
A Attribute Prediction Loss

For each augmented DataGraph Gaug , the certain node features Fv are masked during MaskNode
augmentation. Therefore, we can reconstruct them using the learned embedding Ev with a MLP and
train with MSE reconstruction Loss.

Lattr(Gaug)=
1

|VD|
X

v

MSE(Fv,MLP(Ev))

B Dataset Statistics

Table 3: Dataset statistics
Dataset # Nodes # Edges # Classes

MAG240M 122M 1.3B 153
Wiki 4.8M 5.9M 639
arXiv 169K 1.2M 40
ConceptNet 791K 2.5M 14
FB15K-237 15K 268K 200
NELL 69K 181K 291

C Task Graph GNN Architecture

For the GNN over task graph MT, we use an attention-based GNN, where each node performs attention
to other nodes at each layer:

�ij=MLP
�
WT

q H l
i ||WT

k H l
j ||eij

�
(18)

↵ij=
exp(�ij)P

k2N (i)[{i}exp(�ik)
(19)

H l+1
i =ReLU

0

@BN

0

@H l
i+WT

o

X

j2N (i)[{i}

↵ijW
T
v H l

j

1

A

1

A (20)

D Hyperparameters

D.1 Model Architecture, MAG240M and arxiv

We initialize the node features in citation network datasets using a pretrained language model
(RoBERTa [12] base model trained on NLI and STSB).The architecture of our PromptGraph model
in all of our proposed methods for citation network datasets (full PRODIGY, PG-NM, and PG-MT)
and the baseline (NoPretrain), consists of two message passing layers, MD, over the DataGraph and
one message passing layer, MT, over the TaskGraph. These layers are defined in Section 3.1.

For the Contrastive method, the architecture includes two message passing layers, Md, over the
DataGraph, and a contrastive learning component that is defined in Section 4.1. The mode for Finetune
is the same as the Contrastive method, with the addition of a linear layer head over the output of the
two Md layers, also described in Section 4.1.

D.2 Model Architecture, knowledge graph datasets

We initialize node and edge features in knowledge graph datasets using a pretrained language model
(MPNet [15]). The architecture of our PromptGraph model in all of our proposed methods for
knowledge graph datasets (full PRODIGY, PG-NM, and PG-MT) and the baseline (NoPretrain),
consists of two message passing layers, MD, over the DataGraph, an aggregator as described by

12

Table 4: Ablation of PG-NM on arXiv.

Ways PG-NM 3 !1 shot No Attr No Aug No Attr, Aug No Attr, Aug, MT

3 72.50 ± 0.35 69.13 ± 1.09 65.74 ± 1.12 68.98 ± 1.09 66.53 ± 1.12 63.60 ± 1.06

5 61.21 ± 0.29 57.49 ± 0.92 52.78 ± 0.90 57.50 ± 0.85 53.89 ± 0.92 51.27 ± 0.69

10 46.12 ± 0.19 42.03 ± 0.60 37.99 ± 0.63 42.43 ± 0.64 38.87 ± 0.59 37.62 ± 0.34

20 33.71 ± 0.11 30.18 ± 0.38 26.60 ± 0.36 30.89 ± 0.38 27.50 ± 0.36 27.44 ± 0.17

40 23.69 ± 0.07 21.44 ± 0.22 18.03 ± 0.21 21.97 ± 0.24 18.52 ± 0.22 19.69 ± 0.08

Equation 3, and two message passing layers, MT, over the TaskGraph, which only pass messages along
the positive and query edges. These layers are defined in Section 3.1.

For the Contrastive method, the architecture includes two message passing layers, Md, over the
DataGraph, an aggregator as described by Equation 3 and a contrastive learning component that is
defined in Section 4.1. The mode for Finetune is the same as the Contrastive method, with the addition
of a linear layer head over the output of the two Md layers, also described in Section 4.1.

D.3 Training, MAG240M

The following describes our pretraining setup:

The pretraining task we used consisted of 30 ways, 3 shots, and 4 queries per task. This specific
task configuration was carefully selected to strike a balance between complexity and diversity in the
training data, without overwhelming the GPU memory.

We checkpoint the model every 500 steps.

Our pretraining setup included a model with an input dimension of 768 and an embedding dimension of
256, batch size of 1, and the AdamW optimizer with a learning rate of 1⇥10�3 and weight decay of 1⇥
10�3, a pretraining task with 30 ways, 3 shots, and 4 queries per task, and checkpointing every 500 steps.
This consistent configuration was applied across all the methods for fair comparison. Our full PRODIGY
setup, on average, involves sampling 1 Neighbor Matching task per 1 multitask pretraining tasks.

For our evaluation process, we computed zero-shot transfer performance of the model on the test set,
using the pretraining checkpoint at the 10,000 step of pretraining. The evaluation was conducted on
500 test tasks, with batch size of 5, measured on the downstream task of graph classification accuracy.
To maintain consistency, we kept the number of shots and queries constant at 3 for all evaluation tasks.

D.4 Training, Wiki

The following describes our pretraining setup:

Our pretraining setup included a model with an input dimension of 768 and an embedding dimension of
256, the AdamW optimizer with a learning rate of 1⇥10�3 and weight decay of 1⇥10�3, a pretraining
task with 30 ways, 3 shots, and 4 queries per task, using a batch size of 10, and checkpointing
every 500 steps. This specific task configuration was carefully selected to strike a balance between
complexity and diversity in the training data, without overwhelming the GPU memory. This consistent
configuration was applied across all the methods for fair comparison. Our full PRODIGY setup
involves sampling one neighbor matching task per 50 multitask pretraining tasks.

For our evaluation process, we computed zero-shot transfer performance of the model on the test set,
using the pretraining checkpoint at the 8,000 step of pretraining. The evaluation was conducted on 500
test tasks, with batch size of 1, measured on the downstream task of graph classification accuracy. To
maintain consistency, we kept the number of shots and queries constant at 3 for all evaluation tasks. We
sample 1-hop neighbourhoods for ConceptNet and FB15K-237 and 2-hop neigbourhoods for NELL
and Wiki.

E Ablation on Table 4 for the PG-NM setting

In Table 4, we ablate on various configurations of the self-supervised objective PG-NM. As described in
Section 3.2, PG-NM is composed of an attribute prediction loss, dropnode and zeronode augmentations,

13

with the default setting of sampling 3 shots neighbor matching tasks. Our best setting, referred to
as simply “PG-NM”, is also shown in Table 1 and comprises of attribute prediction, dropnode and
zeronode augmentations, with the default setting of 3 shots.

The ablation results reveal that using all of these elements together results in the highest performance.
Specifically, attribute prediction has the greatest impact on PG-NM’s performance, as its removal
results in an average 7% drop across all ways, as shown in the ‘No-Attr’ column.

Removing the dropnode and zeronode augmentations results in an average 3% drop across all ways, as
shown in the No Aug’ column. Removing both attribute prediction and augmentations results in perfor-
mance that is similar to just removing attribute prediction alone, which is also roughly a 7% drop across
all ways, as shown in the ‘No Attr, Aug’ column. Additionally, we found that decreasing the number
of shots to 1 from the default setting of 3 resulted in an average 3.5% drop across all ways, as shown.

F Evaluation using different numbers of shots

We show evaluation using different numbers of shots, as shown in Figures 3, 5, and 6, 7.

Figure 5: In-context learning accuracy on FB15K-237 in a 20-ways setting wrt. the number of prompt
examples (shots).

Figure 6: In-context learning accuracy on NELL in a 20-ways setting wrt. the number of prompt
examples (shots).

G Scaling with Data Size

We explore how the model scales with more pretraining tasks. Note that we use the number of train
steps as a proxy because the model sees more pretraining tasks as the training proceeds with almost
no redundancy (0.20% for 10k tasks). The result on arXiv in a 5-ways setting is illustrated in Figure 4.
It shows that the Contrastive baseline saturates quickly and its performance fluctuates given more

14

Figure 7: In-context learning accuracy on arXiv in a 5-ways setting wrt. the number of prompt
examples (shots).

pretraining tasks. Instead, PRODIGY consistently shows an improvement in performance as more
data is pretrained on.

H Compute

We use one NVIDIA A100-SXM4-80GB GPU for all our experiments. One pretrain run of 10k steps
takes 3 to 4 hours.

I Broader Impacts

Our work aims to extend the success of in-context learning to graphs and start building toward graph
foundation models. This would allow cost-effective and accurate predictions, especially in domains
where labeled data is scarce and long tail such as network anomaly detection, rare disease diagno-
sis/treatment, supply chain disruption, and recommendations for new users. However, overreliance
on prior knowledge from pretraining could also lead to increased social bias and unfair benefits to
the dominate groups. To mitigate this, pretraining data should be diverse and well-balanced, and the
pretrained models should be tested on downstream tasks over different groups and subdistributions.

15

	Introduction
	In-context Learning over Graphs
	Classification Tasks over Graphs
	Few-shot Prompting
	Prompt Graph Representation

	Pretraining to Enable In-context Learning
	Message Passing Architecture over prompt graph
	In-context Pretraining Objectives
	Pretraining Task Generation
	Prompt graph generation with augmentation
	Pretraining Loss

	Experiments
	Experimental Setup
	In-Context Learning Results
	Ablations
	Evaluation using different numbers of in-context examples
	Scaling with Data Size

	Related Work
	In-context Learning of Large Language Models
	Pretraining on Graphs
	Meta Learning on Graphs

	Conclusion
	Attribute Prediction Loss
	Dataset Statistics
	Task Graph GNN Architecture
	Hyperparameters
	Model Architecture, MAG240M and arxiv
	Model Architecture, knowledge graph datasets
	Training, MAG240M
	Training, Wiki

	Ablation on Table 4 for the PG-NM setting
	Evaluation using different numbers of shots
	Scaling with Data Size
	Compute
	Broader Impacts

