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A Studied Inverse Problems1

A.1 Problem Description2

Problem 1, Turbofan Design: Turbofan is one of the most complex gas aero engine systems, and3

it is the dominant propulsion system favoured by commercial airliners [1]. The inverse problem4

for turbofan design is to find a group of design parameters modelled as the state to achieve the5

desired performance modelled as observation. The observation includes two performance parameters,6

including the thrust yt and the thrust specific fuel consumption yf . The state includes 11 design7

parameters that control the performance of the engine, including the bypass ratio rbp, the fan pressure8

ratio πfan, the fan efficiency ηfan, the low-pressure compressor pressure ratio πLC, the low-pressure9

compressor efficiency ηLC, the high-pressure compressor pressure ratio πHC, the high-pressure10

compressor efficiency ηHC, the combustor efficiency ηLC, the combustion temperature in the burner11

TB, the efficiency of high-pressure turbine ηHT, and the efficiency of low-pressure turbine ηLT.12

Following the same setting as in [2], the goal is to estimate the design parameters that can achieve the13

performance of a CFM-56 turbofan engine, for which the thrust should be 121 KN and the thrust14

specific fuel consumption should be 10.63 g/(kN.s) [3]. This corresponds to the observation vector15

y = [yt, yf ] = [121, 10.63]. The 100 experiment cases tested on this problem differ from the state to16

correct, which is randomly sampled from the feasible region of the design parameter space provided17

by [2]. Table 1 reports the allowed range of each design parameter, which all together define the18

feasible region.19

Table 1: Feasible region of the design parameter space for problem 1.
Range rbp πfan πLC πHC TB ηfan ηHC ηLC ηB ηHT ηLT
Min 5 1.3 1.2 8 1300 K 0.85 0.82 0.84 0.95 0.86 0.87
Max 6 2.5 2 15 1800 K 0.95 0.92 0.94 0.995 0.96 0.97

Problem 2, Electro-mechanical Actuator Design: An electro-mechanical actuator is a device20

that converts electrical energy into mechanical energy [4], by using a combination of an electric21

motor and mechanical components to convert an electrical signal into a mechanical movement. It22

is commonly used in industrial automation[4], medical devices[5], and aircraft control systems [6],23

etc. We consider the design of an electro-mechanical actuator with a three-stage spur gears. Its24

corresponding inverse problem is to find 20 design parameters modelled as the state, according to25

the requirements for the overall cost yc and safety factor ys modelled as the observation. The 10026

experiment cases tested on this problem differ from the observation y = [yc, ys]. We have randomly27

selected 100 combinations of the safety factor and overall cost from the known Pareto front [7], which28

is shown in Fig. 1a. For each observation, the state to correct is obtained by using an untrained ML29

model to provide a naturally failed design.30

Problem 3, Pulse-width Modulation of 13-level Inverters: Pulse-width modulation (PWM) of31

n-level inverters is a technique for controlling the output voltage of an inverter that converts DC32
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Figure 1: Illustration of the 100 used test cases in the 2-dimensional observation space for problem 2
(subfigure a) and 3 (subfigure b).

power into AC power [8]. It modulates the duty cycle of the output waveform of the inverter, thereby33

affecting the effective value of the voltage applied to a load. Particularly, an PWM of 13-level inverter34

adjusts its output waveform using 13 power switching devices to achieve higher precision, which35

is widely used in renewable power generation systems [9], electric vehicles [10], and industrial36

automation equipment [11]. It results in a typical inverse problem of finding the suitable control37

parameters including 30 switch angles modelled as the state, according to the requirements of38

the distortion factor yd (which measures the harmonic distortion of the output waveform) and the39

nonlinear factor yn (which avoids the malfunctioning of the inverter and the connected load) modelled40

as the observation. As in problem 2, the 100 experiment cases tested on this problem also differ from41

the observation, i.e. y = [yd, yn]. They correspond to 100 randomly selected combinations of the42

distortion and nonlinear factors from the known Pareto front in [12], which are shown in Fig. 1b.43

For each observation, the state to correct is obtained by using an untrained ML model to provide a44

naturally failed estimation.45

A.2 Physical Evaluation46

We describe in this section how the physical evaluations are conducted, more specifically, how the47

physical errors are assessed. Overall, it includes the observation reconstruction error, which is based48

on the difference between the given observation and the reconstructed observation from the estimated49

state. For different problems, different physical models are used to simulate the reconstruction. It also50

includes the feasible domain error, which examines whether the estimated state is within a feasible51

region of the state space, and this region is often known for a given engineering problem. Apart from52

these, there are also other problem-specific errors.53

A.2.1 Problem 154

Observation Reconstruction Error: The gas turbine forward model [2] is used to simulate the55

performance of the turbofan engine. It is constructed through the aerodynamic and thermodynamic56

modelling of the components in a turbofan engine, where the modelled components include the inlet,57

fan, low-pressure and high-pressure compressors, combustor, high-pressure and low-pressure turbines,58

core and fan nozzles, as well as through considering the energy losses. This model can transform the59

input of state into physically reasonable output of observation, which is the thrust yt and fuel flow60

yf of the engine. Let F (x) denote a forward model. In problem 1, the performance requirement is61

specifically y = [yt, yf ] = [121, 10.63], thus, for a estimated state x̂, the reconstruction error is62

er(x̂) =

2∑
i=1

||Fi(x̂)− yi||1
2yi

, (1)

where, when i respectively equals to 1 or 2, F1(x̂) and F2(x̂) are the estimated thrust and fuel con-63

sumption in the engine case, respectively. Because the magnitude of the thrust and fuel consumption64

are different, we use the relative error to measure the reconstruction error of the two observation65

elements.66
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Feasible Domain Error: In aero engine design, the design parameters cannot exceed their feasible67

region and such a region has already been identified by existing work [2] as in Table 1. For the i-th68

dimension of an estimated state x̂i (an estimated design parameter), and given its maximum and69

minimum allowed values xmax and xmin, we define its feasible domain error by70

e
(f)
i = max

(
x̂i − xmin

xmax − xmin
− 1, 0

)
+max

(
− x̂i − xmin

xmax − xmin
, 0

)
. (2)

After normalization, all the feasible values are within the range of [0, 1], while the non-feasible71

ones outside. The above error simply examines how much the normalized state value exceeds 172

or below 0. We compute an accumulated feasible error for all the 11 design parameters, given by73

ef (x̂) =
1
11

∑11
i=1 e

(f)
i .74

Design Balance Error: Another desired property by aero engine design is a low disparity among the75

values of the design parameters after normalizing them by their feasible ranges, which indicates a76

more balanced design, offering better cooperation between the design components and resulting in77

lower cost [2, 1]. Standard deviation is a suitable measure to assess this balance property, resulting in78

another physical error79

eσ(x̂) = σ

({
x̂i − xmin

xmax − xmin

}11

i=1

)
. (3)

where σ(·) denotes the standard deviation of the elements from its input set.80

Accumulated Physical Error: The above three types of errors are combined to form the following81

accumulated physical error:82

ê(x̂) = er(x̂) + 0.1ef (x̂) + 0.1eσ(x̂). (4)

The weights are given as 1, 0.1 and 0.1, respectively. This is because the reconstruction error83

determines whether the estimated state is feasible, while the other two errors are used to further84

improve the quality of the estimated state from the perspective of the design preference. Here er(x̂) is85

obtained using a forward simulation process thus is an implicit error, while ef and eσ have analytical86

expressions and simple gradient forms, and thus are explicit errors.87

A.2.2 Problem 288

Observation Reconstruction Error: The used forward model for electro-mechanical actuator design89

is a performance simulation model, considering a stepper motor, three stages of spur gears and a90

housing to hold the components (i.e., stepper motor, and three stages of spur gears) [7]. It consists91

of a physical model that predicts its output speed and torque and component-specific constraints, a92

cost model and a geometric model that creates 3-D meshes for the components and the assembled93

system. The integrated model predicts the observation y = {yc, ys}, and is named as the "CS1"94

model in [7]. After reconstructing by CS1 the safety factor ys and total cost yc from the estimated95

design parameters x̂, the reconstruction error is computed using Eq. 1.96

Feasible Domain Error: The same feasible domain error ef as in Eq. (2) is used for each design97

parameter of problem 2. The only difference is that the allowed parameter ranges for defining the98

feasible region have changed. We use the region identified by [7]. There are 20 design parameters,99

thus ef is an average of 20 individual errors.100

Inequality Constraint Error: We adopt another seven inequality constraints provided by the forward101

model [7] to examine how reasonable the estimated design parameters are. These constraints do not102

have analytical forms, and we express them as ci(x̂) ≤ 0 for i = 1, 2, , . . . , 7. Based on these, we103

define the following inequality constraint error104

ec(x̂) =
1

7

7∑
i=1

max(ci(x̂), 0). (5)

Accumulated Physical Error: We then combine the above three types of errors, given as105

ê(x̂) = er(x̂) + 0.1ef (x̂) + ec(x̂), (6)

where both er(x̂) and ec(x̂) are implicit errors computed using a black-box simulation model, while106

ef is an explicit error. In this case, we increase the weight for inequality constraint error to be the107
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same as the reconstruction error, this is because we regard the implicit errors irrespective of their108

types as the same. Of course, one can also use different weights for different types of errors according109

to their expertise.110

A.2.3 Problem 3111

We use the forward model from [12] to reconstruct the observation for the 13-level inverter. It takes112

the control parameters as the input and returns the distortion factor yd and the nonlinear factor yn.113

Based the reconstructed yd and yn, the observation reconstruction error er is computed by Eq. (1) in114

the same way as in problems 1 and 2. Similarly, the same feasible boundary error ef as in Eq. (2) is115

computed, but the feasible region is different where the range of [0, π
2 ] is applied for all the 30 control116

parameters, which is defined in [12]. A similar inequality constraint error as in Eq. (5) is used, which117

contains 29 inequality constraints in the form of118

ci(x̂) = x̂i − x̂i+1 < 0, for i = 1, 2, . . . 29. (7)

Finally, the accumulated physical error is given by119

ê(x̂) = er(x̂) + 0.1ef (x̂) + 10ec(x̂), (8)

where a large weight is used for ec(x̂) because the inequality constraints that it involves are very120

critical for the design. Among the three types of errors, er(x̂) is an implicit error, while ef (x̂) and121

ec(x̂) are explicit errors.122

B Extra Implementation Information123

In this section, we introduce extra implementation information for GEESE and the compared methods,124

in addition to what has been mentioned in the main text. In GEESE implementation, the latent vector125

z has the same dimension as the state x in problems 1 and 2, because the optimization is done126

directly on the latent vectors. In problem 3, the dimension of z is set be 1, and transformed into a127

30-dimensional vector x by the state generator. The number of the latent vector z used for sampling128

distribution of generators is set increasingly as d = 64, 128, 256 for problems 1, 2, and 3, due to the129

increasing dimension of the state space of the three problems. Although, the budget query number130

equals to 1000, because GEESE may query two times per iteration, thus, the maximum iteration131

number is smaller than 1000, which is determined when the budget is used up.132

For BOGP, its Bayesian optimization is implemented using the package [13]. The prior is set to be a133

Gaussian process, and its kernel is set as Matern 5/2. The acquisition function is set to be the upper134

confidence bound (UCB). The parameter kappa, which indicates how closed the next parameters are135

sampled, is set to be 2.5. The other hyperparameters are kept as default. Since Bayesian optimization136

only queries one state-error pair in each iteration, its maximum iteration number is equal to the137

maximum number of queries, i.e., 1000.138

The other methods of GA, PSO, CMAES, ISRES, NSGA2, and UNSGA3 are implemented using139

the package pymoo [14]. For ISRES, we apply a 1/7 success rule to generate seven times more140

candidates than that in the current population in order to perform a sufficient search. The other141

parameters are kept as default. Since these algorithms need to query the whole population in each142

iteration, their maximum iteration number is thus much smaller than the query budget 1000. In the143

experiments, these algorithms are terminated when the maximum query number 1000 is reached.144

To implement SVPEN [2], we use the default setting for problem 1. As for problems 2 and 3, to145

construct the state estimator and the error estimator for SVPEN, the same structures of the base neural146

networks and the exploitation generator as used by GEESE are adopted, respectively. Also the same147

learning rate as used by GEESE is used for SVPEN, while the other settings are kept as default for148

problems 2 and 3. In each iteration, SVPEN queries three times the physical errors for simulating the149

exploitation, as well as the regional and global exploration. Thus, the maximum iteration number of150

SVPEN is set as 333 to match the query budget 1000.151

All the methods are activated or initialized using the same set of N state-error pairs randomly sampled152

from a predefined feasible region in the state space. For GEESE and SVPEN, these samples are153

used to train their surrogate error models, i.e., the base neural networks in GEESE and the error154

estimator in SVPEN, thus their batch size for training is also set as N . For Bayesian optimization,155
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Table 2: Performance comparison for two different values of feasibility threshold ϵ, where the best is
shown in bold while the second best is underlined for query times.

Threshold Algorithm

Problem 1

State Dimension:11

Problem 2

State Dimension:20

Problem 3

State Dimension:30
Failure times Query times Failure times Query times Failure times Query times

ϵ = 0.1

BOGP 0 3.04 ±0.83 78 849.26 ±295.35 3 86 ±200.49
GA 0 64 ±0 0 65.92 ±10.92 8 183.04 ±287.80
PSO 0 64 ±0 0 64.00 ±0 8 199.92 ±284.94

CMAES 0 12 ±0 0 73.84 ±25.81 3 127.29 ±233.71
ISRES 0 65 ±0 0 108.52 ±41.36 10 203.30 ±297.13
NSGA2 0 64 ±0 0 70.40 ±19.20 8 189.04 ±293.60

UNSGA3 0 64 ±0 0 68.48 ±16.33 7 177.52 ±275.84
SVPEN 82 932.51 ±176.38 100 1000 ±0 100 1000 ±0

GEESE (ours) 0 2.34 ±17.99 0 23.13 ±17.99 0 35.58 ±63.82

ϵ = 0.05

BOGP 0 9.24 ±3.97 100 1000 ±0 16 227.63 ±364.08
GA 0 64.00 ±0 0 353.28 ±105.74 20 297.92 ±363.45
PSO 0 64.00 ±0 1 157.84 ±137.40 18 290.96 ±373.65

CMAES 0 77.56 ±4.38 1 302.59 ±156.24 22 344.54 ±363.18
ISRES 0 193.00 ±0 3 391.54 ±241.22 19 313.69 ±368.78
NSGA2 0 64.00 ±0 0 352.00 ±114.31 20 299.84 364.63

UNSGA3 0 64.00 ±0 0 368.64 ±102.85 20 310.72 ±370.24
SVPEN 100 1000 ±0 100 1000 ±0 100 1000 ±0

GEESE (Ours) 0 20.20 ±16.37 0 189.90 ±164.96 2 81.26 ±155.30

these samples are used to construct the Gaussian process prior. For GA, PSO, ISRES, NSGA2, and156

UNSGA3, these samples are used as the initial population to start the search. The only special case is157

CMAES, as it does not need a set of samples to start the algorithm, but one sample. So we randomly158

select one state-error pair from the N pairs to activate its search.159

For problem 3, we post-process the output of all the compared methods, in order to accommodate the160

element-wise inequality constraints in Eq. (7), by161

x̂
(p)
i = x̂

(p)
1 +

1

1 + e−
∑i

j=1 x̂
(p)
j

(
1− x̂

(p)
1

)
. (9)

As a result, the magnitude of the element in x̂(p) is monotonically increasing, and the inequality162

constraints are naturally satisfied. But this can complicate the state search, as the elements are no163

longer independent. A balance between correlating the state elements and minimizing the accumulated164

physical error is needed. But in general, we have observed empirically that the above post-processing165

can accelerate the convergence for all the compared methods. One way to explain the effectiveness166

of this post-processing is that it forces the inequality constraints to hold, and this is hard for the167

optimization algorithms to achieve on their own.168

C Extra Results169

Varying Feasibility Threshold: In addition to the feasibility threshold of ϵ = 0.075 as studied in the170

main text, we test two other threshold values, including ϵ = 0.05 representing a more challenging171

case with lower error tolerance, and ϵ = 0.1 representing a comparatively easier case with higher172

error tolerance. Results are reported in Table 2. In both cases, GEESE has failed the least times173

among all the compared methods and for all three problems studied. It is worth to mention that, in174

most cases, GEESE has achieved zero failure, and a very small Nfailure = 2 out of 100 in only one175

experiment when all the other methods have failed more than fifteen times. Also, this one experiment176

is the most challenging, solving the most complex problem 3 with the highest state dimension d = 30177

and having the lowest error tolerance ϵ = 0.05. In terms of query times, GEESE has always ranked178

among the top 2 most efficient methods for all the tested cases and problems, while the ranking of179

the other methods vary quite a lot. For instance, when ϵ = 0.05, BOGP performs the best for the180

easiest problem 1, but it performs the worst for the more difficult problem 2 where it has failed to181

find a feasible solution within the allowed query budget. In the most difficult experiment that studies182

problem 3 under ϵ = 0.05, GEESE requires much less query times and is significantly more efficient183

than the second most efficient method.184

Varying Initial Sample Size: In addition to the studied initial sample size N = 64 in the main185

text, we further compare to more cases of N = 16 and N = 32 under ϵ = 0.05. The results are186

shown in Table 3. Still, GEESE has the least failure times in all experiments, which is important187
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Table 3: Performance comparison under for two different sizes of initial samples, where the best is
shown in bold while the second best is underlined for query times.

Initial Size Algorithm

Problem 1

State Dimension:11

Problem 2

State Dimension:20

Problem 3

State Dimension:30
Failure times Query times Failure times Query times Failure times Query times

N = 32

BOGP 0 9.60 ±3.89 100 1000 ±0 15 239.12 ±367.12
GA 0 32.00 ±0 0 241.60 ±71.75 21 270.80 ±382.51
PSO 0 32.00 ±0 18 311.20 ±333.45 14 283.28 ±324.54

CMAES 0 77.56 ±4.38 1 321.01 ±188.6 22 280.54 ±363.18
ISRES 0 64.00 ±0 3 416.24 ±209.23 21 276.24 ±386.75
NSGA2 0 32.00 ±0 1 239.44 ±150.26 22 262.88 ±394.99

UNSGA3 0 32.00 ±0 2 218.72 ±136.53 22 260.64 ±396.51
SVPEN 100 1000 ±0 100 1000 ±0 100 1000 ±0

GEESE (Ours) 0 33.63 ±19.35 0 233.96 ±180.01 10 167.77 ±284.31

N = 16

BOGP 0 10.62 ±5.53 100 1000 ±0 17 249.88 ±372.99
GA 0 16.00 ±0 43 657.04 ±352.42 23 364.40 ±373.30
PSO 0 32.00 ±0 10 293.76 ±271.02 21 247.76 ±392.87

CMAES 0 77.56 ±4.38 1 333.49 ±156.24 17 320.07 ±350.84
ISRES 0 17.00 ±0 2 260.50 ±189.71 20 243.20 ±392.70
NSGA2 0 32.00 ±0 33 590.96 ±355.93 25 377.20 ±385.78

UNSGA3 0 32.00 ±0 28 487.04 ±360.22 28 408.80 ±397.77
SVPEN 100 1000 ±0 100 1000 ±0 100 1000 ±0

GEESE(Ours) 0 36.72 ±22.52 0 248.26 ±176.64 9 163.26 ±279.34

in remediating failed ML estimations. In terms of query times, GEESE still ranks among the top 2188

most efficient methods for the two more complex problems 2 and 3, being the top 1 with significantly189

less query times for the most complex problem 3. However, GEESE does not show advantage in the190

simplest problem 1 with the lowest state dimension. It performs similarly to those top 2 methods191

under N = 32, e.g. 34 vs. 32 query times, while performs averagely when the initial sample size192

drops to N = 16. This is in a way not surprising, because BOGP, GA, PSO, NSGA2 and UNSGA3193

can easily explore the error distribution of low state dimensions. BOGP uses Gaussian process to194

construct accurate distribution of errors, while GA, PSO, NSGA2, and UNSGA3 sample sufficient195

samples in each iteration to sense the distribution of error in each iteration, and there is a high chance196

for them to find a good candidate in early iterations when the search space has a low dimension.197

However, the valuable samples are sparsely distributed into the higher dimensional space, and it is198

challenging for them to explore the error distribution and find the feasible states in the early iterations.199

D GEESE Sensitivity Analysis200

We conduct extra experiments to assess the hyperparameter sensitivity of GEESE using problem 1201

under ϵ = 0.05. The studied hyperparameters include the number L of the base neural networks,202

the number NIT of the candidate states generated for exploitation, the learning rate for training the203

exploitation generator ηIT, and the early stopping threshold ϵe for training the base neural networks.204

The results are reported in Table 4. It can be seen from the table that, although the performance varies205

versus different settings, the change is mild within an acceptable range. This makes it convenient to206

tune the hyperparameters for GEESE.207

Below we further discuss separately the effects of different hyperparameters and analyze the reasons208

behind: (1) We experiment with three base network numbers L = 2, 4, 8. It can be seen from Table209

4 that there is a performance improvement as L increases in terms of the required query times,210

but this is on the expense of consuming higher training cost. Thus, we choose the more balanced211

setting L = 4 as the default in our main experiments. (2) We test different candidate state numbers212

NIT = 1, 32, 64, 128 used for exploitation. Results show a performance increase followed by a213

decrease as NIT increases. Using a candidate set containing one single state is insufficient, while214

allowing a set with too many candidate states can also harm the efficiency. This can be caused by215

the approximation gap between the surrogate error model and the true physical evaluation. In our216

main experiments, we go with the setting of 64 for problem 1 as we mentioned in Appendix B,217

because it provides a proper balance between the exploitation performance and the overfitting risk.218

(3) We also examine different settings of the learning rate for training the exploitation generator, i.e.,219

ηIT = 1e−1, 1e−2, 1e−3. Similarly, there is a performance increase first but followed by a decrease,220

as in changing NIT. A larger learning rate can accelerate the learning of the exploitation generator221

and subsequently enable a potentially faster search of the feasible state. But an overly high learning222

6



rate can also cause fluctuation around the local optimum, and this then consumes more query times.223

Although a smaller learning rate can enable a more guaranteed convergence to the local optimum,224

it requires more iterations, thus more query times. (4) We experiment with three values of early225

stopping threshold, i.e., ϵe = 1e−3, 1e−4, 1e−5. It can be seen from Table 4 that a decreasing ϵe can226

first improve the efficiency but then reduce it, however without changing much the standard deviation.227

An inappropriate setting of the early stopping threshold can lead to base neural networks overfitting228

(or underfitting) to the actual data distribution, thus harm the performance.229

Table 4: Results of sensitivity Analysis, where a better performance is highlighted in bold.

(1): Effect of Base Network Number

Base Network Number Query times

L = 2 20.20 ±16.37

L = 4 15.44 ±13.86

L = 8 15.09 ±13.01

(2): Effect of Latent Vector Number
Latent vector number Query times

NIT = 1 72.56 ±36.13
NIT = 32 28.21 ±17.05
NIT = 64 20.20 ±16.37
NIT = 128 26.95 ±14.12

(3): Effect of Learning rate for Exploration Generator
Learning Rate Query times
ηIT = 1e−1 27.56 ±9.28
ηIT = 1e−2 20.20±16.37
ηIT = 1e−3 64.36 ±44.50

(4): Effect of Early Stopping Threshold
Early stopping threshold Query times

ϵe = 1e−3 37.55±17.28
ϵe = 1e−4 20.20 ±16.37
ϵe = 1e−5 26.20 ±15.45
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