t, y_t) - (1 + \lambda)f(x'_t, y_t)\right) + \frac{1}{2} \left(\sum_{t=1}^{T} \|x_t - \delta(x_{t-p:t-1})\|^2 - (1 + \lambda)\|x'_t - \delta(x'_{t-p:t-1})\|^2\right) \tag{9}
\]
Since hitting cost is \(\beta_h \)-smooth, then
\[
\sum_{t=1}^{T} f(x_t, y_t) - (1 + \lambda)f(x'_t, y_t) \leq \frac{\beta_h}{2} (1 + \frac{1}{\lambda}) \sum_{t=1}^{T} \|x_t - x'_t\|^2 \quad \tag{10}
\]
Besides, based on the Lipschitz assumption of function \(\delta(\cdot) \), we have
\[
\|x_t - \delta(x_{t-p:t-1})\|^2 - (1 + \lambda)\|x'_t - \delta(x'_{t-p:t-1})\|^2 \\
\leq (1 + \frac{1}{\lambda})\|(x_t - x'_t) + (\delta(x_{t-p:t-1}) - \delta(x'_{t-p:t-1}))\|^2 \\
\leq (1 + \frac{1}{\lambda})\|\|x_t - x'_t\| + \|\delta(x_{t-p:t-1}) - \delta(x'_{t-p:t-1})\||^2 \\
\leq (1 + \frac{1}{\lambda})\left(\|x_t - x'_t\| + \sum_{k=1}^{p} L_k \|x_{t-k} - x'_{t-k}\|\right)^2 \\
\leq (1 + \frac{1}{\lambda})\left(\|x_t - x'_t\| + \sum_{k=1}^{p} L_k \|x_{t-k} - x'_{t-k}\|^2\right)
\]
(11)

Summing up the switching costs of all time steps together, we have
\[
\sum_{t=1}^{T} \|x_t - \delta(x_{t-p:t-1})\|^2 - (1 + \lambda)\|x'_t - \delta(x'_{t-p:t-1})\|^2 \\
\leq (1 + \frac{1}{\lambda})(1 + \sum_{k=1}^{p} L_k) \sum_{t=1}^{T} \left(\|x_t - x'_t\|^2 + \sum_{k=1}^{p} L_k \|x_{t-k} - x'_{t-k}\|^2\right) \\
\leq (1 + \frac{1}{\lambda})(1 + \sum_{k=1}^{p} L_k) \sum_{t=1}^{T} \|x_t - x'_t\|^2 \\
= (1 + \frac{1}{\lambda})(1 + \sum_{k=1}^{p} L_k)^2 \sum_{t=1}^{T} \|x_t - x'_t\|^2
\]
(12)

Substituting Eqn. (12) and Eqn. (10) into Eqn. (9), we finish the proof. \(\square\)

Now we propose Lemma C.4 based on these above lemmas, which ensures the feasibility of robustness constraint in Eqn. (1).

Lemma C.4. Let \(\pi \) be any expert algorithm for the SOCO problem with multi-step feedback delays and multi-step switching costs, for any \(\lambda \geq 0 \) and \(\lambda \geq \lambda_0 \geq 0 \), the total cost by the projected actions \(x_t \) must satisfy \(\text{cost}(x_{1:T}) \leq (1 + \lambda)\text{cost}(x^\pi_{1:T}) \).

Proof. We prove by induction that the constraints in Eqn. (11) are satisfied for each \(t \). For \(t = 1 \), since we assume the initial actions are the same \(x_{-p+1:0} = x^\pi_{-p+1:0} \), it is obvious that \(x = x^\pi_{1} \) satisfies the robustness constraints Eqn. (11).

Then for any time step \(t \geq 2 \), suppose it holds at \(t - 1 \) that
\[
\sum_{\tau \in \mathcal{A}_{t-1}} f(x_\tau, y_\tau) + \sum_{\tau \in \mathcal{A}_{t-1} \cup \mathcal{B}_{t-1}} d(x_\tau, x_{\tau-p:t-1}) + \sum_{\tau \in \mathcal{B}_{t-1}} H(x_\tau, x^\pi_\tau) + G(x, x_{t-p:t-1}, x^\pi_{t-p:t}) \\
\leq (1 + \lambda)\left(\sum_{\tau \in \mathcal{A}_{t-1}} f(x^\pi_\tau, y_\tau) + \sum_{\tau \in \mathcal{A}_{t-1} \cup \mathcal{B}_{t-1}} d(x^\pi_\tau, x^\pi_{\tau-p:t-1})\right)
\]
(13)

Now the robustness constraints Eqn. (11) is satisfied if we prove \(x_t = x^\pi_t \) satisfies the constraints in Eqn. (11) at time step \(t \). Since for the sets \(\mathcal{A} \) and \(\mathcal{B} \), we have
\[
(\mathcal{A}_t \cup \mathcal{B}_t) \setminus (\mathcal{A}_{t-1} \cup \mathcal{B}_{t-1}) = \{t\}, \quad \mathcal{A}_{t-1} \subseteq \mathcal{A}_t,
\]
(14)
so it holds that
\[
\sum_{\tau \in \mathcal{A}_t \cup \mathcal{B}_t} d(x_\tau, x_{\tau-p:t-1}) - \sum_{\tau \in \mathcal{A}_{t-1} \cup \mathcal{B}_{t-1}} d(x_\tau, x_{\tau-p:t-1}) = d(x_t, x_{t-p:t-1})
\]
(15)
By Lemma C.1, we have
\[d(x^\pi_t, x_{t-p:t-1}) - (1 + \lambda)d(x^\pi_t, x_{t-p:t-1}) \leq \frac{1}{2}(1 + \frac{1}{\lambda})\|\delta(x_{t-p:t-1}) - \delta(x^\pi_{t-p:t-1})\|^2 \leq \frac{1}{2}(1 + \frac{1}{\lambda})\left(\sum_{i=1}^{p} L_i \|x_{t-i} - x^\pi_{t-i}\|\right)^2 \tag{16}\]

Denote \(\alpha = 1 + \sum_{k=1}^{p} L_k\). For the reservation cost, we have
\[G(x_{t-1}, x_{t-p-1:t-2}, x^\pi_{t-p-1}; t-1) - G(x^\pi_t, x_{t-p:t-1}, x^\pi_t) = \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \left(\sum_{k=1}^{p} \sum_{i=0}^{p-k} L_k \|x_{t-i} - x^\pi_{t-i}\|^2 - \sum_{k=1}^{p} \sum_{i=1}^{p-k} L_k \|x_{t-i} - x^\pi_{t-i}\|^2\right) \tag{17}\]
\[= \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \left(\sum_{k=0}^{p-1} \sum_{i=1}^{p-k} L_k \|x_{t-i} - x^\pi_{t-i}\|^2 - \sum_{k=1}^{p} \sum_{i=1}^{p-k} L_k \|x_{t-i} - x^\pi_{t-i}\|^2\right) \]
\[= \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \sum_{i=1}^{p} L_i \|x_{t-i} - x^\pi_{t-i}\|^2 \]

Continuing with Eqn. (17), we have
\[G(x_{t-1}, x_{t-p-1:t-2}, x^\pi_{t-p-1}; t-1) - G(x^\pi_t, x_{t-p:t-1}, x^\pi_t) = \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \sum_{i=1}^{p} L_i \|x_{t-i} - x^\pi_{t-i}\|^2 \geq \frac{(1 + \frac{1}{\lambda_0})}{2} \left(\sum_{i=1}^{p} L_i \|x_{t-i} - x^\pi_{t-i}\|^2\right)^2 \geq \frac{1}{2}(1 + \frac{1}{\lambda})\left(\sum_{i=1}^{p} L_i \|x_{t-i} - x^\pi_{t-i}\|\right)^2 \tag{18}\]

where the second inequality holds by Jensen’s inequality. Therefore, combining with (16), we have
\[d(x^\pi_t, x_{t-p:t-1}) + G(x^\pi_t, x_{t-p:t-1}, x^\pi_t) \leq G(x_{t-1}, x_{t-p-1:t-2}, x^\pi_{t-p-1}; t-1) + (1 + \lambda)d(x^\pi_t, x^\pi_{t-p:t-1}) \tag{19}\]

By Eqn. (19), we have
\[G(x^\pi_t, x_{t-p:t-1}, x^\pi_t) + \sum_{\tau \in A_t \cup B_t} d(x^\pi_t, x_{\tau:p:t-1}) - \sum_{\tau \in A_{t-1} \cup B_{t-1}} d(x^\pi_t, x_{\tau:p:t-1}) \leq G(x_{t-1}, x_{t-p-1:t-2}, x^\pi_{t-p-1}; t-1) + (1 + \lambda)\left(\sum_{\tau \in A_t \cup B_t} d(x^\pi_t, x_{\tau:p:t-1}) - \sum_{\tau \in A_{t-1} \cup B_{t-1}} d(x^\pi_t, x_{\tau:p:t-1})\right) \tag{20}\]

Now we define a new set \(D_t = A_t \setminus A_{t-1}\), which denotes the timestep set for the newly received context parameters at \(t\).
Case 1: If \(t \in D_t \), then \(B_{t-1} \setminus B_t = D_t \setminus \{ t \} \), then we have

\[
\left(\sum_{\tau \in A_t} f(x_\tau, y_\tau) + \sum_{\tau \in B_t} H(x_\tau, x_\tau^n) \right) - \left(\sum_{\tau \in A_{t-1}} f(x_\tau, y_\tau) + \sum_{\tau \in B_{t-1}} H(x_\tau, x_\tau^n) \right)
= \sum_{\tau \in D_t} f(x_\tau, y_\tau) - \sum_{\tau \in D_t \setminus \{ t \}} H(x_\tau, x_\tau^n) = f(x_t^\tau, y_t) + \sum_{\tau \in D_t \setminus \{ t \}} f(x_\tau, y_\tau) - \sum_{\tau \in D_t \setminus \{ t \}} H(x_\tau, x_\tau^n)
\]

(21)

Since hitting cost \(f(\cdot, y_t) \) is \(\beta_h \)-smooth, we have

\[
\sum_{\tau \in D_t \setminus \{ t \}} f(x_\tau, y_\tau) - \sum_{\tau \in D_t \setminus \{ t \}} (1 + \lambda) f(x_\tau^n, y_\tau) \leq \frac{\beta_h (1 + \frac{1}{\lambda})}{2} \sum_{\tau \in D_t \setminus \{ t \}} \| x_\tau^n - x_\tau \|^2 \leq \sum_{\tau \in D_t \setminus \{ t \}} H(x_\tau, x_\tau^n)
\]

(22)

Substituting Eqn. (22) back to Eqn. (21), we have

\[
\sum_{\tau \in A_t} f(x_\tau, y_\tau) + \sum_{\tau \in B_t} H(x_\tau, x_\tau^n) - \sum_{\tau \in A_{t-1}} f(x_\tau, y_\tau) - \sum_{\tau \in B_{t-1}} H(x_\tau, x_\tau^n)
\leq (1 + \lambda) \left(\sum_{\tau \in A_t} f(x_\tau, y_\tau) - \sum_{\tau \in A_{t-1}} f(x_\tau, y_\tau) \right)
\]

(23)

Case 2: If \(t \notin D_t \), then \((B_{t-1} \cup \{ t \}) \setminus B_t = D_t \) and we have

\[
\left(\sum_{\tau \in A_t} f(x_\tau, y_\tau) + \sum_{\tau \in B_t} H(x_\tau, x_\tau^n) \right) - \left(\sum_{\tau \in A_{t-1}} f(x_\tau, y_\tau) + \sum_{\tau \in B_{t-1}} H(x_\tau, x_\tau^n) \right)
= \sum_{\tau \in D_t} f(x_\tau, y_\tau) - \sum_{\tau \in D_t \setminus \{ t \}} H(x_\tau, x_\tau^n) + H(x_\tau, x_\tau^n)
\]

(24)

Since hitting cost \(f(\cdot, y_t) \) is \(\beta_h \)-smooth, we have

\[
\sum_{\tau \in D_t} f(x_\tau, y_\tau) - \sum_{\tau \in D_t} (1 + \lambda) f(x_\tau^n, y_\tau) \leq \frac{\beta_h (1 + \frac{1}{\lambda})}{2} \sum_{\tau \in D_t \setminus \{ t \}} \| x_\tau^n - x_\tau \|^2 \leq \sum_{\tau \in D_t \setminus \{ t \}} H(x_\tau, x_\tau^n)
\]

(25)

Since \(\lambda \geq 0 \), we substitute Eqn. (25) back to Eqn. (24), we have the same conclusion as Eqn. (23).

Adding Eqn. (23), Eqn. (20) and Eqn. (23) together, we can prove \(x = x_t^\tau \) satisfies the constraints in Eqn. (1).

At time step \(T \), we have

\[
\sum_{\tau \in A_T} f(x_\tau, y_\tau) + \sum_{\tau \in A_T \cup B_T} d(x_\tau, x_{\tau-p:T-1}) + \sum_{\tau \in B_T} (f(x_\tau, y_\tau) - (1 + \lambda) f(x_\tau^n, y_\tau)) \leq \sum_{\tau \in A_T} f(x_\tau, y_\tau) + \sum_{\tau \in A_T \cup B_T} d(x_\tau, x_{\tau-p:T-1}) + \sum_{\tau \in B_T} H(x_\tau, x_\tau^n)
\]

(26)

In other words

\[
\sum_{\tau \in A_T \cup B_T} (f(x_\tau, y_\tau) + d(x_\tau, x_{\tau-p:T-1})) \leq (1 + \lambda) \sum_{\tau \in A_T \cup B_T} (f(x_\tau^n, y_\tau) + d(x_\tau, x_{\tau-p:T-1}))
\]

(27)
In the next lemma, we bound the difference between the projected action and the ML predictions.

Lemma C.5. Suppose hitting cost is β_λ-smooth, given the expert policy π, ML predictions $\tilde{x}_{1:T}$, for any $\lambda > 0$ and $\lambda_1 > 0$, the total distance between actual actions $x_{1:T}$ and ML predictions $\tilde{x}_{1:T}$ are bounded,

$$\sum_{i=1}^T \|x_i - \tilde{x}_i\|^2 \leq \sum_{i=1}^T \left(\|x_i - \tilde{x}_i\|^2 - K \left(d(x_i^{\pi}, x_{i-p:t-1}^{\pi}) + \sum_{\tau \in D_t} f(x_i^{\pi}, y_\tau) \right) \right)^2 \tag{28}$$

where $\lfloor \cdot \rfloor^+$ is the ReLU function and $K = \frac{2(\lambda - \lambda_0)}{\beta_\lambda (1 + \frac{1}{\lambda_0}) + \alpha \lambda_1 (1 + \frac{1}{\lambda_0})}$, $\alpha = 1 + \sum_{i=1}^p L_i$.

Proof. Suppose we at $t - 1$ have the following inequality:

$$\sum_{\tau \in A_{t-1}} f(x_\tau, y_\tau) + \sum_{\tau \in A_{t-1} \cup B_{t-1}} d(x_\tau, x_{\tau-p:\tau-1}^{\pi}) + \sum_{\tau \in B_{t-1}} H(x_\tau, x_\tau^{\pi}) + G(x, x_{t-p:t-1}, x_{t-p:t}^{\pi}) \leq (1 + \lambda) \left(\sum_{\tau \in A_{t-1}} f(x_\tau, y_\tau) + \sum_{\tau \in A_{t-1} \cup B_{t-1}} d(x_\tau, x_{\tau-p:\tau-1}^{\pi}) \right) \tag{29}$$

Remember that $\mathcal{D}_t = A_t \setminus A_{t-1}$ is the set of the time steps for the newly received context parameters at t. The robustness constraint in Eqn. (1) is satisfied if x_t satisfies the following inequality.

$$\left(\sum_{\tau \in \mathcal{D}_t} f(x_\tau, y_\tau) + \sum_{\tau \in B_t} H(x_\tau, x_\tau^{\pi}) - \sum_{\tau \in B_{t-1}} H(x_\tau, x_\tau^{\pi}) \right) + d(x_t, x_{t-p:t-1}) + G(x_t, x_{t-p:t-1}, x_{t-p:t}^{\pi})$$

$$-G(x_{t-1}, x_{t-p-1:t-2}, x_{t-p-1:t-1}^{\pi}) \leq (1 + \lambda) \left(d(x_t^{\pi}, x_{t-p:t-1}^{\pi}) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^{\pi}, y_\tau) \right) \tag{30}$$

For the switching cost, we have

$$d(x, x_{t-p:t-1}) - (1 + \lambda_0)d(x_t^{\pi}, x_{t-p:t-1}^{\pi}) \leq \frac{1}{2} \left(1 + \frac{1}{\lambda_0} \right) \left(\|x - x_t^{\pi}\| + \|\delta(x_{t-p:t-1}) - \delta(x_{t-p:t-1}^{\pi})\| \right)^2$$

$$\leq \frac{1}{2} \left(1 + \frac{1}{\lambda_0} \right) \left(\|x - x_t^{\pi}\| + \sum_{i=1}^p L_i \|x_{t-i} - x_{t-i}^{\pi}\| \right)^2 \tag{31}$$

The first inequality comes from Lemma C.1, the second inequality comes from the L_i-Lipschitz assumption, and the third inequality is because $\alpha \geq 1$. Besides, from Eqn (17), we have

$$G(x_{t-1}, x_{t-p-1:t-2}, x_{t-p-1:t-1}^{\pi}) - G(x_t^{\pi}, x_{t-p:t-1}, x_{t-p:t}^{\pi}) = \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \sum_{i=1}^p L_i \|x_{t-i} - x_{t-i}^{\pi}\|^2 \tag{32}$$

Thus we have

$$G(x, x_{t-p:t-1}, x_{t-p:t}^{\pi}) - G(x_{t-1}, x_{t-p-1:t-2}, x_{t-p-1:t-1}^{\pi})$$

$$= G(x, x_{t-p:t-1}, x_{t-p:t}^{\pi}) - G(x_t^{\pi}, x_{t-p:t-1}, x_{t-p:t}^{\pi}) + G(x_t^{\pi}, x_{t-p:t-1}, x_{t-p:t}^{\pi}) - G(x_{t-1}, x_{t-p-1:t-2}, x_{t-p-1:t-1}^{\pi})$$

$$= G(x, x_{t-p:t-1}, x_{t-p:t}^{\pi}) - G(x_t^{\pi}, x_{t-p:t-1}, x_{t-p:t}^{\pi}) - \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \sum_{i=1}^p L_i \|x_{t-i} - x_{t-i}^{\pi}\|^2. \tag{33}$$
Combining with inequality (31), we have
\[
G(x_t, x_{t-p:t-1}, x_{t-p:t}) - G(x_{t-1}, x_{t-p:1:t-2}, x_{t-p:1:t-1}) + d(x_t, x_{t-p:t-1}) - (1 + \lambda_0)d(x_t, x_{t-p:t-1}) = \alpha(1 + \frac{1}{\lambda_0}) \|x_t - x_t\|^2
\]
\[
\leq G(x_t, x_{t-p:t-1}, x_{t-p:t}) - G(x_t^*, x_{t-p:t-1}, x_{t-p:t}) + \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \|x_t - x_t\|^2
\]
\[
= \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \|x_t - x_t\|^2 + \frac{\alpha(1 + \frac{1}{\lambda_0})}{2} \sum_{k=1}^{p} \|x_t - x_t\|^2
\]
\[
= \frac{\alpha^2(1 + \frac{1}{\lambda_0})}{2} \|x_t - x_t\|^2
\]
(34)

Substituting Eqn. (34) back to Eqn. (30), we have
\[
\sum_{\tau \in D_t} (f(x_\tau, y_\tau) - (1 + \lambda_0)f(x_\tau^*, y_\tau)) + \sum_{\tau \in B_t} H(x_\tau, x_\tau^*) - \sum_{\tau \in B_t} H(x_\tau, x_\tau^*) + \frac{\alpha^2(1 + \frac{1}{\lambda_0})}{2} \|x - x_t\|^2 \leq (\lambda - \lambda_0) \left(d(x_t^*, x_{t-p:t-1}) + \sum_{\tau \in D_t} f(x_\tau^*, y_\tau) \right)
\]
(35)

Case 1: If \(t \in D_t \), then \(B_t \setminus B_t = D_t \setminus \{t\} \), then Eqn. (35) becomes
\[
f(x_t, y_t) - (1 + \lambda_0)f(x_t^*, y_t) + \frac{\alpha^2(1 + \frac{1}{\lambda_0})}{2} \|x - x_t\|^2
\]
\[
+ \sum_{\tau \in D_t \setminus \{t\}} f(x_\tau, y_\tau) - (1 + \lambda_0)f(x_\tau^*, y_\tau) - H(x_\tau, x_\tau^*) \leq (\lambda - \lambda_0) \left(d(x_t^*, x_{t-p:t-1}) + \sum_{\tau \in D_t} f(x_\tau^*, y_\tau) \right)
\]
(36)

Since hitting cost is \(\beta_h \)-smooth, the sufficient condition for Eqn. (35) becomes
\[
\frac{(\beta_h + \alpha^2)(1 + \frac{1}{\lambda_0})}{2} \|x - x_t\|^2 \leq (\lambda - \lambda_0) \left(d(x_t^*, x_{t-p:t-1}) + \sum_{\tau \in D_t} f(x_\tau^*, y_\tau) \right)
\]
(37)

Since the hitting cost is non-negative, the sufficient condition can be further simplified, which is
\[
\frac{(\beta_h + \alpha^2)(1 + \frac{1}{\lambda_0})}{2} \|x - x_t\|^2 \leq (\lambda - \lambda_0) \left(f(x_t^*, y_t) + d(x_t, x_{t-p:t-1}) \right)
\]
(38)

Case 2: If \(t \notin D_t \), then \((B_t \setminus \{t\}) \setminus B_t = D_t \), then Eqn. (35) becomes
\[
\frac{\alpha^2(1 + \frac{1}{\lambda_0})}{2} \|x - x_t\|^2 + H(x, x_t^*) + \sum_{\tau \in D_t} (f(x_\tau, y_\tau) - (1 + \lambda_0)f(x_\tau^*, y_\tau) - H(x_\tau, x_\tau^*))
\]
\[
\leq (\lambda - \lambda_0) \left(d(x_t^*, x_{t-p:t-1}) + \sum_{\tau \in D_t} f(x_\tau^*, y_\tau) \right)
\]
(39)

Since hitting cost is \(\beta_h \)-smooth, the sufficient condition for Eqn. (39) becomes
\[
\frac{(\beta_h + \alpha^2)(1 + \frac{1}{\lambda_0})}{2} \|x - x_t\|^2 \leq (\lambda - \lambda_0) \left(d(x_t^*, x_{t-p:t-1}) + \sum_{\tau \in D_t} f(x_\tau^*, y_\tau) \right)
\]
(40)

Now we define
\[
K = \frac{2(\lambda - \lambda_0)}{(\beta_h + \alpha^2)(1 + \frac{1}{\lambda_0})}
\]
At time step t, if x_t' is the solution to this alternative optimization problem

$$x_t' = \arg \min_x \frac{1}{2} \|x - \tilde{x}_t\|^2$$

s.t. $\|x - x_t^\pi\|^2 \leq K \left(d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau) \right)$ (41)

The solution to this problem can be calculated as

$$x_t' = \theta x_t^\pi + (1 - \theta) \tilde{x}_t$$

$$\theta = \left[1 - \sqrt{K \left(d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau) \right)} \right]^{-1} \cdot \left\| \tilde{x}_t - x_t^\pi \right\|.$$ (42)

Then $||x_t' - \tilde{x}_t|| = \left[\left\| \tilde{x}_t - x_t^\pi \right\| - \sqrt{K \left(d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau) \right)} \right]^+$.

Proof of Theorem 4.1

Now summing up the distance through 1 to T, we have

$$\sum_{t=1}^{T} \|x_t - \tilde{x}_t\|^2 \leq \sum_{t=1}^{T} \left(\|\tilde{x}_t - x_t^\pi\| - \sqrt{K \left(d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau) \right)} \right)^2.$$ (43)

Based on Lemma C.3, we have $\forall \lambda_2 > 0$,

$$\text{cost}(x_{1:T}) - (1 + \lambda_2) \text{cost}(\tilde{x}_{1:T}) \leq \frac{\beta + \alpha^2}{2} \left(1 + \frac{1}{\lambda_2} \right) \sum_{t=1}^{T} \left\| x_t - \tilde{x}_t \right\|^2.$$ (44)

Suppose the offline optimal action sequence is $x_{1:T}^\pi$, the optimal cost is $\text{cost}(x_{1:T}^\pi)$. Then we divide both sides of Eqn. (44) by $\text{cost}(x_{1:T}^\pi)$, and get $\forall \lambda_2 > 0$,

$$\text{cost}(x_{1:T}) \leq (1 + \lambda_2) \text{cost}(\tilde{x}_{1:T}) + \frac{\beta + \alpha^2}{2} \left(1 + \frac{1}{\lambda_2} \right) \cdot \sum_{t=1}^{T} \left(\|\tilde{x}_t - x_t^\pi\| - \sqrt{K \left(d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau) \right)} \right)^2.$$ (45)

By substituting $K = \frac{2(\lambda - \lambda_0)}{(\beta_h + \alpha^2)(1 + \frac{1}{\lambda_0})}$ back to Eqn (46), we have

$$\text{cost}(x_{1:T}) \leq (1 + \lambda_2) \text{cost}(\tilde{x}_{1:T}) + \left(1 + \frac{1}{\lambda_2} \right) \sum_{t=1}^{T} \left[\frac{\beta + \alpha^2}{2} \left\| \tilde{x}_t - x_t^\pi \right\|^2 - \frac{\lambda - \lambda_0}{1 + \frac{1}{\lambda_0}} \left(d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau) \right) \right]^+.$$ (46)

By defining single step cost of the expert π as $\text{cost}_t^\pi = d(x_t^\pi, x_{t-p:t-1}^\pi) + \sum_{\tau \in \mathcal{D}_t} f(x_\tau^\pi, y_\tau)$ and the auxiliary cost as $\Delta(\lambda) = \sum_{t=1}^{T} \left[\left\| \tilde{x}_t - x_t^\pi \right\|^2 - \frac{2(\lambda - \lambda_0)}{(\beta_h + \alpha^2)(1 + \frac{1}{\lambda_0})} \text{cost}_t^\pi \right]^+$,

$$\text{cost}(x_{1:T}) \leq \left(\sqrt{\text{cost}(\tilde{x}_{1:T})} + \sqrt{\frac{\beta + \alpha^2}{2} \Delta(\lambda)} \right)^2.$$ (47)

Combined with Lemma C.4, we obtain the following bound, which finished this proof.

$$\text{cost}(x_{1:T}) \leq \min \left((1 + \lambda) \text{cost}(x_{1:T}^\pi), \left(\sqrt{\text{cost}(\tilde{x}_{1:T})} + \sqrt{\frac{\beta + \alpha^2}{2} \Delta(\lambda)} \right)^2 \right).$$ (48)
C.2 Proof of Theorem 4.2

Proof. We first give the formal definition of Rademacher complexity of the ML model space with robustification.

Definition 5 (Rademacher Complexity). Let \(\text{Rob}_\lambda(W) = \{\text{Rob}_\lambda(h_W), W \in W\} \) be the ML model space with robustification constrained by \(\lambda \). Given the dataset \(S \), the Rademacher complexity with respect to \(\text{Rob}_\lambda(W) \) is

\[
\text{Rad}_S(\text{Rob}_\lambda(W)) = \frac{1}{|S|} \mathbb{E}_\nu \left[\sup_{W \in W} \sum_{i \in S} \nu_i \text{Rob}_\lambda(h_W(y^i)) \right],
\]

where \(y^i \) is the \(i \)-th sample in \(S \), and \(\nu_1, \cdots, \nu_n \) are independently drawn from Rademacher distribution.

Since the cost functions are smooth, they are locally Lipschitz continuous for the bounded action space, and we can apply the generalization bound based on Rademacher complexity \([61]\) for the space of robustified ML model \(\text{Rob}_\lambda(h_W) \). Given any ML model \(h_W \) trained on dataset \(S \), with probability at least \(1 - \delta/\epsilon \) where \(\delta, \epsilon \in (0, 1) \),

\[
\mathbb{E}_{x_t} [\text{cost}_{1:T}] \leq \text{Cost}_S(\text{Rob}_\lambda(h_W)) + 2\Gamma_x \text{Rad}_S(\text{Rob}_\lambda(W)) + 3\bar{c} \sqrt{\frac{\log(2/\delta)}{|S|}},
\]

where \(\Gamma_x = \sqrt{T}|X| [\beta_h + \frac{1}{2} (1 + \sum_{i=1}^P L_i) (1 + \sum_{i=1}^P L_i)] \) with \(|X| \) being the size of the action space \(X \) and \(\beta_h, L_i, p \) as the smoothness constant, Lipschitz constant of the nonlinear term in the switching cost, and the memory length as defined in Assumptions 1 and 2 and \(\bar{c} \) is the upper bound of the total cost for an episode. We can get the average cost bound in Proposition 4.2.

Next, we prove that the Rademacher complexity of the ML model space with robustification is no larger than the Rademacher complexity of the ML model space without robustification as \(\{h_W, W \in W\} \), i.e. we need to prove \(\text{Rad}_S(\text{Rob}_\lambda(W)) \leq \text{Rad}_S(W) \). The Rademacher complexity can be expressed by Dudley’s entropy integral \([61]\) as

\[
\text{Rad}_S(\text{Rob}_\lambda(W)) = \mathcal{O} \left(\frac{1}{\sqrt{|S|}} \int_0^\infty \sqrt{\log N(\epsilon, \text{Rob}_\lambda(W), L_2(S))} d\epsilon \right),
\]

where \(N(\epsilon, \text{Rob}_\lambda(W), L_2(S)) \) is the covering number \([61]\) with respect to radius \(\epsilon \) and the function distance metric \(\|h_1 - h_2\|_{L_2(S)} = \frac{1}{|S|} \sum_{x \in S} \|h_1(x) - h_2(x)\|^2 \) where \(h_1 \) and \(h_2 \) are two functions defined on the space including dataset \(S \). We can find that for any two different weights \(W_1 \) and \(W_2 \), their corresponding post-robustification distance \(\|\text{Rob}_\lambda(h_{W_1}) - \text{Rob}_\lambda(h_{W_2})\|_{L_2(S)} \) is no larger than their pre-robustification distance \(\|h_{W_1} - h_{W_2}\|_{L_2(S)} \). To see this, we discuss three cases given any input sample \(y \). If both \(h_{W_1}(y) \) and \(h_{W_2}(y) \) lie in the projection set, then \(\text{Rob}_\lambda(h_{W_1})(y) = h_{W_1}(y) \) and \(\text{Rob}_\lambda(h_{W_2})(y) = h_{W_2}(y) \). If \(h_{W_1}(y) \) lies in the projection set while \(h_{W_2}(y) \) is out of the projection set, the projection operation based on the closed convex projection set will make \(\|\text{Rob}_\lambda(h_{W_1})(y) - \text{Rob}_\lambda(h_{W_2})(y)\| \) to be less than \(\|h_{W_1}(y) - h_{W_2}(y)\| \). If both \(h_{W_1}(y) \) and \(h_{W_2}(y) \) lie out of the projection set, we still have \(\|\text{Rob}_\lambda(h_{W_1})(y) - \text{Rob}_\lambda(h_{W_2})(y)\| \leq \|h_{W_1}(y) - h_{W_2}(y)\| \) since the projection set at each round is a closed convex set \([62]\). Therefore, after robustification, the distance between two models with different weights will not become larger, i.e.,

\[
\|\text{Rob}_\lambda(h_{W_1}) - \text{Rob}_\lambda(h_{W_2})\|_{L_2(S)} \leq \|h_{W_1} - h_{W_2}\|_{L_2(S)},
\]

which means \(\text{RCL} \) has a covering number \(N(\epsilon, \text{Rob}_\lambda(W), L_2(S)) \) no larger than that of the individual ML model \(N(\epsilon, W, L_2(S)) \) for any \(\epsilon \). Thus the Rademacher complexity with the robustification procedure does not increase.

By \([63]\), the upper bound of Rademacher complexity with respect to the space of ML model \(\text{Rad}_S(\text{Rob}_\lambda(W)) \) is in the order of \(\mathcal{O}(\frac{1}{\sqrt{|S|}}) \). Since the Rademacher complexity with the robustification procedure satisfies \(\text{Rad}_S(\text{Rob}_\lambda(W)) \leq \text{Rad}_S(W) \), it also decreases with the dataset size in the order of \(\mathcal{O}(\frac{1}{\sqrt{|S|}}) \).
D Robustification-aware Training

Theorem 4.2 also shows the benefits of training the ML model in a robustification-aware manner. Specifically, by comparing the losses in (5) and (6), we see that using \(\ell_r \) as the robustification-aware loss for training \(W \) can reduce the term \(\text{cost}_W(\text{ROB}(h_W)) \) in the average cost bound, which matches exactly with the training objective in (5). The robustification-aware approach is only beginning to be explored in the ML-augmented algorithm literature and non-trivial (e.g., unconstrained downstream optimization in [53]), especially considering that (4) is a constrained optimization problem with no explicit gradients.

Gradient-based optimizers such as Adam [64] are the de facto state-of-the-art algorithms for training ML models, offering better optimization results, convergence, and stability compared to those non-gradient-based alternatives [65]. Thus, it is crucial to derive the gradients of the loss function with respect to the ML model weight \(W \) given the added robustification step.

Next, we derive the gradients of \(x_t \) with respect to \(\tilde{x}_t \). For the convenience of presentation, we use the basic SOCO setting with a single-step switching cost and no hitting cost delay as an example, while noting that the same technique can be extended to derive gradients in more general settings. Specifically, for this setting, the pre-robustification prediction is given by \(\tilde{x}_1 \), where \(W \) denotes the ML model weight. Then, the actual post-robustification action \(x_t \) is obtained by projection in (1) by setting \(q = 0 \) and \(p = 1 \), given the ML prediction \(\tilde{x}_t \), the expert’s action \(x_t^r \) and cumulative cost \((x_{1:t}) \) up to \(t \), and the actual cumulative cost \((x_{1:t-1}) \) up to \(t-1 \).

The gradient of the loss function \(\text{cost}(x_{1:T}) = \sum_{t=1}^{T}(f(x_t, y_t) + d(x_t, x_{t-1})) \) with respect to the ML model weight \(W \) is given by \(\sum_{t=1}^{T} \nabla_W (f(x_t, y_t) + d(x_t, x_{t-1})) \nabla_W x_t \nabla_W x_t \) next we write the gradient of per-step cost with with respect to \(W \) as follows:

\[
\nabla_W (f(x_t, y_t) + d(x_t, x_{t-1})) = \nabla_{x_t}(f(x_t, y_t) + d(x_t, x_{t-1}))(\nabla_W x_t + \nabla_{x_{t-1}}(f(x_t, y_t) + d(x_t, x_{t-1}))(\nabla_W x_{t-1} - 1)
\]

where the gradients \(\nabla_{x_t}(f(x_t, y_t) + d(x_t, x_{t-1})) \) and \(\nabla_{x_{t-1}}(f(x_t, y_t) + d(x_t, x_{t-1})) \) are trivial given the hitting and switching cost functions, and the gradient \(\nabla_W x_{t-1} \) is obtained at time \(t-1 \) in the same way as \(\nabla_W x_t \). To derive \(\nabla_W x_t \), by the chain rule, we have:

\[
\nabla_W x_t = \nabla_{x_t}(f(x_t, y_t) + d(x_t, x_{t-1})) \nabla_{x_{t-1}}(f(x_t, y_t) + d(x_t, x_{t-1})) \nabla_W \text{cost}(x_{1:t-1})
\]

where \(\nabla_W \text{cost}(x_{1:t-1}) \) is the gradient of the ML output (following a recurrent architecture illustrated in Fig. 1 in the appendix) with respect to the weight \(W \) and can be obtained recursively by using off-the-shelf BPTT optimizers [64], and \(\nabla_W \text{cost}(x_{1:t-1}) = \sum_{t=1}^{T} \nabla_W (f(x_t, y_t) + d(x_t, x_{t-1})) \) can also be recursively calculated once we have the gradient in Eqn. (51). Nonetheless, it is non-trivial to calculate the two gradient terms in Eqn. (52), i.e., \(\nabla_{x_t}(f(x_t, y_t) + d(x_t, x_{t-1})) \) and \(\nabla_{x_{t-1}}(f(x_t, y_t) + d(x_t, x_{t-1})) \), where \(x_t \) itself is the solution to the constrained optimization problem (1) unlike in the simpler unconstrained case [53].

As we cannot explicitly write \(x_t \) in a closed form in terms of \(\tilde{x}_t \) and \(\text{cost}(x_{1:t-1}) \), we leverage the KKT conditions [66, 67, 68] to implicitly derive \(\nabla_{x_t}(f(x_t, y_t) + d(x_t, x_{t-1})) \) in the next proposition.

Proposition D.1 (Gradients by KKT conditions). Let \(x_t \in X \) and \(\mu \geq 0 \) be the primal and dual solutions to the problem (1), respectively. The gradients of \(x_t \) with respect to \(\tilde{x}_t \) and \(\text{cost}(x_{1:t-1}) \) are:

\[
\nabla_{x_t} x_t = \Delta_{11}^{-1} I + \Delta_{12} \text{Sc}(\Delta, \Delta_{11}) I \Delta_{21} \Delta_{11}^{-1},
\]

\[
\nabla_{\text{cost}(x_{1:t-1})} x_t = \Delta_{12} \Delta_{11} \text{Sc}(\Delta, \Delta_{11}) I \mu,
\]

where \(\Delta_{11} = I + \mu \left(\nabla_{x_t} f(x_t, y_t) + \left(\frac{1}{\lambda} \right) (L_2^2 + L_1^2) I \right) \), \(\Delta_{12} = \Delta_{12} \Delta_{11} \text{Sc}(\Delta, \Delta_{11}) I \mu \), \(x_t - \delta_{x_t}(x_{1:t-1}) = \left(1 + \frac{1}{\lambda} \right) (L_2^2 + L_1^2) (x_t - x_t^r) \) \(\Delta_{21} = \Delta_{22} = \mu \Delta_{12} \), and \(\text{Sc}(\Delta, \Delta_{11}) = \Delta_{22} - \Delta_{21} \Delta_{11}^{-1} \Delta_{12} \) is the Schur-complement of \(\Delta_{11} \) in the blocked matrix \(\Delta = [\Delta_{11}, \mu \Delta_{12}, \Delta_{21} \mu, \Delta_{22}] \).

If the ML prediction \(\tilde{x}_t \) happens to lie on the boundary such that the inequality in (1) becomes an equality for \(x = \tilde{x}_t \), then the gradient does not exist in this case and \(\text{Sc}(\Delta, \Delta_{11}) \) may not be full-rank. Nonetheless, we can still calculate the pseudo-inverse of \(\text{Sc}(\Delta, \Delta_{11}) \) and use Proposition D.1 to calculate the subgradient. Such approximation is actually a common practice to address non-differentiable points for training ML models, e.g., using 0 as the subgradient of \(ReLU(\cdot) \) at the zero point [64].
Reference

