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Abstract

Decision trees have gained popularity as interpretable surrogate models for learning-
based control policies. However, providing safety guarantees for systems controlled
by decision trees is an open challenge. We show that the problem is undecidable
even for systems with the simplest dynamics, and PSPACE-complete for finite-
horizon properties. The latter can be verified for discrete-time systems via bounded
model checking. However, for continuous-time systems, such an approach requires
discretization, thereby weakening the guarantees for the original system. This
paper presents the first algorithm to directly verify decision-tree controlled systems
in continuous time. The key aspect of our method is exploiting the decision-
tree structure to propagate a set-based approximation through the decision nodes.
We demonstrate the effectiveness of our approach by verifying safety of several
decision trees distilled to imitate neural-network policies for nonlinear systems.

1 Introduction

Deep reinforcement learning has shown success in deriving control policies for nonlinear systems for
which classical optimal control theory provides no solution [Mnih et al., 2015]. Despite impressive
performance, there are two key drawbacks: (i) the resulting policy is difficult to interpret, and
(ii) there are no guarantees that the system always reaches the desired goal and avoids unsafe states.
The interpretability challenge has led to a review of decision trees as well-performing, compact,
and transparent surrogates for deep neural networks [Ashok et al., 2020, 2019, David et al., 2015,
Alamdari et al., 2020, Vos and Verwer, 2023]. To provide safety guarantees, prior work proposed
to encode a discrete, time-bounded system controlled by a decision-tree policy as a set of logical
constraints [Bastani et al., 2018]. However, this approach does not apply to continuous-time dynamics.

Example 1. To illustrate the problem, we consider a quadrotor system [Ivanov et al., 2019] in
Figure 1(a), where the task is to follow the brown reference trajectory from (0, 0) and stay within the
blue dashed safety corridor. Illustrated schematically in Figure 1(b), we may observe a trajectory
that exhibits safe behavior for each discrete time point but leaves the safety corridor in between.
Since the trajectory returns quickly enough, this violation is missed by a discrete-time analysis.

In this work, we address, for the first time, the problem of verifying safety (reach-avoid) properties of
a decision-tree controlled system (DTCS) with (nonlinear) continous-time dynamics. We propose an
algorithm that exploits the structure of the decision-tree policy and propagates sets of reachable states,
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(a) Sketch of the quadrotor system (x/y plane) with sample trajectories.

0 1 2 3

time

(b) Discrete-time analysis may
miss property violations of con-
tinuous systems. The threshold
(dashed blue line) is breached
for a short time (red curve),
which is not detected at the dis-
crete time points (black dots).

Figure 1: A sketch of the quadrotor system and motivation for continuous-time analysis.

splitting at the decision boundaries. This way we obtain a sound enclosure of the true reachable
states even for continuous dynamics, which guarantees safe goal reachability for all behaviors of
the controlled system. Furthermore, our approach naturally generalizes to discrete-time systems, for
which, compared to the aforementioned approach based on logical encoding [Bastani et al., 2018],
our approach provides visual interpretability of the verification process.

To summarize our contributions, we first provide an algorithm to verify a decision-tree policy of a
nonlinear continuous-time system. Our general algorithm is parameterized in two procedures for
respectively analyzing the dynamical system and the policy. For these procedures, we formulate
sufficient conditions for the algorithm to be sound and relatively complete. Second, we describe an
instantiation of the algorithm for nonlinear systems based on Taylor models [Berz and Makino, 1998].
In a nutshell, this procedure propagates a set of states through the system dynamics. For analyzing the
decision-tree policy, we focus on the common class of axis-aligned predicates (“x ≤ c”) and propose
an instantiation that exploits this structure. Third, we show that the problem of verifying decision-tree
policies is PSPACE-complete even for very simple (namely, state-independent) dynamics. Finally, we
demonstrate that our algorithm can verify several reinforcement-learning benchmarks from classical
control and the quadrotor from Figure 1, even for unbounded time.

1.1 Related Work

A decision tree is a popular machine-learning model that has recently regained interest due to its
high interpretability [Du et al., 2020]. Decision-tree policies can be trained directly from a tabular
dataset of state-action pairs [Quinlan, 1996], e.g., using the CART algorithm [Breiman et al., 1984]
or dtControl [Ashok et al., 2020]. Since these algorithms perform an equivalence transformation,
safety guarantees transfer from the dataset to the decision tree. Ashok et al. [2019] show how to
extract a safe-by-design decision tree from a safe policy synthesized with Uppaal Stratego [David
et al., 2015] for a priced timed game. However, for nonlinear systems it is generally unclear how
to obtain safe-by-design policies. In practice one uses best-effort methods such as reinforcement
learning. As these approaches cannot guarantee that the resulting policy is safe, there is need for
approaches to verify a given policy after learning.

Decision trees can be trained to imitate another model such as a neural network. For instance, the
Viper algorithm incorporates decision-tree learning into the imitation procedure [Bastani et al., 2018].
As this imitation provides no correctness guarantees, a separate analysis is required. The authors
encode the bounded-time reachability problem for a discrete-time system in logical constraints. This
encoding is the only verification approach for discrete-time DTCS we are aware of. Other verification
efforts for decision trees have focused on robustness and adversarial examples in a supervised setting
[Urban and Miné, 2021], which are orthogonal problems to our setting of verifying a policy.

For purely dynamical systems (without a control policy), reachability analysis has been studied
extensively [Doyen et al., 2018, Althoff et al., 2021]. One prominent approach is based on Taylor
models [Berz and Makino, 1998], which we also employ in our implementation. Combining a
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dynamical system with a control policy results in a hybrid system [Henzinger, 1996]. Applying
tools for general hybrid-system verification to DTCS is not feasible because they do not exploit the
specific structure (we discuss this further in Appendix D). The reach-avoid problem is undecidable for
nonlinear dynamics (even without a control policy), and most approaches (including ours) consider
only time-bounded analysis. However, as we discuss later, under certain conditions, our results
still generalize to unbounded time via fixpoint techniques [Giacobbe, 2019, Bacci et al., 2021]. For
piecewise-constant dynamics, axis-aligned policies resemble systems that can be efficiently dealt with
using interval-based arithmetic constraint solving [Fränzle et al., 2007, Fränzle and Herde, 2007].

Closely related to DTCS are neural-network controlled systems (NNCS), where the policy is imple-
mented by a neural network. Recently, many reachability approaches have been proposed [Dutta
et al., 2019, Tran et al., 2020, Fan et al., 2020, Akintunde et al., 2022, Ivanov et al., 2021, Schilling
et al., 2022, Kochdumper et al., 2023], and implementations compete in a yearly competition [Lopez
et al., 2022]. The main difference to DTCS is that the control action comes from a continuous domain
and the neural network implements a smooth function. Hence such policies typically yield a similar
control action for similar states, which benefits set-based reachability analysis. In contrast, given
two similar states, a decision tree can yield vastly different control actions. Thus tools for verifying
NNCS are not applicable to our problem. NNCS are Turing-complete [Hyötyniemi, 1996]. We show
the same result for DTCS even with the simplest environment dynamics, which yields an undecidable
problem in unbounded time and a PSPACE-complete problem in bounded time.

To summarize, decision-tree policies are highly desirable due to their interpretability. The most
successful methods in obtaining such policies use machine learning, which do not guarantee safety of
the resulting policy. While previous work managed to verify discrete-time policies, continuous-time
policy verification remains an open problem. Our work bridges this gap with the first algorithm to
verify decision-tree policies for continuous-time systems.

Outline. We organize the remainder of the paper as follows. First we formalize DTCS and the
reach-avoid problem. Then we describe our verification algorithm and discuss the problem complexity.
Next we report on experimental results. Finally we conclude and discuss directions for future work.

2 Preliminaries

2.1 Decision-Tree Controlled Systems

Let S ⊆ Rn be an n-dimensional state space and U ⊆ Rm an m-dimensional action (or input) space.
A decision tree T over S and U is a binary tree such that each inner node is labeled with a predicate
p : S → B (with B = {⊤,⊥}) and each leaf is labeled with an action u ∈ U . The nodes in the tree
are organized in levels, with the root node being at level 1. Let root(T ) denote the root node of T ,
left(T ) resp. right(T ) denote the left resp. right sub-tree of T , and ℓ(T ) denote the label at the root
of T (i.e., if T is a leaf, ℓ(T ) is an action and otherwise a predicate). We can interpret T as a function
from S to U as follows. Given a state x ∈ S, the image under T , written act(x, T ) ∈ U , is defined
recursively. For a leaf T , act(x, T ) is just ℓ(T ). For a proper tree with root predicate p, act(x, T ) is
act(x, left(T )) if p(x) = ⊤, and act(x, right(T )) otherwise. In this paper, we restrict our analysis
to predicates of the form xi ≤ c where xi is the i-th state and c ∈ R is a constant. Geometrically,
these predicates are axis-aligned half-spaces. This class of predicates is commonly used, e.g., in the
tools Uppaal Stratego [David et al., 2015] (with industrial applications in control of smart homes
[Larsen et al., 2016] and traffic lights [Eriksen et al., 2017]) and dtControl [Ashok et al., 2020].

We consider environments modeled by a system of ordinary differential equations (ODEs), ẋ =
f(x, u), where x(t) ∈ S is the state vector and u(t) ∈ U is the vector of control actions. Given an
initial state x(0) = x0 and an action u0, we assume that the solution to the corresponding initial-value
problem at time t ≥ 0, written ξ(x0, u0, t, f), exists and is unique (e.g., by Lipschitz continuity).

A decision-tree controlled system (DTCS) is a triple (f, T , τ) where f describes a system of ODEs,
T is a decision tree, used as policy, and τ ∈ R+ is a control period. Figure 2 shows a conceptual
sketch. The DTCS periodically queries the policy for a new control action. At time points kτ , k ∈ N,
the current state x(kτ) is passed to the policy T , which instantaneously yields the new control action
uk; this action is then used for the next control period τ in the system dynamics f . Formally, given an
initial state x0 at t = 0, we recursively define the sequence of actions uk = act(x(kτ), T ), k ∈ N,
and the evolution of the state x(t) = ξ(x(kτ), uk, t− kτ, f) (i.e., a trajectory) for t ∈ (kτ, (k+1)τ ].
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Environment ẋ = f(x, u) Sampler Decision-tree policy T
x(t) t = kτclock x(kτ)

uk = act(x(kτ), T )

Figure 2: A decision-tree controlled system (f, T , τ).

2.2 Reachable States and Reach-Avoid Problem

Given a DTCS and a set of initial states X0 ⊆ S, we are interested in the reachable states, either at
time t asRt = {x(t) | x(0) ∈ X0} or the generalization to time intervalsR[T0,T1] =

⋃
t∈[T0,T1]

Rt.

Similarly, a discrete-time DTCS is a pair (f, T ) where f describes a recurrence xk+1 = xk+f(xk, uk)
and T is a decision tree. The reachable states at step k areRk = {xk | x0 ∈ X0} and analogously
R[K0,K1] =

⋃
k∈[K0,K1]

Rk. By default, DTCS refers to the continuous-time DTCS introduced above.

The reach-avoid problem for DTCS is, given a DTCS (f, T , τ) over S , a set of initial states X0 ⊆ S ,
a bounded number of control cycles kmax, and two sets G, E ⊆ S, to decide whether all trajectories
x(t) reach the goal set G without reaching the error set E before time Tmax = kmaxτ , i.e., ∃t∗ ≤
Tmax. x(0) ∈ X0 ∧ x(t∗) ∈ G ∧ ∀t ∈ [0, t∗]. x(t) /∈ E . If we assume that the goal states G are
absorbing, this is equivalent to checking

RTmax ⊆ G ∧R[0,Tmax] ∩ E = ∅. (1)

Example 2. Consider again the quadrotor model from Figure 1. A full model description is given in
Appendix B.1. The reach-avoid problem here consists of the shaded area at the top as the goal set G,
the set of states outside the red corridor as the error set E , and kmax = 30 control cycles.

Determining reachability is already undecidable for uncontrolled nonlinear dynamical systems
[Hainry, 2008], and hence also for DTCS with nonlinear dynamics. A DTCS can be seen as a hybrid
(mixed discrete-continuous) system, for which reachability is undecidable even with linear dynamics
[Doyen et al., 2018]. Due to these complexity barriers, we aim at enclosing, or overapproximating,
the reachable states up to time horizon Tmax by computing a setR ⊇ R[0,Tmax].

3 Approach

Algorithm 1 Reachability algorithm
for DTCS
Input: DTCS (f, T , τ), initial set X0,

time/cycle bounds Tmax = kmax · τ
Output: set of statesR ⊇ R[0,Tmax]

1: R← X0

2: Q← {(X0, 0)}
3: while ¬ isempty(Q) do
4: (X , t0)← pop(Q)
5: if t0 ≥ Tmax then
6: continue
7: end if
8: t1 = min(t0 + τ, Tmax)
9: for (Xu, u) ∈ postT (X , T ) do

10: (Y,Zt1)←
postf (Xu, u, f, [t0, t1])

11: R←R∪ Y
12: push(Q, (Zt1 , t1))
13: end for
14: end while
15: return R

In this section, we present our approach to reachability anal-
ysis for DTCS. We first describe a general high-level algo-
rithm, which resembles standard reachability schemes for
hybrid systems. It is, however, tailored to policies over a
finite action space U . As such, it is applicable to policies
beyond decision trees, but for instance not to typical neural-
network policies. We then outline conditions under which
the algorithm is sound and relatively complete (i.e., does not
introduce additional approximation errors). Finally, we in-
stantiate the algorithm specifically for decision-tree policies,
which is a novel contribution of this paper.

Algorithm 1 shows our high-level reachability method,
which can be used to solve the reach-avoid problem (Sec-
tion 2.2). The algorithm is parametric in two procedures,
postT and postf , which together compute an enclosure of
the reachable states for one control cycle. The queue Q
contains pairs (X , t), where X is a set of states that needs
to be explored, and t is a time point. Each iteration of the
while loop (line 3) analyzes one control cycle from X and t
(unless the time horizon Tmax is reached, line 6). The result
is added to the setR of reachable states in line 11. Next we
describe the requirements for the post procedures.
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The procedure postT , which is a new contribution of this paper, takes a set of states X and a decision
tree T and returns a finite set of pairs (Yu

i , u), where Yu
i is a set of states and u ∈ U is an action.

Since multiple leaves of a decision tree can be associated with the same action u, we allow multiple
sets Yu

i to be associated with u as well. For each action u, the union of the sets Yu
i should enclose

the set actu(X , T ) = {x ∈ X | act(x, T ) = u}, so we have an index set Iu (possibly empty) for
each action u such that

actu(X , T ) ⊆
⋃

i∈Iu
Yu
i . (2)

Procedure postT wraps the sets Yu
i together with action u.

postT (X , T ) =
⋃

u∈U

⋃
i∈Iu
{(Yu

i , u)} (3)

For postT to be sound, we connect equations (2) and (3) and untangle the pairing with u as follows:

∀u ∈ U .
⋃
{x ∈ Yu

i | (Yu
i , u) ∈ postT (X , T )} ⊇ actu(X , T ) (4)

The procedure postf receives a set of states X , a control action u, the environment f , and a time
interval [t0, t1]. (Note that we actually only need the duration t1 − t0, which is τ most of the time,
because we consider time-invariant systems. We only pass the time interval for notational purposes
to refer to t1.) The goal is to perform a classical time-bounded reachability computation and return
two sets Y and Z such that Y encloses the reachable states for the given time interval and Z encloses
the reachable states at the final time point t1. Thus for postf to be sound, the following must hold:

postf (X , u, f, [t0, t1]) = (Y,Z) =⇒ Y ⊇ R[t0,t1] ∧ Z ⊇ Rt1 (5)

Algorithm 1 in combination with equations (4) and (5) computes a sound enclosure. Let us write post∗T
and post∗f for the procedures such that the inclusions in equations (4) and (5) are satisfied with equality.
With such procedures, the algorithm even produces the exact result (proven in Appendix C.1).

Theorem 1 (Termination, soundness, relative completeness). Assume Eq. (4) and Eq. (5) are satisfied.
(1) Algorithm 1 terminates if all calls to postT and postf terminate. (2) Let ⊒ ∈ {⊇,=}. The result
R of Algorithm 1 encloses (⊇) resp. equals (=) the reachable states, R ⊒ R[0,Tmax], if in all steps
postT (X , T ) ⊒ post∗T (X , T ) and postf (Xu, u, f, [t0, t1]) ⊒ post∗f (Xu, u, f, [t0, t1]) hold.

3.1 Implementing the Post Procedures

Algorithm 2 Post for the environment

Input: set X , control action u, environ-
ment f , interval [t0, t1]

Output: pair (Y,Z) such that Y ⊇
R[t0,t1] and Z ⊇ Rt1

1: P (t)← TM_reach(X , u, f, [t0, t1])
2: Y ← evaluate(P (t), [t0, t1])
3: Z ← evaluate(P (t), t1)
4: return (Y,Z)

For implementing postf , we use an algorithm based on
Taylor models [Berz and Makino, 1998] for reachability
analysis of nonlinear dynamical systems. A Taylor model
approximates a function as a polynomial together with
an interval remainder over a domain [Makino and Berz,
2003], which we interpret as sets of states. For exam-
ple, the one-dimensional Taylor model with polynomial
p(x) = x2 − x + 1 and remainder [−0.5, 0.5] over the
domain [−1, 1] around expansion point 0 encodes the set
{p(x) + r | x ∈ [−1, 1], r ∈ [−0.5, 0.5]}. Taylor models
subsume common set representations. Thus we assume
that the initial set X0 is given as a Taylor model.

Algorithm 2 summarizes the implementation of postf . Here TM_reach(X , u, f, [t0, t1]) (line 1)
computes a special Taylor model P (t) that depends on time t. To obtain Y and Z , we evaluate this
Taylor model with different values for t: For Y we evaluate with the time interval [t0, t1], which
results in an enclosure of R[t0,t1]. For Z we evaluate with the time point t1, which results in an
enclosure of Rt1 . Algorithm 2 can be adapted for discrete-time systems, where the procedure
TM_reach is replaced appropriately, line 2 is skipped, and the result is (Z,Z).
Proposition 1. Algorithm 2 implements procedure postf satisfying Eq. (5).

Algorithm 3 instantiates postT . Recall that the goal of this procedure is to compute enclosures of
actu(X , T ), which are the sets of states that result in an action u. Given a set X and a decision tree T ,
the idea is to propagate X down the branches that the states x ∈ X would take. While the algorithm is
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(a) Enclosures of the reachable states R[0,τ ] = Y (blue)
and Rτ = Z (purple) starting from X0 (yellow).

(b) Bisection wrt. x ≤ 3 (red) into Z1 (green) and Z2

(brown), and interval enclosures (cyan, orange).

Figure 3: Example execution of Algorithm 1 for the first control cycle.

agnostic of the predicates in T (interpreted as sets of states) on a conceptual level, it is generally diffi-
cult to implement the algorithm for arbitrary predicates. In our implementation, we exploit the struc-
ture of axis-aligned half-space predicates P . Let box(X ) be the interval enclosure of X , which is easy
to obtain for a Taylor model. In line 9, we check if all states in X take the left branch of T . We have
X ⊆ P if and only if box(X ) ⊆ P . In line 11 we check if all states in X take the right branch of T .

Algorithm 3 Post for the decision tree

Input: set X , decision tree T
Output: set of pairs (Xu, u)

1: S ← {}
2: Q← {(X , root(T ))}
3: while ¬ isempty(Q) do
4: (Y, TY)← pop(Q)
5: if isleaf(TY ) then
6: push(S, (Y, ℓ(TY)))
7: else
8: P ← ℓ(TY)
9: if Y ⊆ P then

10: push(Q, (Y, left(TY)))
11: else if Y ∩ P = ∅ then
12: push(Q, (Y, right(TY)))
13: else
14: (Z1,Z2)← bisect(Y , P )
15: push(Q, (Z1, left(TY)))
16: push(Q, (Z2, right(TY)))
17: end if
18: end if
19: end while
20: return S

We have X ∩ P = ∅ if and only if box(X ) ∩ P = ∅.
If both conditions fail, X is bisected into Z1 = {x |
x ∈ X ∩ P} and Z2 = {x | x ∈ X ∩ PC} in line 14.
Here PC denotes the complement of P , which is also a
half-space. Since the above sets are hard to compute, we
replace X by box(X ) in the implementation. Note that
box(X ) ∩ P ⊇ box(X ∩ P ) in our setting. We discuss
this further in Appendix A.1.

Proposition 2. Algorithm 3 implements procedure postT
satisfying Eq. (4). Furthermore, if all bisections are exact,
Eq. (4) is satisfied with equality.

Further details relevant for using our method in practice
are given in Appendix A.

Example 3. We walk through Algorithm 1 for the first
control cycle, illustrated in Figure 3. Figure 3(a) shows
how Algorithm 2 computes the pair (Y,Z), consisting
of an enclosureR[0,τ ] of the reachable states up to time
point τ and an enclosure Rτ of the reachable states at
the last time point. Figure 3(b) shows how Algorithm 3
bisects the set Z along the predicate x ≤ 3 into sets Z1

and Z2. We furthermore illustrate the approximation with
interval enclosures. Assuming this is the only predicate of
the decision tree, Algorithm 1 would continue the analysis
from these two sets in the next iteration.

3.2 Generalization to Unbounded Time via Fixpoints

Next we discuss how to employ a set-based fixpoint check; for details we refer to the literature
[Giacobbe, 2019]. Roughly speaking, if we do not encounter new states after an iteration, we have
found a fixpoint. Algorithm 1 iteratively adds states to R to enclose the sequence R[kτ,(k+1)τ ],
k < kmax (Section 2.2). Let us view the exploration of the elements (X , t) in the queue Q as a search
tree. First, the search in a node can be terminated if the set X is contained in the union of the sets in
the other nodes (i.e., if a fixpoint has been found). Second, if this condition holds in all branches,
we have computed the reachable states in unbounded time. However, due to the discrete nature of
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the policy, the time points at which to check for fixpoints are relevant. A sufficient condition is to
only compare the sets at the beginning of each control cycle, i.e.,Rkτ ⊆

⋃
j<kRjτ for some k > 0.

However, when dealing with enclosures, this condition would becomeRkτ ⊆
⋃

j<kRjτ , which is
not sufficient. The setRkτ on the left-hand side must additionally contain the reachable states from
all setsRjτ on the right-hand side. Fortunately, our algorithm satisfies this additional condition.

In our implementation, all sets are (unions of) Taylor models, for which inclusion checking is hard.
While we can overapproximate the left-hand side, we would have to underapproximate the right-hand
side, which is difficult for Taylor models. However, whenever we bisect sets in postT , we obtain
box-shaped sets, for which inclusion checks are easy. Thus, in our implementation, we only perform
a fixpoint check after a bisection. We shall see in the evaluation that this is often sufficient in practice.

3.3 State-Independent Dynamics and Computational Complexity

We call a control system state-independent if f(x, u) = u for all x (for which u must be n-
dimensional). This is arguably the simplest possible control system. If the system dynamics are
state-independent and X0 is a polyhedron (i.e., the intersection of linear inequalities), postf can be
implemented exactly and yields a polyhedron [Alur et al., 1996]. Given a polyhedron, postT returns
a union of polyhedra. Under these assumptions, Algorithm 1 can be implemented to compute the
exact reachable states and thus satisfy Theorem 1 with equality. Finally, Algorithm 1 can be turned
into a decision procedure for the reach-avoid problem (namely: also outputRTmax and check Eq. (1)).
Nevertheless, state-independent DTCS can encode Turing machines. Hence the reach-avoid problem
is undecidable in unbounded time and PSPACE-complete in bounded time (proven in Appendix C.2).
Theorem 2. The reach-avoid problem for both continuous-time and discrete-time DTCS over rational
numbers with state-independent dynamics and polyhedral initial, goal, and error sets (X0,G, E) is
PSPACE-complete, and undecidable when considering the unbounded-time version.

Note that Algorithm 1 solves not only the decision problem but computes the full reachable states.
Thus it needs to collect all the sets resulting from bisections. If the number of iterations kmax is given
in binary, the algorithm is doubly exponential, even if we ignore a potential complexity growth in the
set representation. We conjecture that this bound is optimal for the full computation. More precisely,
in each iteration, a set may be bisected into several (but at most ℓ, where ℓ is the number of leaves of
the decision tree) sets. With kmax control cycles, the algorithm may end up with ℓkmax sets in the end.

4 Evaluation

Table 1: Sizes of the decision-tree policies, and cor-
responding verification times averaged over 10 runs.

System Policy T Verification

nodes depth actions time

Quadrotor 177 10 8 84 sec

Cart/Pole 5 2 2 15 sec

Acrobot 7 2 2 101 sec
9 3 2 113 sec

Mountain/Car 9 3 3 7 sec

We implemented1 our method in a tool based
on JuliaReach [Bogomolov et al., 2019] for
the Taylor-model algorithm (TM_reachin Al-
gorithm 2) [Benet et al., 2019] and LazySets
[Forets and Schilling, 2021] for the set compu-
tations. We demonstrate our approach on the
quadrotor system (Figure 1(a)) and three clas-
sical control problems from the Gymnasium
[Brockman et al., 2016]: cart/pole, acrobot,
and mountain/car. In the following, we use
our proof-of-concept implementation to ver-
ify and visually explain that, within the given
time constraints, the quadrotor safely reaches
the end of the corridor, the cart manages to
stabilize the pole, the acrobot swings to the
goal height, and the car reaches the top of the mountain. It is crucial to maintain high precision
during the analysis to avoid divergence. The systems illustrate different aspects: Our approach
applies to time-dependent policies (quadrotor control), proves infinite-time stability (Section 3.2)
(cart/pole), handles transformations (Appendix A.2) (acrobot), and deals with discrete-time dynamics
(mountain/car), while preserving high precision.

1The implementation and experiments are available at https://github.com/VeriXAI/
Safety-Verification-of-Decision-Tree-Policies-in-Continuous-Time.
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Figure 4: Reachable states (red) and simulations (colored) for the quadrotor system. The initial states
are shown in yellow on the left, the goal region is shown in blue at the top, the reference plan is
shown in brown, and the dashed blue lines mark the safety corridor.

We obtain decision-tree policies via neural-network distillation (see Table 1 on the depth and number
of nodes and actions). For the quadrotor system we collected 500 samples of state-action pairs from
a neural-network policy used by Ivanov et al. [2019] and learned a decision tree of depth 10 using
behavioral cloning. For the three other systems (cart/pole, acrobot, mountain/car) we first used deep
Q-learning to train a two-layer convolutional neural network [Mnih et al., 2013] and then adopted
the Viper algorithm [Bastani et al., 2018] to imitation-learn decision trees for these systems. We
manually prune the resulting trees of redundant nodes (as Viper produces balanced trees).

All experiments were conducted on a laptop with an i7 1.80 GHz CPU and 32 GB RAM.

4.1 Evaluation on a Decision Tree for Quadrotor Control

We evaluate our verification approach on a decision tree controlling a six-dimensional quadrotor,
tasked to follow a piecewise-linear plan (see, Example 1). The actions represent possible combinations
of pitch, roll, and thrust acceleration. This is a complex continuous-time system (see Appendix B.1
for full details). The policies for such high-dimensional systems are typically approximated by a
learned model, e.g., a neural network [Royo et al., 2019]. We train a decision-tree policy of depth 10
imitating the neural network from [Ivanov et al., 2019].

Figure 4 shows the set of reachable states. Ivanov et al. [2019] verified the neural-network policy, for
which they had to split the initial set into 16 subsets to tame the approximation error. Computing the
reachable states took between 10 and 59 minutes for each subset. Our method can be applied to the
full initial set directly and verifies the system in 6.5 minutes.

4.2 Evaluation on Decision Trees for Classic Nonlinear Control Problems

Next we study three classical control systems, for which we trained small, interpretable decision trees
(see Table 1). Small decision trees are often sufficient for optimality [Vos and Verwer, 2023].

Cart-Pole System. We consider the cart-pole system [Barto et al., 1983]. A description is given in
Appendix B.2. The goal is for the pole to remain vertically stable within an angle of ±0.06◦. This
system is challenging because of quick alternations in the control action. In Figure 5(a), we show the
reachable states in the θ/ω projection together with the decision boundaries (e.g., the policy moves
the cart to the left in the green region). The analysis terminates in 40 seconds and proves that the
blue dashed line θ = 0.06 is not exceeded. Furthermore, the fixpoint check allows to generalize the
results to infinite time; thus we can conclude that the policy is able to balance the pole forever.
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(a) Cart-pole system. The initial states are shown as
yellow borders. The angle safety threshold is shown
as a dashed blue. The background (green, cyan) shows
the decision boundaries.

(b) Mountain-car system. The goal height is shown as
a dashed blue.

Figure 5: Reachable states (red) and simulations (black) for the cart-pole and mountain-car systems.

Figure 6: Reachable states (red) and simulations (black) of the acrobot system. The goal regions are
shown in blue and the initial states around the origin are shown in yellow (magnified to make them
visible). The left (right) plot shows the results for the depth-2 (depth-3) decision-tree policy.

Acrobot. We consider the acrobot system [Sutton, 1995], which consists of two links connected
by a joint, one of which can swing freely. A full description is given in Appendix B.3. The goal is
that the free end reaches a desired height, expressed as the condition − cos(θ1)− cos(θ2 + θ1) > 1,
where θ1 is the joint angle and θ2 is relative to the angle of the first link. This system has complex
nonlinear dynamics that require high precision. We obtain two decision-tree policies and compare
their performance. The system applies a nonlinear transformation to the state before passing it to the
policy. We discuss handling transformations in Appendix A.2. Figure 6 illustrates that all trajectories
reach the goal regions. The analysis takes 100 (first policy) resp. 112 seconds (second policy).

Mountain-Car System. To demonstrate applicability to discrete-time systems, we consider the
mountain-car system, where a car has to reach from one mountain to another [Moore, 1990]. A
description is given in Appendix B.4. Figure 5(b) shows that the car always reaches the top of the
mountain within at most 132 steps. The analysis terminates in 16 seconds.

4.3 Comparison with State-of-the-Art Reachability Tool for Hybrid Automata

As explained before, a DTCS can be seen as a special case of a hybrid automaton. We encoded the
various DTCS from the evaluation as hybrid automata (a description of the encoding is given in
Appendix D) and then applied the state-of-the-art reachability tool JuliaReach [Bogomolov et al.,
2019] to them. The result was that the tool got stuck as soon as it had to bisect the set of states for the
first time, and we had to terminate the tool after several minutes of no progress. For instance, when
we evaluated the reachability tool on the cart-pole system, the tool can analyze the first four control
periods (out of 25) in 22 seconds, but then gets stuck in the fifth control period when the bisection
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starts, and prints errors about numerical instability. This demonstrates that our algorithm is the first
feasible solution to the reach-avoid problem for DTCS.

Our algorithm exploits the decision-tree structure to only explore the feasible automaton transitions
(most of the time this is just one). Furthermore, given the periodic control policy, we only have to
check the transitions at specific time points (an observation we already made in earlier work [Forets
et al., 2020]). Moreover, since we focus on axis-aligned predicates, interval enclosures are often
sufficient. Finally, often only one branch of the decision tree is relevant, which allows us to ignore
the complement branch and avoid unnecessary calculations. Even if several leaves of the decision
tree are reached, these may still all be annotated with the same control action. In that case we do not
have to bisect the set (which avoids the main source of approximation error).

The other tool views the automaton as a black-box model and thus cannot make use of this structure;
instead it needs to perform many intersection operations, which are expensive and typically force to
use a more complex set representation. These structural insights make our analysis not only more
efficient but also more precise in practice because general hybrid-automata tools would typically
approximate these operations.

5 Conclusion

In this paper, we studied the reach-avoid problem for continuous-time and discrete-time dynamical
systems controlled by a decision tree. The problem is undecidable for nonlinear systems, and we
showed undecidability even for the simplest dynamics as well as PSPACE-completeness in the
bounded-time setting. We proposed the first practical algorithm to solve this problem in continuous
time. The abstract algorithm is sound and, for simple systems, complete. We implemented the
algorithm for nonlinear systems and decision trees with axis-aligned predicates. Our evaluation
shows that the algorithm is precise and performant on typical problems. Our approach enriches the
verification toolset for machine-learning based systems and opens novel cross-community research
challenges. Our approach lends itself to visualization and can serve for further analysis and refinement
of decision trees, which themselves are interpretable surrogates for black-box policies.

Coming to the limitations of our approach, we have only considered time-invariant systems. While
the algorithms are general, the fixpoint check we used does not apply to time-varying systems. In
our experiments, with the exception of the quadrotor, we focused on small decision trees. We note
that the size of the decision tree is not necessarily a good measure for complexity. Multiple leaves
may share the same action, and some leaves may not be used at all during the execution. The main
impact on the verification method, in our experience, is the number of times the decision boundaries
are partially crossed by the reachable states (after a time step). Furthermore, the control systems
we verified in the evaluation, while nontrivial from a verification perspective, have relatively simple
control tasks where a decision tree is not required. We plan to investigate how our method performs
on systems with more challenging control tasks, e.g., the cart/pole system starting with the pole
hanging downward (which we were not able to verify in a preliminary attempt).

In future work we will also study how the analysis can be improved both in terms of precision and
scalability. For precision, we plan to employ set representations that are closed under bisection, e.g.,
constrained polynomial zonotopes [Kochdumper and Althoff, 2023], which generalize Taylor models.
For scalability, we aim to improve the fixpoint check using simulation-based heuristics. Another
natural direction is to apply the approach to learning a safe decision-tree policy, for which methods
to compute underapproximations in order to refute unsafe models would be useful. Finally, our
recent algorithm to synthesize a safety shield for policies of systems with complex hybrid dynamics
[Brorholt et al., 2023] only detects discrete-time safety violations; hence we aim to find synergies
with the method presented in this paper.
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A Additional Information on our Method

This section contains some technical remarks on the precision of our method as well as on how to
deal with state transformations. The latter is relevant for solving one of the benchmark problems in
the evaluation (Section 4).

A.1 Precision of the Algorithm

The precision of the Taylor-model implementation of postf (Algorithm 2) is good in practice most
of the time. The main approximation error in Algorithm 1 comes from the bisections in postT
(Algorithm 3) and the subsequent approximation, as exemplified in Figure 3(b). This is hard to
avoid with nonlinear dynamics, for which bisection of non-convex sets is challenging. With iterative
algorithms like ours, the issue with approximation errors is that they accumulate over time, which
is known as the wrapping effect [Neumaier, 1993], especially if there are frequent changes of the
control actions (i.e., crossings of the decision boundary). To reduce the likelihood of a bisection and
accumulation of errors, one can subdivide X0 into smaller subsets and run an analysis from each of
them so that either all or none of the states cross the decision boundary at the same step (for instance,
as mentioned in Section 4.1, this idea was used by Ivanov et al. [2019] for the quadrotor model). This
can sometimes be achieved more efficiently by only considering the set boundaries [Xue et al., 2017].

A.2 State Transformations Before Evaluating the Decision Tree

So far we have assumed that the decision tree T takes the current state as input, as shown in Fig-
ure 2. However, some policies instead receive a transformation of the state. This is particularly
useful for decision-tree policies with linear predicates (like ours) because a nonlinear transforma-
tion effectively augments them with nonlinear predicates. For instance, the acrobot model (see
Appendix B.3 for more information) has the state vector (θ1, θ2, θ̇1, θ̇2), but the input to T is the
vector (cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2). To account for transformations, we can modify
Algorithm 3 as follows. First we apply the transformation to the input set X , which is easy if X is
given as a Taylor model. Then we apply Algorithm 3, and finally we have to “undo” the transforma-
tion for the output. We distinguish three cases. In the first case, if the output is a single pair (Xu, u)
(i.e., there was no bisection), we replace it with (X , u). In all other cases, there was a bisection.
If the transformation is invertible, as in the above case, we apply the inverse transformation (here:
(arccos(x1), arcsin(x2), x5, x6), where x is a state of the output set Xu) to each set Xu in the output
pairs (Xu, u). Otherwise, if the transformation is not invertible, we conservatively replace each pair
(Xu, u) with the pair (X , u).

B Additional Information on the Benchmark Systems

Below we provide further information on the systems from the evaluation (Section 4).

B.1 Quadrotor System

A quadrotor is tasked to follow a piecewise-linear reference trajectory via bang-bang control (see
Figure 1(a)). The six-dimensional state space consists of two 3D vectors for position and velocity.
The action space consists of a 3D vector representing possible combinations of pitch (θ), roll (ϕ), and
thrust acceleration (α). Using the gravity constant g = 9.81, the continuous dynamics are:

ṗx = vx ṗy = vy ṗz = vz v̇x = g tan(θ) v̇y = −g tan(ϕ) v̇z = α− g

The policy’s task is to minimize the difference between the reference and the actual trajectory. The set
of initial states is X0 = [−0.05, 0.05]2 × {0}4. The control period is 0.2 time units and the number
of control cycles is 30. The decision-tree policy T has depth 10 and is too large to depict here.

B.2 Cart-Pole System

A pole is vertically attached on top of a cart that can be moved left or right along a frictionless track.
The goal is to move the cart such that the pole is kept in an upright pose (i.e., the pole angle is small).
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The state consists of the cart position p, cart velocity v, pole angle θ, and angular velocity ω. The
action space is U = {−1, 1} (“left”, “right”) with control variable u. The continuous dynamics are:

ṗ = v v̇ = ψ − 1

22
ϕ cos(θ) ϕ =

9.8 sin(θ)− cos(θ)ψ

2/3 + 5/11 cos(θ)2

θ̇ = ω ω̇ = ϕ ψ =
10u+ 0.05ω2 sin(θ)

1.1

The set of initial states is the union of two hyperrectangles X0 = [−0.05, 0.05]4 and {0}2 ×
[−0.025, 0.025] × [−0.2, 0.2]. (We added the second hyperrectangle to make the problem more
challenging.) The control period is 0.02 time units. The decision-tree policy T is shown in Figure 7(a)
and works as follows. If the pole is leaning to the left (θ ≤ −0.014) or moving in the left direction
(ω ≤ −0.201), the cart is moved to the left (action −1 in the leaves), and otherwise to the right.

The goal is to keep the pole angle θ within a small range around 0. Figure 8 shows simulations from
the corners of X0 plus 100 random initial states inside X0 for 2 time units. From these simulations,
we can see that θ seems to stay in the interval [−0.06, 0.06], but some trajectories come close to the
upper bound. In the evaluation (Figure 5(a)) we prove this property forR[0,0.5].

The fixpoint check allows to conclude that the policy is able to balance the pole forever. The fixpoint
is only found in the θ/ω projection, but this is sufficient because the cart’s position and velocity are
irrelevant for the decisions of the tree.

B.3 Acrobot System

The acrobot system consists of two links connected by a joint to form a chain. One end is fixed while
the joint and the other end can swing freely. There are four state dimensions: angles θ1 and θ2, and
their velocities θ̇1 and θ̇2. The action space is U = {0, 1, 2} (“left”, “none”, “right”) with control
variable u. The continuous dynamics of the velocities are:

θ̈1 = −d2ψ + ϕ1
d1

θ̈2 = ψ

where

d1 = m1lc
2
1 +m2(l

2
1 + lc22 + 2l1lc2 cos(θ2)) + I1 + I2

d2 = m2(lc
2
2 + l1lc2 cos(θ2)) + I2

ϕ2 = m2lc2g cos
(
θ1 + θ2 −

π

2

)
ϕ1 = −m2l1lc2θ̇

2
2 sin(θ2)− 2m2l1lc2θ̇2θ̇1 sin(θ2)

+ (m1lc1 +m2l1)g cos
(
θ1 −

π

2

)
+ ϕ2

ψ =
u+ d2

d1
ϕ1 −m2l1lc2θ̇

2
1 sin(θ2)− ϕ2

m2lc
2
2 + I2 − d2

2

d1

The goal is that the free end reaches a desired height, expressed as the condition− cos(θ1)− cos(θ2+
θ1) > 1, where θ1 is the joint angle and θ2 is relative to the angle of the first link.

The initial condition X0 is a union of a point and a hyperrectangle X0 = ({−0.0005} × {0} ∪
[−0.0705,−0.0695]× [−0.0005, 0.0005])× {0}2. The control period is 0.2 time units and the time

θ ≤ −0.014

−1 ω ≤ −0.201

−1 1

(a) A decision tree for the cart-pole system.

v ≤ 0

v ≤ −0.004

0 x ≤ 0.391

2 0

x ≤ −0.37

2 1

(b) A decision tree for the mountain-car system.

Figure 7: Decision trees for the cart-pole and the mountain-car systems.
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Figure 8: Simulations for the cart-pole system.

θ̇1 ≤ −0.097

θ̇2 ≤ −1.131

0 2

θ̇2 ≤ 1.582

0 2

θ̇1 ≤ −0.099

θ̇2 ≤ −1.351

θ̇1 ≤ −2.661

2 0

2

θ̇2 ≤ 1.123

0 2

Figure 9: Two alternative decision trees for the acrobot system.

horizon is 100 time units. For this system we obtained two different decision-tree policies of depth 2
resp. 3, shown in Figure 9.

The system applies a transformation to the state before being passed to the decision-tree
policy. Concretely, the state vector (θ1, θ2, θ̇1, θ̇2) is mapped to the six-dimensional vector
(cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2). (This transformation is technically irrelevant for the two
policies we obtained, because they only consider θ̇1 and θ̇2, which can be read from the transformed
vector; but we do not exploit that.) We explain how to modify our algorithm in order to cope with
transformations in Appendix A.2.

B.4 Mountain-car system

The mountain-car system consists of a sinusoidal valley between two mountains and a car in between.
The goal is to bring the car to the top of the higher mountain on the right. The engine is not strong
enough to drive up the mountain by itself, so the car must drive up the left mountain and gain
momentum to reach the top of the right mountain.

The control actions are U = {0, 1, 2} (“left”, “none”, “right”) with control variable u. The system
state consists of the car’s position x and velocity v. With constants F = 0.001 and g = 0.0025, the
discrete-time dynamics are:

vk+1 = vk + (u− 1)F − cos(3xk)g

xk+1 = xk + vk+1

The set of initial states is X0 = [−0.505,−0.445] × {0}. The decision-tree policy T is given in
Fig. 7(b). The maximum number of discrete steps is 200, but as shown in Fig. 5(b), all trajectories
reach the goal region within at most 132 steps.
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C Proofs of the Theorems

C.1 Proof of Theorem 1

Proof. We show (i) termination and (ii) soundness and relative completeness of Algorithm 1.

(i) The inner loop in line 9 terminates by assumption. The outer loop in line 3 removes one element at
time point t0 from Q and adds only elements at time point t1 = min(t0 + τ, Tmax) > t0 to Q (line 8).
Elements after time point Tmax are not processed (line 6).

(ii) We only show the equality case; the inclusion case follows because, in each step, all sets are
overapproximated. The algorithm starts with X0 = R0. In the first iteration, by assumption, postT
only returns states x0 ∈ X0 together with the corresponding action act(x0, T ). Similarly, postf only
returns states reachable within [0, τ ]. By the end of the first while-loop iteration, we thus obtain
R = R[0,τ ], and the queue Q contains pairs (Xu, τ) such that the union of the sets Xu is the setRτ .

Further loop iterations work similarly. While the iteration order of Q (line 4) is not prescribed, all
policies lead to the same result. Let us choose the implementation of Q as a LIFO (last-in, first-out)
queue. This corresponds to a breadth-first search where on level k + 1 of the search tree we have
elements (Xi, kτ); the union of these sets Xi is againRkτ . The claim follows by induction.

C.2 Proof of Theorem 2

We first prove PSPACE-completeness in bounded time. For the membership, we sketch a nonde-
terministic algorithm with polynomial space requirements for the complement of the reach-avoid
problem, which is sufficient by Savitch’s theorem [Savitch, 1970] and because PSPACE is closed
under complementation. The algorithm guesses an initial state and simulates the DTCS. In continuous
time, the trajectory in one control cycle is a line segment. In each step, the algorithm checks whether
(i) the current line segment intersects with the error states E and does not intersect with the goal set
G, or (ii) the final state in the last iteration kmax is outside the goal set G; these checks can again be
performed efficiently. The number of iterations may be exponential, but we can maintain a counter
with logarithmically many bits.

For the hardness, we show a polynomial-time reduction from the word problem for deterministic linear
bounded automata (LBA). Here we consider the LBA model with accepting state, total transition
function, and the input tape containing the input word plus two bound markers for simplicity.

For better intuition, we provide an example after the proof, which we recommend reading in parallel.

Given is an input word w ∈ {0, 1}n and an LBA A = (Q,A, δ, q0, qacc,#l,#r) with states Q =
{q0, q1, . . . }, tape alphabet A = {a0, a1, . . . } ⊇ {0, 1,#l,#r}, transition function δ ⊆ Q× A→
Q × A × {L,R} (where L and R denote moving to the left resp. right), initial state q0, accepting
state qacc, and bound markers #l,#r.

We define two bijections Nq : Q→ {0, . . . , |Q| − 1} and Na : A→ {0, . . . , |A| − 1} to associate a
natural number with each state and tape symbol such that qacc is associated with |Q| − 1.

We construct a DTCS with n + 4 state variables x0, . . . , xn+1, xq, xp, n + 4 control actions
u0, . . . , un+1, uq, up, control domain U = Zn+4 (and control period τ = 1 for continuous sys-
tems). The environment dynamics f are state-independent, i.e., f(x, u) = u.

The decision tree is more complex, and we first establish some intuition. The state variables encode
the LBA configuration, where the first n + 2 dimensions (x0, . . . , xn+1) encode the tape contents
(i.e., the value of xi encodes the tape symbol at position i), xq encodes the current LBA state, and xp
encodes the current position on the tape. The execution of one control cycle corresponds to taking
one transition. For that we construct the tree from four gadgets: a gadget to select the current LBA
state, a gadget to select the current position on the tape, a gadget to select the current tape symbol,
and a gadget to apply the transition function to the current configuration.

The first gadget (LBA state selection) is a degenerated tree only expanding to the right with |Q| − 1
decision nodes. On the k-th level the predicate is xq ≤ k − 1. The left leaf node at level k + 1 is the
sub-tree Tk−1 corresponding to the second gadget. On the last layer, the right leaf node is T|Q|−1.
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xq ≤ 0

T0 xq ≤ 1

T1 T2
(a) Gadget 1: Outer tree
spine T with three states.

xp ≤ 0

Tk,0 xp ≤ 1

Tk,1 Tk,2

(b) Gadget 2: Sub-tree Tk

with three tape positions.

xℓ ≤ 0

Tk,ℓ,0 xℓ ≤ 1

Tk,ℓ,1 xℓ ≤ 2

Tk,ℓ,2 Tk,ℓ,3

(c) Gadget 3: Sub-tree Tk,ℓ with four
tape symbols.

Figure 10: Decision-tree structure from Example 4.

The second gadget (position selection) is an analogous tree Tk over xp with n+ 1 decision nodes.
On the ℓ-th level the predicate is xp ≤ ℓ− 1. The left leaf node at level ℓ+ 1 is the sub-tree Tk,ℓ−1

corresponding to the third gadget. On the last layer, the right leaf node is Tk,n+1.

The third gadget (symbol selection) is an analogous tree Tk,ℓ over xℓ with |A| − 1 decision nodes. On
the m-th level the predicate is xℓ ≤ m− 1. The left leaf node at level m+ 1 is the sub-tree Tk,ℓ,m−1

corresponding to the fourth gadget. On the last layer, the right leaf node is Tk,ℓ,|A|−1.

The fourth gadget (application of the transition function) is a single leave node Tk,ℓ,m. The indices
encode that the LBA is currently in state N−1

q (k) at position ℓ and reads tape symbol N−1
a (m). Let

us assume that the transition function δ prescribes to switch to state q′, write tape symbol a′, and
move to the right. Correspondingly, we want to choose the control actions such that in the next step
the state of the system is xq = Nq(q

′), xp = ℓ+ 1, xℓ = Na(a
′), and all other state variables remain

unchanged. This is achieved by choosing

uq = Nq(q
′)− k, up = 1, uℓ = Na(a

′)−m, ui = 0 (for all i ̸= ℓ).

(For moving to the left, choose up = −1 instead.) Observe that the state variables keep track of the
LBA configuration and that we have corresponding leaves in T for each transition in δ. For a fixed
transition (q, a, q′, a′, d) we actually have multiple leaves; they only differ in the choice of the control
action uℓ (corresponding to the current cell index on the tape).

Finally, let wi be the i-th symbol of w (starting with i = 1). The initial state is xq = Nq(q0), xp = 1
(first symbol of w), x0 = Na(#l), xn+1 = Na(#r), and xi = Na(wi) for all other i. The set of
goal states G consists of all states where xq = Nq(qacc) = |Q| − 1. The set of error states E = ∅ is
not needed. The step bound is kmax = |Q||A|n+2(n+ 2) (encoded in binary).

The above construction is polynomial in the size of the LBA and the word (the decision tree has
O(|Q|+ |A|+ n) nodes), and the following equivalence shows that it is a reduction.

w is accepted by A
⇐⇒ the configuration ⟨q0,#lw#r⟩ leads to a configuration with state qacc

(∗)⇐⇒ the DTCS reaches a state with xq = Nq(qacc) within kmax steps
⇐⇒ the DTCS satisfies the reach-avoid specification

The critical step is (∗), for which we rely on the intuition established above. Note that in the
continuous-time case we have to make sure that a goal state is not reached accidentally between two
control cycles. This is ensured by letting Nq(qacc) = |Q| − 1.

This concludes the proof of PSPACE-completeness. Before we continue with the undecidability in
unbounded time, we give an example to better illustrate the previous reduction.
Example 4. Consider the LBA with states q0, qs, qacc, tape symbols 0, 1,#l,#r, and the only explicit
transition δ(q0, 1) = (qacc, 0, R) (all other transitions lead to the sink state qs with appropriate
direction L/R). The LBA accepts words starting with a 1 (and changes it to 0). We use the mappings

Nq(q) =


0 q = q0
1 q = qs
2 q = qacc

Na(a) =


0 a = 0

1 a = 1

2 a = #l

3 a = #r.
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Now consider the input word w = 1, which means we have the initial configuration ⟨q0,#l1#r⟩. We
construct a state-independent DTCS with state variables x = (x0, x1, x2, xq, xp) and control actions
u = (u0, u1, u2, uq, up). The initial state is (2, 1, 3︸ ︷︷ ︸

#l1#r

, 0︸︷︷︸
q0

, 1︸︷︷︸
position

)T .

The decision tree T is quite large (36 leaves), and we only depict its structure in Fig. 10. The
first cartoon shows the outer structure. Each leaf node follows the structure in the second cartoon,
and each leaf node shown there follows the structure in the third cartoon. Finally, we give one
example leaf T0,1,1 of the whole tree, which stands for state q0, tape position 1, and reading symbol 1.
Observe that this is the leaf the decision tree chooses in the initial state. The control-action vector
in that leaf is ( 0︸︷︷︸

cell 0

, 0− 1︸ ︷︷ ︸
cell 1

, 0︸︷︷︸
cell 2

, 2− 0︸ ︷︷ ︸
state

, 1︸︷︷︸
position

)T . Thus, in the next time step, the new state will be

(2, 0, 3︸ ︷︷ ︸
#l0#r

, 2︸︷︷︸
qacc

, 2︸︷︷︸
position

)T , which is a goal state. This concludes the example.

Now we prove undecidability in unbounded time. For that, we reduce from the termination problem
for deterministic two-counter machines (2CMs). We consider the model from [Shepherdson and
Sturgis, 1963, Theorem 4.1] with two counters c1, c2 ∈ N and instruction set INC(cz) (increment
counter cz), DEC(cz) (decrement counter cz with zero lower bound), JZ(cz , ℓ) for z ∈ {1, 2} (jump
to location ℓ if counter cz is zero), and STOP (terminate). Each instruction I comes with a position
k in the program, which we write “k : I”. The initial value of the counters is c1 = c2 = 0 and the
program starts at instruction 1.

Given is a 2CM with n instructions. We construct a DTCS with 3 state variables x0, x1, xpc , 3 control
actions u1, u2, upc , control domain U = Z3 (and control period τ = 1 for continuous systems). The
environment dynamics f are state-independent, i.e., f(x, u) = u.

We first establish some intuition. The state variables x1 and x2 correspond to the counters c1 and
c2, and the state variable xpc corresponds to the program counter. After each control cycle, these
variables will have the corresponding values in the simulated 2CM. For the decision-tree policy,
we construct a gadget for each instruction in the 2CM, and one more gadget to select the current
instruction based on the value of xpc .

We start with the latter gadget (instruction selection), which works precisely as most gadgets in the
previous proof. It is a degenerated tree only expanding to the right with n− 1 decision nodes. On the
k-th level, the predicate is xpc ≤ k. The left leaf node at level k + 1 is the sub-tree Tk corresponding
to one of the other gadgets, depending on the k-th instruction. The last layer’s right leaf node is Tn.

The other gadgets are trees substituted for Tk depending on the k-th instruction. We only describe the
instructions for the counter c1; for c2 the construction is completely analogous by swapping 1 and 2
in the indices. For instruction “k : INC(c1)” we set Tk to the leaf node with u1 = 1, u2 = 0, upc = 1.
For instruction “k : DEC(c1)” we set Tk to the tree with decision node x1 ≤ 0 and two leaves; the
left leaf node is u1 = 0, u2 = 0, upc = 1, and the right leaf node is u1 = −1, u2 = 0, upc = 1. For
instruction “k : JZ(c1, ℓ)” we set Tk to the tree with decision node x1 ≤ 0 and two leaves; the left
leaf node is u1 = 0, u2 = 0, upc = ℓ − k, and the right leaf node is u1 = 0, u2 = 0, upc = 1. For
instruction “k : STOP” we set Tk to the leaf node with u1 = 0, u2 = 0, upc = −k.

Finally we define the (singleton) set of initial states X0 = {(0, 0, 1)}, the goal region G = {(x, y, 0) |
x, y ∈ R}, and the set of error states E = ∅ (not used).

It is easy to see that each of the gadgets implements the 2CM instructions. Executing the action
corresponding to the STOP instruction is the only way that xpc can reach the value 0. Thus the above
construction is a reduction.

the 2CM terminates
⇐⇒ the STOP instruction is reached from the configuration c1 = c2 = 0, pc = 1

⇐⇒ the DTCS reaches a state with xpc = 0

⇐⇒ the DTCS satisfies the reach-avoid specification
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D Modeling Decision-Tree Controlled Systems as Hybrid Automata

Here we expand on the discussion from Section 4.3 and explain the encoding.

Systems with mixed continuous and discrete dynamics can be modeled as a hybrid automaton
[Henzinger, 1996]. As such, DTCS can also be encoded as a hybrid automaton. The reach-avoid
problem has been studied extensively for various subclasses of hybrid automata [Doyen et al., 2018,
Althoff et al., 2021]. One could thus argue that solutions to the reach-avoid problem for DTCS exist.
However, when modeling a DTCS as a hybrid automaton, the problem structure gets lost, and thus
tools analyzing this hybrid automaton will not scale. Hence we argue that our algorithm is the first
feasible solution to the reach-avoid problem for DTCS.

Below we present one possible encoding of a DTCS as a hybrid automaton, for which we assume
that the reader is familiar with the terminology of hybrid automata. We encoded the systems from
our evaluation (Section 4) accordingly and applied the state-of-the-art reachability tool JuliaReach
[Bogomolov et al., 2019] (which also implements an algorithm based on Taylor models [Benet et al.,
2019]) to them. The result was that the tool got stuck as soon as it had to bisect the set of states for
the first time, and we had to terminate the tool after several minutes of no progress.

We encode a DTCS (f, T , τ) as a hybrid automaton as follows. First we introduce a fresh variable
t for time. We use one location ℓu for each control action u ∈ U that occurs in T . The continuous
dynamics in ℓu are given by f(x, v)∧ ṫ = 1, where we substitute the value u for the second argument
v. Each location ℓu has an invariant t ≤ τ , restricting time to one control period. For each location
there is a transition to every location ℓu′ with a guard condition consisting of t = τ and a big
disjunction of conjunctions of the predicates along the paths in T to leaves with action u′. For
instance, for T given in Figure 7(a), the guards on the transitions leading to ℓ−1 are t = τ ∧ (θ ≤
−0.014 ∨ (θ > −0.014 ∧ ω ≤ −0.201)). Finally, each transition has a reset t := 0.

Such an automaton is challenging for black-box analysis tools because they always have to explore
all transitions. For instance, when we evaluated the reachability tool on the cart-pole system, the tool
can analyze the first four control periods (out of 25) in 22 seconds, but then gets stuck in the fifth
control period when the bisection starts, and prints errors about numerical instability. By knowing the
problem structure, our approach only explores the feasible paths of the decision tree (often there is
just one), for which it only has to evaluate d predicates, where d is the depth of the tree. Furthermore,
given the periodic control policy, we only have to perform these checks at specific time points. For
general hybrid automata, this has to be found out via intersections with invariants and guards. These
structural insights make our analysis not only more efficient but also more precise in practice because
general hybrid-automata tools would typically approximate these operations.
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