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Abstract

This paper seeks to address a gap in optimizing Average Precision (AP) while
ensuring adversarial robustness, an area that has not been extensively explored to
the best of our knowledge. AP maximization for deep learning has widespread
applications, particularly when there is a significant imbalance between positive and
negative examples. Although numerous studies have been conducted on adversarial
training, they primarily focus on robustness concerning accuracy, ensuring that the
average accuracy on adversarially perturbed examples is well maintained. However,
this type of adversarial robustness is insufficient for many applications, as minor
perturbations on a single example can significantly impact AP while not greatly
influencing the accuracy of the prediction system. To tackle this issue, we introduce
a novel formulation that combines an AP surrogate loss with a regularization
term representing adversarial ranking robustness, which maintains the consistency
between ranking of clean data and that of perturbed data. We then devise an efficient
stochastic optimization algorithm to optimize the resulting objective. Our empirical
studies, which compare our method to current leading adversarial training baselines
and other robust AP maximization strategies, demonstrate the effectiveness of the
proposed approach. Notably, our methods outperform a state-of-the-art method
(TRADES) by more than 4% in terms of robust AP against PGD attacks while
achieving 7% higher AP on clean data simultaneously on CIFAR10 and CIFAR100.
The code is available at: https://github.com/GangLii/Adversarial-AP

1 Introduction
AP measures the precision of a model at different recall levels, offering a more nuanced understanding
of the trade-offs between precision and recall. Optimizing AP for deep learning is of vital importance,
especially in cases with highly imbalanced datasets. In such situations, accuracy alone can be
misleading, as a model may perform well on the majority class but struggle with the minority class,
thereby offering a superficially high accuracy score. In contrast, AP serves as a ranking metric that is
particularly attuned to errors at the top of the ranking list, which makes it a more appropriate metric
for applications dealing with highly imbalanced datasets. For example, deep AP maximization has
been crucial in enhancing molecular property prediction performance, contributing to a winning
solution in the MIT AICures challenge [54].

However, existing approaches of AP maximization are not robust against adversarial examples. It
is notoriously known that deep neural networks (DNN) are vulnerable to adversarial attacks, where
small, carefully-crafted perturbations to the input data can cause the model to produce incorrect
predictions [46, 16]. These perturbations are often imperceptible to humans but can significantly
impact the model’s performance. Tremendous studies have been conducted to improve the adversarial
robustness of DNN. A popular strategy to achieve adversarial robustness is through adversarial
training [27, 59, 53, 45, 21, 2, 35, 44, 47, 15], which injects adversarial examples into the training
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Table 1: Comparison of different approaches for Adversarial AP Maximization (AdAP). Red indicates
new features proposed in this paper.

Approaches Objective Regularization Optimization Ranking Robustness Trade-off Consistent Attack
AdAP_MM MiniMax AP Loss No Zero-sum Game Yes No No
AdAP_PZ AP Loss + Reg. Pointwise Zero-sum Game No Yes Yes
AdAP_LZ AP Loss + Reg. Listwise Zero-sum Game Yes Yes No
AdAP_LN AP Loss + Reg. Listwise Non-zero-sum Game Yes Yes Yes

AdAP_LPN AP Loss + Reg. Listwise + Pointwise Non-zero-sum Game Yes Yes Yes

Ranking List Ranking ListTop TopBottom Bottom

TRADES

Clean images        Acc:0.9,  AP 1.0

One perturbed image        Acc:0.9,  AP 0.6

+

=

One perturbed image        Acc:0.9,  AP 1.0

AdAP_LN
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Figure 1: Top are predictions on clean images of a robust model trained by a state-of-the-art adversarial
training method TRADES [59] and our method on CIFAR-10 data for detecting trucks. Bottom
are predictions on the same set of images with only one example adversarially perturbed, which is
generated by PGD following a black-box attack. The results of TRADES (left) indicate that slightly
changing one example could dramatically impact AP but not on the accuracy. The results of our
approach (right) demonstrate that our solution is more robust to adversarial data in terms of ranking
and AP score. The dashed blue line indicates the decision boundary at score 0.5.

that are generated by various attack methods. Nevertheless, almost all existing methods focus
on robustness concerning accuracy, ensuring that the average accuracy on adversarially perturbed
examples is well maintained. This type of adversarial robustness is insufficient for many applications
with highly imbalanced datasets, as minor perturbations on a single example can significantly impact
AP while not greatly influencing the accuracy of the prediction system (cf. an example in Figure 1).
This presents a significant challenge for adversarially robust AP maximization.

In this paper, we conduct a comprehensive study on how to imbue AP maximization with adversarial
robustness. There are several technical and practical concerns in the design of adversarial training
methods for AP maximization to enjoy three nice properties: (i) capability to trade off between AP
on a set of clean data and the robustness of the model on the perturbed data; (ii) robustness in terms
of ranking performance instead of accuracy against adversarial perturbations; (ii) consistency of
attacks between training and inference. The first property is obvious in light of existing works on
adversarial training [59]. The importance of the second property has been explained in the previous
paragraph. The third property is tricky as it does not exist in existing adversarial training methods.
The adversarial attack is usually applied to an individual data during the inference phase. Hence,
we expect that maintaining the consistency between the attacks generated in training process and
that in the inference phase will help boost the performance. However, this will cause a dilemma for
achieving pointwise attack and listwise robustness in a unified framework.

To acquire these properties in a unified framework, we draw inspiration from prior adversarial training
methods through robust regularization, and integrate two distinct design elements. We examine robust
objectives that combine an AP surrogate loss on the clean data and a regularization term depending
on the perturbed data. The two unique design features are (i) a new listwise adversarial regularization
defined by a divergence between two distributions that represent the top one probabilities of a set
of clean data and their perturbed versions; (ii) a non-zero-sum game approach, which integrates
pointwise adversarial attacks with the proposed listwise adversarial regularization. This will ensure
the attack consistency between training and inference. Our contributions are summarized below.
• We propose a non-zero-sum game optimization formulation for AP maximization with adversarial

ranking robustness, which achieves listwise defense against pointwise attacks.
• We propose an efficient stochastic algorithm for solving the resulting objective, which integrates

traditional adversarial sample generation methods with a state-of-the-art deep AP maximization
algorithm without requiring a large batch size.

• We conduct extensive experiments to compare with existing leading adversarial training baselines,
and ablation studies to compare different approaches shown in Table 1 for adversarial AP maxi-
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mization. We conclude that AdAP_LN and AdAP_LPN achieve the best performance among all
methods corroborating the effectiveness of the proposed techniques.

2 Related Work
Adversarial Robustness. To safeguard deep neural networks (DNNs) from adversarial attacks, a
variety of adversarial defense techniques have been proposed in the literature, including (1) detection
for defense [37, 48, 38, 24]; (2) input transformations for defense [25, 17, 39, 18, 58]; (3) adversarial
training [1, 11, 47, 15]. Among these techniques, adversarial training has been demonstrated to be
one of the most effective approaches [27, 59, 41, 45, 21, 14, 53]. Among these, [27] is the first to
theoretically study and justify adversarial training by solving a min-max formulation for training
adversarially robust models for deep learning. [59] presents an objective function that strike a balance
between accuracy and robustness in light of their theoretical tight upper bound on the robust error.
However, these previous methods focus on how to improve the robustness concerning accuracy,
which is not sufficient for highly imbalanced data. [52] considers adversarial training for imbalanced
data by combining a minimax weighted loss and a contrastive loss of feature representations. [60]
considers adversarial ranking in the context of retrieval and proposes maximum-shift-distance attack
that pushes an embedding vector as far from its original position as possible and uses it in a triplet
loss for optimization. [20] presents a study on adversarial AUC optimization by reformulating the
original tightly coupled objective as an instance-wise form for adversarial training. Nevertheless,
none of these methods enjoy three nice properties simultaneously, i.e., adversarial ranking robustness,
trade-off between AP and robustness, and consistent attacks between training and inference.
Average Precision Optimization. For imbalanced classification and information retrieval problems,
AP optimization has attracted significant attention in the literature [13, 36, 31, 5, 10, 29, 28, 55]. To
maximize the AP score for big data, some works employ stochastic optimization with mini-batch
averaging to compute an approximate gradient of the AP function or its smooth approximation [6, 36,
42, 4]. These methods typically rely on a large mini-batch size for good performance. In contrast,
[34] proposes a novel stochastic algorithm that directly optimizes a surrogate function of AP and
provides theoretical convergence guarantee, without the need for a large mini-batch size. Then [50]
further improve the stochastic optimization of AP by developing novel stochastic momentum methods
with a better iteration complexity of O(1/ϵ4). However, these approaches of AP maximization are
vulnerable to adversarial examples created by introducing small perturbations to natural examples.
The question of how to boost model’s AP under adversarial perturbations while maintaining AP on
clean data is still unresolved.

3 Preliminaries
For simplicity of exposition, we consider binary classification problems. However, the discussions
and algorithms can be easily extended to mean AP for multi-class or multi-label classification
problems. Let D = {(xi, yi)}ni=1 denote the set of all training examples with xi being an input data
and yi ∈ {−1, 1} being its associated label. Denoted by h(x) = hw(x) the predictive function (e.g.,
a deep neural network), whose parameters are w ∈ Rd. Denote by I(·) an indicator function of a
predicate. Denoted by ∥ · ∥ = ∥ · ∥p the Lp-norm where p ∈ (1,∞]. Denoted by B(0, ϵ) = {x :
∥x∥ ≤ ϵ} the Lp-norm ball centered at 0 with radius ϵ. Let D+ and D− be the subsets of D with only
positive examples and negative examples, respectively. Let n+ = |D+| denote the number of positive
examples. Denote by r(xi,D) =

∑
xj∈D I(hw(xj) ≥ hw(xi)) the rank of xi in a set D according

to the prediction scores in descending order, i.e., the number of examples that are ranked higher than
xi including itself. Let ℓ(hw(x), y) denote a pointwise loss function, e.g., the cross-entropy loss.

3.1 AP Maximization
According to its definition, AP can be expressed as: 1

n+

∑
xi∈D+

r(xi,D+)
r(xi,D) [3]. Many different ap-

proaches have been developed for AP maximization [9, 36, 13, 4, 34]. We follow a recent work [34],
which proposes an efficient stochastic algorithm for AP maximization based on differentiable surro-
gate loss minimization. In particular, the rank function is approximated by using a surrogate loss of
the indicator function I(hw(xj) ≥ hw(xi)) [34], yielding the following problem:

min
w

P (w) = − 1

n+

∑
xi∈D+

n∑
s=1

I(ys = 1)ℓ(w;xs;xi)

n∑
s=1

ℓ(w;xs;xi)
, (1)
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where ℓ(·) denotes a smooth surrogate loss function, e.g., the squared hinge loss ℓ(w;xs;xi) =
(max{m− (hw(xi)− hw(xs)), 0})2, where m is a margin parameter.

To tackle the computational complexity of computing the stochastic gradient of P (w), [34]
has formulated this problem as a finite-sum coupled compositional optimization of the form
1
n+

∑
xi∈D+

f(φ(w;xi)), where φ(w;xi) = [φ1(w;xi), φ2(w;xi)], φ1(w;xi) =
∑n

s=1 I(ys =

1)ℓ(w;xs;xi)/n, φ2(w;xi) =
∑n

s=1 ℓ(w;xs;xi)/n, f([φ1, φ2]) = −φ1/φ2. To compute a
stochastic gradient estimator, their algorithm maintains two moving average estimators u1

xi
and

u2
xi

for φ1(w;xi) and φ2(w;xi). At iteration t, two mini-batches are sampeld B+ ∈ D+ and B ∈ D.
The two estimators u1

xi
and u2

xi
are updated by Equation (2) for xi ∈ B+:

u1
xi

= (1− γ1)u
1
xi

+ γ1
1

|B|
∑
xj∈B

ℓ(wt;xj ,xi)I(yj = 1)

u2
xi

= (1− γ1)u
2
xi

+ γ1
1

|B|
∑
xj∈B

ℓ(wt;xj ,xi),

(2)

where γ1 ∈ (0, 1) is a moving average parameter. With these stochastic estimators, an stochastic
estimate of ∇P (w) is given by Equation (3)

∇̂wt
P (wt) =

1

|B+|
∑

xi∈B+

∑
xj∈B

(u1
xi

− u2
xi
I(yj = 1))∇ℓ(wt;xj ,xi)

|B|(u2
xi
)2

. (3)

Then the model parameter can be updated similar to SGD, momentum-based methods, or Adam.

3.2 Pointwise Attacks and Pointwise Adversarial Regularization
An adversarial attack is usually applied to a specific example x such that its class label is changed
from its original label (non-targeted attack) or to a specific label (targeted attack). We refer to
this kind of attack as pointwise attack. Various pointwise attacking methods have been proposed,
including, FGSM [16], Basic Iterative Method [23], PGD [27], JSMA [32], DeepFool [30], and CW
attack [8]. While our approach is agnostic to any pointwise attacks, we restrict our discussion to
optimization-based non-target attacks, δ = argmin∥δ∥≤ϵ G(w,x+ δ, y), where G is an appropriate
function, e.g., G(w,x+ δ, y) = −ℓ(hw(x+ δ), y). A classic adversarial training method is to solve
a robust optimization problem that integrates the training loss with the adversarial attack, e.g.,

min
w

1

n

n∑
i=1

max
∥δi∥≤ϵ

ℓ(hw(xi + δi), yi). (4)

A deficiency of this approach is that it may not capture the trade-off between natural and robust
errors [49]. To address this issue, robust regularization methods have been proposed, whose objective
consists of a regular surrogate loss of error rate on clean data and a robust regularization term that
accounts for the adversarial robustness. Different robust regularizations have been proposed [59, 45,
21]. A state-of-the-art approach is TRADES [59], whose objective is formulated by:

min
w

1

n

n∑
i=1

{
ℓ(hw(xi), yi) + λ max

∥δi∥≤ϵ
L(hw(xi), hw(xi + δi))

}
, (5)

where λ > 0 is a regularization parameter and L(·, ·) is an appropriate divergence function, e.g.,
cross-entropy loss between two predicted probabilities [59].

4 Adversarial AP Maximization
First, we discuss two straightforward approaches. The first method (referred to as AdAP_MM in
Table 1) is to replace the loss in (4) as an AP surrogate loss yielding the following:

min
w

max
∥δ∥≤ϵ

− 1

n+

∑
xi∈D+

n∑
s=1

I(ys = 1)ℓ(w,xs + δs,xi + δi)

n∑
s=1

ℓ(w,xs + δs,xi + δi)
. (6)

The second method (referred to as AdAP_PZ in Table 1) is to simply replace the first term in (5) with
an AP surrogate loss:

min
w

P (w) +
λ

n

n∑
i=1

max
∥δi∥≤ϵ

L(hw(xi), hw(xi + δi)). (7)

4



The limitations of the first method are that it may not capture the trade-off between AP and robustness
and the adversarial attacks during the training are inter-dependent, which is not consistent with
pointwise attacks generated during the inference phase. While the second method is able to trade
off between AP and robustness, the pointwise regularization is not suitable for tackling imbalanced
datasets, as an perturbation on a single data point from a minority class does not change the pointwise
regularization too much but could degrade the AP significantly.

4.1 Listwise Adversarial Regularization

To address the deficiencies of the above straightforward approaches, we draw inspiration from
TRADES and propose a listwise adversarial regularization to replace the pointwise regularization.
The key property of the listwise adversarial regularization is that it should capture the divergence
between the ranking result of the clean data and that of the perturbed data. To this end, we leverage
the top-one probability proposed in the literature of learning to rank [7].

Definition 1 The top one probability of an data xi represents the probability of it being ranked on
the top, given the scores of all the examples i.e., pt(xi) =

exp(hw(xi))∑
j=1 exp(hw(xj))

.

With the definition of top-one probability, we define the listwise adversarial regularization as the
divergence between two listwise probabilities, i.e., {pt(xi)}ni=1 for the clean examples and {pt(xi +
δi)}ni=1 for the perturbed examples. Different metrics can be used to measure the divergence between
two distributions, e.g., KL divergence between {pt(xi)}ni=1 and {pt(xi + δi)}ni=1, KL divergence
between {pt(xi + δi)}ni=1 and {pt(xi)}ni=1, and their symmetric version Jensen-Shannon divergence.
For illustration purpose, we consider the KL divergence:

R(w, δ,D) =
∑n

i=1
pt(xi) log pt(xi)− pt(xi) log pt(xi + δi). (8)

To further understand the above listwise regularization, we conduct a theoretical analysis similar
to [59] by decomposing the robust error into two components. The difference from [59] is that we
need to use the misranking error. We consider the misranking error as Rnat = Exi∼D+

I{h(xi) ≤
maxxj∈D− h(xj)}, which measures how likely a positive example is ranked below a negative
example [43]. To characterize the robust ranking error under the attack of bounded ϵ perturbation, we
define Rrob = Exi∼D+I{∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ maxxj∈D− h(xj + δj)}. It is worth noting
that Rnat ≤ Rrob is always satisfied, and in particular, Rnat = Rrob if ϵ = 0. We show that the
Rrob can be decomposed into Rnat and Rbdy in Theorem 1.

Theorem 1 Rrob = Rnat + Rbdy, where the second term is called the boundary error Rbdy =
Exi∼D+I{h(xi) > maxxj∈D− h(xj)}I{∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ maxxj∈D− h(xj + δj)}.

Remark: It is clear that the boundary error measures the divergence between two ranked list
{hw(xi)}ni=1 and {hw(xi + δi)}ni=1, which provides an explanation of the divergence between the
top-one probabilities on the clean data and on the perturbed data.

Since we are optimizing AP, we use an AP surrogate loss as a surrogate of the misranking error Rnat

on the clean data. Finally, it yields in a robust objective P (w) +R(w, δ,D). A question remained is
how to generate the perturbations. A simple strategy is to use the robust optimization approach that
solves a zero-sum game: minw maxδ∈Ωn P (w) +R(w, δ,D) (referred to as AdAP_LZ in Table 1).
However, since R(w, δ,D) is a listwise regularization, the resulting perturbations {δi}ni=1 are inter-
dependent, which is not consistent with the pointwise attacks generated in the inference phase. To
address this issue, we decouple the defense and the attack by solving a non-zero-sum game:

min
w

P (w) + λR(w, δ,D)

max∥δi∥≤ϵ

∑n

i=1
G(w,xi + δi, yi),

(9)

where the attacks are pointwise attacks generated for individual examples separately, e.g., FGSM,
PGD. We refer to the above method as AdAP_LN. Finally, we experiment with another method by
adding a pointwise regularization into the objective for optimizing the model parameter w, i.e.,

min
w

P (w) + λ(R(w, δ,D) +
1

n

n∑
i=1

L(hw(xi), hw(xi + δi))) (10)

This method referred to as AdAP_LPN imposes a stronger advesarial regularization on the model.
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Algorithm 1 Stochastic Algorithm for Solving AdAP_LN in (9)
1: Initialize w,u1

x,u
2
x,u, γ1, γ2

2: for t = 1, . . . , T do
3: Draw a batch of B+ positive samples denoted by B+.
4: Draw a batch of B samples denoted by B.
5: for xi ∈ B do
6: Initialize δi ∼ α · N (0, 1)
7: for m = 1, . . . ,M do
8: Update δi = Π∥·∥≤ϵ(δi+η2 ·sign(∇δiG(wt,xi+δi, yi))), where ΠΩ(·) is the projection

operator.
9: end for

10: end for
11: For each xi ∈ B+, update u1

xi
and u2

xi
by Equation (2)

12: Update u by Equation (11) and compute ∇̂wtR(wt, δ,D) by Equation (12)
13: Compute stochastic gradient estimator ∇wt

= ∇̂wt
P (wt) + λ∇̂wt

R(wt, δ,D)
14: Update wt+1 by using SGD, momentum-methods or Adam.
15: end for

4.2 Algorithms for Adversarial AP Maximization
Below, we will discuss efficient algorithms for adversarial AP maximization employing different
objectives. Due to limit of space, we focus attention on solving (9). Equal efforts have been spent on
solving other AdAP formulations with algorithms presented in the appendix.

Since there are two players one for minimizing over w and one for maximizing over δ, we adopt the
alternating optimization framework that first optimizes δ for generating attacks of sampled data and
then optimizes for w based on the sampled clean data and perturbed data. The optimization for δ is
following the existing methods in the literature. We use the PGD method for illustration purpose.
The major technical challenge lies at computing a gradient estimator of the listwise regularization
R(w, δ,D) in terms of w. We consider δ to be fixed and rewrite R(w, δ,D) as:∑n

i=1 exp(h(xi))(h(xi)− h(xi + δi))∑n
j=1 exp(h(xj))

− log

n∑
j=1

exp(h(xj)) + log

n∑
j=1

exp(h(xj + δj)).

Note that calculating the gradient of R(w, δ,D) in terms of w directly, which includes the prediction
scores of all samples, is not feasible. To tackle this challenge, we cast R(w, δ,D) into a compositioal
function and borrow the technique of stochastic compositional optimization. To this end, we define:

g(w) = [g1(w), g2(w), g3(w)]⊤

=

[
1

n

n∑
i=1

exp(h(xi))(h(xi)− h(xi + δi)),
1

n

n∑
i=1

exp(h(xi)),
1

n

n∑
i=1

exp(h(xi + δi))

]⊤
.

Let F (g) = g1
g2

− log g2 + log g3. Then we write R(w, δ,D) = F (g(w)) = g1(w)
g2(w) − log g2(w) +

log g3(w). The gradient of R(w; δ,D) is given by:

∇wR(w, δ,D) = ∇wg(w)⊤∇F (g(w)) = ∇wg(w)⊤
(

1

g2(w)
,
−g1(w)− g2(w)

(g2(w))2
,

1

g3(w)

)⊤

.

The major cost for computing ∇wR(w, δ,D) lies at evaluating g(w) and its gradient ∇wg(w),
which involves passing through all examples in D. In order to develop a stochastic algorithm, we will
approximate these quantities by using a mini-batch of random samples. The gradient ∇wg(w) can
be simply approximated by the stochastic gradient, i.e.,

∇̂wg(w) =

 1
B

∑
xi∈B exp(h(xi))((h(xi)− h(xi + δi) + 1)∇wh(xi)−∇wh(xi + δi))

1
B

∑
xi∈B exp(h(xi))∇wh(xi)

1
B

∑
xi∈B exp(h(xi + δi))∇wh(xi + δi)

 ,

where B denote a set of B random samples from D. Due to the non-linear dependence of
∇wR(w, δ,D) on g(w), we cannot simply use their mini-batch estimator in the calculation as
it will yield a large optimization error [51]. To reduce the optimization error [34, 33], we will
maintain a vector u = [u1, u2, u3] for tracking [g1(w), g2(w), g3(w)]. The vector u is updated
by Equation (11), where γ2 ∈ (0, 1) is a parameter. An estimate of ∇wR(w, δ,D) is given by
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Equation (12):

u = (1− γ2)u+ γ2

 1
B

∑
xi∈B exp(h(xi))(h(xi)− h(xi + δi))

1
B

∑
xi∈B exp(h(xi))

1
B

∑
xi∈B exp(h(xi + δi))

 (11)

∇̂wR(w, δ,D) = ∇̂wg(w)⊤
(

1

u2
,
−u1 − u2

(u2)2
,
1

u3

)⊤

. (12)

Finally, we are ready to present the detailed steps of the proposed algorithm for solving AdAP_LZ
in (9) in Algorithm 1, which employs PGD for generating adversarial attacks and stochastic composi-
tional optimization techniques for updating the model parameter w.

5 Experiments
In this section, we perform extensive experiments to evaluate the proposed approaches against white-
box and black-box attacks on diverse imbalanced datasets. In order to provide a comprehensive
understanding of our methods, we conduct experiments from three other perspectives: (1) trade-off
between robustness and average precision; (2) a close look at the effect of the adversarial perturbations;
(3) ablation study of different strategies for adversarial AP maximization.

Datasets. We conduct experiments on four distinct datasets sourced from various domains. These en-
compass CIFAR-10 and CIFAR-100 datasets [22], CelebA dataset [26] and the BDD100K dataset [57].
For CIFAR-10 and CIFAR100, we adopt one versus-all approach to construct imbalanced classifica-
tion tasks. It should be noted that even for clean data, the task of distinguishing between 1 positive
class and 99 negative classes in CIFAR100 is challenging. Hence, in our experiments, we employ
the 20 superclass labels, of which we choose the first 10 superclasses for constructing 10 one-vs-all
binary classification tasks to verify the adversarial robustness on the CIFAR100 dataset. We split
the training dataset into train/validation sets at 80%/20% ratio, and use the testing dataset for testing.
CelebA dataset is a large-scale face attributes dataset that contains over 200,000 images of celebrities,
each of which is annotated with 40 facial attributes. In our experiments, we choose two attributes with
the highest imbalanced ratio, i,e., Gray_hair and Mustache, to show the superiority of our method. We
adopt the recommended training/validation/testing split. BDD100K dataset is a large-scale diverse
driving video dataset, which also has collected image-level annotation on six weather conditions
and six scene types. In our experiments, we choose two kinds of weather conditions, i.e., Rainy and
Cloudy, and two kinds of scene types, i.e., Tunnel and Residential, which are more imbalanced than
others. Since the official testing dataset is not handy, we take the official validation set as the testing
data, and split the training dataset into train/validation sets at 80%/20% ratio. The statistics for each
task in datasets are presented in Table 6 in the appendix.

Baselines. In all experiments, we compare our methods (AdAP_LN, AdAP_LPN) with the following
baseline methods: (1) PGD [27], which solves a MiniMax objective directly to enhance the adversarial
robustness in terms of accuracy; (2) TRADES [59], which considers the trade-off between robustness
and accuracy by minimizing a form of regularized surrogate loss; (3) MART [53], which explores the
effect of misclassified examples to the robustness of adversarial training. Furthermore, we include
two normal training methods, namely CE minimization and AP maximization by [34], as references.

Experimental Details. We employ the ResNet18 [19] as the backbone network in our experiments.
This choice is based on the fact that all the tasks involved in our study are binary classifications, and
ResNet18 is considered to be expressive enough for the purpose. For all methods, with mini-batch
size as 128, we tune learning rate in {1e-3,1e-4,1e-5} with standard Adam optimizer. We set the
weight decay to 2e-4 for the CIFAR10 and CIFAR100 datasets and 1e-5 for the CelebA and BDD100k
datasets. In the case of the CIFAR10 and CIFAR100 datasets, we run each method for a total of 60
epochs. For the CelebA and BDD100k datasets, we run each method for 32 epochs. The learning rate
decay happens at 50% and 75% epochs by a factor of 10. For MART, AdAP_LN and AdAP_LPN,
we tune the regularization parameter λ in {0.1, 0.4, 0.8, 1, 4, 8, 10}. For TRADES, we tune the
regularization parameter in {1, 4, 8, 10, 40, 80, 100}, since they favor larger weights to obtain better
robustness. In addition, for AdAP_LN and AdAP_LPN, we tune its moving average parameters
γ1, γ2 in {0.1, 0.9}. Similarly, we tune the moving average parameters γ1 for AP maximization in
{0.1, 0.9}. We set margin parameter in the surrogate loss of AP as 0.6 for all methods that use the AP
surrogate loss. For all adversarial training methods, we apply 6 projected gradient ascent steps to
generate adversarial samples in the training stage, and the step size is 0.01. We choose L∞ norm
to bound the perturbation within the limit of ϵ = 8/255, as it is commonly used in the literature.

7



All the models in our experiments are trained from scratch, except direct AP maximization which
is fine-tuned on a pretrained CE model as in [34]. For each experiment, we repeat three times with
different random seeds, then report average and standard deviation.

5.1 Robustness against White-box Attacks
In this part, we evaluate the robustness of all models against PGD and APGD [12] white box attacks
that have full access to model parameters. Specifically, we utilized 10-step PGD and APGD attack to
generate adversarial perturbations constrained by the same perturbation limit ϵ = 8/255. Given that
APGD is a step size-free method, we set the step size for PGD to 0.007. For the adversarial training
methods, hyperparameters and models are chosen based on the robust average precision (AP) metric
on validation datasets, and their corresponding performances on test datasets are reported. For normal
training methods, models are chosen based on the clean average precision. The results are presented
in Table 2 and 3. Since we run all the classes of CIFAR10 and the first 10 classes of CIFAR100 to
verify the effectiveness of our method, we report the mean average precision over the ten classes in
the tables, and the performance on each class is shown in the appendix.

From Table 2 and 3, we can observe that our proposed methods outperform other baselines consistently
by a large margin while maintaining notably higher clean AP scores. It is striking to see that our
methods improve robust AP by 2 ∼ 7 percent on all datasets, compared with adversarial training
methods which are concerning accuracy. The results also show that normal training methods (CE min.
and AP max.) are vulnerable to adversarial attacks, while they can achieve pretty high clean AP. This
is consistent with the observation from other literature [46, 16]. When comparing results in Table 3
with that in Table 2, we can see that APGD exhibits stronger attacks than PGD, as demonstrated
in [12]. However, the superiority of our proposed methods still remains evident.

5.2 Robustness against Black-box Attacks
In this part, we examine all the models against adversarial black-box attacks. To achieve this, we
utilize the model trained with CE loss minimization on clean datasets as an attacker model. So we do
not include the performance of models of CE loss minimization here. With the well-trained model
from CE loss minimization, we craft adversarial test images by PGD attack with 20 iterations and
step size is 0.003, under perturbation limit ϵ = 8/255. The models evaluated here are the same model
evaluated in 5.1. The results are summarized in Table 4. Results show that our method exhibits
significantly superior robustness against black-box attacks on all tasks, with evident advantages
against white-box attacks shown in 5.1. From Table 4, we can also observe that the normal training
method, i.e., AP maximization, is also susceptible when confronting adversarial black-box attacks.

5.3 Trade-off between Robustness and AP
As argued in various research studies [59, 40, 56], there exists a trade-off between accuracy and
adversarial robustness. That is saying when one model boosts its adversarial performance, it may
result in a decrease in its clean performance. In this part, we aim to study the trade-off between
robustness and average precision and provide clear visualizations of the phenomenon. To accomplish
this, we tune the weight of the regularization for the regularization-based approaches, i.e. TRADES,
MART, AdAP_LN and AdAP_LPN, then show how their robust AP and clean AP changes. We
evaluate the models at the last epoch to ensure that all methods reach a convergence point. For
TRADES, AdAP_LN and AdAP_LPN, we tune the weight introduced in Experimental Details part,
as well as 0.01, to better illustrate the trade-off trend. We also include non-regularization-based
approaches as a point in this graph.

Based on Figure 2, we can observe that for TRADES, AdAP_LN and AdAP_LPN, as the weight
of regularization increases, the clean AP decreases while the robust AP increases at first, which is
consistent with the observation in [59]. But for MART, the trend is not clear as it is not a trade-off
based approach. However, as the weight of regularization continues increasing, both the clean AP and
robust AP decrease. This is because when the model places excessive emphasis on the regularization
term, it may overlook the actual objective. Notably, our proposed methods place more towards the
upper-right than other baselines, which indicates that our method is able to achieve better both robust
and clean AP simultaneously.

5.4 Visualizing the Behavior after Adversarial Perturbations
To gain a deeper understanding of our approach, we have a close look at how defense models’
predictions change after introducing adversarial perturbations. To be more specific, we compare our
AdAP_LN method with another robust baseline, TRADES, to examine how their predictions are
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Table 2: Adversarial robustness against PGD white box attacks
CIFAR-10 (average) CIFAR-100 (average) CelebA(gray_hair) CelebA(mustache)

Methods Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0526(0.0007) 0.8944(0.0037) 0.0256(0.0001) 0.7094(0.0062) 0.0161(0.0000) 0.7851(0.0040) 0.0196(0.0000) 0.6658(0.0055)
AP Max. 0.0528(0.0012) 0.9007(0.0037) 0.0267(0.0015) 0.7222(0.0077) 0.0161(0.0000) 0.7851(0.0038) 0.0196(0.0000) 0.6517(0.0057)
PGD 0.2765(0.0087) 0.4929(0.0085) 0.1613(0.0043) 0.3149(0.0083) 0.2576(0.0020) 0.4946(0.0019) 0.2127(0.0006) 0.5040(0.0019)
TRADES 0.2884(0.0029) 0.5631(0.0045) 0.1767(0.0026) 0.3975(0.0065) 0.2586(0.0024) 0.4697(0.0040) 0.2069(0.0016) 0.5049(0.0001)
MART 0.2859(0.0126) 0.4971(0.0093) 0.1650(0.0060) 0.3167(0.0071) 0.2608(0.0026) 0.4874(0.0035) 0.2147(0.0021) 0.5053(0.0015)
AdAP_LN 0.2949(0.0147) 0.6345(0.0114) 0.1957(0.0069) 0.4628(0.0138) 0.2931(0.0020) 0.5186(0.0030) 0.2586(0.0044) 0.4693(0.0019)
AdAP_LPN 0.3301(0.0022) 0.6526(0.0029) 0.2188(0.0040) 0.4675(0.0075) 0.2805(0.0028) 0.4944(0.0047) 0.2269(0.0010) 0.5439(0.0040)

BDD100K(tunnel) BDD100K(residential) BDD100K(rainy) BDD100K(cloudy)
Methods Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0014(0.0000) 0.6289(0.0215) 0.0655(0.0000) 0.5970(0.0051) 0.0379(0.0000) 0.7374(0.0063) 0.0379(0.0000) 0.6623(0.0021)
AP Max. 0.0014(0.0000) 0.6390(0.0188) 0.0656(0.0000) 0.6262(0.0101) 0.0381(0.0000) 0.7566(0.0056) 0.0388(0.0004) 0.6681(0.0029)
PGD 0.2263(0.0054) 0.4091(0.0146) 0.1378(0.0017) 0.1805(0.0022) 0.1730(0.0087) 0.3688(0.0178) 0.2164(0.0067) 0.4497(0.0105)
TRADES 0.1855(0.0094) 0.4459(0.0208) 0.1568(0.0011) 0.2379(0.0012) 0.2203(0.0016) 0.4807(0.0023) 0.2403(0.0013) 0.5250(0.0028)
MART 0.2223(0.0077) 0.4074(0.0164) 0.1400(0.0007) 0.1865(0.0020) 0.1703(0.0041) 0.3661(0.0086) 0.2157(0.0036) 0.4469(0.0055)
AdAP_LN 0.2918(0.0137) 0.5726(0.0141) 0.1617(0.0021) 0.3070(0.0029) 0.2545(0.0017) 0.5401(0.0053) 0.2826(0.0035) 0.5483(0.0039)
AdAP_LPN 0.2986(0.0121) 0.5558(0.0047) 0.1752(0.0013) 0.2552(0.0004) 0.2598(0.0032) 0.5194(0.0033) 0.2744(0.0036) 0.5456(0.0087)

Table 3: Adversarial robustness against APGD white-box attacks

CIFAR-10 (average) CIFAR-100 (average) CelebA(gray_hair) CelebA(mustache)
Methods Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0524(0.0004) 0.8944(0.0037) 0.0255(0.0000) 0.7094(0.0062) 0.0161(0.0000) 0.7851(0.0040) 0.0196(0.0000) 0.6658(0.0055)
AP Max. 0.0526(0.0012) 0.9007(0.0037) 0.0257(0.0003) 0.7222(0.0077) 0.0163(0.0001) 0.7851(0.0038) 0.0196(0.0000) 0.6517(0.0057)
PGD 0.2670(0.0054) 0.4929(0.0085) 0.1580(0.0035) 0.3149(0.0083) 0.2560(0.0020) 0.4946(0.0019) 0.2090(0.0004) 0.5040(0.0019)
TRADES 0.2839(0.0029) 0.5631(0.0045) 0.1739(0.0027) 0.3975(0.0065) 0.2572(0.0025) 0.4697(0.0040) 0.2020(0.0013) 0.5049(0.0001)
MART 0.2721(0.0052) 0.4971(0.0093) 0.1603(0.0050) 0.3167(0.0071) 0.2592(0.0025) 0.4874(0.0035) 0.2110(0.0021) 0.5053(0.0015)
AdAP_LN 0.2594(0.0056) 0.6345(0.0114) 0.1853(0.0030) 0.4628(0.0138) 0.2908(0.0009) 0.5186(0.0030) 0.2318(0.0017) 0.4693(0.0019)
AdAP_LPN 0.3252(0.0022) 0.6526(0.0029) 0.2160(0.0040) 0.4675(0.0075) 0.2785(0.0027) 0.4944(0.0047) 0.2222(0.0008) 0.5439(0.0040)

BDD100K(tunnel) BDD100K(residential) BDD100K(rainy) BDD100K(cloudy)
Methods Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0014(0.0000) 0.6289(0.0215) 0.0655(0.0000) 0.5970(0.0051) 0.0379(0.0000) 0.7374(0.0063) 0.0379(0.0000) 0.6623(0.0021)
AP Max. 0.0014(0.0000) 0.6390(0.0188) 0.0656(0.0000) 0.6262(0.0101) 0.0382(0.0001) 0.7566(0.0056) 0.0387(0.0003) 0.6681(0.0029)
PGD 0.2235(0.0055) 0.4091(0.0146) 0.1364(0.0013) 0.1805(0.0022) 0.1722(0.0086) 0.3688(0.0178) 0.2128(0.0067) 0.4497(0.0105)
TRADES 0.1819(0.0115) 0.4459(0.0208) 0.1563(0.0011) 0.2379(0.0012) 0.2187(0.0014) 0.4807(0.0023) 0.2366(0.0013) 0.5250(0.0028)
MART 0.2209(0.0083) 0.4074(0.0164) 0.1383(0.0013) 0.1865(0.0020) 0.1694(0.0040) 0.3661(0.0086) 0.2120(0.0038) 0.4469(0.0055)
AdAP_LN 0.2882(0.0142) 0.5726(0.0141) 0.1616(0.0013) 0.3070(0.0029) 0.2526(0.0019) 0.5401(0.0053) 0.2789(0.0027) 0.5483(0.0039)
AdAP_LPN 0.2959(0.0114) 0.5558(0.0047) 0.1747(0.0014) 0.2552(0.0004) 0.2579(0.0031) 0.5194(0.0033) 0.2719(0.0035) 0.5456(0.0087)

Table 4: Adversarial robustness against black-box attacks
CIFAR-10 (average) CIFAR-100 (average) CelebA(gray_hair) CelebA(mustache)

Methods Robust Clean Robust Clean Robust Clean Robust Clean
AP Max. 0.1137(0.0374) 0.9007(0.0037) 0.0608(0.0241) 0.7222(0.0077) 0.0162(0.0000) 0.7851(0.0038) 0.0196(0.0000) 0.6517(0.0057)
PGD 0.4594(0.0074) 0.4929(0.0085) 0.2869(0.0078) 0.3149(0.0083) 0.4638(0.0022) 0.4946(0.0019) 0.4180(0.0010) 0.5040(0.0019)
TRADES 0.5148(0.0039) 0.5631(0.0045) 0.3420(0.0045) 0.3975(0.0065) 0.4360(0.0033) 0.4697(0.0040) 0.3953(0.0009) 0.5049(0.0001)
MART 0.4624(0.0083) 0.4971(0.0093) 0.2892(0.0067) 0.3167(0.0071) 0.4578(0.0039) 0.4874(0.0035) 0.4188(0.0013) 0.5053(0.0015)
AdAP_LN 0.5562(0.0087) 0.6345(0.0114) 0.3880(0.0099) 0.4628(0.0138) 0.4753(0.0011) 0.5186(0.0030) 0.3635(0.0010) 0.4627(0.0015)
AdAP_LPN 0.6031(0.0028) 0.6526(0.0030) 0.4166(0.0072) 0.4675(0.0075) 0.4633(0.0047) 0.4944(0.0047) 0.4334(0.0036) 0.5439(0.0041)

BDD100K(tunnel) BDD100K(residential) BDD100K(rainy) BDD100K(cloudy)
Methods Robust Clean Robust Clean Robust Clean Robust Clean
AP Max. 0.1013(0.0736) 0.6390(0.0188) 0.1149(0.0367) 0.6262(0.0101) 0.0669(0.0228) 0.7566(0.0056) 0.1904(0.0694) 0.6681(0.0029)
PGD 0.3724(0.0123) 0.4091(0.0146) 0.1797(0.0022) 0.1805(0.0022) 0.3566(0.0172) 0.3688(0.0178) 0.4194(0.0089) 0.4497(0.0105)
TRADES 0.3764(0.0196) 0.4459(0.0208) 0.2330(0.0010) 0.2379(0.0012) 0.4645(0.0025) 0.4807(0.0023) 0.4752(0.0018) 0.5250(0.0028)
MART 0.3727(0.0161) 0.4074(0.0164) 0.1860(0.0020) 0.1865(0.0020) 0.3539(0.0085) 0.3661(0.0086) 0.4169(0.0047) 0.4469(0.0055)
AdAP_LN 0.5400(0.0168) 0.5726(0.0141) 0.2872(0.0027) 0.3070(0.0029) 0.5234(0.0052) 0.5401(0.0053) 0.4872(0.0011) 0.5483(0.0039)
AdAP_LPN 0.5252(0.0062) 0.5558(0.0047) 0.2486(0.0008) 0.2552(0.0004) 0.5060(0.0037) 0.5194(0.0033) 0.4975(0.0085) 0.5457(0.0087)

Table 5: Comparison of different adversarial AP maximization methods
CIFAR-10 (average) CIFAR-100 (average) BDD100K(tunnel) BDD100K(rainy)

Methods Robust Clean Robust Clean Robust Clean Robust Clean
AdAP_MM 0.2759(0.0062) 0.4708(0.0126) 0.1878(0.0047) 0.3843(0.0105) 0.2743(0.0441) 0.5849(0.0284) 0.2199(0.0011) 0.4516(0.0053)
AdAP_PZ 0.3105(0.0018) 0.6112(0.0049) 0.2109(0.0032) 0.4465(0.0078) 0.2708(0.0180) 0.5771(0.0516) 0.2531(0.0029) 0.5031(0.0104)
AdAP_LZ 0.3012(0.0194) 0.6508(0.0129) 0.1919(0.0084) 0.4422(0.0200) 0.2619(0.0127) 0.6212(0.0107) 0.2103(0.0021) 0.4365(0.0163)
AdAP_LN 0.2949(0.0147) 0.6345(0.0114) 0.1957(0.0069) 0.4628(0.0138) 0.2918(0.0137) 0.5726(0.0141) 0.2545(0.0017) 0.5401(0.0053)
AdAP_LPN 0.3301(0.0022) 0.6526(0.0029) 0.2188(0.0040) 0.4675(0.0075) 0.2986(0.0121) 0.5558(0.0047) 0.2598(0.0032) 0.5194(0.0033)

affected by adversarial perturbations. For fair comparison, we apply the same perturbation crafted in
5.2 for both methods. From Figure 3, we can observe that for TRADES, all the samples’ prediction
scores cluster closely to a small value before perturbation as it is working on an imbalanced dataset,
while the prediction scores of our method scatter more evenly. With introduced perturbations, the
ranking order predicted by TRADE is changed significantly with small changes in prediction scores,
which leads to a considerable decrease in terms of AP. On the contrary, the perturbation does not
affect the predicted ranking order of our method, despite the impact on their prediction scores. This
helps demonstrate why our method is more robust than other baselines in terms of AP.

5.5 Ablation Study
To investigate the significance of the new features in our proposed method, i.e., the listwise adversarial
regularization and the non-zero-sum game approach, we conduct ablation studies to compare different
approaches shown in Table 1 for adversarial AP maximization. Following the setting in 5.1, we
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Figure 2: Visualization of the trade-off between robustness and average precision. For the sake
of clarity in these figures, we defer the detailed values to Table 9 in the appendix to additionally
demonstrate the correlation between robust AP/clean AP and λ.
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Figure 3: Visualization of models’ predictions after perturbation
run all these five approaches on Cifar10, CIFAR100 and BDD100K datasets. The experimental
settings and the hyperparameters for AdAP_LN and AdAP_LPN are the same as those in 5.1. The
hyperparameters we tune for AdAP_LZ are the same as those for AdAP_LN. For AdAP_PZ, we
tune the weight parameter in {1, 4, 8, 10, 40, 80, 100}. For AdAP_MM, we tune γ1 in {0.1,0.9}.
The results are presented in Table 5. We can see that (i) robust regularization approaches are better
than the minimax approach (AdAP_MM) (ii) the non-zero-sum game approaches (AdAP_LPN,
AdAP_LN) are usually better than the zero-sum game approach (AdAP_LZ); (iii) combining listwise
and pointwise adversarial regularization in AdAP_LPN could bring significant boost in term of both
robust AP and clean AP.

Insensitivity to Batch Size. We investigate the proposed approximation method for g(w) by varying
the mini-batch size for AdAP_LN algorithm and report results in Figure 4 in the appendix. We
can see that AdAP_LN does not require a very large batch size and is generally not sensitive to the
mini-batch size, which implies the effectiveness of our approximation method.

Sensitivity to γ1, γ2. We study the sensitivity of the hyper-parameters γ1, γ2 for proposed AdAP_LN
algorithm. From the results in Table 8 in the appendix, we can observe that γ1, γ2 have a significant
impact on the performance. However, when we tune γ1, γ2 in {0.1, 0.9}, it is able to achieve relatively
good performance but not always the optimal one.

Empirical convergence analysis. We report the convergence curves of proposed AdAP_LN algo-
rithm in Figure5 in the appendix, which demonstrates the convergence of the algorithm.

Time efficiency. We compare the training time efficiency of the proposed method with different
algorithms in Table 7 in the appendix. We can observe that (i) adversarial training methods are
generally more time-consuming than natural training; (ii) our proposed AdAP_LN and AdAP_LPN
methods cost a little more time than traditional PGD method but much less time than TRADES.

6 Conclusions
In this paper, we have proposed a novel solution for maximizing average precision with adversarial
ranking robustness. The proposed formulation is robust in terms of listwise ranking performance
against individual adversarial perturbations and is able to trade off between average precision on
clean data and adversarial ranking robustness. We have developed an efficient stochastic algorithm
to solve the resulting objective. Extensive experimental results on various datasets demonstrate
that the proposed method can achieve significantly improved adversarial robustness in terms of AP,
compared with other strong adversarial training baselines. It would be interesting to extend our
method to construct more robust systems with average precision as the objective, such as object
detection systems and medical diagnosis systems.

Acknowledcements
We thank anonymous reviewers for constructive comments. G. Li and T. Yang were partially supported
by NSF Career Award 2246753, NSF Grant 2246757, NSF Grant 2246756, NSF Grant 2306572, and
GM gift funding.

10



References
[1] Sravanti Addepalli, Vivek BS, Arya Baburaj, Gaurang Sriramanan, and R Venkatesh Babu.

Towards achieving adversarial robustness by enforcing feature consistency across bit planes. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1020–1029, 2020.

[2] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial
training for adversarial robustness. CoRR, abs/2102.01356, 2021.

[3] Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-recall curve:
point estimates and confidence intervals. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part III 13, pages 451–466. Springer, 2013.

[4] Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew Zisserman. Smooth-ap: Smoothing
the path towards large-scale image retrieval. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pages 677–694.
Springer, 2020.

[5] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost
functions. Advances in neural information processing systems, 19, 2006.

[6] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric learning to rank. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1861–1870, 2019.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pages 129–136, 2007.

[8] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee, 2017.

[9] Kean Chen, Jianguo Li, Weiyao Lin, John See, Ji Wang, Lingyu Duan, Zhibo Chen, Changwei
He, and Junni Zou. Towards accurate one-stage object detection with ap-loss. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5119–5127,
2019.

[10] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Ranking measures and loss
functions in learning to rank. Advances in Neural Information Processing Systems, 22, 2009.

[11] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pages 1310–1320. PMLR, 2019.

[12] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[13] Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon, Ryan Rifkin, and Gal Elidan. Scalable
learning of non-decomposable objectives. In Artificial intelligence and statistics, pages 832–840.
PMLR, 2017.

[14] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the robust-
ness of adversarial logit pairing. arXiv preprint arXiv:1807.10272, 2018.

[15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[17] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering
adversarial images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

11



[18] Puneet Gupta and Esa Rahtu. Ciidefence: Defeating adversarial attacks by fusing class-
specific image inpainting and image denoising. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6708–6717, 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Wenzheng Hou, Qianqian Xu, Zhiyong Yang, Shilong Bao, Yuan He, and Qingming Huang.
Adauc: End-to-end adversarial auc optimization against long-tail problems. In International
Conference on Machine Learning, pages 8903–8925. PMLR, 2022.

[21] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[23] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC,
2018.

[24] Jiayang Liu, Weiming Zhang, Yiwei Zhang, Dongdong Hou, Yujia Liu, Hongyue Zha, and
Nenghai Yu. Detection based defense against adversarial examples from the steganalysis
point of view. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4825–4834, 2019.

[25] Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang, and Wujie Wen. Feature distillation:
Dnn-oriented jpeg compression against adversarial examples. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 860–868. IEEE, 2019.

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[27] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[28] Pritish Mohapatra, CV Jawahar, and M Pawan Kumar. Efficient optimization for average
precision svm. Advances in Neural Information Processing Systems, 27, 2014.

[29] Pritish Mohapatra, Michal Rolinek, CV Jawahar, Vladimir Kolmogorov, and M Pawan Kumar.
Efficient optimization for rank-based loss functions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3693–3701, 2018.

[30] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2574–2582, 2016.

[31] Harikrishna Narasimhan, Andrew Cotter, and Maya Gupta. Optimizing generalized rate metrics
with three players. Advances in Neural Information Processing Systems, 32, 2019.

[32] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE
European symposium on security and privacy (EuroS&P), pages 372–387. IEEE, 2016.

[33] Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, and Tianbao Yang. An online method for a class of
distributionally robust optimization with non-convex objectives. Advances in Neural Information
Processing Systems, 34:10067–10080, 2021.

[34] Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimization of areas
under precision-recall curves with provable convergence. Advances in Neural Information
Processing Systems, 34:1752–1765, 2021.

12



[35] Zhuang Qian, Kaizhu Huang, Qiu-Feng Wang, and Xu-Yao Zhang. A survey of robust adversar-
ial training in pattern recognition: Fundamental, theory, and methodologies, 2022.

[36] Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for direct optimization
of information retrieval measures. Information retrieval, 13:375–397, 2010.

[37] Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, and Geoffrey Hinton.
Detecting and diagnosing adversarial images with class-conditional capsule reconstructions.
arXiv preprint arXiv:1907.02957, 2019.

[38] Yuxian Qiu, Jingwen Leng, Cong Guo, Quan Chen, Chao Li, Minyi Guo, and Yuhao Zhu.
Adversarial defense through network profiling based path extraction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4777–4786, 2019.

[39] Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Barrage of random transforms
for adversarially robust defense. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6528–6537, 2019.

[40] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang. Un-
derstanding and mitigating the tradeoff between robustness and accuracy. arXiv preprint
arXiv:2002.10716, 2020.

[41] Alexander Robey, Luiz Chamon, George J Pappas, Hamed Hassani, and Alejandro Ribeiro.
Adversarial robustness with semi-infinite constrained learning. Advances in Neural Information
Processing Systems, 34:6198–6215, 2021.

[42] Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica, Claudio Michaelis, and Georg
Martius. Optimizing rank-based metrics with blackbox differentiation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7620–7630, 2020.

[43] Cynthia Rudin. The p-norm push: A simple convex ranking algorithm that concentrates at the
top of the list. 2009.

[44] Samuel Henrique Silva and Peyman Najafirad. Opportunities and challenges in deep learning
adversarial robustness: A survey. CoRR, abs/2007.00753, 2020.

[45] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, et al. Guided adversarial attack for
evaluating and enhancing adversarial defenses. Advances in Neural Information Processing
Systems, 33:20297–20308, 2020.

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[47] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014.

[48] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks meet interpretability:
Attribute-steered detection of adversarial samples. Advances in Neural Information Processing
Systems, 31, 2018.

[49] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

[50] Guanghui Wang, Ming Yang, Lijun Zhang, and Tianbao Yang. Momentum accelerates the
convergence of stochastic auprc maximization. In International Conference on Artificial
Intelligence and Statistics, pages 3753–3771. PMLR, 2022.

[51] Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent: algo-
rithms for minimizing compositions of expected-value functions. Mathematical Programming,
161:419–449, 2017.

13



[52] Wentao Wang, Han Xu, Xiaorui Liu, Yaxin Li, Bhavani Thuraisingham, and Jiliang Tang.
Imbalanced adversarial training with reweighting. In 2022 IEEE International Conference on
Data Mining (ICDM), pages 1209–1214, 2022.

[53] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International Conference
on Learning Representations, 2020.

[54] Zhengyang Wang, Meng Liu, Youzhi Luo, Zhao Xu, Yaochen Xie, Limei Wang, Lei Cai,
Qi Qi, Zhuoning Yuan, Tianbao Yang, et al. Advanced graph and sequence neural networks for
molecular property prediction and drug discovery. Bioinformatics, 38(9):2579–2586, 2022.

[55] Peisong Wen, Qianqian Xu, Zhiyong Yang, Yuan He, and Qingming Huang. Exploring the
algorithm-dependent generalization of auprc optimization with list stability. Advances in Neural
Information Processing Systems, 35:28335–28349, 2022.

[56] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika
Chaudhuri. A closer look at accuracy vs. robustness. Advances in neural information processing
systems, 33:8588–8601, 2020.

[57] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous mul-
titask learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2636–2645, 2020.

[58] Jianhe Yuan and Zhihai He. Ensemble generative cleaning with feedback loops for defending
adversarial attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 581–590, 2020.

[59] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pages 7472–7482. PMLR, 2019.

[60] Mo Zhou, Zhenxing Niu, Le Wang, Qilin Zhang, and Gang Hua. Adversarial ranking attack and
defense. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV 16, pages 781–799. Springer, 2020.

14



A More Experimental Results

All experiments in our paper are run across 16 NVIDIA A10 GPUs and 10 NVIDIA A30 GPUs. We
present the statistics for each task in our experiments in Table 6.

Table 6: Datasets statistics. The percentage in parenthesis represents the proportion of positive
samples.

Dataset Train Validation Test
CIFAR-10 40000 (10%) 10000 (10%) 10000 (10%)
CIFAR-100 40000 (5%) 10000 (5%) 10000 (5%)
BDD100K(tunnel) 55890 (0.18%) 13973 (0.19%) 10000 (0.27%)
BDD100K(residential) 55890 (11.56%) 13973 (11.56%) 10000 (12.53%)
BDD100K(rainy) 55890 (7.26%) 13973 (7.26%) 10000 (7.38%)
BDD100K(cloudy) 55890 (6.99%) 13973 (6.98%) 10000 (7.38%)
CelebA(gray_hair) 162770 (4.24%) 19867 (4.87%) 19962 (3.19%)
CelebA(mustache) 162770 (4.08%) 19867 (5.05%) 19962 (3.87%)

A.1 Time efficiency of our proposed algorithm

Time efficiency is typically a concern for adversarial training techniques. To order to investigate the
time efficiency of our proposed method, we’ve conducted some experiments to show time efficiency
comparison with different algorithms. In the experiment, we set the parameters, which could affect
training time, exactly the same(e.g. batch size as 128, total epochs as 60, adversarial samples are
generated with 6 projected gradient ascent steps) and run all the models over three times on the
Class_0 task of CIFAR10. From the table 7, we can observe that (i) adversarial training methods are
generally more time-consuming than natural training; (ii) our proposed AdAP_LN and AdAP_LPN
methods cost a little more time than traditional PGD method but much less time than TRADES.
This is because, to generate adversarial samples in training, TRADES is solving the maximiza-
tion of KL divergence between the probabilities predicted with clean data and perturbed data(i.e.
max∥δ∥≤ϵ

∑
k h(x)k log h(x)k − h(x)k log h(x + δ)k, where h(x)k and h(x + δ)k are predicted

probabilities for class k on clean data and perturbed data respectively, which requires two forward
propagations and one backpropagation in each projected gradient ascent step. However, PGD and our
proposed methods are directly solving maximization of Cross Entropy(i.e. max∥δ∥≤ϵ − log h(x+δ)y),
which only needs one forward propagation and one backpropagation in each projected gradient ascent
step. In adversarial training, since each gradient descent step w.r.t w requires multiple gradient ascent
steps w.r.t δ, the computational expense primarily stems from the projected gradient ascent steps,
which can be also observed by comparing the efficiency of CE Min. with PGD.

Table 7: Training efficiency comparison

Methods Run 1 Run 2 Run 3 Average
CE Min. 563s 566s 568s 565.67s
AP Max. 589s 590s 589s 589.33s
PGD 2833s 2804s 2803s 2813.33s
TRADES 4203s 4182s 4179s 4188.00s
MART 3192s 3205s 3194s 3197.00s
AdAP_LN 3227s 3213s 3211s 3217.00s
AdAP_LPN 3234s 3219s 3218s 3223.67s

A.2 Sensitivity of proposed algorithm to batch size

In our proposed algorithm, one essential step is the approximation of g(w). Due to the non-
linear dependence of ∇wR(w, δ,D) on g(w), we cannot simply use their mini-batch estimator
in the calculation as it will yield a large optimization error [51]. Instead, we maintain a vector
u = [u1, u2, u3] for tracking [g1(w), g2(w), g3(w)] to reduce the optimization error. The vector
u is updated by Equation (11). To offer more empirical results on this, we have conducted some
experiments to investigate the proposed AdAP_LN’s sensitivity to batch sizes on CIFAR10 dataset.
The results are shown in Figure 4. We can observe that our method does not require a very large
batch size to achieve a good performance and is generally not sensitive to batch size, which implies
the effectiveness of our approximation method.
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Figure 4: Illustration for insensitivity of AdAP_LN to batch size

A.3 Sensitivity of proposed algorithm to γ1 and γ2

In our main experiments, the hyper-parameters γ1, γ2 for our proposed algorithms are tuned in
{0.1, 0.9} as mentioned in Section 5. To study the sensitivity of these parameters, we conducted
some more experiments on CIFAR10 and BDD100K datasets. The results are summarized in Table 8.
From the table, we can observe that γ1, γ2 have a significant impact on the performance. However,
when we tune γ1, γ2 in {0.1, 0.9}, it is able to achieve relatively good performance but not always
the optimal one.

Table 8: Robust AP on validation for AdAP_LN with different γ1 and γ2

CIFAR10 (average) γ2 = 0.1 γ2 = 0.3 γ2 = 0.5 γ2 = 0.7 γ2 = 0.9
γ1 = 0.1 0.2719(0.0116) 0.273(0.0079) 0.275(0.0105) 0.2756(0.0135) 0.2753(0.0114)
γ1 = 0.3 0.2701(0.012) 0.2696(0.01) 0.2753(0.0128) 0.2733(0.0101) 0.2745(0.0107)
γ1 = 0.5 0.2674(0.0088) 0.2741(0.011) 0.2688(0.0108) 0.2685(0.0135) 0.2741(0.0113)
γ1 = 0.7 0.2649(0.0103) 0.2713(0.007) 0.2686(0.0165) 0.2696(0.0138) 0.2658(0.0103)
γ1 = 0.9 0.2668(0.0137) 0.2766(0.0131) 0.2668(0.013) 0.2689(0.0139) 0.2641(0.0124)

BDD100K(rainy) γ2 = 0.1 γ2 = 0.3 γ2 = 0.5 γ2 = 0.7 γ2 = 0.9
γ1 = 0.1 0.2433(0.0209) 0.2436(0.0205) 0.2404(0.0188) 0.2415(0.0220) 0.2423(0.0215)
γ1 = 0.3 0.2471(0.0219) 0.2440(0.0174) 0.2432(0.0169) 0.2473(0.0214) 0.2460(0.0188)
γ1 = 0.5 0.2479(0.0210) 0.2475(0.0209) 0.2476(0.0217) 0.2450(0.0189) 0.2472(0.0187)
γ1 = 0.7 0.2507(0.0203) 0.2453(0.0204) 0.2471(0.0179) 0.2461(0.0206) 0.2480(0.0176)
γ1 = 0.9 0.2522(0.0208) 0.2479(0.0200) 0.2485(0.0201) 0.2447(0.0193) 0.2478(0.0193)

A.4 Empirical convergence analysis

Since the theoretical convergence analysis of our proposed algorithm is very challenging, deriving
the convergence would be a significant work by itself. Instead, we provides some empirical results to
show the convergence of the proposed algorithm. Specifically, we set λ = 1, γ1 = 0.1, γ2 = 0.1 and
run AdAP_LN algorithm on CIFAR10 dataset and BDD100K dataset for a total of 120 epochs and
80 epochs, respectively. We evaluate the training loss after each epoch and report the loss values. We
present the AP loss (i.e., P (w) in Equation 9) and regularization term ( i.e., R(w, δ,D) in Equation 9)
separately, as well as the summation of the two losses. For each experiment, we repeat three times
with different random seeds. The results are shown in Figure 5, which demonstrates the convergence
of our algorithm.
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Figure 5: Training convergence curves on CIFAR10 and BDD100K dataset
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A.5 Detailed values for Figure 2

To clearly demonstrate the relationship between robust AP/clean AP and λ, corresponding to Fig.2,
we provide the detailed values in Table 9. For TRADES, AdAP_LN and AdAP_LPN, the results
clearly indicate that there is a positive correlation between robust AP and λ for relatively small values
of λ and this correlation diminishes when λ continues increasing. Moreover, a negative correlation
between clean AP and λ is consistently observed, in accordance with our expectations. But for
MART, the trend is not clear as it is not a trade-off based approach.

Table 9: The Correlation between Robust AP/Clean AP and λ. The results are presented in the format
of robust AP/clean AP, with the values representing the average of three runs with different seeds.

λ 0.01 0.4 0.8 1 4 8 10
CIFAR10(cls_1)
TRADES 0.0521/0.9609 0.4514/0.9135 0.4476/0.8846 0.4455/0.8727 0.4040/0.7930 0.3727/0.7479 0.3616/0.7305
MART 0.4511/0.8777 0.4548/0.8812 0.4519/0.8769 0.4349/0.8622 0.4247/0.8450 0.4016/0.8164 0.4030/0.8111
AdAP_LN 0.1153/0.9525 0.4264/0.9295 0.4590/0.9190 0.4464/0.9099 0.3181/0.8649 0.2695/0.8385 0.2522/0.8356
AdAP_LPN 0.1504/0.9358 0.5185/0.9314 0.5263/0.9146 0.5229/0.9067 0.4818/0.8468 0.4517/0.8102 0.4411/0.7968
CIFAR100(cls_2)
TRADES 0.0282/0.8823 0.3252/0.7107 0.3241/0.6571 0.3090/0.6324 0.2782/0.5213 0.2759/0.5040 0.2757/0.4994
MART 0.3263/0.6669 0.3207/0.6538 0.3216/0.6527 0.3183/0.6420 0.3075/0.6095 0.2990/0.5839 0.2950/0.5767
AdAP_LN 0.0811/0.8752 0.2782/0.7984 0.3184/0.7668 0.3238/0.7540 0.3644/0.6736 0.3437/0.6286 0.3436/0.6164
AdAP_LPN 0.1604/0.8332 0.3475/0.7896 0.3809/0.7558 0.3859/0.7441 0.3724/0.6470 0.3501/0.6011 0.3392/0.5827
BDD100K(cloudy)
TRADES 0.0379/0.6429 0.2301/0.5554 0.2390/0.5260 0.2382/0.5153 0.2105/0.4251 0.1565/0.2443 0.1510/0.2193
MART 0.2130/0.4459 0.2130/0.4450 0.2145/0.4441 0.2129/0.4404 0.1993/0.3973 0.1974/0.3901 0.1887/0.3631
AdAP_LN 0.0621/0.6504 0.2221/0.5986 0.2742/0.5632 0.2815/0.5577 0.2796/0.4935 0.2347/0.4937 0.2103/0.4861
AdAP_LPN 0.0411/0.6570 0.2455/0.5985 0.2682/0.5681 0.2726/0.5600 0.2725/0.4886 0.2464/0.4366 0.2473/0.4295
CelebA(gray_hair)
TRADES 0.0161/0.7686 0.2341/0.5428 0.2581/0.4707 0.2571/0.4513 0.2447/0.3828 0.2206/0.3366 0.2265/0.3423
MART 0.2567/0.4910 0.2576/0.4882 0.2582/0.4865 0.2594/0.4864 0.2617/0.4784 0.2613/0.4696 0.2616/0.4672
AdAP_LN 0.0264/0.7037 0.1831/0.6282 0.2449/0.6061 0.2696/0.6010 0.2859/0.5221 0.2714/0.4662 0.2601/0.4506
AdAP_LPN 0.0284/0.7123 0.2280/0.6259 0.2555/0.5907 0.2644/0.5804 0.2799/0.4948 0.2676/0.4515 0.2676/0.4515

A.6 Detailed experimental results on CIFAR10 and CIFAR100 Dataset

Due to the limit of space, we include mAP results over 10 classes on CIFAR10 and CIFAR100
datasets in Section 5.1 and Section 5.2. Here, we present the detailed performance for each class
on CIFAR10 and CIFAR100 datasets in Table 10, Table 11, Table 12,Table 13, Table 14, Table 15.
From Table 10, Table 11, Table 12 and Table 13 about white-box robustness, we can observe that, in
most cases, our methods improve other baselines significantly. There is one special case on CIfAR10
Class_3 in Table 10 that MART method behaves much better than others due to high variance(we can
see it from the deviation in the parenthesis). When we look at Table 12 about white-box robustness
against stronger APGD attacks, we can find that the superiority of MART disappears on CIfAR10
Class_3 since the advantage gained by high variance is not stable. From Table 14 and Table 15 about
black-box robustness, we can observe that our methods outperform other baselines by a large margin
consistently.

A.7 More plots for trade-off visualization

Due to page limitations, we present one single trade-off curve for each dataset in Section 5.3 to
illustrate our findings. In this part, we include more trade-off curves on all the datasets in Figure 6,
Figure 7, Figure 8, Figure 9. These additional figures provide further support for the superiority of
our methods.

Table 10: Adversarial robustness against PGD white-box attacks on CIFAR10 dataset

CIFAR10
class_0 class_1 class_2 class_3 class_4

Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0519(0.0000) 0.9037(0.0031) 0.0558(0.0027) 0.9687(0.0009) 0.0518(0.0000) 0.8493(0.0057) 0.0518(0.0000) 0.7235(0.0064) 0.0519(0.0001) 0.8843(0.0034)
AP Max. 0.0528(0.0010) 0.9056(0.0049) 0.0563(0.0063) 0.9707(0.0026) 0.0522(0.0005) 0.8602(0.0021) 0.0521(0.0003) 0.7398(0.0123) 0.0523(0.0004) 0.8968(0.0026)
PGD 0.4315(0.0039) 0.6109(0.0131) 0.4584(0.0036) 0.8869(0.0024), 0.1419(0.0037) 0.3160(0.0131) 0.1629(0.0381) 0.1730(0.0071) 0.1892(0.0070) 0.2523(0.0021)
TRADES 0.4372(0.0032) 0.6708(0.0033) 0.4523(0.0049) 0.9109(0.0011) 0.1798(0.0060) 0.3982(0.0094) 0.1293(0.0004) 0.2685(0.0029) 0.1854(0.0009) 0.3408(0.0028)
MART 0.4295(0.0029) 0.6032(0.0066) 0.4559(0.0076) 0.8796(0.0061) 0.1528(0.0101) 0.3068(0.0212) 0.1942(0.0825) 0.1731(0.0143) 0.1838(0.0025) 0.2510(0.0014)
AdAP_LN 0.4259(0.0042) 0.6498(0.0033) 0.4679(0.0315) 0.9143(0.0064) 0.1568(0.0152) 0.5538(0.0364) 0.1169(0.0037) 0.3342(0.0187) 0.1703(0.0031) 0.3066(0.0053)
AdAP_LPN 0.4572(0.0024) 0.7382(0.0018) 0.5262(0.0035) 0.9145(0.0016) 0.2041(0.0031) 0.5016(0.0047) 0.1420(0.0008) 0.2788(0.0038) 0.1856(0.0007) 0.3801(0.0062)

class_5 class_6 class_7 class_8 class_9
Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0518(0.0000) 0.8347(0.0050) 0.0518(0.0000) 0.9403(0.0048) 0.0521(0.0002) 0.9372(0.0022) 0.0548(0.0031) 0.9559(0.0022) 0.0527(0.0005) 0.9460(0.0031)
AP Max. 0.0518(0.0000) 0.8420(0.0040) 0.0519(0.0000) 0.9419(0.0022) 0.0519(0.0000) 0.9416(0.0021) 0.0545(0.0035) 0.9569(0.0014) 0.0518(0.0000) 0.9513(0.0025)
PGD 0.2329(0.0004) 0.4524(0.0054) 0.2363(0.0026) 0.4111(0.0031) 0.2356(0.0169) 0.5928(0.0232) 0.4157(0.0035) 0.7390(0.0020) 0.2602(0.0070) 0.4944(0.0134)
TRADES 0.2225(0.0017) 0.4068(0.0047) 0.2289(0.0016) 0.3492(0.0029) 0.3723(0.0022) 0.7893(0.0011) 0.3877(0.0054) 0.7961(0.0159) 0.2890(0.0028) 0.7008(0.0012)
MART 0.2348(0.0010) 0.4510(0.0019) 0.2346(0.0023) 0.4059(0.0030) 0.2917(0.0092) 0.6667(0.0250) 0.4158(0.0020) 0.7397(0.0070) 0.2662(0.0054) 0.4935(0.0067)
AdAP_LN 0.2293(0.0067) 0.5091(0.0063) 0.2647(0.0197) 0.7147(0.0106) 0.3978(0.0258) 0.8318(0.0075) 0.4193(0.0287) 0.8068(0.0019) 0.3004(0.0084) 0.7239(0.0176)
AdAP_LPN 0.2467(0.0014) 0.5658(0.0028) 0.2785(0.0019) 0.6837(0.0029) 0.4354(0.0031) 0.8292(0.0003) 0.4564(0.0024) 0.8413(0.0028) 0.3690(0.0030) 0.7928(0.0025)
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Table 11: Adversarial robustness against PGD white-box attacks on CIFAR100 dataset

CIFAR100
class_0 class_1 class_2 class_3 class_4

Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0256(0.0001) 0.5465(0.0085) 0.0256(0.0001) 0.6112(0.0025) 0.0255(0.0000) 0.8932(0.0025) 0.0255(0.0000) 0.7359(0.0072) 0.0258(0.0000) 0.8255(0.0078)
AP Max. 0.0255(0.0000) 0.5480(0.0060) 0.0258(0.0002) 0.6348(0.0199) 0.0259(0.0003) 0.8993(0.0022) 0.0255(0.0000) 0.7392(0.0079) 0.0267(0.0015) 0.8355(0.0035)
PGD 0.1124(0.0021) 0.2128(0.0060) 0.1845(0.0020) 0.3414(0.0071) 0.3261(0.0066) 0.6618(0.0036) 0.1141(0.0066) 0.2466(0.0120) 0.3115(0.0022) 0.5166(0.0034)
TRADES 0.1177(0.0010) 0.2560(0.0020) 0.1942(0.0028) 0.3888(0.0069) 0.3289(0.0044) 0.6937(0.0106) 0.1663(0.0053) 0.3976(0.0119) 0.3039(0.0031) 0.5289(0.0060)
MART 0.1187(0.0027) 0.2188(0.0029) 0.1882(0.0037) 0.3417(0.0080) 0.3258(0.0074) 0.6651(0.0034) 0.1352(0.0144) 0.2389(0.0092) 0.3148(0.0043) 0.5140(0.0061)
AdAP_LN 0.1273(0.0028) 0.3131(0.0049) 0.1912(0.0020) 0.4073(0.0036) 0.3658(0.0054) 0.6736(0.0035) 0.1930(0.0011) 0.4403(0.0042) 0.3396(0.0174) 0.5580(0.0036)
AdAP_LPN 0.1376(0.0005) 0.2946(0.0014) 0.2144(0.0069) 0.4469(0.0092) 0.3916(0.0096) 0.7342(0.0111) 0.2085(0.0045) 0.4979(0.0019) 0.3554(0.0005) 0.5439(0.0014)

class_5 class_6 class_7 class_8 class_9
Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0255(0.0000) 0.5990(0.0065) 0.0255(0.0000) 0.7690(0.0039) 0.0255(0.0000) 0.6743(0.0037) 0.0255(0.0000) 0.6033(0.0102) 0.0262(0.0009) 0.8361(0.0095)
AP Max. 0.0299(0.0054) 0.6257(0.0081) 0.0262(0.0005) 0.7806(0.0032) 0.0276(0.0029) 0.6974(0.0069) 0.0255(0.0000) 0.6192(0.0111) 0.0282(0.0038) 0.8422(0.0082)
PGD 0.0804(0.0025) 0.1671(0.0151) 0.1054(0.0018) 0.1960(0.0090) 0.1441(0.0021) 0.3205(0.0057) 0.0763(0.0108) 0.0943(0.0066) 0.1583(0.0060) 0.3915(0.0147)
TRADES 0.0963(0.0036) 0.2972(0.0068) 0.1533(0.0031) 0.4387(0.0059) 0.1751(0.0011) 0.3660(0.0008) 0.0662(0.0008) 0.1174(0.0054) 0.1655(0.0013) 0.4910(0.0086)
MART 0.0805(0.0028) 0.1439(0.0060) 0.1095(0.0079) 0.2531(0.0100) 0.1477(0.0020) 0.2973(0.0030) 0.0700(0.0100) 0.0969(0.0065) 0.1593(0.0047) 0.3972(0.0157)
AdAP_LN 0.1131(0.0040) 0.3900(0.0524) 0.2058(0.0060) 0.5916(0.0130) 0.1884(0.0020) 0.4611(0.0076) 0.0693(0.0119) 0.2031(0.0334) 0.1631(0.0160) 0.5897(0.0117)
AdAP_LPN 0.1483(0.0038) 0.4268(0.0164) 0.2459(0.0021) 0.5670(0.0153) 0.2170(0.0037) 0.4234(0.0062) 0.0710(0.0003) 0.1552(0.0018) 0.1986(0.0083) 0.5846(0.0105)

Table 12: Adversarial robustness against APGD white-box attacks on CIFAR10 dataset

CIFAR10
class_0 class_1 class_2 class_3 class_4

Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0518(0.0000) 0.9037(0.0031) 0.0547(0.0017) 0.9687(0.0009) 0.0518(0.0000) 0.8493(0.0057) 0.0518(0.0000) 0.7235(0.0064) 0.0519(0.0001) 0.8843(0.0034)
AP Max. 0.0519(0.0001) 0.9056(0.0049) 0.0596(0.0110) 0.9707(0.0026) 0.0518(0.0000) 0.8602(0.0021) 0.0518(0.0000) 0.7398(0.0123) 0.0519(0.0001) 0.8968(0.0026)
PGD 0.4291(0.0038) 0.6109(0.0131) 0.4482(0.0033) 0.8869(0.0024), 0.1380(0.0034) 0.3160(0.0131) 0.1120(0.0145) 0.1730(0.0071) 0.1797(0.0014) 0.2523(0.0021)
TRADES 0.4334(0.0031) 0.6708(0.0033) 0.4391(0.0050) 0.9109(0.0011) 0.1782(0.0062) 0.3982(0.0094) 0.1289(0.0004) 0.2685(0.0029) 0.1847(0.0009) 0.3408(0.0028)
MART 0.4274(0.0032) 0.6032(0.0066) 0.4465(0.0074) 0.8796(0.0061) 0.1509(0.0105) 0.3068(0.0212) 0.0929(0.0092) 0.1731(0.0143) 0.1756(0.0019) 0.2510(0.0014)
AdAP_LN 0.4222(0.0034) 0.6498(0.0033) 0.4220(0.0117) 0.9143(0.0064) 0.1371(0.0074) 0.5538(0.0364) 0.1144(0.0024) 0.3342(0.0187) 0.1701(0.0033) 0.3066(0.0053)
AdAP_LPN 0.4529(0.0025) 0.7382(0.0018) 0.5153(0.0031) 0.9145(0.0016) 0.2012(0.0030) 0.5016(0.0047) 0.1413(0.0008) 0.2788(0.0038) 0.1843(0.0008) 0.3801(0.0062)

class_5 class_6 class_7 class_8 class_9
Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0518(0.0000) 0.8347(0.0050) 0.0518(0.0000) 0.9403(0.0048) 0.0520(0.0001) 0.9372(0.0022) 0.0537(0.0019) 0.9559(0.0022) 0.0525(0.0004) 0.9460(0.0031)
AP Max. 0.0518(0.0000) 0.8420(0.0040) 0.0519(0.0002) 0.9419(0.0022) 0.0518(0.0000) 0.9416(0.0021) 0.0519(0.0002) 0.9569(0.0014) 0.0518(0.0000) 0.9513(0.0025)
PGD 0.2314(0.0003) 0.4524(0.0054) 0.2350(0.0028) 0.4111(0.0031) 0.2270(0.0145) 0.5928(0.0232) 0.4113(0.0034) 0.7390(0.0020) 0.2580(0.0066) 0.4944(0.0134)
TRADES 0.2217(0.0017) 0.4068(0.0047) 0.2284(0.0016) 0.3492(0.0029) 0.3627(0.0019) 0.7893(0.0011) 0.3790(0.0057) 0.7961(0.0159) 0.2829(0.0030) 0.7008(0.0012)
MART 0.2333(0.0009) 0.4510(0.0019) 0.2334(0.0023) 0.4059(0.0030) 0.2853(0.0094) 0.6667(0.0250) 0.4117(0.0017) 0.7397(0.0070) 0.2642(0.0055) 0.4935(0.0067)
AdAP_LN 0.2209(0.0030) 0.5091(0.0063) 0.1555(0.0096) 0.7147(0.0106) 0.3591(0.0060) 0.8318(0.0075) 0.3434(0.0055) 0.8068(0.0019) 0.2488(0.0041) 0.7239(0.0176)
AdAP_LPN 0.2436(0.0015) 0.5658(0.0028) 0.2737(0.0014) 0.6837(0.0029) 0.4276(0.0033) 0.8292(0.0003) 0.4496(0.0025) 0.8413(0.0028) 0.3623(0.0029) 0.7928(0.0025)

Table 13: Adversarial robustness against APGD white-box attack on CIFAR100 dataset

CIFAR100
class_0 class_1 class_2 class_3 class_4

Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0255(0.0000) 0.5465(0.0085) 0.0255(0.0000) 0.6112(0.0025) 0.0255(0.0000) 0.8932(0.0025) 0.0255(0.0000) 0.7359(0.0072) 0.0257(0.0000) 0.8255(0.0078)
AP Max. 0.0255(0.0000) 0.5480(0.0060) 0.0255(0.0000) 0.6348(0.0199) 0.0255(0.0000) 0.8993(0.0022) 0.0255(0.0000) 0.7392(0.0079) 0.0264(0.0013) 0.8355(0.0035)
PGD 0.1103(0.0017) 0.2128(0.0060) 0.1831(0.0020) 0.3414(0.0071) 0.3232(0.0063) 0.6618(0.0036) 0.1100(0.0058) 0.2466(0.0120) 0.3097(0.0021) 0.5166(0.0034)
TRADES 0.1171(0.0011) 0.2560(0.0020) 0.1929(0.0028) 0.3888(0.0069) 0.3224(0.0048) 0.6937(0.0106) 0.1632(0.0053) 0.3976(0.0119) 0.3020(0.0032) 0.5289(0.0060)
MART 0.1101(0.0046) 0.2188(0.0029) 0.1864(0.0033) 0.3417(0.0080) 0.3229(0.0073) 0.6651(0.0034) 0.1279(0.0112) 0.2389(0.0092) 0.3129(0.0043) 0.5140(0.0061)
AdAP_LN 0.1245(0.0024) 0.3131(0.0049) 0.1896(0.0020) 0.4073(0.0036) 0.3566(0.0028) 0.6736(0.0035) 0.1878(0.0011) 0.4403(0.0042) 0.3235(0.0084) 0.5580(0.0036)
AdAP_LPN 0.1367(0.0007) 0.2946(0.0014) 0.2128(0.0068) 0.4469(0.0092) 0.3871(0.0093) 0.7342(0.0111) 0.2039(0.0047) 0.4979(0.0019) 0.3535(0.0005) 0.5439(0.0014)

class_5 class_6 class_7 class_8 class_9
Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
CE Min. 0.0255(0.0000) 0.5990(0.0065) 0.0255(0.0000) 0.7690(0.0039) 0.0255(0.0000) 0.6743(0.0037) 0.0255(0.0000) 0.6033(0.0102) 0.0255(0.0000) 0.8361(0.0095)
AP Max. 0.0255(0.0000) 0.6257(0.0081) 0.0255(0.0000) 0.7806(0.0032) 0.0264(0.0013) 0.6974(0.0069) 0.0255(0.0000) 0.6192(0.0111) 0.0256(0.0001) 0.8422(0.0082)
PGD 0.0777(0.0033) 0.1671(0.0151) 0.1047(0.0019) 0.1960(0.0090) 0.1418(0.0025) 0.3205(0.0057) 0.0632(0.0033) 0.0943(0.0066) 0.1561(0.0059) 0.3915(0.0147)
TRADES 0.0943(0.0033) 0.2972(0.0068) 0.1438(0.0036) 0.4387(0.0059) 0.1741(0.0011) 0.3660(0.0008) 0.0660(0.0008) 0.1174(0.0054) 0.1633(0.0014) 0.4910(0.0086)
MART 0.0789(0.0020) 0.1439(0.0060) 0.1037(0.0081) 0.2531(0.0100) 0.1458(0.0026) 0.2973(0.0030) 0.0575(0.0014) 0.0969(0.0065) 0.1572(0.0047) 0.3972(0.0157)
AdAP_LN 0.1085(0.0027) 0.3900(0.0524) 0.1871(0.0074) 0.5916(0.0130) 0.1840(0.0014) 0.4611(0.0076) 0.0558(0.0009) 0.2031(0.0334) 0.1352(0.0012) 0.5897(0.0117)
AdAP_LPN 0.1444(0.0035) 0.4268(0.0164) 0.2421(0.0017) 0.5670(0.0153) 0.2150(0.0041) 0.4234(0.0062) 0.0706(0.0003) 0.1552(0.0018) 0.1943(0.0084) 0.5846(0.0105)

Table 14: Adversarial robustness against black-box attack on CIFAR10 dataset

CIFAR10
class_0 class_1 class_2 class_3 class_4

Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
AP Max. 0.1038(0.0362) 0.9056(0.0049) 0.2553(0.1270) 0.9707(0.0026) 0.0614(0.0063) 0.8602(0.0021) 0.0634(0.0069) 0.7398(0.0123) 0.0989(0.0330) 0.8968(0.0026)
PGD 0.5773(0.0113) 0.6109(0.0131) 0.8229(0.0031) 0.8869(0.0024), 0.3014(0.0125) 0.3160(0.0131) 0.1629(0.0057) 0.1730(0.0071) 0.2438(0.0023) 0.2523(0.0021)
TRADES 0.6198(0.0030) 0.6708(0.0033) 0.8430(0.0003) 0.9109(0.0011) 0.3597(0.0074) 0.3982(0.0094) 0.2483(0.0028) 0.2685(0.0029) 0.3244(0.0029) 0.3408(0.0028)
MART 0.5699(0.0060) 0.6032(0.0066) 0.8147(0.0054) 0.8796(0.0061) 0.2886(0.0177) 0.3068(0.0212) 0.1629(0.0105) 0.1731(0.0143) 0.2455(0.0023) 0.2510(0.0014)
AdAP_LN 0.6079(0.0034) 0.6498(0.0033) 0.8444(0.0037) 0.9143(0.0064) 0.4365(0.0254) 0.5538(0.0364) 0.2873(0.0152) 0.3342(0.0187) 0.2913(0.0039) 0.3066(0.0053)
AdAP_LPN 0.6888(0.0018) 0.7382(0.0018) 0.8650(0.0011) 0.9145(0.0016) 0.4503(0.0057) 0.5016(0.0047) 0.2550(0.0029) 0.2788(0.0039) 0.3562(0.0057) 0.3801(0.0062)

class_5 class_6 class_7 class_8 class_9
Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
AP Max. 0.0723(0.0128) 0.8420(0.0040) 0.0947(0.0245) 0.9419(0.0022) 0.1008(0.0342) 0.9416(0.0021) 0.1153(0.0355) 0.9569(0.0014) 0.1712(0.0578) 0.9513(0.0025)
PGD 0.4204(0.0042) 0.4524(0.0054) 0.3973(0.0035) 0.4111(0.0031) 0.5522(0.0198) 0.5928(0.0232) 0.6732(0.0005) 0.7390(0.0020) 0.4427(0.0112) 0.4944(0.0134)
TRADES 0.3816(0.0036) 0.4068(0.0047) 0.3358(0.0028) 0.3492(0.0029) 0.7100(0.0019) 0.7893(0.0011) 0.7034(0.0127) 0.7961(0.0159) 0.6216(0.0012) 0.7008(0.0012)
MART 0.4199(0.0015) 0.4510(0.0019) 0.3924(0.0025) 0.4059(0.0030) 0.6145(0.0249) 0.6667(0.0250) 0.6727(0.0071) 0.7397(0.0070) 0.4428(0.0050) 0.4935(0.0067)
AdAP_LN 0.4582(0.0042) 0.5091(0.0063) 0.5564(0.0016) 0.7147(0.0106) 0.7371(0.0049) 0.8318(0.0075) 0.7107(0.0022) 0.8068(0.0019) 0.6322(0.0224) 0.7239(0.0176)
AdAP_LPN 0.5200(0.0024) 0.5658(0.0028) 0.6277(0.0029) 0.6837(0.0028) 0.7652(0.0003) 0.8292(0.0003) 0.7689(0.0017) 0.8413(0.0029) 0.7338(0.0031) 0.7928(0.0025)

Table 15: Adversarial robustness against black-box attack on CIFAR100 dataset

CIFAR100
class_0 class_1 class_2 class_3 class_4

Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
AP Max. 0.0324(0.0046) 0.5480(0.0060) 0.0632(0.0267) 0.6348(0.0199) 0.1081(0.0581) 0.8993(0.0022) 0.0411(0.0111) 0.7392(0.0079) 0.1034(0.0547) 0.8355(0.0035)
PGD 0.1816(0.0051) 0.2128(0.0060) 0.3136(0.0068) 0.3414(0.0071) 0.6056(0.0058) 0.6618(0.0036) 0.2366(0.0119) 0.2466(0.0120) 0.4816(0.0025) 0.5166(0.0034)
TRADES 0.2184(0.0013) 0.2560(0.0020) 0.3454(0.0031) 0.3888(0.0069) 0.6138(0.0088) 0.6937(0.0106) 0.3538(0.0095) 0.3976(0.0119) 0.4858(0.0030) 0.5289(0.0060)
MART 0.1869(0.0042) 0.2188(0.0029) 0.3145(0.0079) 0.3417(0.0080) 0.6093(0.0038) 0.6651(0.0034) 0.2260(0.0079) 0.2389(0.0092) 0.4812(0.0055) 0.5140(0.0061)
AdAP_LN 0.2534(0.0022) 0.3131(0.0049) 0.3547(0.0038) 0.4073(0.0036) 0.6101(0.0032) 0.6736(0.0035) 0.3961(0.0053) 0.4403(0.0042) 0.5139(0.0038) 0.5580(0.0036)
AdAP_LPN 0.2548(0.0015) 0.2946(0.0014) 0.3983(0.0075) 0.4469(0.0092) 0.6703(0.0106) 0.7342(0.0111) 0.4542(0.0021) 0.4979(0.0020) 0.5136(0.0024) 0.5439(0.0014)

class_5 class_6 class_7 class_8 class_9
Methods Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean
AP Max. 0.0820(0.0376) 0.6257(0.0081) 0.0355(0.0079) 0.7806(0.0032) 0.0593(0.0231) 0.6974(0.0069) 0.0360(0.0064) 0.6192(0.0111) 0.0470(0.0112) 0.8422(0.0082)
PGD 0.1532(0.0143) 0.1671(0.0151) 0.1692(0.0053) 0.1960(0.0090) 0.2976(0.0059) 0.3205(0.0057) 0.0901(0.0051) 0.0943(0.0066) 0.3403(0.0149) 0.3915(0.0147)
TRADES 0.2389(0.0062) 0.2972(0.0068) 0.3338(0.0036) 0.4387(0.0059) 0.3290(0.0003) 0.3660(0.0008) 0.1021(0.0024) 0.1174(0.0054) 0.3994(0.0071) 0.4910(0.0086)
MART 0.1256(0.0055) 0.1439(0.0060) 0.2304(0.0102) 0.2531(0.0100) 0.2770(0.0025) 0.2973(0.0030) 0.0938(0.0059) 0.0969(0.0065) 0.3475(0.0133) 0.3972(0.0157)
AdAP_LN 0.3113(0.0374) 0.3900(0.0524) 0.4656(0.0114) 0.5916(0.0130) 0.3969(0.0047) 0.4611(0.0076) 0.1338(0.0094) 0.2031(0.0334) 0.4442(0.0179) 0.5897(0.0117)
AdAP_LPN 0.3701(0.0149) 0.4268(0.0164) 0.4929(0.0140) 0.5670(0.0153) 0.3867(0.0058) 0.4234(0.0062) 0.1302(0.0013) 0.1552(0.0018) 0.4948(0.0116) 0.5846(0.0105)
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Figure 6: Visualization of the trade-off between robustness and average precision on CIFAR10 dataset
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Figure 7: Visualization of the trade-off between robustness and average precision on CIFAR100
dataset
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Figure 8: Visualization of the trade-off between robustness and average precision on BDD100K
dataset
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Figure 9: Visualization of the trade-off between robustness and average precision on CelebA dataset
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B Theoretical Results

B.1 Proof of theorem 1

Note that robust ranking error is defined as:
Rrob = Exi∼D+I{∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ max

xj∈D−
h(xj + δj)}. (13)

Then we can reformulate it as:
Rrob = Pr

(
∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ max

xj∈D−
h(xj + δj) | xi ∈ D+

)
=Pr

(
∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ max

xj∈D−
h(xj + δj) | h(xi) > max

xj∈D−
h(xj),xi ∈ D+

)
∗ Pr

(
h(xi) > max

xj∈D−
h(xj) | xi ∈ D+

)
+Pr

(
∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ max

xj∈D−
h(xj + δj) | h(xi) ≤ max

xj∈D−
h(xj),xi ∈ D+

)
∗ Pr

(
h(xi) ≤ max

xj∈D−
h(xj) | xi ∈ D+

)
=Pr

(
{(h(xi) > max

xj∈D−
h(xj)} ∧ {∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ max

xj∈D−
h(xj + δj)} | xi ∈ D+)

)
+ 1 ∗ Pr

(
h(xi) ≤ max

xj∈D−
h(xj) | xi ∈ D+

)
=Exi∼D+

I{h(xi) > max
xj∈D−

h(xj)}I{∃δi, δj ∈ B(0, ϵ), h(xi + δi) ≤ max
xj∈D−

h(xj + δj)}

+ Exi∼D+I{h(xi) ≤ max
xj∈D−

h(xj)}

Notice that the last two terms above are exactly the considered boundary error Rbdy and misranking
error Rnat. Therefore, we have Rrob = Rbdy +Rnat.

B.2 Extra algorithms for adversarial AP maximization

Besides the Algorithm 1 shown in Section 4.2, we present the other algorithms for adversarial AP
maximization in this part. Algorithms for solving AdAP_PZ in (7) and AdAP_LPN in (10) are
similar to the Algorithm 1 and we present them in Algorithm 4 and Algorithm 3.

min
w

max
∥δ∥≤ϵ

P (w, δ) = − 1

n+

∑
xi∈D+

n∑
s=1

I(ys = 1)ℓ(w,xs + δs,xi + δi)

n∑
s=1

ℓ(w,xs + δs,xi + δi)
. (14)

Different from above algorithms, the algorithm for solving AdAP_MM in (14) needs to solve inner
maximization with AP surrogate loss to generate adversarial perturbations. Because this inner
maximization problem includes all the samples in the dataset, we apply the similar compositional
optimization technique borrowed from [34] to compute an estimate of ∇δP (w, δ) by:

∇̂δP (w, δ) =
1

|B+|
∑

xi∈B+

∑
xj∈B

(uδ1
xi

− uδ2
xi
I(yj = 1))∇δℓ(w,xj + δj ,xi + δi)

|B|(uδ2
xi
)2

. (15)

where uδ1
xi

and uδ2
xi

are two estimators for tracking φδ1(w, δi;xi) =
1
n

∑n
s=1 I(ys = 1)ℓ(w,xs +

δs,xi + δi), φδ2(w, δi;xi) =
1
n

∑n
s=1 ℓ(w,xs + δs,xi + δi). At iteration t, the two estimators uδ1

xi

and uδ2
xi

are updated by

uδ1
xi

= (1− γ1)u
δ1
xi

+ γ1
1

|B|
∑

ℓ(wt,xs + δs,xi + δi)I(yj = 1)

uδ2
xi

= (1− γ1)u
δ2
xi

+ γ1
1

|B|
∑

ℓ(wt,xs + δs,xi + δi),

(16)
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where γ1 ∈ (0, 1) is a parameter. And the stochastic gradient ∇̂wP (w, δ) is computed by:

∇̂wP (w, δ) =
1

|B+|
∑

xi∈B+

∑
xj∈B

(uδ1
xi

− uδ2
xi
I(yj = 1))∇wℓ(w,xj + δj ,xi + δi)

|B|(uδ2
xi
)2

. (17)

We present the whole algorithm for solving AdAP_MM in (14) in Algorithm 2.

The objective for AdAP_LZ is defined as
min
w

max
δ∈Ωn

P (w) +R(w, δ,D) = min
w

{
P (w) + max

δ∈Ωn
R(w, δ,D)

}
(18)

Since the listwise adversarial regularization includes all the samples in the dataset, the optimization
for δ is also challenging. We extend the approach for computing an estimator of ∇wR(w, δ,D)
employed in Section 4.2 to estimate ∇δR(w, δ,D). To avoid redundancy, we give the estimate
directly by

∇̂δR(w, δ,D) = ∇̂δg(δ;w)⊤
(

1

u2
,
−u1 − u2

(u2)2
,
1

u3

)⊤

, (19)

where g(δ;w) has the same definition as g(w) in Section 4.2, u = [u1, u2, u3] denotes a vector
for tracking [g1(w), g2(w), g3(w)]. The whole algorithm for solving AdAP_LZ is presented in
Algorithm 5.

Algorithm 2 Stochastic Algorithm for solving AdAP_MM in (14)
1: Initialize w,uδ1

x ,uδ2
x , γ1

2: for t = 1, . . . , T do
3: Draw a batch of B+ positive samples denoted by B+.
4: Draw a batch of B samples denoted by B.
5: For xi ∈ B ∪ B+, initialize δi ∼ α · N (0, 1)
6: for m = 1, . . . ,M do
7: For each xi ∈ B+, update uδ1

xi
and uδ2

xi
by Equation (16)

8: Compute ∇̂δP (wt, δ) by Equation (15)
9: Update δi = Π∥·∥≤ϵ(δi + η2 · sign(∇̂δiP (wt, δ))), where ΠΩ(·) is the projection operator.

10: end for
11: For each xi ∈ B+, update uδ1

xi
and uδ2

xi
by Equation (16)

12: Compute stochastic gradient estimator ∇wt
= ∇̂wt

P (wt, δ) by Equation (17)
13: Update wt+1 by using SGD, momentum-methods or Adam.
14: end for

Algorithm 3 Stochastic Algorithm for solving AdAP_LPN in (10)
1: Initialize w,ux,u, γ1, γ2
2: for t = 1, . . . , T do
3: Draw a batch of B+ positive samples denoted by B+.
4: Draw a batch of B samples denoted by B.
5: for xi ∈ B do
6: Initialize δi ∼ α · N (0, 1)
7: for m = 1, . . . ,M do
8: Update δi = Π∥·∥≤ϵ(δi+η2 ·sign(∇δiG(wt,xi+δi, yi))), where ΠΩ(·) is the projection

operator.
9: end for

10: end for
11: For each xi ∈ B+, update u1

xi
and u2

xi
by Equation (2)

12: Update u by Equation (11) and compute ∇̂wt
R(wt, δ,D) by Equation (12)

13: Compute stochastic gradient estimator:

∇wt
= ∇̂wt

P (wt) + λ(∇̂wt
R(wt, δ,D) +

1

B

∑
xi∈B

L(hwt
(xi), hwt

(xi + δi)))

14: Update wt+1 by using SGD, momentum-methods or Adam.
15: end for
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Algorithm 4 Stochastic Algorithm for solving AdAP_PZ in (7)
1: Initialize w,u1

x,u
2
x, γ1

2: for t = 1, . . . , T do
3: Draw a batch of B+ positive samples denoted by B+.
4: Draw a batch of B samples denoted by B.
5: for xi ∈ B do
6: Initialize δi ∼ α · N (0, 1)
7: for m = 1, . . . ,M do
8: Update δi = Π∥·∥≤ϵ(δi + η2 · sign(∇δiL(hwt

(xi), hwt
(xi + δi)))), where ΠΩ(·) is the

projection operator.
9: end for

10: end for
11: For each xi ∈ B+, update u1

xi
and u2

xi
by Equation (2)

12: Update u by Equation (11) and compute ∇̂wtP (wt) by Equation (3)
13: Compute stochastic gradient estimator

∇wt
= ∇̂wt

P (wt) +
λ

B

∑
xi∈B

L(hwt
(xi), hwt

(xi + δi))

14: Update wt+1 by using SGD, momentum-methods or Adam.
15: end for

Algorithm 5 Stochastic Algorithm for solving AdAP_LZ
1: Initialize w,u1

x,u
2
x,u, γ1, γ2

2: for t = 1, . . . , T do
3: Draw a batch of B+ positive samples denoted by B+.
4: Draw a batch of B samples denoted by B.
5: For xi ∈ B, initialize δi ∼ α · N (0, 1)
6: for m = 1, . . . ,M do
7: Update u by Equation (11) and compute ∇̂δR(wt, δ,D) by Equation (19)
8: Update δi = Π∥·∥≤ϵ(δi + η2 · sign(∇̂δiR(wt, δ,D))), where ΠΩ(·) is the projection

operator.
9: end for

10: For each xi ∈ B+, update u1
xi

and u2
xi

by Equation (2)
11: Update u by Equation (11) and compute ∇̂wt

R(wt, δ,D) by Equation (12)
12: Compute stochastic gradient estimator ∇wt = ∇̂wtP (wt) + λ∇̂wtR(wt; δ)
13: Update wt+1 by using SGD, momentum-methods or Adam.
14: end for
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