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Abstract

We introduce the French Land cover from Aerospace ImageRy (FLAIR), an ex-
tensive dataset from the French National Institute of Geographical and Forest
Information (IGN) that provides a unique and rich resource for large-scale geospa-
tial analysis. FLAIR contains high-resolution aerial imagery with a ground sample
distance of 20 cm and over 20 billion individually labeled pixels for precise land-
cover classification. The dataset also integrates temporal and spectral data from
optical satellite time series. FLAIR thus combines data with varying spatial, spec-
tral, and temporal resolutions across over 817 km2 of acquisitions representing
the full landscape diversity of France. This diversity makes FLAIR a valuable
resource for the development and evaluation of novel methods for large-scale
land-cover semantic segmentation and raises significant challenges in terms of
computer vision, data fusion, and geospatial analysis. We also provide power-
ful uni- and multi-sensor baseline models that can be employed to assess algo-
rithm’s performance and for downstream applications. Through its extent and the
quality of its annotation, FLAIR aims to spur improvements in monitoring and
understanding key anthropogenic development indicators such as urban growth,
deforestation, and soil artificialization. Dataset and codes can be accessed at
https://ignf.github.io/FLAIR/

1 Context

According to a 2015 report by the Food and Agriculture Organization of the United Nations (FAO)
[1], approximately 75% of the world’s soils are in fair, poor, or very poor condition. This degradation
poses significant threats to the health and long-term sustainability of ecosystems. Healthy soils
provide invaluable ecosystem services, including: (i) providing natural habitats for numerous plant
and animal species [2], (ii) acting as the largest carbon sink, surpassing the atmosphere and all
combined biomass [3], and (iii) functioning as a rainwater reservoir, supporting food production and
storing freshwater [4].

The degradation of soils and biodiversity is largely attributed to land artificialization [1], which
causes long-term damage to the biological, hydrological, climatic, and agronomic functions of the soil
due to its occupation or use [5, 6]. In order to effectively monitor and manage land artificialization,
public authorities have expressed the need for scalable land-cover monitoring tools. With the
increasing availability of high-quality Earth Observation (EO) data, the French National Institute
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Figure 1: Detail from the FLAIR Dataset. The very high resolution annotation of 20 cm allows us to
distinguish the exact extent of individual houses, roads, and trees.

of Geographical and Forest Information (IGN) [7] is exploring the use of artificial intelligence to
automatically conduct high-resolution, global-scale land-cover mapping, an essential component for
addressing soil degradation at a national level [8]. A central aspect of this initiative is to create and
disseminate precise and up-to-date reference datasets for researchers and policy-makers.

We introduce the French Land cover from Aerospace ImageRy (FLAIR) dataset, the largest multi-
sensor land-cover dataset with very-high-resolution annotations. FLAIR combines very-high-
resolution (VHR, 20cm) images, photogrammetry-derived surface models, and optical Sentinel-2
multi-spectral satellite time series with a nominal revisit time of 5 days at the equator. The diverse
spatial, spectral, and temporal resolutions of these acquisitions offer valuable complementary perspec-
tives for land cover analysis. Over 20 billion pixels have been hand-annotated by geospatial experts,
using a nomenclature of 19 land-cover classes. The data spans 817 km2 across 50 French sub-regions
featuring diverse bioclimatic attributes at various times of the year, thus displaying complex and
challenging domain shifts.

FLAIR combines data sources with heterogeneous spatial, temporal, and spectral resolutions and high-
precision annotations, and aims to foster the development of new large-scale semantic segmentation
methods. Given its scale and the complexity of the domain shifts it exhibits, FLAIR also presents an
exciting challenge for the computer vision and machine learning communities.

2 Related Work

Numerous land-cover datasets have been introduced to train semantic segmentation methods, see
Table 1. Existing datasets usually present a trade-off: they either offer high-resolution annotations but
cover a small extent (like Vaihingen [9]), or provide large-extent coverage but with low-resolution
annotations (such as BigEarthNet [10] or SEN12MS [11]). In contrast, FLAIR offers both very
high-resolution annotations (20 cm) while covering a large portion of the French territory.

FLAIR comprises over 20 billion individually, manually annotated pixels, which is over 1000 times
more than SEN12MS and 2 times more than BigEarthNet, which employs semi-automatic annotations.
The DeepGlobe and LoveDA datasets, the closest counterparts to our dataset, provide a large coverage
of 1717 km2 at 50 cm and 536 km2 at 30 cm respectively. However, FLAIR provides over 3 times as
many annotated pixels and a higher resolution.

The spatial resolution of the annotation is crucial in land-cover analysis. Insufficient resolution
prevents the precise measurements of surfaces and boundaries. Furthermore, small-scale features,
such as individual houses, lone trees or roads, may not be captured accurately, limiting the potential
applications of the derived segmentation.
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Table 1: Land Cover Datasets. Publicly available datasets for semantic segmentation of land cover from remote
sensing Earth observation imagery.

Dataset
Annotation Acquisition

Pixels ×106 Resolution Classes Source Resolution Extent (km2) Source

SAT-4/SAT-6 [12] 0.9 28 m 4/6 semi-automatic (NLCD [13]) 1 m 13 860k aerial

SEN12MS [11] 14 100 m 17 fully-automatic (MODIS [14]) 10 m 3 551k Sentinel-1&-2

Vaihingen [9] 82 8 cm 6 visual interpretation 8 cm 1 aerial

EuroSAT [15] 110 50 m 10 EU Urban Atlas [16] 10 m 11 059 Sentinel-2

MultiSenGE [17] 534 10 m 14 visual interpretation 10 m 57 433 Sentinel-1&-2

Landcovernet [18] 589 10 m 7 semi-automatic (MODIS [14]) 10 m 58 982 Sentinel-2

MiniFrance [19] 1 510 50 m 14 EU Urban Atlas [16] 50 cm 53 000 aerial

DynamicEarthNet [20] 1 889 3 m 7 visual interpretation 3 m 16 986 Sentinel-1&-2,
PlanetFusion

OpenEarthMap [21] 4 931 25–50 cm 8 visual interpretation 25–50 cm 799 aerial, UAV,
satellite

Five-Billion-Pixels [22] 5 000 4 m 24 visual interpretation 4 m 50 000 Gaofen-2

LoveDA [23] 6 000 30 cm 7 visual interpretation 30 cm 536 aerial

DeepGlobe [24] 6 867 50 cm 7 visual interpretation 50 cm 1 717 Wordlview-2/3,
GeoEye-1

BigEarthNet [10] 8 500 100 m 19 semi-automatic (CLC [25]) 10 m 850 k Sentinel-1&-2

FLAIR 20 385 20cm 19 visual interpretation 20 cm/10 m 817 aerial,
Sentinel-2

3 Dataset Description

FLAIR combines granular pixel annotation with heterogeneous data sources across a large and diverse
spatio-temporal extent.

3.1 Extent & Annotation

Spatio-Temporal Distribution. The FLAIR dataset consists of 77 762 patches represented in
Figure 3. Each patch includes a high-resolution aerial image of 0.2 m, a yearly satellite image time
series with a spatial resolution of 10 m, and pixel-precise elevation and land cover annotations at
0.2 m resolution. As shown in Figure 5, the acquisitions are taken from 916 unique areas distributed
across 50 French spatial domains (départements), covering approximately 817 km2. Aerial images
were captured under favorable weather conditions between April and November from 2018 to 2021.
Each satellite time series corresponds to the entire year of acquisition of the matching aerial image.

Annotations. Each pixel has been manually annotated by photo-interpretation of the 20 cm resolu-
tion aerial imagery, carried out by a team supervised by geography experts from the IGN. During the
annotation process, we initially identified 18 classes. We group certain classes together due to the
rarity of certain classes, such as swimming pool, greenhouse, or snow, or potential ambiguity, as seen
with ligneous and mixed vegetation. The resulting 12-class nomenclature leads to more statistically
robust evaluation metrics. Nonetheless, users can still access and use the extended nomenclature.

Table 2: Land-cover Class Distribution. Semantic nomenclature used by the FLAIR dataset and their
proportion among the entire dataset.

Class % Class % Class %

(1) building 7.1 (6) coniferous 4.3 (11) agricultural land 12.8

(2) pervious surface 7.3 (7) deciduous 17.3 (12) plowed land 3.5

(3) impervious surface 12.1 (8) brushwood 6.3 (13) other 0.8

(4) bare soil 3.1 (9) vineyard 3.0

(5) water 4.5 (10) herbaceous vegetation 18.2
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Figure 2: Land Cover Spectral Dynamics. We represent the temporal progression of reflectance values for
the red channel (B2) for different land cover types using Sentinel-2 satellite data. Each curve represents the
mean reflectance for a land cover types over a subset of the Ardèche department in 2020, with shaded regions
indicating the standard deviation. This plot illustrates the distinct spectral dynamics of different land cover types.

Movable objects like cars or boats are annotated according to their underlying cover. Table 2 outlines
the class set and their distribution. Refer to the appendix for more details.

Thanks to the high resolution of the aerial images, anthropic structures like roads and buildings can
be identified with a high level of detail. Agricultural and natural lands like forests or herbaceous
cover, which make up over 65% of the dataset, can often be challenging to distinguish from images
alone. As shown in Figure 2, multispectral satellite time series prove to be particularly effective in
characterizing the temporal evolution of plant phenology [26, 27], a key motivation for incorporating
these into the dataset.

Training Splits. The dataset is made up of 50 distinct spatial domains, aligned with the adminis-
trative boundaries of the French départements. For our experiments, we designate 32 domains for
training, 8 for validation, and reserve 10 as the official test set (refer to Figure 5 or appendix). This
arrangement ensures a balanced distribution of semantic classes, radiometric attributes, bioclimatic
conditions, and acquisition times across each set. Consequently, every split accurately reflects the
landscape diversity inherent to metropolitan France. It is important to mention that the patches come
with meta-data permitting alternative splitting schemes, for example focused on domain shifts.

3.2 Acquisitions

FLAIR offers 3 complementary sources of acquisition, each with distinct nature and spa-
tial/spectral/temporal resolutions: aerial images, elevation models, and satellite image time series.

Very High Resolution Aerial Images. The aerial images are taken from IGN’s free license
BD-Ortho product [28]. All aerial images are 512 × 512 in size with a resolution of 20 cm per
pixel, and feature 4 spectral channels: red, blue, green, and near-infrared. Each patch comes with
metadata such as the date and time of acquisition, geographical location and altitude of the patch
centroid, and specifics about the camera used for acquisition. All images are aligned to a shared
cartographic coordinate reference system (EPSG:2154), and radiometric corrections are applied to
ensure homogeneity per spatial domain [29]. This means that colors should not be interpreted as
physical measurements of channel reflectance.

Elevation. Each aerial image is accompanied by an elevation value produced by the IGN. This
information is not an independent measurement but a product derived from a digital elevation model
and a digital surface model obtained through photogrammetry on the aerial images, thereby ensuring
temporal consistency.

Sentinel-2 Time Series. Each patch is associated with a satellite image time series from the
Sentinel-2 constellation [30], as shown in Figure 4. Each image in the sequence is of size 40× 40
with a 10 m pixel resolution, centered around the aerial image. Each pixel is characterized by 10
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Figure 3: Patches from FLAIR. The dataset is comprised of 77 762 patches. Each patch contains (i) a
512× 512 aerial image at 0.2m resolution with red, green, blue (RGB) and near-infrared (NIR) values, (ii) a
pixel-precise digital surface model providing an elevation for each pixel, (iii) semantic labels for each pixel, and
(iv) an optical time series of spatial dimension 40× 40 and 10m per pixel, centered on the aerial image.

spectral bands, ranging from the visible to the medium infrared spectrum; additional details can be
found in the appendix. The time series span the entire year during which the corresponding aerial
image was acquired and contain from 20 to 110 images, depending on the satellite availability and the
orbit characteristics. We include acquisitions with cloud cover and provide cloud and snow probability
masks obtained with Sen2cor [31] in the metadata, alongside information about the satellite and its
orbit.

Only the spatial and temporal extents of the aerial images are annotated. Terrain features that evolve
over time, such as changing river banks or tidal patterns, may not be consistent throughout the time
series. Nevertheless, the satellite time series provide invaluable spectral and temporal information, as
well as a broader spatial context of 400× 400m.

3.3 Specificities

The FLAIR dataset presents specificities often encountered in geospatial analysis but seldom in
computer vision: large-scale multi-sensor acquisitions, and complex spatio-temporal domain shifts.

Multi-Sensor. FLAIR combines optical acquisitions with drastically different spatial (0.2m v.s.
10m), spectral (4 v.s. 10 bands), and temporal (single-date v.s. year-long time series) resolutions. The
discrepancy makes the task of integrating this diverse yet complementary information into a unified
pixel representation a substantial challenge.

Domain-Shifts. The FLAIR dataset spans a large spatio-temporal extent across the entire French
metropolitan territory and various seasons over 3 years. This introduces complex prior-shift (for
instance, there are more vineyards near Bordeaux than in Normandy), and concept-shift (variations in
roof architecture across regions). This last phenomenon can profoundly impact the appearance of
natural and agricultural vegetation, and may also affect the sunlight illumination conditions.

Two camera models were used to capture the aerial images Vexcel’s Ultracam Eage Mark3 [32] and
IGN’s CAMv2 [33]. Although generally minor, this can cause slight differences in resolution and
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Figure 4: Satellite Image Time Series. We represent a year-long satellite time series (top), and its associated
mono-temporal aerial acquisition and corresponding annotations (bottom).

spectral sensitivity. Additionally, all aerial acquisitions undergo radiometric correction to mitigate
disparities caused by sunlight and contrast. This can lead to dissimilarities between spatial domains
regarding the spectral response of identical materials.

Figure 5: Spatio-Temporal Distribution. Spatial units of the FLAIR dataset (left), and spatial and temporal
distribution of the train / validation / test split (right).

4 Baselines

We propose a generic yet powerful multi-sensor architecture to serve as a baseline to evaluate the
semantic segmentation performance of different approaches.

General Architecture. An effective model for our task needs to capture both detailed textures from
the aerial images and complex temporal dynamics from the time series. We propose a network
architecture named U-T&T: U-net with Textural and Temporal information. As shown in Figure 6,
our model consists of two networks: one operating on high-resolution images with four radiometric
channels (red, green, blue, infrared) and one elevation channel, and one network operating on time
series. Each network follows the state-of-the-art approach for their respective data-source.

• U-Net (spatial/texture branch): We use a U-Net [34] with a ResNet34 backbone model [35]
pre-trained on the ImageNet dataset [36]. We add two channels on the first layers to accommodate
near-infrared and elevation pixel values. The weights of these two channels are initialized randomly
[37]. This U-Net branch comprises approximately 24.4 million parameters.

• U-TAE (spatio-temporal branch): We employ a U-Net with temporal attention (U-TAE) to
process the Sentinel-2 imagery [38]. This model is specifically designed to extract multi-scale
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Figure 6: The U-T&T model. Our architecture comprises two modules: (i) a U-TAE network extracts spatio-
temporal descriptors from the Sentinel-2 time series, and (ii) a U-Net network processes the aerial and elevation
images. We merge both feature maps with a branch fusion module. Both branches are supervised simultaneously
with dedicated losses Laerial and Lsat.

spatio-temporal feature maps from satellite image time series. The U-TAE branch includes approx-
imately 2.9 million parameters.

Metadata Encoding. Metadata can significantly impact the interpretation of remote sensing ac-
quisitions. To allow the network to model this specificity, we compute the following features: (i)
spatial coordinates of the center of the patch (with Fourier features), (ii) altitude from sea level, (iii)
year of acquisition (one-hot-encoded), and (iv) camera types (one-hot-encoded). These features are
then processed with a Multi-Layer Perceptron (MLP) and concatenated channelwise to the coarsest
(innermost) feature map of the encoder of the U-Net branch. For more details, refer to the appendix.

Fusion Module. We propose to fuse the multi-scale feature maps from the two branches at different
scales. For each level of the U-Net encoder of width C and extent H × W , our proposed fusion
module has two sub-parts:

• Cropped: This sub-module captures local spatio-temporal information from the image time series.
We first crop the pixel-level feature map from the U-TAE to the extent of the aerial image. Then,
we apply a spatial convolution with a width of C and interpolate the results to size H ×W . Finally,
we add the resulting tensor to the intermediate feature map of the U-Net encoder.

• Collapsed: This sub-module captures a larger spatial context of the patch from the image time
series. We first compute the spatial mean for each channel of the output map of the U-TAE (of size
40× 40). Then, we process the resulting vector with a three-layer MLP to map it to a width of C.
We add this vector to each pixel of the intermediate feature map of the U-Net encoder.

Network Supervision. The U-Net branch produces a prediction of size 13× 512× 512, which can
be directly supervised pixelwise with the loss Laerial, chosen as the categorical cross entropy. The
output of the U-TAE branch is of size 13× 40× 40, and its extent is larger than the annotation. To
adjust this, we first crop it around the aerial image into a tensor of size 13× 10× 10, then use bilinear
interpolation to map it to the desired 13× 512× 512 dimension. This allows us to define its loss Lsat
as the categorical cross entropy as well.

All class weights are set to 1 except for the other class, which is set to 0 in both losses. The weight of
the class plowed land is set to 0 in the loss Lsat as it corresponds to a transient state of land cover
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whose duration is much shorter than the yearly span of the time series. We combine both losses into a
single loss LT&T defined as their unweighted sum:

LT&T = Laerial + Lsat .

Implementation Details. The baseline is implemented with PyTorch Lightning [39]. The code for
U-Net branch is taken from the segmentation-models-PyTorch library [40], and the U-TAE network
is from its official repository [38]. We use the default U-TAE parameters, except for larger widths for
the encoder and decoder

The network is optimized with stochastic gradient descent, a batch size of 10, and a learning rate of
0.001. We set the maximum number of epochs to 100 and use early stopping with a patience of 30
epochs. We employ several augmentation strategies, such as cloud removal, temporal averaging, or
geometric augmentation; see the appendix for additional details. Our model is trained on a cluster of
12 NVIDIA Tesla V100 GPUs with 32 GB memory.

5 Benchmark

Metric. We assess the performance of different configurations of our baseline using the mean
intersection-over-union (mIoU) on the first 12 classes, excluding the other class. We train each model
5 times from scratch, allowing us to compute the standard deviation of the performance.

Analysis. We report in Table 3 the performance for several variations of our baseline models. A
U-TAE model using only the satellite image time series and whose prediction is upsampled to the
resolution of the aerial images leads to much lower performance than its high-resolution counterparts.
In contrast, the performance of the multi-sensor U-T&T model is comparable to the simple U-net
operating on high-resolution images: 54.7 v.s. 54.9. However, when using appropriate augmentation
strategies for both, the performance gap widens: 54.9 to 56.9. Specifically, we evaluated the following
strategies:

• FILT. We remove satellite images with a snow or cloud cover of over 60% according to the
meta-data (with a probability threshold of 0.5). This led to a gain of +0.3 mIoU point on average.

• AVG M. We compute the monthly average of the cloudless satellite acquisitions, ensuring that
the time series have at most 12 elements. While the gain is modest (+0.1 point), this approach
decreased the memory usage and the length discrepancy between locations.

• MTD. Our meta-data encoding strategy did not show any impact on either approach.

• AUG. We perform geometric augmentations on the aerial images: flip, resize, and random affine
transform. This resulted in a +0.6 point increase in performance.

Table 4 provides per-class IoU scores for the two best runs of U-Net and U-T&T. We report better
results for the U-T&T model for all 12 classes. In particular, we observe significant improvements
for classes that particularly benefit from temporal information and broader spatial context, such as
bare soil, coniferous, and vineyard classes. Conversely, the improvement is smaller for the water and
plowed land classes. These classes can change significantly across the year due to tides, shifting river
beds, or harvesting events. Consequently, year-long observation may not bring useful information.
See Figure 7 for qualitative illustrations. More examples are provided in the appendices.

Decoder Architecture. We evaluated the performance of two other decoder networks in the aerial
image branch: FPN [41] and DeepLabV3 [42], while we keep the ResNet34 encoder backbone. We
report in Table 5 the results with and without our proposed enhancement strategies. The largest
network, DeepLabV3, slightly outperforms the other architecture by 0.4 mIoU points.
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Table 3: Quantitative Evaluation. Performance of the U-Net and multi-sensor U-T&T architectures on the
test set. Results are averages of 5 runs of each configuration. PARA.: number of parameters of the network, in
million; EP.: best validation loss epoch.

INPUT FILT. AVG M. MTD AUG PARA. EP. mIoU
UTAE sat ✗ ✗ - - 2.3 16 36.1±0.3

+FILT +AVG M sat ✔ ✔ - - 2.3 18 36.9±0.2

U-Net aerial - - ✗ ✗ 24.4 62 54.7±0.1

+MTD +AUG aerial - - ✔ ✔ 24.4 52 55.2±0.1

U-T&T aerial+sat ✗ ✗ ✗ ✗ 27.3 9 54.9±0.7

+FILT aerial+sat ✔ ✗ ✗ ✗ 27.3 11 55.2±1.4

+AVG M aerial+sat ✗ ✔ ✗ ✗ 27.3 10 55.0±0.7

+MTD aerial+sat ✗ ✗ ✔ ✗ 27.3 7 54.9±0.6

+AUG aerial+sat ✗ ✗ ✗ ✔ 27.3 22 55.5±1.5

+FILT +AVG M +MTD +AUG aerial+sat ✔ ✔ ✔ ✔ 27.3 21 56.9±1.1

Table 4: Per-Class Evaluation. We report the classwise IoU for the best run of the U-Net baseline (aerial
imagery), and the U-T&T baseline (aerial and satellite imagery).
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U-Net 54.7 80.1 47.3 69.9 30.8 79.9 57.6 70.1 23.9 60.1 46.5 54.5 35.8

U-T&T 58.6 83.5 52.0 74.0 43.7 82.2 64.2 73.7 25.6 64.6 47.17 55.2 37.0

Table 5: Decoder Architecture. We report the performance of different network architectures, with and without
our proposed enhancement strategies.

Aerial imagery branch model enhancements PARA. mIoU
U-Net [34] - 27.3 54.9±0.7
FPN [41] - 26.1 55.5±1.0
DeepLabV3 [42] - 28.8 55.8±1.6

U-Net [34] +FILT +AVG M +MTD +AUG 27.3 56.9±1.1
FPN [41] +FILT +AVG M +MTD +AUG 26.1 56.2±0.6
DeepLabV3 [42] +FILT +AVG M +MTD +AUG 28.8 57.3±0.9

6 Discussion

Challenges. The FLAIR dataset was used in two CodaLab [43] scientific challenges, both of which
received over 1000 submissions, indicating significant interest. The first challenge, from November
2022 to March 2023, involved domain adaptation while the second challenge, from May to September
2023, incorporated Sentinel-2 time series and introduced a new test dataset. These challenges allowed
the scientific community to leverage our extensive labeling effort to evaluate, design, and improve
large-scale semantic segmentation methods for multi-sensor Earth observation.

Limitations. The FLAIR dataset is limited to metropolitan France. Although France’s territory is
quite diverse, featuring oceanic, continental, Mediterranean, and mountainous bioclimatic regions,
it does not contain tropical or desert area. As a national agency, IGN’s focus is limited to France.
However, similar efforts by other countries or agencies would increase the diversity of available data
and stimulate the design and evaluation of geographically robust methods.

The FLAIR dataset’s reliance on purely optical data may limit the applicability of the models trained
on it to regions with pervasive cloud cover. Incorporating synthetic aperture radar time series, such as
Sentinel-1 time series, may address this limitation and could be considered in a future extension.

Quality Control. As the annotations are made through visual interpretation, some errors are
unavoidable, especially for classes that are visually hard to distinguish, such as bare soil and pervious
surfaces. We manually annotated around 37k randomly selected polygons, hidden from the annotating
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(a) Aerial image (b) True labels (c) U-T&T prediction (d) U-Net prediction

Figure 7: Qualitative illustration. Black ellipses shows areas that are significantly better classified by the
multi-sensor approach U-T&T than the standard U-Net model.

teams. This covered a total area of 18.7 km2, equivalent to approximately 0.75% of the entire dataset,
or 468 million pixels. If any batch of annotations did not meet a set accuracy criterion of 95%, it was
rejected and returned for re-annotation. This iterative process fostered productive exchanges between
the annotators and the geography experts from IGN, thereby ensuring a high-quality dataset.

Ethics. Releasing a large-scale, high-resolution land-cover dataset openly could raise potential
concerns related to privacy, security, and possible misuse. Indeed, detailed information about private
properties could be extracted, possibly aiding illegal activities. However, both aerial and satellite
images are already publicly available, and we only provide visual interpretations. Furthermore,
high-risk areas such as military facilities and nuclear plants are explicitly excluded from the dataset.

FLAIR focuses on the French metropolitan area, which does not well represent countries in arid or
tropical climates. This bias could steer scientific efforts towards developing models that perform
well in the Western hemisphere while overlooking developing countries. These countries could
significantly benefit from automated land-cover tools due to their challenging climates or struggling
institutions. IGN is committed to equity and plans future work to focus on more diverse climates, for
instance, by planning acquisitions and annotations of French overseas territories.

Potential Social Impact. The primary goal of FLAIR is to stimulate the development of robust
and scalable tools for automatic land cover. These tools could be instrumental in monitoring and
curbing soil artificialization and its catastrophic environmental impacts. Our dataset can also be used
to develop and assess the performance of other key geosaptial analysis tasks such as deforestation or
sea level monitoring.

By providing a curated and accessible dataset of Earth observations, we also hope to draw the
interest of the computer vision community to the challenges of geospatial analysis and contribute to
establishing remote sensing data as a standard modality for evaluating machine learning algorithms’
performance. The dataset can also facilitate the pre-training of models for other geospatial analysis
tasks, such as object detection, super-resolution, or change detection.

7 Licence

FLAIR is under the Open Licence 2.0 of Etalab. This licence has been designed to be compatible
with any free licence that at least requires an acknowledgement of authorship, and specifically with
the previous version of this licence as well as with the following licences: United Kingdom’s “Open
Government Licence” (OGL), Creative Commons’ “Creative Commons Attribution” (CC-BY) and
Open Knowledge Foundation’s “Open Data Commons Attribution” (ODC-BY).
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A Appendix

A.1 Benefits of the multi-source approach

Sentinel-2 imagery are synergistic approach with VHR aerial images for land cover mapping, as each
source has a unique advantage allowing to distinguishing nuanced semantic classes, a critical need in
detailed geospatial analysis. Some of the main benefits of integrating Sentinel-2 are:

• Increased spectral resolution: Unlike aerial acquisitions that generally contain only four
spectral bands (with a single one in the infrared), Sentinel-2 is furnished with a 10-band
multispectral imager. This includes bands in the near-infrared spectrum, which prove
essential for discerning vegetation phenology [44].

• Multi-temporal resolution: Sentinel-2 provides a consistent yearly time series. This
capability allows our model to trace the temporal progression of each pixel’s spectral
response, proving invaluable in distinguishing between similar plant species, as depicted in
Figure 2. As an illustrative example, while an “agricultural land” and a “herbaceous surface”
might appear identical during specific times (exhibiting low herbaceous vegetation), the
agricultural land remains barren of vegetation during other parts of the year. VHR aerial
acquisitions, in contrast, are limited to single-date images.

• Larger spatial context: The coarser spatial resolution of Sentinel-2 (10 m) compared
to aerial images (20 cm) provides an unexpected advantage. By offering a broader con-
text, Sentinel-2 enables our model to harness wider receptive fields. Consequently, each
102x102m aerial patch is linked with a Sentinel-2 image time series spanning a 400x400m
area.

• Spectral Consistency: The Sentinel-2 time series benefits from consistent spectral calibra-
tion, which aids in countering the radiometric inconsistencies introduced during the BD
Ortho’s correction process.

A.2 Sentinel-2 Time Series

Table 6 indicates the original bands acquired by the Sentinel-2 satellites and considered in the FLAIR
dataset. The images were downloaded from the Sinergise API [45] as Level-2A products (Bottom-Of-
the-Atmosphere reflectances) which are atmospherically corrected using the Sen2Cor algorithm [31].
1 Sentinel-2 sensor acquires images at 10, 20 and 60 m spatial resolutions. The 60 m bands mainly
intended for atmospheric corrections are not taken into account and the 20 m bands are resampled
during data retrieval to 10 m by the nearest interpolation method.

Table 6: Sentinel-2 spatial and spectral resolutions. Original spatial and spectral resolutions of Sentinel-2
images along with the correspondence between original band number and the distributed data.

Original
Band number

FLAIR
band number

Central wavelength
(nm)

Bandwidth
(nm)

Original
Spatial resolution

(m)

FLAIR
Spatial resolution

(m)

2 1 490 65 10 10

3 2 560 35 10 10

4 3 665 30 10 10

5 4 705 15 20 10

6 5 740 15 20 10

7 6 783 20 20 10

8 7 842 115 10 10

8a 8 865 20 20 10

11 9 1610 90 20 10

12 10 2190 180 20 10

Table 7 indicates the cloud & snow probability masks provided as separate files alongside the Sentinel-
2 acquisitions. It should be noted that cloud detection in satellite images is a complex task because

1More advanced algorithms [46] could be beneficial.
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of the diversity of clouds (thin, scattered clouds). As a result, probability masks can contain errors,
notably confusion with surfaces with a high albedo and close to the top of a cloud, as is the case with
the roofs of industrial buildings.

Table 7: Provided cloud and snow masks.

Mask FLAIR band number Original Spatial resolution (m) FLAIR Spatial resolution (m)

Snow probability (SNW) 1 20 10

Cloud probability (CLD) 2 20 10

Table 8 provides information about the number of dates included in the filtered Sentinel-2 time series
for the train and test datasets. On average, each area is acquired on 55 dates over the course of a year
by satellite imagery.

Table 8: Sentinel-2 Time series length. Number of acquisitions (dates) in the Sentinel-2 times series of one
year (corresponding to the year of aerial imagery acquisition).

acquisitions per super-area

Sentinel-2 time series (1 year) min max mean

train dataset 20 100 55

test dataset 20 114 55

Note that cloudy dates are not suppressed from the time series. Instead, the masks are provided and
can be used to filter the cloudy dates if needed.

The spatial size of Sentinel-2 time series has been empirically determined and set to 40. Nevertheless,
we provided in this dataset wider areas than the 40 × 40 used for our baseline. However, there is a
limit of 110 pixels for edge patches. The choice of time series spatial size has an impact on the spatial
context provided to both the U-TAE and U-Net branches through the collapsed fusion sub-module
[47].

A.3 Semantic classes

Overall semantic class number of pixels and frequency of the FLAIR dataset are provided in Table 9.
The class distribution in percentages of the train and test sets are presented in Figure 8. The detailed
description of the original semantic classes is provided in Table 10.

The ground truth labels are based on photo-interpretation of the aerial imagery at 20 cm and has been
manually produced by experts following a call for tenders from the IGN. An initial spatial multi-level
image segmentation approach using PYRAM [48] was applied, simplifying the labeling at the small
cluster level. This segmentation was modified interactively when deemed appropriate.

Figure 8: Class distribution of the train dataset (left) and test dataset (right).
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Table 9: Details about the semantic classes of the main nomenclature of the FLAIR dataset and their
corresponding label values, frequency in pixels and percentage among the entire dataset.

Class Label Value Pixels %

building 1 1,453,245,093 7.13

pervious surface 2 1,495,168,513 7.33

impervious surface 3 2,467,133,374 12.1

bare soil 4 629,187,886 3.09

water 5 922,004,548 4.52

coniferous 6 873,397,479 4.28

deciduous 7 3,531,567,944 17.32

brushwood 8 1,284,640,813 6.3

vineyard 9 612,965,642 3.01

herbaceous vegetation 10 3,717,682,095 18.24

agricultural land 11 2,541,274,397 12.47

plowed land 12 703,518,642 3.45

other >13 153,055,302 0.75

Table 10: Semantic classes of the FLAIR dataset.

Class description
Note: as previously stated, semantic classes are assigned on the cluster level. In a given aerial image, only observable objects are labeled,
whereby temporal aspects are not taken into consideration.

Anthropized surfaces without vegetation (1, 2, 3, 13 and 18)
Class 1 – building includes not only buildings but also other types of constructions such as towers, agricultural silos, water towers and dams.
Greenhouses (class 18) are an exception.
Class 2 – pervious surface defined as man-made bare soils covered with mineral materials (e.g. gravel, loose stones) and considered to be
pervious. It includes pervious transport networks (e.g. gravel pathways, railways), quarries, landfills, building sites and coastal ripraps.
Class 3 – impervious surface is defined as man-made bare soils that are impervious due to their building materials (e.g. concrete, asphalt,
cobblestones). It includes roadways, parking lots, and certain types of sports fields.
Class 13 – swimming pool is defined as man-made artificial (open-air) swimming pools. It is not included in class 5 (water).
Class 18 – greenhouse although it can be considered as a building, is given a distinct label. Greenhouses are a class of their own and are not part
of class 1.

Natural areas without vegetation (4, 5 and 14)
Class 4 – bare soil defined as natural permanently bare soils. These natural soils remain without vegetation throughout the year and generally are
covered with sand, pebbles, rocks or stones. Examples of natural bare soils are frequently found in coastal, mountainous and forested areas.
Class 5 – water is defined as areas covered by water, such as sea, rivers, lakes and ponds. An exception are swimming pools (class 13).
Class 14 – snow refers to surfaces covered by snow. It is an extremely rare class as the images are taken in the summertime and only very few
regions in France are covered with snow year-round.

Woody natural vegetation surfaces (6, 7, 8, 15, 16 and 17)
Class 6 – coniferous, is defined as trees identifiable as coniferous (pines, firs, cedars, cypress trees, ...) and taller than 5 m.
Class 7 – deciduous is defined as trees identifiable as deciduous (oaks, beeches, birches, chestnuts, poplars, ...) and taller than 5 m.
Class 8 – brushwood refers to natural woody surfaces with a vegetation less than 5 m high. It includes short and young trees, brushwood,
shrublands, mountain moors and abandoned agricultural lands.
Class 15 – clear-cut, is defined as forest areas, in which the trees have been cut down and harvested.
Class 16 – ligneous is an extremely rare class used to describe forest areas with a homogeneous representation of either coniferous or deciduous
trees.
Class 17 – mixed is an extremely rare class used to describe forest areas with heterogeneous trees for which the types of trees (coniferous/
deciduous) cannot be determined with sufficient certainty.

Agricultural surfaces (9, 11 and 12)
Class 9 – vineyard despite being an agricultural use of the land, are assigned a class apart, a reason being their rather distinctive land cover
characteristics.
Class 11 – agricultural land encompasses various different agricultural classes. For example, besides major crops, it also includes permanent
and temporary grasslands with agricultural use. Vineyards (class 9) are not included in this class.
Class 12 – plowed land is defined as agricultural land with no visible vegetation (e.g. recently plowed and freshly harvested land).

Herbaceous surfaces (10)
Class 10 – herbaceous vegetation defines herbaceous surfaces that are not intensively exploited for agriculture purposes. This class includes
ornamental lawns (e.g. gardens, public parks), recreational fields (e.g. used for sport), natural herbaceous areas in forested or mountainous areas,
non-cultivated grass in agricultural areas or along transportation networks.

16



A.4 Aerial imagery and spatial domains

Within a spatial domain, all aerial acquisitions are radiometrically corrected to reduce disparities in
sunlight and contrast. Nonetheless, this homogenization is not applied equally across all the different
spatial domains as can be seen in Figure 9. As opposed to satellite imagery, the pixel intensity in the
image channels can therefore not be considered as a physical measure.

Figure 9: Radiometric discrepancies of the aerial images between domains. The 3 channels image displayed
is a composite of Near-Infrared, Red and Green spectral information.

A.5 Benchmark architecture

A.5.1 U-Net (spatial/texture branch)

We choose a U-Net architecture [34] with a ResNet34 encoder backbone (pre-trained on the ImageNet
dataset [36]) for a total of ≈ 24.4 M parameters and rely on the implementation available in the
segmentation-models-pytorch library [40] and trained with the PyTorch lightning [39] framework.
The architecture employed is illustrated in Figure 10.

Figure 10: U-Net architecture used for the baseline. IMG = input image; MTD = input metadata; PRED =
prediction output. One potential and traditional approach to integrate the metadata would be to add a Multi-layer
Perceptron for encoding and add the output to the output of the last layer of the encoder or as an additional band
to the IMG input.
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Concerning the exploitation of metadata, a simple approach has been tested [49]. The strategies
explored have a first step of metadata encoding: positional encoding of spatial and temporal infor-
mation and one-hot-encoding for camera type and aerial image acquisition year. A shallow MLP
with dropout (probability of 0.4) and ReLU activation is then defined to jointly encode the metadata
and to provide a specified output size. Subsequently, multiple different integration strategies with
the current ResNet34/U-Net segmentation architecture are possible. We have chosen a commonly
employed strategy (depicted as ’bottom’ in Figure 10) consists in matching the MLP output size
to the output size of the last layer of the ResNet34 encoder. The two vectors (encoded metadata
and encoded images) can then be added and fed into the first layer of the architecture’s decoder.
Strategies following similar approaches that add the MLP encoded output at different positions in
the architecture’s encoder or decoder parts (e.g., after the first input convolution layer, with the last
decoder layer, or even added as a sixth channel to the input image) are possible. A positional encoding
of size 32 is used specifically for encoding the geographical location information.

The exploitation of metadata deserves to be studied more by the computer vision community, as it
could bring real gains by taking advantage of the specificity of remote sensing data.

A.5.2 Fusion module of the U-T&T model

A Fusion Module is employed within the U-T&T baseline model to integrate the feature maps from
satellite time-series (with broader spatial extent) into the feature maps from the aerial imagery branch.
The details of this module can be seen in Figure 11. Within the Fusion Module, two sub-modules
(cropped and collapsed) have different purposes and focus on distinct aspects: the spatio-temporal
information and the spatial context. This Fusion Module is applied to match with each feature maps
of the U-Net encoder.

U-TAE 
embedding 

64x40x40

Collapsed

64 x 1
mean (dim=(-2,-1))

view + repeat
out x H x W

Cropped

Conv2d (64,out, k=1)
out x 10 x 10

Interpolate (bilinear)
out x H x W

CenterCrop
64 x 10 x 10

+

out x 1

Linear (64)
Dropout (0.4)

ReLU

Linear

Dropout (0.4)

ReLU
Linear (out)

out x H x W
Fusion module

Figure 11: Fusion module. This module takes as input the last U-TAE embeddings. It is applied to each stage
of the U-Net encoder feature maps. out corresponds to the channel size of the U-Net encoder feature map and H
and W to the corresponding spatial dimensions.

A.5.3 Data augmentation

By introducing variance in the dataset, image data augmentation helps to prevent overfitting and
provides trained models with enhanced generalization capabilities.

For our baseline, only geometric transformations are explored using the Albumentation library.
Vertical and horizontal flips, and random rotations of 0, 90, 180 or 270 degrees are tested. A data
augmentation probability of 0.5 is used.
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A.6 Benchmark results

A.6.1 Official data split of the FLAIR dataset

The following per domain split of the data has been used for the experiments:

TRAIN: D006, D007, D008, D009, D013, D016, D017, D021, D023, D030, D032, D033,
D034, D035, D038, D041, D044, D046, D049, D051, D052, D055, D060, D063,
D070, D072, D074, D078, D080, D081, D086, D091

VALIDATION: D004, D014, D029, D031, D058, D066, D067, D077

TEST: D015, D022, D026, D036, D061, D064, D068, D069, D071, D084

A.6.2 Extra results

We present in Table 11 the performance of a U-TAE network using only satellite image time series
upsampled spatially to the resolution of the aerial images. The lower resolution of this sensor leads to
signficantly worse results.

Table 11: Quantitative Evaluation. Performance of the U-Net and multi-sensor U-T&T architectures on the
test set. Results are averages of 5 runs of each configuration. PARA.: number of parameters of the network, in
million; EP.: best validation loss epoch.

INPUT FILT. AVG M. MTD AUG PARA. EP. mIoU
U-Net aerial - - ✗ ✗ 24.4 62 54.7±0.1

+MTD aerial - - ✔ ✗ 24.4 59 54.7±0.2

+MTD +AUG aerial - - ✔ ✔ 24.4 52 55.2±0.1

U-TAE sat ✗ ✗ - - 2.3 16 36.1±0.3

+FILT sat ✔ ✗ - - 2.3 14 35.9±0.9

+FILT +AVG M sat ✔ ✔ - - 2.3 18 36.9±0.2

U-T&T aerial+sat ✗ ✗ ✗ ✗ 27.3 9 54.9±0.7

+FILT aerial+sat ✔ ✗ ✗ ✗ 27.3 11 55.2±1.4

+AVG M aerial+sat ✗ ✔ ✗ ✗ 27.3 10 55.0±0.7

+MTD aerial+sat ✗ ✗ ✔ ✗ 27.3 7 54.9±0.6

+AUG aerial+sat ✗ ✗ ✗ ✔ 27.3 22 55.5±1.5

+FILT +AVG M +MTD +AUG aerial+sat ✔ ✔ ✔ ✔ 27.3 21 56.9±1.1

Figure 12 illustrates the confusion matrix of the best U-T&T model. This confusion matrix is derived
by combining all individual confusion matrices per patch and is normalized by rows. The analysis of
the confusion matrix shows that the best U-T&T model achieves accurate predictions with minimal
confusion in the majority of classes. However, when it comes to natural areas such as bare soil and
brushwood, although there is improvement due to the use of Sentinel-2 time series data, a certain
level of uncertainty remains. These classes exhibit some confusion with semantically similar classes,
indicating the challenge of accurately distinguishing them.

More qualitative examples can be found in Figure 13.
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Figure 12: U-T&T best model confusion matrix of the test dataset. The matrix is normalized by rows.
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Figure 13: Illustration of patch-wise results. Random results on the FLAIR dataset for the multi-sensor
approach U-T&T than the standard U-Net model.
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B Datasheet for FLAIR dataset

B.1 Motivation

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there
a particular gap that needed to be filled? Please provide a description.

• The FLAIR dataset is created to train and evaluate models that can predict very-high-
resolution land cover maps from diverse data sources with heterogeneous spatial,
temporal, and spectral resolutions. The main gap we are addressing is the lack of
large-scale data with high-definition annotations.

Q2 Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

• This dataset is presented by the French National Institute of Geographical and Forest In-
formation (IGN), a French public state administrative establishment aiming to produce
and maintain geographical information for France. The IGN has the mission to docu-
ment and measure land-cover on French territory and provides referential geographical
datasets, including very-high-resolution aerial images and topographic maps. IGN
produces reference data and carries out innovation, research and teaching activities. As
part of its innovation activities, the IGN provides the FLAIR dataset to democratize
access to large-scale open powerful machine learning models through the research and
development of open-source resources.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.

• The funding of the FLAIR dataset is 100% public. This work was sponsored by
the Ministry of Ecological Transition (more specifically the Directorate for Planning,
Housing and Nature Direction générale de l’aménagement, du logement et de la nature)
and the Fund for the transformation of public action (Fonds pour la transformation de
l’action publique) from the Minister of the Civil Service. The IGN is funded by the
French Ministry of Ecological Transition and the French Ministry of Agriculture.

Q4 Any other comments?
• [N/A]

B.2 Composition

Q5 What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)?

• We provide aerial image with corresponding land cover segmentation along with
Sentinel-2 satellite image time series around each aerial patch. The acquisitions
are taken from 916 unique areas distributed across 50 French spatial domains
(départements), covering approximately 817 km2. The test labels will be released
at the end of the second challenge hosted on CodaLab. We made our baseline
codes openly available on the FLAIR GitHub page (https://github.com/IGNF/
FLAIR-2-AI-Challenge).

Q6 How many instances are there in total (of each type, if appropriate)?
• We provide 77,762 triplet aerial image, Sentinel-2 time and land cover segmentation.

The FLAIR dataset encompasses 20,384,841,728 annotated pixels at a spatial reso-
lution of 0.20 m from aerial imagery with a 19 classes land cover. For each area, a
comprehensive one-year record of Sentinel-2 acquisitions is also provided. A further
overview of the statistics may be seen in the following annexes.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set?

• The FLAIR dataset, derived from a larger dataset obtained by IGN for cartographic
production upon the request of the French government, serves as a representative sample
encompassing approximately one-third of the available data. While the complete dataset
covers 64 spatial domains, the FLAIR dataset focuses on 50 domains by excluding
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contiguous domains and intra-domain areas. Nevertheless, the selected 50 domains
offer comprehensive representation in terms of land cover classes, acquisition dates, and
macro-climates, and encompass the metadata associated with the entire dataset. The
expertise of IGN was leveraged to ensure the selection of a dataset that is representative
and informative.

Q8 What data does each instance consist of?

• Each instance consists of an aerial image. Each image is 512 × 512 in size with a
resolution of 20 cm per pixel, and feature 4 spectral channels: red, blue, green, and
near-infrared along with an elevation value as fifth channel. Each patch is associated
with a satellite image time series from the Sentinel-2 constellation (Drusch et al., 2012)
of size 40× 40 with a 10 m pixel resolution, centered around the aerial image. Each
pixel from the Sentinel-2 sequences is characterized by 10 spectral bands.

Q9 Is there a label or target associated with each instance?

• [Yes] We provide a complete pixel-precise land cover segmentation per image (19
classes).

Q10 Is any information missing from individual instances?

• [No]

Q11 Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)?

• [No]

Q12 Are there recommended data splits (e.g., training, development/validation, testing)?

• Yes, we provide data splits for reproducing the results of the baselines. The test split
has been explicitly selected to address the complex domain shifts of geospatial data.

Q13 Are there any errors, sources of noise, or redundancies in the dataset?

• As the annotations are made through visual interpretation with quality control, some
errors are unavoidable, especially for classes that are visually hard to distinguish.
Internal quality control with multiple annotations has been performed to limit such
errors. There are no redundancies in the dataset, each image covers a distinct area.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)?

• This dataset is self-contained and will be stored and distributed by the IGN, a public
institute. The dataset is under the Open Licence 2.0 of Etalab.

Q15 Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)?

• [No] . The building class does not contain information that would not be available in
other open-access sources, such as the cadaster. We have specifically avoided high-risk
areas such as military installations or nuclear plants.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

• [No]

Q17 Does the dataset relate to people?

• The dataset may feature pedestrian or individuals, but the resolution of 20cm/pixel and
the aerial perspective is not sufficient to recognize them uniquely.

Q18 Does the dataset identify any subpopulations (e.g., by age, gender)?

• [No]

Q19 Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset?
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• [No] . The resolution of 20cm/pixel and the aerial perspective is insufficient to recognize
them uniquely.

Q20 Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)?

• [No]

Q21 Any other comments?
• [No]

B.3 Collection Process

Q22 How was the data associated with each instance acquired?
• The aerial images are sampled from the ORTHO HR® imagery collection. It is a mosaic

of all the individual images taken during an aerial survey done by IGN and mapped
onto a cartographic coordinate reference system. The individual images are projected
to the RGE ALTI® DTM, which provides solely the altitude of the ground.

• The Sentinel-2 time series were downloaded from the Sinergise Sentinel-Hub API as
Level-2A products (see annexes for more information).

Q23 What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)?

• The IGN selected several acquisition companies through a call for tender with strict
specifications.

Q24 If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

• The sampling strategy involved class frequency, acquisition dates distribution, radio-
metric histogram analysis and geographical location spread. The final sampling based
on these comprehensive variables was made manually by experts at the IGN.

Q25 Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?

• IGN contracted geography experts from the private sector selected through a public
call for tender to annotate the dataset. The quality control of the dataset was carried out
by geography experts affiliated with IGN. The creation of the dataset was facilitated by
researchers and developers employed by IGN under their work contracts.

Q26 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)?

• The collection of aerial imagery spanned from 2018 to 2021, which coincides with the
duration required for an aerial survey to encompass the entirety of the French territory.
Annotations were then applied to the aerial images, aligning with the same time frame.
Subsequently, the dataset was created in 2022 after the final processing for both the
aerial imagery and annotations.

Q27 Were any ethical review processes conducted (e.g., by an institutional review board)?
• [No]

Q28 Does the dataset relate to people?
• [No]

Q29 Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?

• [N/A]

Q30 Were the individuals in question notified about the data collection?
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• [N/A]

Q31 Did the individuals in question consent to the collection and use of their data?
• [N/A]

Q32 If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses?

• [N/A]

Q33 Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted?

• [No]

Q34 Any other comments?
• [No]

B.4 Preprocessing, Cleaning, and/or Labeling

Q35 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?

• [No]

Q36 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.

• [No]

Q37 Is the software used to preprocess/clean/label the instances available?
• [No]

Q38 Any other comments?
• [No]

B.5 Uses

Q39 Has the dataset been used for any tasks already?
• The optical images of FLAIR train split were used for two data challenges ran in 2022

and 2023 by IGN.
• Marsocci et al., 2023 used a subset of FLAIR for to evaluate techniques for unsupervised

domain adaptation.

Q40 Is there a repository that links to any or all papers or systems that use the dataset?
• [Yes] . We propose below a list of scientific publications and systems that use FLAIR

dataset:
– Garioud et al., 2022 provides a technical description of the FLAIR aerial imagery

dataset;
– Garioud et al., 2023 provides insight on the multi-sensor fusion of aerial and

satellite imagery;
– Marsocci et al., 2023 experiments remote sensing unsupervised domain adaptation

using geographical coordinates on a subset of the FLAIR dataset.

Q41 What (other) tasks could the dataset be used for?
• We encourage future researchers to use FLAIR dataset for several tasks. Particularly, we

see applications in land cover segmentation and multi-sensor fusion. Due to the breadth
of the data, it also offers a unique opportunity for pre-training of models for other
geospatial analysis tasks with low resource, such as object detection, super-resolution,
or change detection.

Q42 Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?
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• This dataset is geographically limited to metropolitan France. Although France’s terri-
tory is quite diverse, featuring oceanic, continental, Mediterranean, and mountainous
bioclimatic regions, it does not contain tropical or desert areas.

• The FLAIR dataset’s reliance on purely optical data may limit the applicability of the
models trained on it to regions with pervasive cloud cover.

Q43 Are there tasks for which the dataset should not be used?

• [No] .

Q44 Any other comments?

• [No] .

B.6 Distribution

Q45 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created?

• [Yes] the dataset will be open-source.

Q46 How will the dataset be distributed (e.g., tarball on website, API, GitHub)?

• The data will be available through .zip files available on the FLAIR project page hosted
on GitHub (https://ignf.github.io/FLAIR/).

Q47 When will the dataset be distributed?

• All data with the exception of the test split is presently accessible by registering for an
ongoing challenge hosted on Codalab. The entire dataset, including the test split, will
be released under an open-source license on the FLAIR project page in early October
2023.

Q48 Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

• [Yes] . The data is governed by the Open Licence 2.0 of Etalab (https://www.
etalab.gouv.fr/wp-content/uploads/2018/11/open-licence.pdf).

Q49 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances?

• [No]

Q50 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances?

• [No]

Q51 Any other comments?

• [No]

B.7 Maintenance

Q52 Who will be supporting/hosting/maintaining the dataset?

• IGN will support hosting of the dataset and metadata.

Q53 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

• ai-challenge@ign.fr

Q54 Is there an erratum?

• [No] . There is no erratum for our initial release. Errata will be documented as future
releases on the dataset website.

Q55 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?
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• Additional modalities (e.g., supplementary satellite, aerial, UAV-based imagery) may
be added to the FLAIR dataset.

Q56 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)?

• N/A

Q57 Will older versions of the dataset continue to be supported/hosted/maintained?
• [Yes] . We are dedicated to providing ongoing support for the FLAIR dataset.

Q58 If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so?

• Proposed extensions or corrections to the FLAIR dataset may be submitted to the
providers for consideration. The IGN will assess the feasibility of incorporating
the suggested modifications, considering factors such as data licensing, maintenance
requirements, and relevance.

Q59 Any other comments?
• [No] .
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