
A Appendix519

A.1 Theorem 3.1520

First, we need the following theorem:521

Theorem A.1 ([Liu et al., 2022]). Let µt =
√
limε→+∞

ε2

−2 log δA(ε) . A privacy mechanism A with522

the privacy profile δA(ε) is µ-GDP if and only if µt < ∞ and µ is no smaller than µt.523

Theorem A.1 implies that a mechanism is µ-GDP if the privacy profile δA takes the form e−O(ε2) as524

ε → ∞.525

Additionally, we need the Bishop-Gromov comparison theorem:526

Theorem A.2 (Bishop-Gromov [Petersen, 2006]). Let M be a complete n-dimensional Riemannian527

manifold whose Ricci curvature satisfies the lower bound528

Ric ≥ (n− 1)K

for a constant K ∈ R. Let Mn
K be the complete n-dimensional simply connected space of constant529

sectional curvature K (and hence of constant Ricci curvature (n − 1)K ). Denote by B(p, r) the530

ball of radius r around a point p, defined with respect to the Riemannian distance function. Then, for531

any p ∈ M and pK ∈ Mn
K , the function532

ϕ(r) =
VolB(p, r)

VolB (pK , r)

is non-increasing on (0,∞). As r goes to zero, the ratio approaches one, so together with the533

monotonicity this implies that534

VolB(p, r) ≤ VolB (pK , r) .

Bishop-Gromov comparison theorem not only gives us the control of volume growth of certain535

manifolds but also gives a rough classification by sectional curvature. Besides, this is a global536

property in the sense that p and pK can be arbitrary points on the manifolds.537

A.1.1 Proof of Theorem 3.1538

Proof. By A.1, we only need to show that for any x ∈ M, when ε → ∞,∫
A

pη,σ(y)dν(y) = e−O(ε2)

where A is given by
A = {y ∈ M|pη,σ(y)/pη′,σ(y) > eε}

Let’s consider M\A = {y ∈ M : pη,σ(y)/pη′,σ(y) ≤ eε}. We have539

log

(
pη,σ(y)

pη′,σ(y)

)
=

1

2σ2
(d(η, y)2 − d(η′, y)2) + C

≤ ∆

2σ2
(2d(η, y) + ∆) + C, by triangular inequality,

where C = log(Z(η, σ))− log(Z(η′, σ)). Thus we have,

d(η, y) ≤ 2σ2(ε− C)−∆2

2∆
=⇒ pη,σ(y)

pη′,σ(y)
≤ eε

Let r = 2σ2(ε−C)−∆2

2∆ , note that since Bη(r) ⊆ M\A, we have A ⊆ M\Bη(r). Thus, we only
need to prove the following: ∫

M\Bη(r)

pη,σ2(y)dν(y) = e−O(ε2)
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when ε → ∞. One can easily show the following inequality,540 ∫
Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ e−
r2

σ2 (VolB(η, 2r)−VolB(η, r)) (4)

By Theorem A.2, we have the following three cases:541

1. K > 0. Then the standard space Mn
K is the n-sphere of radius 1/

√
K. (VolB(η, 2r) −542

VolB(η, r)) is obviously less than the volume of the whole space Mn
K . Thus we have543 ∫

Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ e−
r2

σ2 s(n)
√
K

1−n
(5)

where s(n) = 2π
n
2

Γ(n
2 ) is a constant relative to the dimension n. One can easily find that as544

ε → ∞, Bη(2r) will cover the Mn
K , and the right-hand side of inequality 5 will approach to545

0 as e−O(ε2).546

2. K = 0. Then the standard space Mn
K is the n dimensional Euclidean space Rn. We have547 ∫

Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ e−
r2

σ2
πn/2rn

Γ(n2 + 1)
. (6)

The same with above, when ε → ∞, Bη(2r) will cover the Rn and the right-hand side of 6548

will approach to 0 as e−O(ε2).549

3. K < 0. The standard space Mn(K) is the hyperbolic n-space Hn. The hyperbolic volume550

VolB(ηK , r) with any ηk ∈ Hn is given by551

VolB(ηK , r) = s(n)

∫ r

0

(
sinh(

√
−Kt)√

−K

)n−1

dt (7)

where the hyperbolic function is given by sinh(x) = (ex − e−x)/2. It’s not hard to see that552

sinhn(t) ≤ (n+ 1)ent

2n
. (8)

Plugging the 8 into 7, we have553

VolB(ηK , r) ≤ sn
n

(n− 1)2n−1
√
−K

n e
√
−K(n−1)r. (9)

Combining 9 and 4, we have554 ∫
Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ c(n)e−
r2

σ2 +
√
−K(n−1)2r. (10)

The principle part of the exponent of the right-hand side of 10 is still −ε2. Thus, when555

ε → ∞, it approaches to 0 as e−O(ε2).556

557

A.2 Theorem 3.2558

Proof. Follows directly from Definition 2.2, Theorem 3.1 and Theorem 5 in Balle and Wang [2018].559

560

A.3 Corollary 3.2.1561

Proof. In this proof, we will parameterize points on S1 using their polar angles.562

On S1, the Riemannian Gaussian distribution with footprint η and rate σ has the following density,563

pη,σ(θ) =
1

Zσ
e−

1
2σ2 (θ−η mod π)2 , Zσ =

√
2πσ

[
Φ
(π
σ

)
− Φ

(
−π

σ

)]
.
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Note that since S1 has constant curvature, we can use Theorem 4.1 instead of Theorem 3.2564

WLOG we assume η1 = 2π − ∆
2 and η2 = ∆

2 and thus d(η1, η2) = ∆. Given an arbitrary ε, the set565

A takes the following form,566

A =

[
π +

σ2ε

∆
, 2π − σ2ε

∆

]
.

and it follows that we must have567

ε ∈ [0, π∆/(2σ2)]. (11)

Thus we have568 ∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

=
1

Zσ

[∫
A

e−
1

2σ2 (η1−θ mod π)2dθ − eε
∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]

=
1

Zσ

[∫ 2π−σ2ε
∆

π+σ2ε
∆

e−
1

2σ2 (η1−θ mod π)2dθ − eε
∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]

=
1

Zσ

[∫ 2π−σ2ε
∆

π+σ2ε
∆

e−
1

2σ2 (η1−θ)2dθ − eε
∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]

=
1

Zσ

[
Φ

(
2π

σ
− σε

∆
− η1

σ

)
− Φ

(π
σ
+

σε

∆
− η1

σ

)
− eε

∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]
=

1

Zσ

[
Φ

(
−σε

∆
+

∆

2σ

)
− Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eε

∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]
.

We have evaluated the first integral, and now let’s consider the second integral. For ε ≤ ∆2

2σ2 , we have569 ∫
A

e−
1

2σ2 (µ2−θ mod π)2dθ

=

∫ µ2+π

π+σ2ε
∆

e−
1

2σ2 (θ−µ2)
2

dθ +

∫ 2π−σ2ε
∆

µ2+π

e−
1

2σ2 (θ−(2π+µ2))
2

dθ

=
√
2πσ

[
Φ
(π
σ

)
− Φ

(
π

σ
+

σε

∆
− ∆

2σ

)
+Φ

(
−σε

∆
− ∆

2σ

)
− Φ

(
−π

σ

)]
.

Thus for ε ≤ ∆2

2σ2 we have,570 ∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

=

√
2πσ

Zσ

[
Φ

(
−σε

∆
+

∆

2σ

)
− eεΦ

(
−σε

∆
− ∆

2σ

)]
(12)

−
√
2πσ

Zσ

[
Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eεΦ

(
σε

∆
− ∆

2σ
+

π

σ

)]
− eε.

Similarly, for ε > ∆2

2σ2 , we have,571 ∫
A

e−
1

2σ2 (µ2−θ mod π)2dθ

=

∫ 2π−σ2ε
∆

π+σ2ε
∆

e−
1

2σ2 (θ−(2π+µ2))
2

dθ

=
√
2πσ

[
Φ

(
−σε

∆
− ∆

2σ

)
− Φ

(
−π

σ
+

σε

∆
− ∆

2σ

)]
.
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Thus for ε > ∆2

2σ2 we have,572 ∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

=

√
2πσ

Zσ

[
Φ

(
−σε

∆
+

∆

2σ

)
− eεΦ

(
−σε

∆
− ∆

2σ

)]
(13)

−
√
2πσ

Zσ

[
Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eεΦ

(
σε

∆
− ∆

2σ
− π

σ

)]
.

Put (11), (12) and (13) together with Theorem 4.1, we have proved Corollary 3.2.1.573

A.4 Homogeneous Riemannian Manifolds574

For more detailed treatment on homogenous Riemannian manifolds and related concepts, refers to575

Helgason [1962], Berestovskii and Nikonorov [2020], Lee [2006] for details and Chakraborty and576

Vemuri [2019] for a more concise summary.577

A.4.1 Group actions on Manifolds578

In this section, we will introduce some basic facts about group action which will be used to introduce579

homogeneous Riemannian manifolds in later section. The materials covered in this section can be580

found in any standard Abstract Algebra texts.581

Definition A.1. A group (G, ·) is a non-empty set G together with a binary operation · : G×G →582

G, (a, b) 7→ a · b such that the following three axioms are satisfied:583

• Associativity: ∀a, b, c ∈ G, (a · b) · c = a(b · c)584

• Identity element: ∃e ∈ G,∀a ∈ G, a · e = e · a = a.585

• Inverse element: ∀a ∈ G,∃a−1 ∈ G, a · a−1 = a−1 · a = e.586

Definition A.2. Let G be a group and X be an arbitrary set. A left group action is a map587

α : G×X → X , that satisfies the following axioms:588

• α(e, x) = x589

• α(g, α(h, x)) = α(gh, x)590

Note here we use the juxtaposition gh to denote the binary operation in the group. If we shorten591

α(g, x) by g · x, it’s equivalent to say that e · x = x, and g · (h · x) = (gh) · x592

Note each g ∈ G induces a map Lg : X → X,x 7→ g · x.593

A.4.2 Homogeneous Riemannian manifolds, symmetric spaces and spaces of constant594

curvature595

Let M be a Riemannian manifold and I(M) be the set of all isometries of M, that is, given596

g ∈ I(M), d(g · x, g · y) = d(x, y), for all x, y ∈ M. It is clear that I(M) forms a group, and thus,597

for a given g ∈ I(M) and x ∈ M, g · x 7→ y, for some y ∈ M is a group action. We call I(M) the598

isometry group of M.599

Consider o ∈ M, and let H = Stab(o) = {h ∈ G | h ·o = o}, that is, H is the Stabilizer of o ∈ M.600

Given g ∈ I(M), its linear representation g 7→ dxg in the tangent space TxM is called the isotropy601

representation and the linear group dx Stab(x) is called the isotropy group at the point x.602

We say that G acts transitively on M, iff, given x, y ∈ M, there exists a g ∈ M such that y = g · x.603

Definition A.3 ([Helgason, 1962]). Let G = I(M) act transitively on M and H = Stab(o), o ∈ M604

(called the "origin" of M ) be a subgroup of G. Then M is called a homogeneous Riemannian605

manifold and can be identified with the quotient space G/H under the diffeomorphic mapping606

gH 7→ g · o, g ∈ G.607
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By definition, we have d(x, y) = d(g · x, g · y) for any g ∈ G and any x, y ∈ M. More importantly,608

any integrable function f : M → R, we have [Helgason, 1962]609 ∫
M

f(x)dν(x) =

∫
M

f(g · x)dν(x)

This property leads to Proposition 4.1.610

Definition A.4 ([Helgason, 1962]). A Riemannian symmetric space is a Riemannian manifold M611

such that for any x ∈ M, there exists sx ∈ G = I(M) such that sx · x = x and dsx|x = −I . Sx is612

called symmetry at x.613

That is, a Riemannian symmetric space is a Riemannian manifold M with the property that the614

geodesic reflection at any point is an isometry of M. Note that any Riemannian symmetric space is a615

homogeneous Riemannian manifold, but the converse is not true.616

Definition A.5 ([Vinberg et al., 1993]). A simply-connected homogeneous Riemannian manifold617

is said to be a space of constant curvature if its isotropy group (at each point) is the group of all618

orthogonal transformations with respect to some Euclidean metric.619

Once again, a space of constant curvature is a symmetric space but the converse is not true.620

A.5 Theorem 4.1621

Proof. Let G be the isometry group of M. Let η1, η2 ∈ M be arbitrary points such that d(η1, η2) =622

∆. By Corollary 4.1, the set A reduces to A =
{
y ∈ M : d(η2, y)

2 − d(η1, y)
2 ≥ 2σ2ε

}
.623

What we need to show is the following, for any points η′1, η
′
2 ∈ M such that d(η′1, η

′
2) = ∆,624 ∫

A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y) =

∫
A′

pη′
1,σ

(y) dν(y)− eε
∫
A′

pη′
2,σ

(y) dν(y)

where A′ =
{
y ∈ M : d(η′2, y)

2 − d(η′1, y)
2 ≥ 2σ2ε

}
. It’s sufficient to show625

∫
A

pη1,σ(y) =

∫
A′

pη′
1,σ

(y) dν(y),

∫
A

pη2,σ(y) =

∫
A′

pη′
2,σ

(y) dν(y). (14)

We can separate the proof into three cases: (1) η′1 = η1, η
′
2 ̸= η2; (2) η′1 ̸= η1, η

′
2 = η2; (3)626

η′1 ̸= η1, η
′
2 ̸= η2.627

Case (1): η′1 = η1, η
′
2 ̸= η2:628

It follows that η2 is in the sphere centered at η with radius ∆. (14) then follows from the rotational629

symmetry of the constant curvature spaces.630

Case (2): η′1 ̸= η1, η
′
2 = η2:631

Same as case (1).632

Case (3): η′1 ̸= η1, η
′
2 ̸= η2:633

For any η′1 ̸= η1, there exists g ∈ G, such that g · η1 = η′1. Denote η′2 = g · η2, we have634

gA :={g · y : d(η2, y)
2 − d(η1, y)

2 ≥ 2σ2ε}
={g · y : d(η′2, g · y)2 − d(η′1, g · y)2 ≥ 2σ2ε}
={y : d(η′2, y)

2 − d(η′1, y)
2 ≥ 2σ2ε}

=A′.
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Let F (y) := pη1,σ(y)1A(y), we have635 ∫
A

pη1,σ(y) dν(y)

=

∫
M

F ◦ L−1
g (y) dν(y)

=

∫
M

pη1,σ(g
−1 · y)1gA(y) d(L

−1
g )∗ν(y); change of variable formular,

=

∫
M

pη1,σ(g
−1 · y)1gA(y) dν(y); ν is a G-invariant measure,

=
1

Zσ

∫
gA

e−
1

2σ2 d(g−1·y,η1)
2

dν(y)

=
1

Zσ

∫
gA

e−
1

2σ2 d((gg−1)·y,g·η1)
2

dν(y)

=
1

Zσ

∫
gA

e−
1

2σ2 d(y,η′
1)

2

dν(y)

=

∫
gA

pη′
1,σ(y)

dν(y)

=

∫
A′

pη′
1,σ(y)

dν(y).

For
∫
A
pη2,σ(y)dν(y), the proof is the same. Combine with the result of case (1), we have finished636

the proof for case (3).637

638

A.6 Simulation Details639

For sampling from Riemannian Gaussian distribution NM(θ, σ2) on S1 (section 4.2), we first sample640

from truncated normal distribution with µ = 0 and σ2, then embed the sample to R and lastly641

counter-wise rotate the sample with degree θ.642

For simulation on S2 (section 5.2), we choose the pair of η and η′ to be (1, 0, 0) and (cos(∆), (1−643

cos(∆)2)1/2, 0). Though any pair η, η′ ∈ S2 with d(η, η′) = ∆ works, we simply choose this644

specific pair for convenience. For Fréchet mean computation, we use a gradient descent algorithm645

described in Reimherr and Awan [2019].646

A.6.1 R Codes647

For simulations in section 4.2, refer to R files euclid_functions.R & euclid_simulation.R for Euclidean648

space and sphere_functions.R & s1_simulation.R for unit circle S1. For simulations in section 5.2,649

refer to R files sphere_functions.R & sphere_simulation.R.650

19


	Appendix
	Theorem 3.1
	Proof of Theorem 3.1

	Theorem 3.2
	Corollary 3.2.1
	Homogeneous Riemannian Manifolds
	Group actions on Manifolds
	Homogeneous Riemannian manifolds, symmetric spaces and spaces of constant curvature

	Theorem 4.1
	Simulation Details
	R Codes



