
A Details of the empirical setup in Section 3.4

The code can be found at https://github.com/mjagadeesan/supply-side-equilibria.

Dataset information. We use the MovieLens-100K dataset which consists of N = 943 users,
1682 movies, and 100,000 ratings [Harper and Konstan, 2015]. We imported the dataset using the
scikit-surprise library.

Calculation of user embeddings. For D 2 {2, 3, 5, 10, 50}, we obtain D-dimensional user em-
beddings by running NMF (with D factors). In particular, we ran NMF using the scikit-surprise
library on the full MovieLens-100K dataset with the default hyperparameters.

Calculation of single-genre equilibrium p⇤. We calculate the single-genre equilibrium genre
p⇤ = argmaxkpk=1|p2RD

�0

PN
i=1 log(hp, uii). We write p⇤ as

p⇤ = argmax
kpk1|p2RD

�0

NX

i=1

log(hp, uii)

and solve the resulting optimization program. For q = 2, we directly use the cvxpy library with
the default hyperparameters. For q = 2, we run projected gradient descent for q 6= 2 with learning
rate 1.0 for 100 iterations where p is initialized as a standard normal clamped so all the coordinates
are at least 1. The projection step onto kpk  1 | p 2 RD

�0 uses the cvxpy library with the default
hyperparameters.

Calculation of �u. We directly calculate �u according to the following formula:

log(N)

log(N)� log
⇣
k
PN

n=1
un

kunk⇤
k⇤
⌘ .

B Further details on the model

B.1 Model discussion

Our model is one of the simplest possible that studies specialization in the supply-side marketplace.
In particular, although many classical models4 (e.g. spatial location models with specific user
distributions and costs based on the Euclidean distance) permit closed-form equilibria, they elide
important aspects of supply-side markets—such as the multi-dimensionality of producer decisions,
the joint selection of genre and quality, and the structure of producer costs—which significantly
influence the form that specialization takes. Our model incorporates these aspects at the cost of not
having general closed-form equilibria; we nonetheless develop technical tools to study specialization
without relying on closed-form solutions (while also obtaining closed forms in special cases). On
the other side of the spectrum, we do not aim to provide a fully general model of product selection,
production, and pricing. Instead, our model adds assumptions specific to recommender systems that
provide sufficient structure to derive precise properties of specialization.

Our formalization of user preferences and the producer decision space is motivated by distinguishing
aspects of content recommender systems. First, the infinite, high-dimensional content embedding
space captures that digital goods can’t be cleanly clustered into categories, but rather, are often
mixtures of different dimensions (e.g. a movie can be both a drama and a comedy). Furthermore,
the bilinear form (dot product) user values is motivated by standard recommendation algorithms:
for example, matrix completion assumes that the user values are inner products between preference
vectors and content attributes vectors [Koren et al., 2009].

Our assumptions on the structure of producer costs allow us to study specialization, while retaining
mathematical tractability. The family of producer cost functions is stylized, but flexible, in that
it accommodates arbitrary powers of arbitrary norms and it can capture both specialization and

4See Anderson et al. [1992] for a textbook treatment.
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homogenization (Theorem 1). The assumption that all producers share the same cost function is
also simplifying, but, potentially surprisingly, still allows us to study specialization. In particular,
specialization occurs in a rich class of marketplaces (Corollary 4), despite the fact that producers
have symmetric utility functions; we anticipate that the tendency towards specialization would only
be amplified if producers could have different cost functions.

We hope that the simplicity of our model, and its ability to capture specialization, make it a useful
starting point to further study the impact of recommender systems on production; we highlight some
potential directions in Section 5.

B.2 Equilibrium existence results

We first show that due to discontinuities in the utility function, pure strategy equilibria do not exist
(Proposition 4 in Appendix B.2 Recall that µ1:P is a pure strategy equilibrium if each µj contains
only one vector in its support; it is a mixed strategy equilibrium.
Proposition 4. For any set of users and any � � 1, a pure strategy equilibrium does not exist.

The intuition is that if two producers are tied, then a producer can increase their utility by infinitesi-
mally increasing the magnitude of their content.

Since pure strategy equilibria do not exist, we must turn to mixed strategy equilibria. Using the
technology of equilibria in discontinuous games [Reny, 1999], we show that a mixed strategy
equilibrium exists. In fact, because of the symmetries in the producer utility functions, we can
actually show that a symmetric mixed strategy equilibrium (i.e. an equilibrium where µ1 = . . . = µP )
exists.
Proposition 1. For any set of users and any � � 1, a symmetric mixed equilibrium exists.

Interestingly, symmetric mixed equilibria must exhibit significant randomness across different content
embeddings. (Note that every symmetric equilibrium must exhibits some randomization, since pure
strategy equilibria do not exist.) In particular, we show that a symmetric mixed equilibrium cannot
contain point masses.
Proposition 5. For any set of users and any � � 1, every symmetric mixed equilibrium is atomless.

Proposition 5 implies that a symmetric mixed equilibrium has infinite support. The randomness can
come from randomness over quality kpk as well as randomness over genres p/kpk.

B.3 Warmup: Homogeneous Users

To gain intuition for the structure of µ, let’s focus on a simple one-dimensional setting with one user.
We show that the equilibria take the following form (see Figure 5):
Example 1 (1-dimensional setup). Let D = 1, and suppose that there is a single user u1 = 1.

Suppose the cost function is c(p) = |p|� . The unique symmetric mixed equilibrium µ is supported on

the full interval [0, 1] and has cumulative distribution function F (p) = (p/N)�/(P�1)
. We defer the

derivation to Appendix E.4.

Since D = 1 in Example 1, content is specified by a single value p 2 R�0. Since the user will be
assigned to the content with the highest value of p, we can interpret p as the quality of the content. For
a producer, setting p to be larger increases the likelihood of being assigned to users, at the expense of
a greater cost of production.

The equilibrium changes substantially with the parameters � and P . First, for any fixed P , the
equilibrium distribution for higher values of � stochastically dominates the equilibrium distribution
for lower values of � (see Figure 5). The intuition is that increasing � lowers production costs
for content with a given quality, so producers must produce higher quality content at equilibrium.
Similarly, for any fixed value of �, the equilibrium distribution for lower values of P stochastically
dominates the equilibrium distribution for higher values of P . This is because when more producers
enter the market, any given producer is less likely to win users (i.e. a producer only wins a user
with probability 1/P if all producers choose the same vector), so they cannot expend as high of a
production cost.
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Figure 5: Cumulative distribution function (cdf) of the symmetric equilibrium µ for 1-dimensional setup
(Example 1) with P = 2 producers. The equilibrium µ interpolates from a uniform distribution to a point mass
as the exponent � increases.

We next translate these insights about the equilibria for one-dimensional marketplaces to higher-
dimensional marketplaces with a population of homogeneous users. If all users are embedded at
the same vector u 2 RD

�0, then the producer’s decision about what direction of content to choose is
trivial: they would choose a direction in argmaxkpk=1hp, ui. As a result, the producer’s decision
again boils down to a one-dimensional decision: choosing the quality kpk of the content.
Corollary 7. Suppose that there is a single population of N users, all of whose embeddings

are at the same vector u. Then, there is a symmetric mixed Nash equilibrium µ supported onn
qp⇤ | q 2 [0, N

1
� ]
o

where p⇤ 2 argmaxkpk=1hp, ui. The cumulative distribution function of

q = kpk ⇠ µ is F (q) = (q/N)�/(P�1)
.

Corollary 7 relies on the fact that when users are homogeneous, there is no tension between catering
to one user and catering to other users.

C Further discussion of our results

C.1 Technical tools

En route to proving our results, we develop technical tools to analyze the complex, multi-dimensional
behavior of producers. We highlight two tools here which may be of broader interest.

• To analyze when specialization occurs, we draw a connection to minimax theory in optimization. In
particular, we show that the existence of a single-genre equilibrium is equivalent to strong duality
holding for a certain optimization program that we define (Lemma 2). This allows us to leverage
techniques from optimization theory to provide a necessary and sufficient condition for genre
formation (Theorem 1).

• To analyze the properties of equilibria in concrete instances, we provide a decoupling lemma in
terms of the equilibrium’s support and its one-dimensional marginals (Lemma 1). This produces
one-dimensional functional equations that make solving for the underlying equilibrium more
tractable. We apply this decoupling lemma to analyze the form of specialization in the concrete
setting of two equally sized populations of users with cost function c(p) = kpk�2 .

Other technical ideas underlying our results include formalizing the formation of genres—which
intuitively captures heterogeneity across producers—in terms of the support of a symmetric equilib-
rium distribution and applying the technology of discontinuous games Reny [1999] to establish the
existence of symmetric mixed equilibria.

C.2 Connection to markets with homogeneous and heterogeneous goods

The distinction between equilibrium profit in the single- and multi-genre equilibria parallels the
classical distinctions in economics between markets with homogeneous goods and markets with
differentiated goods (see [Baye and Kovenock, 2008] for a textbook treatment).
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Figure 6: A symmetric equilibrium for different number of producers P , for 2 users located at the standard basis
vectors e1 and e2, for producer cost function c(p) = kpk�2 with � = 2 (see Proposition 8). The first 4 plots
show the support of an equilibrium µ. As P increases, the support goes from concave, to a line segment, to
convex. The last plot shows the cumulative distribution function of kpk for p ⇠ µ. The distribution for lower P
stochastically dominates that of higher values of P .

Single-genre equilibria resemble markets with homogeneous goods where firms compete on price. If
a firm sets their price above the zero profit level, they can be undercut by other firms and lose their
users. The possibility of undercutting drives the profit to zero at equilibrium. Similarly, in the market
that we study, when there is no specialization, producers all compete along the same direction, which
drives profit to zero. The analogy is not exact: in our model, producers play a distribution of quality
and thus might be out-competed in a given realization.

Multi-genre equilibria resemble markets with differentiated goods. In these markets, product differ-
entiation reduces competition between firms, since firms compete for different users. This leads to
local monopolies where firms can set prices above the zero profit level. Similarly, in the market that
we study, specialization by producers leads to product differentiation and thus induces monopolistic
behavior where the profit is positive. More specifically, specialization limits competition within each
genre and can enable producers to set the quality of their goods below the zero profit level.

Our results formalize how the supply-side market of a recommender system can resemble a market
with homogeneous goods or a market with differentiated goods, depending on whether specialization
occurs. An empirical analysis could quantify where on this spectrum a given recommender system is
located, and regulatory policy could seek to shift a recommender system towards one of the regimes.

D Equilibrium structure for two equally sized populations of users

We next investigate the form of specialization exhibited by multi-genre equilibria, focusing on
the case of two equally sized populations and producer cost functions given by powers of the `2
norm. More formally, there are N users split equally between two linearly independently vectors
u1, u2 2 RD

�0, and the the cost function is c(p) = kpk�2 . We establish structural properties of the
equilibria (see Section D.1). We concretely compute the equilibria µ in several special instances that
permit closed-form solutions (see Section D.2-D.3). We then provide an overview of proof techniques,
which involves developing machinery to characterize these equilibria (see Section D.4).

D.1 Structural properties of equilibria

We first establish properties about the support of the equilibrium distributions µ. First, we show that
the support of cannot contain an ✏-ball for any ✏ and is thus 1-dimensional.
Proposition 6. Suppose that there are N users split equally between two linearly independently

vectors u1, u2 2 R2
�0, and let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
be the angle between the user vectors. Let

the cost function be c(p) = kpk�2 , and let P � 2. Let µ be a symmetric Nash equilibrium such

that the distributions hu1, pi and hu2, pi over R�0 are absolutely continuous. As long as � 6= 2 or

✓⇤ 6= ⇡/2, the support of µ does not contain an `2-ball of radius ✏ for any ✏ > 0.
5

Proposition 6 demonstrates that the support of µ must be a union of 1-dimensional curves. In the
single-genre regime, the support is always a line segment through the origin. In the multi-genre
regime, however, the support can be curves with different shapes (see Figure 6 for specific examples).

5The case of � = 2 and ✓⇤ = ⇡/2 is degenerate and permits a range of possible equilibria.
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We will later characterize where these curves are increasing or decreasing in terms of the location of
the curve, the angle ✓⇤ = cos�1

⇣
hu1,u2i

ku1kku2k

⌘
, and the cost function parameter � (Lemma 12).

We next show that all equilibria must have either one or infinitely many genres, dictated by whether
� is above or below the critical value �⇤ (see Figure 1):
Theorem 2. Suppose that there are N users split equally between two linearly independently vectors

u1, u2 2 RD
�0, and let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
be the angle between the user vectors. Let the cost

function be c(p) = kpk�2 . Let µ be a a distribution on Rd
such that the distributions hu1, pi and

hu2, pi over R�0 over R�0 for p ⇠ µ are absolutely continuous and twice continuously differentiable

within their supports. There are two regimes based on � and ✓⇤:

1. If � < �⇤ = 2
1�cos(✓⇤) and if µ is a symmetric mixed equilibrium, then µ satisfies

|Genre(µ)| = 1.

2. If � > �⇤ = 2
1�cos(✓⇤) , if |Genre(µ)| < 1, and if the conditional distribution of kpk along

each genre is continuously differentiable, then µ is not an equilibrium.

Theorem 2 provides a tight characterization of when specialization occurs in a marketplace: spe-
cialization occurs if and only if � is above �⇤ (subject to some mild continuity conditions). The
threshold �⇤ can thus be interpreted as a phase transition at which the equilibrium transitions from
single-genre to infinitely many genres (see Figure 1). More specifically, the first part of Theorem 2
strengthens Theorem 1 to show that all equilibria are single-genre when � < �⇤, which means that
producers are never incentivized to specialize in this regime. The equality condition � = �⇤ captures
the transition point where both single-genre and multi-genre equilibria can exist.

In the multi-genre regime where � � �⇤, Theorem 2 shows that producers do not fully personalize
content to either of the two users u1 and u2, or even choose between finitely many types of content.
Rather, producers choose infinitely many types of content that balance the preferences of the two
populations in different ways. The lack of coordination between producers—as captured by a
symmetric mixed Nash equilibrium—is what drives this result. Producers do not know exactly
what content other producers will create in a given realization of the randomness, which results in a
diversity of content on the platform.

D.2 Closed-form equilibria for the standard basis vectors

We next compute the equilibria in the special case of user vectors located at the standard basis vectors,
and we analyze the form of specialization that the equilibria exhibit. For ease of notation, for the
remainder of the section, we assume these populations each consist of a single user (these results can
be easily adapted to the case of N/2 users in each population).

Interestingly, all of these multi-genre equilibria exhibit the following relaxation of pure horizontal

differentiation: producers can differentiate along genre, but the genre of content fully specifies the con-
tent’s quality. More specifically, for any genre p⇤ 2 Genre(µ), the set Genre(µ)\

�
q · p⇤ | q 2 R�0

 

contains exactly one single element.6 This stands in contrast to single-genre equilibria, which by
definition exhibit pure vertical differentiation.7

We first explicitly compute the equilibria in the case of P = 2 producers (see Figure 1).
Proposition 7. Suppose that there are 2 users located at the standard basis vectors e1, e2 2 R2

,

and the cost function is c(p) = kpk�2 . For P = 2 and � � �⇤ = 2, there is an equilibrium µ
supported on the quarter-circle of radius (2��1)1/� , where the angle ✓ 2 [0,⇡/2] has density

f(✓) = 2 cos(✓) sin(✓).

Proposition 7 demonstrates the support of the equilibrium distribution is a quarter circle with radius
(2��1)1/� . This equilibrium exhibits pure horizontal differentation (as well as the relaxation of pure
horizontal differentiation that we described above). Since all (x, y) in the support have the same

6Pure horizontal differentiation is not satisfied, since content in different genres may not have the same
quality (see Figure 6).

7Pure vertical differentiation is when producers only differentiate along quality, not along direction.
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radius, producers always expend the same cost regardless of the realization of randomness in their
strategy. Since c(p) = kpk�2 , producers pay a cost of 2��1. The cost of production therefore goes to
0 as � ! 1. This enables producers achieving positive profit at equilibrium (see Corollary 6) as we
describe in more detail in Section 4.

We next vary the number of producers P while fixing � = 2 (see Figure 6).
Proposition 8. Suppose that there are 2 users located at the standard basis vectors e1, e2 2 R2

, with

cost function c(p) = kpk�2 . For � = 2, there is a multi-genre equilibrium µ with support equal to

��
x, (1� x

2
P�1 )

P�1
2
�
| x 2 [0, 1]

 
, (9)

and where the distribution of x has cdf equal to min(1, x2/(P�1)).

Proposition 8 demonstrates that for different values of P , the support of the equilibrium µ follows
different curves connecting [1, 0] and [0, 1]. Note that these equilibria exhibit the relaxation of pure
horizontal differentiation that we described earlier. Moreover, the curve is concave for P = 2, a line
segment for P = 3, and convex for all P � 4. Indeed, as P increases, the support converges to the
union of the two coordinate axes.

D.3 Closed-form equilibria in an infinite-producer limit

Motivated by the support collapsing onto the standard basis vectors for P ! 1 in Proposition 8,
we investigate equilibria in a “limiting marketplace” where P ! 1. In the infinite-producer limit,
we show that a two-genre equilibrium exists, regardless of the geometry of the 2 user vectors, and
we characterize the equilibrium distribution µ (see Figure 3). Interestingly, these equilibria do not
exhibit pure vertical differentiation or (the relaxation of) pure horizontal differentiation.

Formalizing the infinite-producer limit is subtle: the distribution of any single producer approaches a
point mass at 0, but the distribution of the winning producer turns out to be non-degenerate. To get
intuition for this, let’s revisit the one-dimensional setup of Example 1. The cumulative distribution
function F (p) = (p/N)�/(P�1) of a single producer as P ! 1 approaches F (p) = 1 for any
p > 0—this corresponds to a point mass at 0.8 On the other hand, the cumulative distribution function
of the winning producer Fmax(p) = (p/N)�P/(P�1) approaches (p/N)� , which is a well-defined
function.

When we formalize the infinite-producer limit for N � 1 users, we leverage the intuition that the
distribution function of the winning producer is non-degenerate. In particular, we specify infinite-
producer equilibria in terms of three properties—the genres, the conditional quality distributions for

each genre (i.e. the distribution of the maximum quality kpk along a genre, conditional on all of the
producers choosing that genre), and the weights (i.e. the probability that a producer chooses each
genre). We defer a formal treatment to Definition 1 in Section G.5.

In the infinite-producer limit, we show the following 2-genre distribution is an equilibrium. For ease
of notation, we again assume these populations each consist of a single user (these results can be
easily adapted to the case of N/2 users in each population).
Theorem 3. [Informal version of Theorem 4] Suppose that there are 2 users located at two linearly

independently vectors u1, u2 2 RD
�0, let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
be the angle between them.

Suppose we have cost function c(p) = kpk�2 , � > �⇤ = 2
1�cos(✓⇤) , and P = 1 producers. Then,

there exists an equilibrium with two genres:

�
[cos(✓G + ✓min), sin(✓

G + ✓min)], [cos(✓
⇤ � ✓G + ✓min), sin(✓

⇤ � ✓G + ✓min)]
 

where ✓G := argmax✓✓⇤/2

�
cos�(✓) + cos�(✓⇤ � ✓)

�
and ✓min :=

min
�
cos�1

� hu1,e1i
ku1k

�
, cos�1

� hu2,e1i
ku2k

��
.

For each genre, the conditional quality distribution (i.e. the distribution of the maximum quality

kpk along a genre, conditional on all of the producers choosing that genre) has cdf given by a

8The intuition is that the expected number of users that the producer wins at a symmetric equilibrium is N/P ,
which approaches 0 in the limit; thus, the production cost that a producer can afford to expend must approach 0
in the limit.
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countably-infinite piecewise function, where each piece is either constant or grows proportionally to

kpk2� .

Theorem 3 reveals that finite-genre equilibria (that have more than one genre) re-emerge in the limit
as P ! 1, although they do not exist for any finite P (see Figure 3). For users located at the standard
basis vectors, Theorem 3 formalizes the intuition from Proposition 8 that the equilibrium converges
to a distribution supported on the standard basis vectors. This means that at P = 1, producers either
entirely personalize their content to the first user or entirely personalize their content to the second
user, but do not try to appeal to both users at the same time.

Interestingly, the set of genres is not equal to the set of two users unless users are orthogonal. As
shown in Figure 3, the two-genres are located within the interior of the convex cone formed by the
two users. This means that producers always attempt to cater their content to both users at the same
time, although they either place a greater weight on one user or the other user, depending on which
genre they choose. The location of these two genres changes for different values of �. When �
approaches the single-genre threshold, the genres both collapse onto the single-genre direction ✓⇤/2.
On the other hand, when � approaches 1, the genres converge to the two users.

Finally, the support of the equilibrium distribution consists of countably infinite disjoint line segments
with interesting economic interpretations. First, observe that the cdf of the conditional quality
distributions of each genre (see the last panel of Figure 3) has gaps in its support: it is a countably-
infinite piecewise function, where each piece is either constant or grows proportionally to q2� . The
level of “bumpiness” of the cdf decreases as ✓⇤ increases: for the limiting case of ✓ = ⇡/2, it
converges to the smooth function Fmax(q) = q2� . Moreover, the regions of zero density of each of
the two genres are actually staggered, so that at most one of the genres can achieves a given utility
for a given user. In particular, for each user ui, it never holds that hui, pi = hui, p0i for p 6= p0: that
is, the utility level fully specifies the genre of the content. The closed-form expression of the density
(see Theorem 4) formally establishes these properties.

D.4 Overview of proof techniques

To prove our results in this section, our first step is establish a useful characterization of equilibria
that enables us to separately account for the geometry of the users and the number of producers. This
takes the form of necessary and sufficient conditions that decouple in terms of two quantities: a set of
marginal distributions Hi, and the support S ✓ RN

�0.
Lemma 1. Let U = [u1;u2; . . . ;uN ] be the N ⇥D matrix of users vectors. Given a set S ✓ RN

�0
and distributions H1, . . . , HN over R�0, suppose that the following conditions hold:

(C1) Every z⇤ 2 S is a maximizer of the equation:

max
z2RD

�0

NX

i=1

Hi(zi)� cU(z), (10)

where cU(z) := min
�
c(p) | p 2 RD

�0,Up = z
 

.

(C2) There exists a random variable Z with support S, such that the marginal distribution Zi has

cdf equal to Hi(z)1/(P�1)
.

(C3) Z is distributed as UY with Y ⇠ µ, for some distribution µ over RD
�0.

Then, the distribution µ from (C3) is a symmetric mixed Nash equilibrium. Moreover, every symmetric

mixed Nash equilibrium µ is associated with some (H1, . . . , HN , S) that satisfy (C1)-(C3).

In Lemma 1, the set S captures the support of the realized user utilities [hu1, pi, . . . , huN , pi] for
p ⇠ µ. The distribution Hi captures the distribution of the maximum utility max1jP�1hui, pji
for user ui.

The conditions in Lemma 1 help us identify and analyze the equilibria in concrete instantations,
including in the 2 user vector setting that we focus on in this section.

• (C1) places conditions on H1, H2, and S in terms of the induced cost function cU. We use
the first-order and second-order conditions of equation (10) at z = [z1, z2] to determine the
necessary densities h1(z1) and h2(z2) of H1 and H2 for z to be in the support S.
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• (C2) restricts the relationship between H1, H2, and S for a given value of P , which we
instantiate in two different ways, depending on whether the support is a single curve or
whether the distribution µ has finitely many genres.

• (C3) holds essentially without loss of generality when u1 and u2 are linearly independent.

The proofs of our results in this section boil down to leveraging these conditions.

E Proofs for Section 2

E.1 Proof of Proposition 4

We restate and prove Proposition 4.
Proposition 4. For any set of users and any � � 1, a pure strategy equilibrium does not exist.

Proof of Proposition 4. Assume for sake of contradiction that the solution p1, . . . , pP is a pure
strategy equilibrium. We divide into two cases based on whether there are ties. The cases are: (1)
there exist 1  j0 6= j  P and i such that hpj , uii = hpj0 , uii, (2) there does not exist j, j0 and i
such that hpj , uii = hpj0 , uii.

Case 1: there exist 1  j0 6= j  P and i such that hpj , uii = hpj0 , uii. Let producer j and
producer j0 be such that hpj , uii = hpj0 , uii. The idea is that the producer j can leverage the
discontinuity in their profit function (1) at pj . In particular, consider the vector pj + ✏ui. The number
of users that they receive as ✏ !+ 0 is strictly greater than at pj . The cost, on the other hand, is
continuous in ✏. This demonstrates that there exists ✏ > 0 such that:

P(pj + ✏ui; p�j) > P(pj ; p�j)

as desired. This is a contradiction.

Case 2: there does not exist j, j0 and i such that hpj , uii = hpj0 , uii. Since the sum of the
expected number of users won by all of the producers is N , there exists a producer who wins a
nonzero number of users in expectation. Let j be such a producer. Using the assumption that there
are no ties (i.e. there does not exist j0 and i such that hpj , uii = hpj0 , uii), we know that producer j
wins the following set of users:

Nj := {1  i  N | hpj , uii > hpj0 , uii8j0 6= j} .

We see that Nj is nonempty by the assumption that producer j wins a nonzero number of users in
expectation. We now leverage that the profit function of producer j is continuous at pj . There exists
✏ > 0 such that hpj(1� ✏), uii > hpj0 , uii for all j0 6= j and all i 2 Nj , so that:

P(pj(1� ✏); p�j) > P(pj ; p�j)

as desired. This is a contradiction.

E.2 Proof of Proposition 1

We restate and prove Proposition 1.
Proposition 1. For any set of users and any � � 1, a symmetric mixed equilibrium exists.

Proof of Proposition 1. We apply a standard existence result of symmetric, mixed strategy equilibria
in discontinuous games (see Corollary 5.3 of [Reny, 1999]). We adopt the terminology of that paper
and refer the reader to [Reny, 1999] for a formal definition of the conditions. Note that the game is
symmetric by assumption, since the producers have symmetric utility functions. It suffices to show
that: (1) the producer action space is convex and compact and (2) the game is diagonally better-reply
secure.
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Producer action space is convex and compact. In the current game, the producer action space is
not compact. However, we show that we can define a slightly modified game, where the producer
action space is convex and compact, without changing the equilibrium of the game. For the remainder
of the proof, we analyze this modified game.

In particular, each producer must receive at least 0 profit at equilibrium since P(~0; p�1) � 0 regardless
of the actions p�1 taken by other producers. If a producer chooses p such that kpk > N1/� , then
their utility will be strictly negative. Thus, we can restrict to

�
p 2 RD

�0 | kpk  2N1/�
 

which is a
convex compact set. We add a factor of 2 slack to guarantee that any best-response by a producer will
be in the interior of the action space and not on the boundary.

Establishing diagonal better reply security. First, we show the payoff function P(µ; [µ, . . . , µ])
(where µ is a distribution over the producer action space) is continuous in µ. Here we slightly abuse
notation since P is technically defined over pure strategies in (1). We implicitly extend the definition
to mixed strategies by considering expected profit. Using the fact that each producer receives a 1/P
fraction of users in expectation at a symmetric solution, we see that:

P(µ; [µ, . . . , µ]) =
N

P
�
Z

kpk�dµ.

Since the underlying topology on the set of distributions µ is the weak* topology, this implies
continuity of the payoff.

Now, we construct, for each relevant payoff in the closure of the graph of the game’s diagonal payoff
function, an action that diagonal payoff secures that payoff. More formally, let (µ⇤,↵⇤) be in the
closure of the graph of the game’s diagonal payoff function, and suppose that (µ⇤, . . . , µ⇤) is not an
equilibrium. It suffices to show that a producer can secure a payoff of ↵ > ↵⇤ along the diagonal at
(µ⇤, . . . , µ⇤). We construct µsec that secures a payoff of ↵ > ↵⇤ along the diagonal at (µ⇤, . . . , µ⇤).

Recall that ↵⇤ = P(µ⇤, . . . , µ⇤) by the continuity of the payoff function shown above. Since
(µ⇤, . . . , µ⇤) is not an equilibrium, there exists p 2

�
p0 2 RD

�0 | kp0k  N1/�
 

such that

P(p; [µ⇤, . . . , µ⇤]) > P(µ⇤; [µ⇤, . . . , µ⇤]) = ↵⇤.

Since we ultimately want to show that p achieves high profit in an open neighborhood of µ⇤, we need
to strengthen the above statement. We can achieve by this by appropriately perturbing p. First, we
can perturb p to p̃ such that for each 1  i  N , the distribution hp0, uii where p0 ⇠ µ⇤ does not
have a point mass at hp̃, uii, and such that:

P(p̃; [µ⇤, . . . , µ⇤]) =
nX

i=1

(Pp0⇠µ⇤ [hp̃, uii > hp0, uii])
P�1 � c(p̃) > ↵⇤.

Now, we further perturb p̃ to add ✏ slack to the constraint hp̃, uii > hp0, uii. In particular, we observe
that there exists ✏ > 0 and psec 2 RD

�0 such that

P(psec; [µ⇤, . . . , µ⇤]) �
nX

i=1

(Pp0⇠µ⇤ [hpsec, uii > hp0, uii+ ✏kuik2])
P�1 � c(psec) > ↵⇤ + ✏. (11)

We claim that µsec taken to be the point mass at psec will secure a payoff of

↵ =
P(psec; [µ⇤, . . . , µ⇤]) + ↵⇤

2
> ↵⇤

along the diagonal at (µ⇤, . . . , µ⇤). We define the event Ai to be:

Ai = {p0 | hpsec, uii > hp0, uii} .

In this notation, we can rewrite equation (11) as:

P(psec; [µ⇤, . . . , µ⇤]) �
nX

i=1

(µ⇤(A✏
i))

P�1 � c(psec) > ↵⇤ + ✏.
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Consider the metric on RD
�0 given by the `2 norm. For ✏ > 0 let B✏(µ⇤) denote the ✏-ball with respect

to the Prohorov metric; using the definition of the weak* topology, we see that B✏(µ⇤) is an open set
with respect to the weak* topology. For each 1  i  N , we define the event Ai as:

A✏
i = {p0 | hpsec, uii > hp0, uii+ ✏kuik2}

and define the event A✏
i to be:

Ai = {p0 | hpsec, uii > hp0, uii} .
For every p0 2 A✏

i , we see that Ai contains the open neighborhood B✏(p0) with respect to the `2 norm.
By the definition of the Prohorov metric, we know that for all µ0 2 B✏(µ⇤), it holds that

µ0(Ai) � µ⇤(A✏
i)� ✏

This implies that

P(psec; [µ0, . . . , µ⇤]) �
nX

i=1

(µ0(Ai))
P�1 � c(psec) �

nX

i=1

(µ⇤(A✏
i)� ✏)P�1

| {z }
(A)

�c(psec).

For each 1  i  N , let Ai be the event that hpsec, uii > hp0, uii. By the definition of the Prohorov
metric, we see that µ0(Ai) � µ⇤(Ai)� ✏. Moreover, it holds that:

P(psec; [µ⇤, . . . , µ⇤]) =
nX

i=1

(µ⇤(Ai))
P�1 � c(psec).

and moreover, for all µ0 2 B✏(µ⇤), it holds that:

P(psec; [µ0, . . . , µ⇤]) �
nX

i=1

(µ0(Ai))
P�1 � c(psec) �

nX

i=1

(µ⇤(Ai)� ✏)P�1

| {z }
(A)

�c(psec).

Using that (A) is continuous in ✏, we see that if ✏ is sufficiently small, then:

P(psec; [µ0, . . . , µ⇤]) � P(psec; [µ0, . . . , µ⇤])� P(psec; [µ⇤, . . . , µ⇤])� ↵⇤

3
> ↵

for all µ0 2 B✏(µ⇤), as desired.

E.3 Proof of Proposition 5

In this proof, we consider the payoff function P(µ1; [µ2, . . . , µP ]) (where µ is a distribution over
the producer action space) defined to be the expected profit attained if a producer plays µ1 when
other producers play µ2, . . . , µP . Strictly speaking, this is an abuse of notation since P is technically
defined over pure strategies in (1). We implicitly extend the definition to mixed strategies by
considering expected profit.

Proof of Proposition 5. Let µ be a symmetric equilibrium, and assume for sake of contradiction that
there is an atom at p 2 Rd with probability mass ↵ > 0. It suffices to construct a vector p0 that
achieves profit

P(p0; [µ, . . . , µ]) > P(~0; [µ, . . . , µ]) = P(µ; [µ, . . . , µ]).

Consider the vector p0 = p + ✏u1 for some ✏ > 0. For any given realization of actions by other
producers, and for any given user, the vector p0 never wins the user with lower probability than the
vector p. We construct an event and a user where the vector p0 wins the user with strictly higher
probability than the vector p. Let E be the event that all of the other producers choose the p vector.
This event happens with probability ↵P�1. Conditioned on E, the vector p0 wins user u1; on the other
hand, the vector p wins user u1 with probability 1/P . Since the cost function is continuous in ✏, there
exists ✏ such that P(p; [µ, . . . , µ]) > P(~0; [µ, . . . , µ]) = P(µ; [µ, . . . , µ]). This is a contradiction.
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E.4 Derivation of Example 1

To see that the cumulative distribution function is F (p) = min(1, p�/P�1), we use the fact that every
equilibrium is by definition a single-genre equilibrium in 1 dimension and apply Lemma 3.

F Proofs for Section 3

In Section F.1, we prove Theorem 1, and in Section F.2, we prove the corollaries of Theorem 1 in
Section 3 (with the exception of Corollary 3, whose proof we defer to Section G.3).

F.1 Proof of Theorem 1

We begin with a proof sketch of Theorem 1. Since the single-genre equilibrium does not admit a
straightforward closed-form solution, we must implicitly reason about its existence when proving
Theorem 1. To do so, we draw a connection to minimax theory in optimization. Our main lemma
shows that the existence of a single-genre equilibrium is equivalent to strong duality holding for the
following minmax problem:
Lemma 2 (Informal). There exists a symmetric equilibrium µ with |Genre(µ)| = 1 if and only if:

inf
y2S�

 
sup

y02S�

NX

i=1

y0i
yi

!
= sup

y02S�

 
inf

y2S�

NX

i=1

y0i
yi

!
. (12)

To prove Theorem 1 from Lemma 2, we analyze when strong duality holds. Note that while the
objective in (12) is convex in y and linear (concave) in y0, the constraints on y and y0 through the set
S� can be non-convex. It turns out that we can eliminate the non-convexity in the constraint on y for
free, by reparameterizing to the space of content vectors p 2 RD

�0 with unit norm. On the other hand,
to handle the non-convexity in the constraint on y0, we need to convexify the optimization program
by replacing S� with its convex hull S̄� . By Sion’s min-max theorem, we can flip sup and inf in
this convexified version of the left-hand side of (12). The remaining technical step is to relate the
resulting expression to the right-hand side of (12), which we defer to Appendix F.1.

To prove Lemma 2, we first characterize the cumulative distribution function of quality at a single-
genre equilibria as F (q) / q� (Lemma 3). Then we show that y corresponds to an equilibrium
direction if and only if supy02S�

PN
i=1

y0
i

yi
 N , which means that there exists an equilibrium

direction if and only if the left-hand side of (12) is at most N . We also show that the dual the
right-hand side of (12) is always equal to N , which allows us to prove Lemma 2.

A useful intermediate result. Before diving into the proof of Lemma 2 and Theorem 1, we
describe an intermediate result will be useful in the proof of Lemma 2. Suppose that there exists an
equilibrium µ such that Genre(µ) = {p⇤} contains a single direction. Then µ is fully determined
by the distribution over quality kpk where p ⇠ µ; therefore, let F denote the cdf of kpk for p ⇠ µ.
We can derive a closed-form expression for F ; in fact, we show that it is identical to the cdf of the
1-dimensional setup in Example 1.
Lemma 3. Suppose that µ is a symmetric equilibrium such that Genre(µ) contains a single vector.

Let F be the cdf of the distribution over kpk where p ⇠ µ. Then, it holds that:

F (r) = min

 
1,

✓
r�

N

◆1/(P�1)
!
. (13)

The intuition for Lemma 3 is that a single-genre equilibrium essentially reduces the producer’s
decision to a 1-dimensional space, and so inherits the structure of the 1-dimensional equilibrium.

To formalize the lemmas in this proof sketch, we will define a set S>0 which deletes all points with a
zero coordinate from S . More formally:

S>0 :=
�
Up | kpk  1, p 2 RD

�0

 
\ RN

>0.

For notational convenience, we also define:
B :=

�
p 2 RD

�0 | kpk  1
 
,
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B>0 :=
�
p 2 RD

�0 | kpk  1, hp, uii > 08i
 
,

which are both convex sets. We further define:

D :=
�
p 2 RD

�0 | kpk = 1
 

and
D>0 :=

�
p 2 RD

�0 | kpk = 1, hp, uii > 08i
 
.

Note that it follows from definition that:

S = {Up | p 2 B}
S>0 = {Up | p 2 B>0}

Outline for Appendix F.1. The proof will proceed by proving Lemma 3 and Lemma 2, and then
proving Theorem 1 from these lemmas. In Section F.1.1, we prove a useful auxiliary lemma about
single-genre equilibria; in Section F.1.2, we prove Lemma 3; in Appendix F.1.3, we formalize and
prove Lemma 2; and in Section F.1.5, we prove Theorem 1.

F.1.1 Auxiliary lemma

We show that at a single-genre equilibrium, it must hold that the direction vector has nonzero inner
product with every user.
Lemma 4. Suppose that µ is a symmetric equilibrium such that Genre(µ) contains a single vector

p⇤. Then p⇤ 2 span(u1, . . . , uN ) (which also means that hp⇤, uii > 0 for all i.)

Proof. Assume for sake of contradiction that hp⇤, uii = 0 for some i. Suppose that p0 2 supp(µ),
and consider the vector p0 + ✏ ui

||ui|| . We see that p0 + ✏ ui
||ui|| wins user ui with probability 1 whereas

p0 wins user ui with probability 1/P . The probability that p + ✏ui wins any other user is also at
least the probability that p0 wins ui. By leveraging this discontinuity, we see there exists ✏ such that
P(p0 + ✏ ui

||ui|| ; [µ, . . . , µ]) > P(p0; [µ, . . . , µ]) + (1� 1
P ) which is a contradiction.

F.1.2 Proof of Lemma 3

We restate and prove Lemma 3.
Lemma 3. Suppose that µ is a symmetric equilibrium such that Genre(µ) contains a single vector.

Let F be the cdf of the distribution over kpk where p ⇠ µ. Then, it holds that:

F (r) = min

 
1,

✓
r�

N

◆1/(P�1)
!
. (13)

Proof. Next, we show that F (r) = 0 only if r = 0. Since the distribution µ is atomless (by
Proposition 5), we can view the support as a closed set. Let rmin be the minimum magnitude
element in the support of µ. Since µ is atomless, this means that with probability 1, every producer
will have magnitude greater than rmin. This, coupled with Lemma 4, means that the producer the
expected number of users achieved at rminp is 0, and P(rminp; [µ, . . . µ]) = �r�min. However, since
rminp 2 supp(µ), it must hold that:

�r�min = P(rminp; [µ, . . . , µ]) � P(~0; [µ, . . . , µ]) � 0.

This means that rmin = 0.

Next, we show that the equilibrium profit at (µ, . . . , µ) is equal to 0. To see this, suppose that if
the producer chooses ~0. Since µ is atomless and since hp⇤, uii > 0 for all i (by Lemma 4), we
see that if a producer chooses ~0 2 supp(µ), they receive 0 users in expectation. This means that
P(~0; [µ, . . . , µ]) = 0 as desired.

Next, we show that F (r) =
⇣

r�

N

⌘1/(P�1)
for any rp⇤ 2 supp(µ). To show this, notice that the

producer must earn the same profit—here, zero profit—for any p 2 supp(µ). This means that for any

rp⇤ 2 supp(µ), it must hold that NF (r)P�1 � r� = 0. Solving, we see that F (r) =
⇣

r�

N

⌘1/(P�1)
.
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Finally, we show that the support of F is exactly [0, N1/� ]. First, we already showed that rmin = 0
which means that 0 is the minimum magnitude element in the support. Moreover, r = N1/� must
be the maximum magnitude element in the support since it is the unique value for which F (r) = 1.
Now, we show that supp(F ) is equal to [0, N1/� ]. Note that the set supp(F )[ [N1/� ,1)[ (�1, 0]
is a finite union of closed sets and is thus closed. Let S0 := R \ (supp(F ) [ [N1/� ,1) [ (�1, 0]);
it suffices to prove that S0 = ;. Assume for sake of contradiction that S0 6= ;. Since S0 is open,
there exists x 2 (0, N1/�) and ✏ > 0 such that (x, x + ✏) ✓ S0. Let r1 = infy2supp(F ),yx y and
let r2 = supy2supp(F ),y�x+✏ y. Note that both r1 and r2 are in supp(F ) (since it is closed), and
(r1, r2) \ supp(F ) = ;. By the structure of F , since F (r2) > F (r1), this means that the cdf jumps
from F (x) to F (x+ ✏) anyway so there would be atoms (but there are no atoms by Proposition 5).
This proves that the support is [0, N1/� ].

In conclusion, we have shown that F (r) =
⇣

r�

N

⌘1/(P�1)
for any r 2 [0, N1/� ]. The min with 1

comes from the fact that F (r) = 1 for r � N1/� .

F.1.3 Formal Statement and Proof of Lemma 2

We begin with a proof sketch of Lemma 2. For µ to be an equilibrium, no alternative q should do
better than p ⇠ µ, which yields the following necessary and sufficient condition after plugging into
the profit function (1):

sup
q

 
NX

i=1

1

N

✓
hq, uii
hp⇤, uii

◆�

� kqk�
!

= Ep0⇠µ

"
NX

i=1

1

N

✓
hp0, uii
hp⇤, uii

◆�

� kp0k�
#

(14)

The term 1
N (·)� is the probability (F (·))P�1 that q outperforms the max of P � 1 samples from µ.

We next change variables according to yi = hp⇤, uii� and y0i = h q
||q|| , uii� and simplify to see that µ

is an equilibrium if and only if supy02S�

Pn
i=1

y0
i

yi
= N . Thus, there exists a single-genre equilibrium

if and only if

inf
y2S�

sup
y02S�

NX

i=1

y0i
yi

= N. (15)

While the left-hand side of equation (15) is challenging to reason about directly, we show that the
dual supy02S� infy2S�

PN
i=1

y0
i

yi
is in fact equal to N .

With this proof sketch in mind, we are ready to formalize and prove Lemma 2.
Lemma 5 (Formalization of Lemma 2). There exists a symmetric equilibrium µ with |Genre(µ)| = 1
if and only if:

inf
p⇤2B>0

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

= sup
y02S�

inf
p⇤2B>0

NX

i=1

y0i
(hp⇤, uii)�

. (16)

It turns out to be more convenient to use a (slightly less intuitive) variant of Lemma 5 to prove
Theorem 1. We state and prove Lemma 6 below.
Lemma 6. There exists a symmetric equilibrium µ with |Genre(µ)| = 1 if and only if:

inf
p⇤2B>0

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

 N. (17)

The main ingredient in the proof of Lemma 6 is the following characterization of a single-genre
equilibrium in a given direction.
Lemma 7. There is a symmetric equilibrium µ with Genre(µ) = {p⇤} if and only if:

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

 N. (18)
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Proof. First, by Lemma 4, we see that the denominator is nonzero for every term in the sum, so
equation (18) is well-defined.

If µ is a single-genre equilibrium, then the cdf of the magnitudes follows the form in Lemma 3. Thus,
it suffices to identify necessary and sufficient conditions for that solution (that we call µp⇤) to be a
symmetric equilibrium.

The solution µp⇤ is an equilibrium if and only if no alternative q should do better than p ⇠ µ. The
profit level at µp⇤ is 0 by the structure of the cdf. Putting this all together, we see a necessary and
sufficient for µp⇤ to be an equilibrium is:

sup
q2RD

�0

 
NX

i=1

F

✓
hq, uii
hp⇤, uii

◆P�1

� kqk�
!

 0,

where the term 1
N (·)� is the probability (F (·))P�1 that q outperforms the max of P � 1 samples

from µ. Using the structure of the cdf, we can write this as:

sup
q2RD

�0

 
NX

i=1

min

 
1,

1

N

✓
hq, uii
hp⇤, uii

◆�
!

� kqk�
!

 0.

We can equivalently write this as:

sup
q2RD

�0

 
1

||q||�
NX

i=1

min

 
1,

1

N

✓
hq, uii
hp⇤, uii

◆�
!

� 1

!
 0,

which we can equivalently write as

sup
q2D

sup
r>0

 
1

r�

NX

i=1

min

 
1,

r�

N

✓
hq, uii
hp⇤, uii

◆�
!

� 1

!
 0.

For any direction q, if we disregard the first min with 1, the expression would be constant in r.

With the minimum, the objective
✓

1
r�
PN

i=1 min

✓
1, 1

N

⇣
hq,uii
hp⇤,uii

⌘�◆
� 1

◆
is weakly decreasing

in r. Thus, supr>0

✓
1
r�
PN

i=1 min

✓
1, 1

N

⇣
hq,uii
hp⇤,uii

⌘�◆
� 1

◆
is attained as r ! 0. In fact, the

maximum is attained at a value r if rhq, uii < N1/�hp⇤, uii for all i. This holds for some r > 0
since hp⇤, uii > 0 for all i by Lemma 4. Thus we can equivalently formulate the condition as:

sup
q2D

  
NX

i=1

1

N

✓
hq, uii
hp⇤, uii

◆�
!

� 1

!
 0,

which we can write as:

sup
q2D

NX

i=1

✓
hq, uii

(hp⇤, uii)

◆�

 N.

This is equivalent to:

sup
q2B

NX

i=1

✓
hq, uii

(hp⇤, uii)

◆�

 N.

A change of variables gives us the desired formulation.

Now, we can deduce Lemma 6.

Proof of Lemma 6. First, suppose that equation (17) does not hold. Then it must be true that:

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

> N
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for every direction p⇤ 2 D>0. This means that no direction in D>0 can be a single-genre equilibrium.
We can further rule out directions in D \ D>0 by applying Lemma 4.

Now, suppose that equation (17) does hold. It is not difficult to see that the optimum

inf
p⇤2B>0

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

is attained at some direction p⇤ 2 D>0. Applying Lemma 7, we see that there exists a single-genre
equilibrium in the direction p⇤.

F.1.4 Proof of Lemma 5

To prove Lemma 5 from Lemma 6, we require the following additional lemma that helps us analyze
the right-hand side of equation (16).
Lemma 8. For any set R ✓ RN

>0, it holds that:

sup
y02R

inf
y2R

NX

i=1

y0i
yi

= N.

Proof. By taking y0 = y, we see that:

sup
y02R

inf
y2R

NX

i=1

y0i
yi

 N.

To show equality, notice by AM-GM that:

NX

i=1

y0i
yi

� N

 
nY

i=1

y0i
yi

!1/N

= N

 Qn
i=1 y

0
iQN

i=1 yi

!1/N

.

We can take y0 = argmaxy002R
Qn

i=1 y
00
i , and obtain a lower bound of N as desired. (If the argmax

does not exist, then note that if we take y0 where
Qn

i=1 y
0
i is sufficiently close to the optimum

supy002R
Qn

i=1 y
00
i , we have that infy2R

⇣Qn
i=1 y0

iQN
i=1 yi

⌘1/N
is sufficiently close to 1 as desired.)

Now we are ready to prove Lemma 5.

Proof of Lemma 5. First, we see that:

N = sup
y02S�

>0

inf
y2S�

>0

NX

i=1

y0i
yi

= sup
y02S�

inf
y2S�

>0

NX

i=1

y0i
yi

= sup
y02S�

inf
p⇤2B>0

NX

i=1

y0i
(hp⇤, uii)�

,

where the first equality follows from Lemma 8.

Now, let’s combine this with Lemma 6 to see that a necessary and sufficient condition for the existence
of a single-genre equilibrium is:

inf
p⇤2B>0

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

 sup
y02S�

inf
p⇤2B>0

NX

i=1

y0i
(hp⇤, uii)�

(19)
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Weak duality tells us that infp⇤2B>0 supy02S�

PN
i=1

y0
i

(hp⇤,uii)� �

supy02S� infp⇤2B>0

PN
i=1

y0
i

(hp⇤,uii)� , so equation (19) is equivalent to:

inf
p⇤2B>0

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

= sup
y02S�

inf
p⇤2B>0

NX

i=1

y0i
(hp⇤, uii)�

.

F.1.5 Finishing the proof of Theorem 1

Proof of Theorem 1. Recall that by Lemma 6, a single genre equilibrium exists if and only if equation
(17) is satisfied.

We can rewrite the left-hand side of equation (17) as follows:

inf
p⇤2B>0

 
sup

y02S�

NX

i=1

y0i
hp⇤, uii�

!
= inf

p⇤2B>0

 
sup

y02S̄�

NX

i=1

y0i
hp⇤, uii�

!
,

since the objective is linear in y0. Now, observing that the objective is convex in p and concave in y0,
we can apply Sion’s min-max theorem9 to see that:

inf
p⇤2B>0

 
sup

y02S̄�

NX

i=1

y0i
hp⇤, uii�

!
= sup

y02S̄�

 
inf

p⇤2B>0

NX

i=1

y0i
hp⇤, uii�

!
= sup

y02S̄�

 
inf

y2S�
>0

NX

i=1

y0i
yi

!
.

Thus, we have the following necessary and sufficient condition for a single-genre equilibrium to exist:

sup
y02S̄�

 
inf

y2S�
>0

NX

i=1

y0i
yi

!
 N. (20)

First, we show that if (4) does not hold, then there does not exist a single-genre equilibrium. Let
y0 = argmaxy002S̄�

Qn
i=1 y

00
i . (The maximum exists because

Qn
i=1 y

00
i is a continuous function and

S̄� is a compact set.) We see that:

NX

i=1

y0i
yi

� N

✓Qn
i=1 y

0
iQn

i=1 yi

◆1/N

� N

 
maxy002S̄�

Qn
i=1 y

00
i

maxy002S�
>0

Qn
i=1 y

00
i

!1/N

= N

✓
maxy002S̄�

Qn
i=1 y

00
i

maxy002S�

Qn
i=1 y

00
i

◆1/N

> N,

which proves that:

inf
p⇤2B>0

 
sup

y02S�

NX

i=1

y0i
hp⇤, uii�

!
= sup

y02S̄�

 
inf

y2S�
>0

NX

i=1

y0i
yi

!
> N.

Thus equation (20) is not satisfied and a single-genre equilibrium does not exist as desired.

Next, we show that if (4) holds, then there exists a single-genre equilibrium. Let y⇤ =
argmaxy002S�

Qn
i=1 y

00
i = argmaxy002S�

Pn
i=1 log(y

00
i ). (The maximum exists because

Qn
i=1 y

00
i is

a continuous function and S� is a compact set.) By assumption, we see that y⇤ is also the maximizer
over S̄� . We further see that y⇤ 2 S�

>0. Using convexity of S̄� , this means that for any y0 2 S̄� , it
must hold that hy0 � y⇤,r (

Pn
i=1 log(y

⇤
i ))i  0. We can write this as:

hy0 � y⇤,r
nX

i=1

1

y⇤i
i  0.

This can be written as:
nX

i=1

y0i � y⇤i
y⇤i

 0,

9Note that S̄� is compact and convex and B>0 is convex (but not compact). We apply the non-compact
formulation of Sion’s min-max theorem in [Ha, 1981].
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which implies that:
nX

i=1

y0i
y⇤i

 N.

Thus, we have that

sup
y02S̄�

 
inf

y2S�
>0

NX

i=1

y0i
y⇤i

!
 N,

and thus equation (20) is satisfied so a single-genre equilibrium does not exist as desired.

Next, we show that if all equilibria have multiple genres for some �, then all equilibria have multiple
genres for all �0 � �. �0  �. Notice that equation 4 can equivalently be restated as:

max
y2S

NY

i=1

yi = max
y2S̄�

 
NY

i=1

yi

!1/�

. (21)

It thus suffices to show that:

max
y2S̄�

 
NY

i=1

yi

!1/�

 max
y2S̄�0

 
NY

i=1

yi

!1/�0

for all �0 � �. To see this, let y denote the maximizer of maxy2S̄�

⇣QN
i=1 yi

⌘1/�
(this is achieved

since we are taking a maximum of a continuous function over a compact set). By definition, we see
that y can be written as a convex combination

PP
j=1 �j(x

j
i )

� where x1, . . . , xP denote vectors in S
and where

PP
j=1 �j = 1. In this notation, we see that:

max
y2S̄�

 
NY

i=1

yi

!1/�

=

0

B@
NY

i=1

0

@
PX

j=1

�j(x
j
i )

�

1

A
1/�
1

CA

By taking y to be
PP

j=1 �j(x
j
i )

�0
, we see that:

max
y2S̄�0

 
NY

i=1

yi

!1/�0

�

0

B@
NY

i=1

0

@
PX

j=1

�j(x
j
i )

�0

1

A
1/�01

CA .

Notice that for any 1  i  N , it holds that:
0

@
PX

j=1

�j(x
j
i )

�0

1

A =

0

@
PX

j=1

�j((x
j
i )

�)�
0/�

1

A �

0

@
PX

j=1

�j((x
j
i )

�)

1

A
�0/�

,

where the last inequality follows from convexity of f(c) = c�
0/� for �0 � �. Putting this all together,

we see that:

max
y2S̄�0

 
NY

i=1

yi

!1/�0

�

0

B@
NY

i=1

0

@
PX

j=1

�j(x
j
i )

�0

1

A
1/�01

CA �

0

B@
NY

i=1

0

@
PX

j=1

�j(x
j
i )

�

1

A
1/�
1

CA = max
y2S̄�

 
NY

i=1

yi

!1/�

as desired.

F.2 Proofs of corollaries of Theorem 1

We prove all of the corollaries of Theorem 1 in Section 3.2, except for Corollary 3 (proof deferred to
Appendix G.2).

First, we prove Corollary 1, restated below.
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Corollary 1. The threshold �⇤
is always at least 1. That is, if � = 1, there exists a single-genre

equilibrium.

Proof. When � = 1, we see that S� = S1 is a linear transformation of a convex set (the unit ball
restricted to RD

�0), so it is convex. This means that S̄� = S� , and so (4) is trivially satisfied. By
Theorem 1, there exists a single-genre equilibrium.

Next, we prove Corollary 2, restated below.
Corollary 2. Let the cost function be c(p) = kpk�q . For any set of user vectors, it holds that �⇤ � q.

If the user vectors are equal to the standard basis vectors {e1, . . . , eD}, then �⇤
is equal to q.

Proof. We split the proof into two steps: (1) showing that �⇤ � q for any set of user vectors and (2)
showing that �⇤  q for the standard basis vectors.

Showing that �⇤ � q for any set of users. To show that �⇤ � q, by Theorem 1, it suffices to show
that equation (4) is satisfied at � = q. Suppose that the right-hand side of (4):

max
y2S̄�

NY

i=1

yi

is maximized at some y⇤ 2 S̄� . It suffices to construct ỹ 2 S� such that
NY

i=1

ỹi �
NY

i=1

y⇤i (22)

To construct ỹ, we introduce some notation. By the definition of a convex hull, we can write y⇤ as

y⇤ =
mX

k=1

�ky
k,

where y1, . . . , ym 2 S� and where �1, . . . ,�m 2 [0, 1] are such that
Pm

k=1 �k = 1. Let
p1, . . . , pm 2 RD

�0 be such that kpkkq  1 for all 1  k  m and yk is given by the �-coordinate-
wise powers of Upk. Now, we let y = Up̃ where the dth coordinate of p̃ is given by:

p̃d :=

 
mX

k=1

�k((p
k)d)

q

!1/q

.

It follows from definition that:

kp̃kq =

 
DX

d=1

mX

k=1

�k((p
k)d)

q

!1/q

=

 
mX

k=1

�k

DX

d=1

((pk)d)
q

!1/q


 

mX

k=1

�kkpkkqq

!1/q

 1,

which means that ỹ 2 S� .

The remainder of the proof boils down to showing (22). It suffices to show that for every 1  i  N ,
it holds that ỹi � y⇤i . Notice that:

y⇤i =
mX

k=1

�k(y
k)i =

mX

k=1

�khui, p
kiq =

mX

k=1

�k

 
DX

d=1

(ui)d(p
k)d

!q

,

and

ỹi = hui, p̃iq =

 
DX

d=1

(ui)dp̃d

!q

=

0

@
DX

d=1

(ui)d

 
mX

k=1

�k((p
k)d)

q

!1/q
1

A
q

.

Thus, it suffices to show the following inequality:

DX

d=1

(ui)d

 
mX

k=1

�k((p
k)d)

q

!1/q

�
 

mX

k=1

�k

 
DX

d=1

(ui)d(p
k)d

!q!1/q

. (23)

30



The high-level idea is that the proof boils down to the triangle inequality for an appropriately chosen
norm over Rm. For z 2 Rm, we let:

kzk� :=

 
mX

k=1

�kz
q

!1/q

.

To see that this is a norm, note that (
Pm

k=1 �kzq)
1/q

=
⇣Pm

k=1(�
1/q
k z)q

⌘1/q
. The norm properties

of this function are implied by the norm properties of k · kq . By the triangle inequality, we see that:

DX

d=1

(ui)d

 
mX

k=1

�k((p
k)d)

q

!1/q

=
DX

d=1

(ui)dk[p1d, . . . , pmd ]k�

� k
DX

d=1

(ui)d[p
1
d, . . . , p

m
d ]k�

=

 
mX

k=1

�k

 
DX

d=1

(ui)d(p
k)d

!q!1/q

which implies equation (23).

Showing that �⇤  q for the standard basis vectors. By Theorem 1, it suffices to show, for any
� > q, that equation (4) is not satisfied. First, we compute the left-hand side of equation (4):

max
y2S�

NY

i=1

yi =

 
max

x2RD
�0,kxkq=1

DY

i=1

xi

!�

=

✓
1

D

◆�/q

<

✓
1

D

◆
.

where the last line follows from AM-GM. Now, we compute the right-hand side:

max
y2S̄�

NY

i=1

yi.

Consider y⇤ =
⇥
1
D , . . . , 1

D

⇤
. Notice that y is a convex combination of the standard basis vectors—all

of which are in S and actually in S� too—so y 2 S̄� . This means that

max
y2S̄�

NY

i=1

yi �
NY

i=1

y⇤i =

✓
1

D

◆
.

This proves that:

max
y2S�

NY

i=1

yi < max
y2S̄�

NY

i=1

yi,

so equation (4) is not satisfied as desired.

We prove Corollary 4, restated below.
Corollary 4. Let k · k⇤ denote the dual norm of k · k, defined to be kpk⇤ = maxkpk=1,p2RD

�0
hq, pi.

Let Z := k
PN

n=1
un

kunk⇤
k⇤. Then,

�⇤  log(N)

log(N)� log(Z)
. (5)

Proof. WLOG assume that the users to have unit dual norm. By Theorem 1, it suffices to show that:

max
y2S�

NY

i=1

yi < max
y2S̄�

NY

i=1

yi.
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First, let’s lower bound the right-hand side. Consider the point y = 1
N

PN
i0=1 z

i0 where zi
0

is defined

to be the �-coordinate-wise power of U
⇣
argmax||p||=1hp, uii

⌘
. This means that

yi �
1

N
zii =

1

N

✓
max
||p||=1

hp, uii
◆�

=
||ui||�⇤
N

=
1

N
.

This means that:

max
y2S̄�

NY

i=1

yi �
1

NN
.

Next, let’s upper bound the left-hand side. By AM-GM, we see that:

max
y2S�

NY

i=1

yi = max
||p||=1,p2RD

�0

 
NY

i=1

hp, uii
!�


 PN

i=1hp, uii
N

!N�


 
hp,
PN

i=1 uii
N

!N�



⇣
k
PN

i=1 uik⇤
⌘N�

NN�
.

Putting this all together, we see that it suffices for:

1

NN
>

⇣
k
PN

i=1 uik⇤
⌘N�

NN�
,

which we can rewrite as:

N��1 >

 
k

NX

i=1

uik⇤

!�

which we can rewrite as:

N1�1/� > k
NX

i=1

uik⇤.

We prove Corollary 5, restated below.
Corollary 5. If there exists µ with |Genre(µ)| = 1, then the corresponding producer direction

maximizes Nash social welfare of the users:

Genre(µ) = argmax
kpk=1|p2RD

�0

NX

i=1

log(hp, uii). (6)

Proof. Corollary 5 follows as a consequence of the proof of Theorem 1. We apply Lemma 7 to see
that if µ is a single-genre equilibrium with Genre(µ) = {p⇤}, then:

sup
y02S�

NX

i=1

y0i
(hp⇤, uii)�

 N.

We see that:

N � sup
y02S�

y0i
(hp⇤, uii)�

� N sup
y02S�

 QN
i=1 y

0
iQN

i=1(hp⇤, uii)�

!1/N

� N

 
supy02S�

QN
i=1 y

0
iQN

i=1(hp⇤, uii)�

!1/N

.

This implies that:
NY

i=1

yi =
NY

i=1

(hp⇤, uii)� � sup
y02S�

NY

i=1

y0i,

where y 2 S� is defined so that yi = hp⇤, uii� . This implies that:

p⇤ 2 argmax
||p||1,p2RD

�0

NX

i=1

log(hp, uii) = argmax
||p||=1,p2RD

�0

NX

i=1

log(hp, uii)

as desired.
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G Proofs and Details for Section D

In Appendix G.1, we provide an overview of how we leverage Lemma 1 to analyze equilibria in
the setting of two populations of users. In Appendix G.2, we prove Corollary 3. In Appendix G.3,
we prove the results from Section D.1, and in Section G.4, we prove the results from Section D.2.
In Appendix G.5, we formalize the infinite-producer limit, which we study in Section D.3, and in
Appendix G.6, we prove results from Section D.3. In Appendix G.7, we prove several auxiliary
lemmas that we used along the way.

G.1 Overview of proof techniques

Before diving into proof techniques, we observe that it suffices to study a simpler setting with two

normalized users and a rescaled cost function.
Claim 1. A distribution µ is an equilibria for a marketplace with 2 populations of users of size N/2
located at vectors u1 and u2 and with producer cost function c(p) = kpk�2 if and only if µ is an

equilibria for a marketplace with 2 users located at vectors
u1

ku1k and
u2

ku2k and with producer cost

function c(p) = 2
N kpk�2 .

Thus, we focus on marketplaces with 2 users located at vectors u1 and u2 such that ku1k = ku2k = 1
and with producer cost function c(p) = ↵kpk�2 for ↵ > 0.

The proofs in this section boil down to leveraging conditions (C1)-(C3) in Lemma 1, restated below.
Lemma 1. Let U = [u1;u2; . . . ;uN ] be the N ⇥D matrix of users vectors. Given a set S ✓ RN

�0
and distributions H1, . . . , HN over R�0, suppose that the following conditions hold:

(C1) Every z⇤ 2 S is a maximizer of the equation:

max
z2RD

�0

NX

i=1

Hi(zi)� cU(z), (10)

where cU(z) := min
�
c(p) | p 2 RD

�0,Up = z
 

.

(C2) There exists a random variable Z with support S, such that the marginal distribution Zi has

cdf equal to Hi(z)1/(P�1)
.

(C3) Z is distributed as UY with Y ⇠ µ, for some distribution µ over RD
�0.

Then, the distribution µ from (C3) is a symmetric mixed Nash equilibrium. Moreover, every symmetric

mixed Nash equilibrium µ is associated with some (H1, . . . , HN , S) that satisfy (C1)-(C3).

Proof of Lemma 1. The intuition is that the the set S captures the support of the realized user values
[hu1, pi, . . . , huN , pi] for p ⇠ µ and the distribution Hi captures the distribution of the maximum
user value max1jP�1hui, pji for user ui.

To formalize this, we reparameterize from content vectors in RD
�0 to realized user values in RN

�0. That
is, we transform the content vector p 2 RD

�0 into the vector of realized user values given by z = Up.
This reparameterization allows us to cleanly reason about the number of users that a producer wins: a
producer wins a user ui if and only if they have the highest value in the ith coordinate of z. In this
parametrization, the cost of production can be computed through an induced function cU given by
cU(z) := min

�
c(p) | p 2 RD

�0, z = Up
 

if z 2
�
Up | p 2 RD

�0

 
.

In this reparameterization, the producer profit takes a clean form. If producer 1 chooses z 2 RN , and
other producers follow a distribution µZ over RN , then the expected profit of producer 1 is:

NX

i=1

Hi(zi)� cU(z),

where Hi(·) is the cumulative distribution function of the maximum realized user value over the other
P � 1 producers, i.e. of the random variable max2jP (zj)i where z2, . . . , zP ⇠ µZ .
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Recall that a distribution µ corresponds to a symmetric mixed Nash equilibrium if and only if every z
in the support S := supp(µZ) is a maximizer of equation (10) (where µZ is the distribution over Up
for p ⇠ µ).

G.1.1 Leveraging (C1)

To leverage (C1), we use the first-order and second-order conditions for z to be a maximizer of
equation (10). In order to obtain useful closed-form expressions, we explicitly compute the induced
cost function in terms of the angle ✓⇤ between the user vectors.
Lemma 9. Let there be 2 users located at u1, u2 2 RD

�0 such that ku1k = ku2k = 1, and

let ✓⇤ := cos�1 (hu1, u2i) > 0 be the angle between the user vectors. Let the cost function be

c(p) = ↵kpk�2 for ↵ > 0. For any z 2
�
Up | p 2 RD

�0

 
, the induced cost function is given by:

cU(z) = ↵ sin��(✓⇤)
�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 .

First-order condition. The first order condition implies that we can compute the densities h1 and
h2 of H1 and H2 in terms of the cU. The densities h1(z1) and h2(z2) depend on the gradient rzcU
and both coordinates z1 and z2.
Lemma 10. Let there be 2 users located at u1, u2 2 RD

�0 such that ku1k = ku2k = 1, and

let ✓⇤ := cos�1 (hu1, u2i) > 0 be the angle between the user vectors. Let the cost function be

c(p) = ↵kpk�2 for ↵ > 0. For any z 2
�
Up | p 2 RD

�0

 
, the first-order condition of equation (10)

can be written as: 
h1(z1)
h2(z2)

�
= rz(cU(z)).

More specifically, it holds that:
h1(z1)
h2(z2)

�
= �↵ sin��(✓⇤)

�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1

z1 � z2 cos(✓⇤)
z2 � z1 cos(✓⇤)

�
,

and if we represent z = U[r cos(✓), r sin(✓)], then it also holds that:


h1(z1)
h2(z2)

�
= �↵r��1

"
sin(✓⇤�✓)
sin(✓⇤)
sin(✓)
sin(✓⇤)

#
.

Second-order condition. When we also take advantage of the second-order condition, we can
identify the “direction” that the support must point at z 2 S terms of the location of z, the cost
function parameter �, and the angle ✓⇤ between the two populations of users.
Lemma 11. Let there be 2 users located at u1, u2 2 RD

�0 such that ku1k = ku2k = 1, and

let ✓⇤ := cos�1 (hu1, u2i) > 0 be the angle between the user vectors. Let the cost function be

c(p) = ↵kpk�2 for ↵ > 0. If z is of the form [r cos(✓), r cos(✓⇤ � ✓)] for ✓ 2 [0, ✓⇤], then the sign of

@2cU(z)
@z1@z2

is equal to the sign of:

� � 2

�
cos(✓⇤ � 2✓)� cos(✓⇤).

Lemma 12. Let there be 2 users located at u1, u2 2 RD
�0 such that ku1k = ku2k = 1, and

let ✓⇤ := cos�1 (hu1, u2i) > 0 be the angle between the user vectors. Let the cost function be

c(p) = ↵kpk�2 for ↵ > 0. Suppose that condition (C1) is satisfied for (H1, H2, S). If S contains

a curve of the form {(z1, g(z1)) | x 2 I} for any open interval I and any differentiable function g,

then for any z1 2 I , it holds that:

g0(z1) ·
✓
� � 2

�
cos(✓⇤ � 2✓)� cos(✓⇤)

◆
 0.

Lemmas 11 and 12 demonstrate that if
⇣

��2
� cos(✓⇤ � 2✓)� cos(✓⇤)

⌘
> 0, then the curve g must

be decreasing, and if
⇣

��2
� cos(✓⇤ � 2✓)� cos(✓⇤)

⌘
< 0, then the curve g must be increasing. This

characterizes the “direction” of the curve in terms of the location z1.
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G.1.2 Leveraging (C3)

For the case of 2 users with cost function c(p) = kpk�2 , the condition (C3) always holds, as long
as condition (C1) holds. Since the two vectors u1 and u2 are linearly independent, the matrix U is
invertible, so we can define µ to be the distribution given by U�1Z. The only remaining condition
comes p being restricted to RD

�0 rather than RD. This means that S must be contained in the convex
cone generated by [1, cos(✓⇤)] and [cos(✓⇤), 1]. This restriction on S is already implicitly implied by
(C1): it is not difficult to see that all maximizers of (10) will be contained in this convex cone.

G.1.3 Leveraging (C2)

To leverage (C2), we obtain a functional equation that restricts the relationship between H1, H2, and
S for a given value of P , and we instantiate this in two ways. First, when the support is a curve
(z1, g(z1)), the marginal distributions Z1 and Z2 are related by a change of variables formula given
by Z2 ⇠ g(Z1). This translates into a condition on H1 and H2 that depends on the derivative g0 and
the number of producers P . Second, if the equilibrium were to contain finitely many genres, there
would be a pair of functional equations relating the cdfs H1 and H2, the distribution over quality
within each genre, and the number of producers P . We describe each of these settings in more detail
below.

Case 1: support is a single curve. The first case where we instantiate (C2) is when S is equal to
{(z1, g(z1)) | x 2 M} where M is a (well-behaved) subset of R�0. Let h⇤

1 and h⇤
2 be the densities

of the marginal distributions Z1 and Z2 respectively. Since Z2 ⇠ g(Z1), the change of variables
formula implies that the densities h⇤

1 and h⇤
2 are related as follows:

h⇤
1(z1) = h⇤

2(g(z1))|g0(z1)|, (24)

In order to use equation (24), we need to translate it into a condition on the distributions H1 and H2.
Let h1 and h2 be the densities of H1 and H2 respectively. Then equation (24) can reformulated as:

h1(x)

(H1(x))
P�2
P�1

=
h2(g(x))

(H2(g(x)))
P�2
P�1

|g0(x)|. (25)

Equation (25) reveals that the constraint induced by the number of producers P can be messy in
general, since it involves both the densities h1 and h2 and the cdfs H1 and H2. Intuitively, these
complexities arise because H⇤

i and Hi are related by a (P � 1)th degree polynomial (put differently,
the maximum of P � 1 i.i.d. draws of a random variable does not generally have a clean structure).
Nonetheless, equation (25) does simplify into a tractable form in special cases. For example, if
P = 2, then the dependence on H1 and H2 vanishes. As another example, if g is increasing, then
H1(x) = H2(g(x)) for any P � 2, so the dependence on H1 and H2 again vanishes.

Case 2: two-genre equilibria. The second case where we instantiate (C2) is when S is a subset of
the union of two lines: that is,

S ✓ {(z1, c1 · z1) | z1 2 R�0} [ {(z1, c2 · z1) | z1 2 R�0} ,

where cos(✓⇤)  c1, c2  1
cos(✓⇤) . Since linear transformations preserve lines through the origin,

this means that the support of the distribution µ of U�1Z is also contained in the union of two lines
through the origin: thus |Genre(µ)|  2.

A distribution Z can be entirely specified by the probabilities ↵1 + ↵2 that it places on each of the
two lines and the conditional distribution of Z1 along each of the lines (this in particular determines
the conditional distribution of Z2 along the lines). More specifically, the probabilities ↵1 + ↵2 will
correspond to

↵1 := PZ [Z 2 {(z1, c1 · z1) | z1 2 R�0}]
↵2 := PZ [Z 2 {(z1, c2 · z1) | z1 2 R�0}],

and F1 and F2 will correspond to the cdfs of the conditional distributions

F1 ⇠ Z1 | Z 2 {(z1, c1 · z1}
F2 ⇠ Z1 | Z 2 {(z1, c2 · z1}
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respectively. The (unique) distribution Z associated with ↵1,↵2, F1, F2 satisfies (C2) if and only if
the following pairs of functional equations are satisfied:

(↵1F1(z1) + ↵2F2(z1)) = (H1(z1))
1

P�1 and
�
↵1F1(c

�1
1 z2) + ↵2F2(c

�1
2 z2)

�
= (H2(z2))

1
P�1 .

(26)
The functional equations can be solved to determine if there is a valid solution.

G.2 Proof of Corollary 3

We prove Corollary 3, restated below:
Corollary 3. Suppose that there are N users split equally between two linearly independently vectors

u1, u2 2 RD
�0, and let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
. If the cost function is c(p) = kpk�2 , then,

�⇤ =
2

1� cos(✓⇤)
.

Proof. By Claim 1, we can assume that there are 2 normalized users ku1k = ku2k. We further
assume WLOG that u1 = e1.

We claim that if there is a single-genre equilibrium, it must be in the direction of
[cos(✓⇤/2), sin(✓⇤/2)]. By Corollary 5, if there is a single-genre equilibrium in a direction p,
then it must maximize log(hp, u1i) + log(hp, u1i). Let’s let p = [cos(✓), sin(✓)]. Then, we see that:

log(hp, u1i) + log(hp, u2i) = log(cos(✓)) + log(cos(✓⇤ � ✓)) = log

✓
cos(✓⇤) + cos(✓⇤ � 2✓)

2

◆
,

which is uniquely maximized at ✓ = ✓⇤/2 as desired.

We first show that �⇤  2
1�cos(✓⇤) . Assume for sake of contradiction that there is a single-genre

equilibrium. The above argument shows that it must be in the direction of [cos(✓⇤/2), sin(✓⇤/2)]. By
Lemma 3, we know that the support of the equilibrium distribution is a line segment. If � > 2

1�cos(✓⇤) ,
we see that

� � 2

�
cos(✓⇤ � 2✓)� cos(✓⇤) = 1� 2

�
� cos(✓⇤) < 0.

By Lemma 1 and Lemma 12, we see that the single-genre line (z, g(z)) must have g0(z1)  0 in its
support, which is a contradiction.

We next show that �⇤  2
1�cos(✓⇤) . It suffices to show that the single-genre distribution in the

direction of [cos(✓⇤/2), sin(✓⇤/2)] with cdf given by F (q) =
⇣

q�

2

⌘1/(P�1)
. We apply Claim 1; it

suffices to verify condition (C1). Notice that

H1(w) = H2(w) =

✓
w�

2 cos�(✓⇤/2)

◆
.

Thus, equation (10) can be written as:

max
z

 
min(1,

z�1
2 cos�(✓⇤/2)

) + min(1,
z�2

2 cos�(✓⇤/2)
)� cU(z)

!
.

It suffices to show that that for all z, it holds that:

z�1 + z�2 � 2 cos�(✓⇤/2)

✓
z21 + z22 � 2z1z2 cos(✓⇤)

sin2(✓⇤)

◆�

 0.

Let z = [r cos(✓), r cos(✓⇤ � ✓)]. Then this reduces to:

cos�(✓) + cos�(✓⇤ � ✓)  2 cos�(✓⇤/2)  0.

We observe that cos�(✓) + cos�(✓⇤ � ✓) is maximized at ✓ = ✓⇤/2, which proves the desired
statement.
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G.3 Proofs for Section D.1

We prove Proposition 6, restated below:
Proposition 6. Suppose that there are N users split equally between two linearly independently

vectors u1, u2 2 R2
�0, and let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
be the angle between the user vectors. Let

the cost function be c(p) = kpk�2 , and let P � 2. Let µ be a symmetric Nash equilibrium such

that the distributions hu1, pi and hu2, pi over R�0 are absolutely continuous. As long as � 6= 2 or

✓⇤ 6= ⇡/2, the support of µ does not contain an `2-ball of radius ✏ for any ✏ > 0.
10

Proof of Proposition 6. Assume for sake of contradiction that the support of µ contains an `2-ball
of radius ✏1 > 0. We apply Lemma 1 and show that condition (C1) is violated. Since µ contains a
ball of ✏1-radius ball, we know that the distribution Z over Up over p ⇠ µ contains an `2 ball of
radius ✏2 > 0. Let this ball be B. Notice that Z1 and Z2 are absolutely continuous by assumption, Z1

and Z2 have bounded support, and the function m 7! mP�1 is Lipschitz on any bounded interval:
this means that H1 and H2 are also absolutely continuous. This means that densities exist a.e. For
(z1, z2) 2 B, we can apply the first-order condition in Lemma 10 to obtain that:

h1(z1) =
@cU(z)

@z1

We see that this needs to be satisfied for z = [z1,m] where m 2 (z2 � ✏0, z2 + ✏0). This means that
the mapping m 7! @cU([z1,m])

@z1
needs to be a constant on m 2 (z2 � ✏0, z2 + ✏0). This means that the

derivative of this mapping with respect to z2 needs to be 0, so:

@2cU([z1, z2])

@z1@z2
= 0 (27)

for all z 2 B.

We apply Lemma 11 to show that equation (27) cannot be zero on all of B. For all z that satisfy
equation (27), Lemma 11 implies if we represent z as U[r cos(✓), r sin(✓)], then

� � 2

�
cos(✓⇤ � 2✓) = cos(✓⇤).

If equation (27) holds for all z 2 B, then it must hold at all ✓ within some nonempty interval. This is
a contradiction as long as � 6= 2 or ✓⇤ 6= ⇡/2.

For the special case where � = 2 and ✓⇤ = ⇡/2,

We next prove Theorem 2, restated below:
Theorem 2. Suppose that there are N users split equally between two linearly independently vectors

u1, u2 2 RD
�0, and let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
be the angle between the user vectors. Let the cost

function be c(p) = kpk�2 . Let µ be a a distribution on Rd
such that the distributions hu1, pi and

hu2, pi over R�0 over R�0 for p ⇠ µ are absolutely continuous and twice continuously differentiable

within their supports. There are two regimes based on � and ✓⇤:

1. If � < �⇤ = 2
1�cos(✓⇤) and if µ is a symmetric mixed equilibrium, then µ satisfies

|Genre(µ)| = 1.

2. If � > �⇤ = 2
1�cos(✓⇤) , if |Genre(µ)| < 1, and if the conditional distribution of kpk along

each genre is continuously differentiable, then µ is not an equilibrium.

We split into two propositions: together, these propositions directly imply Theorem 2.
Proposition 9. Consider the setup in Theorem 2. If � < �⇤ = 2

1�cos(✓⇤) and µ is a symmetric mixed

equilibrium, then µ satisfies |Genre(µ)| = 1.

10The case of � = 2 and ✓⇤ = ⇡/2 is degenerate and permits a range of possible equilibria.
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Proposition 10. Consider the setup in Theorem 2. If � > �⇤ = 2
1�cos(✓⇤) , if |Genre(µ)| < 1, and

if the conditional distribution of kpk along each genre is continuous differentiable, then µ is not an

equilibrium.

To prove Proposition 9, we leverage the machinery given by Lemma 1 as follows. Condition (C1)
helps us show that the support S can be specified by (w, g(w)) for an increasing function w: in
particular, Lemma 10 enables us to show that S must be one-to-one, and Lemma 12 enables us to
pin down the sign of g0. Using condition (C2), which simplifies since g is increasing, we show a
functional equation in terms of g that has a unique solution at the single-genre equilibrium. We
formalize this below.

Proof of Proposition 9. By Claim 1, it suffices to focus on the case of 2 normalized users. By Lemma
1, it suffices to study (H1, H2, S) that satisfy (C1), (C2), and (C3).

Let supp(H1) = I1 and let supp(H2) = I2. Note that since the distributions are twice continuously
differentiable, we know that the densities h1 and h2 exist and are continuously differentiable a.e on
I1 and I2 respectively. We break the proof into several steps.

Step 1: there exists a one-to-one function g such that S = {(w, g(w)) | w 2 I1} and where g is
continuously differentiable and strictly increasing. We first show that @2cU(z)

@z1@z2
< 0 everywhere.

By Lemma 11, it suffices to show that ��2
� cos(✓⇤ � 2✓)� cos(✓⇤) < 0. To see this, notice that

� � 2

�
cos(✓⇤ � 2✓)� cos(✓⇤) < 0  � � 2

�
� cos(✓⇤) = 1� cos(✓⇤)� 2

�
< 0

because � < 2
1�cos(✓⇤) .

We now show that the support S is equal to {(w, g(w)) | w 2 I1} for some one-to-one function
g : I1 ! I2. To show this, it suffices to show that the support does contain both (z1, z2) and (z1, z02)
for z2 6= z02 (and, analogously, the support does not contain both (z01, z2) and (z1, z2) for z1 6= z01).
Notice that for any fixed value of z1, the function z2 7! @cU([z1,z2])

@z1
is strictly decreasing. If (z1, z2)

and (z1, z02) are both in the support, then by Lemma 10, it must be true that:

h1(z1) =
@cU([z1, z2])

@z1
=

@cU([z1, z02])

@z1
.

However, since z2 7! @cU([z1,z2])
@z1

is strictly decreasing, this means that z2 = z02 as desired.

We can thus implicitly define the function g by the (unique) value such that:

Q(w, g(w))� h1(w) = 0

where
Q(z1, z2) :=

@cU([z1, z2])

@z1
.

Uniqueness follows from the fact that Q is a strictly decreasing function in its second argument,
since @Q(w,g(w))

@z2
= @2cU([w,g(w)])

@z1@z2
< 0 as we showed previously. Since h1(w) is continuously

differentiable and since:
@Q(w, g(w))

@z2
6= 0

for w 2 I1, we can apply the implicit function theorem to see that g(w) is continuously differentiable
for w 2 I1.

We next show that g is increasing on I1. Within the interior of I1, by Lemma 12 along with the fact
that ��2

� cos(✓⇤ � 2✓)� cos(✓⇤) < 0 everywhere, we see that g is a strictly increasing function on
each contiguous portion of I1. It thus suffices to show I1 is an interval and that there are no gaps. If
there is a gap, there must be a gap for both z1 and z2 at the same point z since the support is on-to-one
and closed. However, if z is right above the gap, the producer would obtain higher utility by choosing
(1� ✏)z for sufficiently small ✏ to ensure that (1� ✏)z is within the gap on both coordinates. This
means that I1 is an interval, which proves g is an increasing function.
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Step 2: differential equation. We show that

g0(w)g(w)� g0(w)w cos(✓⇤) = w � g(w) cos(✓⇤), (28)

for all w 2 supp(H1).

First, we derive the the condition that we described in equation (25) and further simplify it using that
g is increasing. Let H⇤

1 (w) = H1(w)
1

P�1 and H⇤
2 (w) = H2(w)

1
P�1 . The densities h⇤

1 and h⇤
2 take

the following form:

h⇤
1(w) = (H⇤

1 )
0(w) =

1

P � 1
h1(w)H1(w)

�P�2
P�1

h⇤
2(w) = (H⇤

2 )
0(w) =

1

P � 1
h2(w)H2(w)

�P�2
P�1 .

In order for there to exist a distribution µ that satisfies condition (C2), it must hold that H⇤
1 (w) =

H⇤
2 (g(w)) because g is increasing. (This also means that H1(w) = H2(g(w)).) This means that

h⇤
1(w) = h⇤

2(g(w))g
0(w) and H1(w) = H2(g(w)). Plugging this into the above expressions for h⇤

1
and h⇤

2, this means that:

h1(w) = (P � 1)h⇤
1(w)H1(w)

P�2
P�1 = (P � 1)g0(w)h⇤

2(g(w))H2(g(w))
P�2
P�1 = h2(w)g

0(w).

This means that
g0(w) =

h1(w)

h2(w)
=

w � g(w) cos(✓⇤)

g(w)� w cos(✓⇤)
,

where the last line follows from Lemma 10. This gives us the desired differential equation.

Step 3: solving the differential equation. We claim that the only valid solution to the differential
equation (28) is g(w) = w. To see this, let f(w) = g(w)

w . This means that wf(w) = g(w) and thus
f(w) + wf 0(w) = g0(w). Plugging this into equation (28) and simplifying we obtain a separable
differential equation. The solutions to this differential equation are f(w) = 1 and the following:

f⇤
K(w) = K � log(w) =

1

2
((1 + cos(✓⇤)) log (1 + f(w))� (1 + cos(✓⇤)) log (1� f(w)))

for some constant K. Notice that for f⇤
K to even be well-defined, we know that f⇤

K(w) < 1
everywhere.

Assume for sake of contradiction that there exists an equilibrium with support given by
{(w, g(w)) | w 2 I} for g(w) 6= w. Then we know that g(w) = f⇤

K(w) · x for some K. In or-
der for this solution to even be well-defined, it would imply that f⇤

K(w) < 1 everywhere. This
implies that g(w) < w, for all w 2 I1. However, we know that the function g�1 must satisfy the dif-
ferential equation too (and g�1(w) 6= w), so by an analogous argument, we know that g�1(w) < w
for all w 2 I2, which means that w < g(w). This is a contradiction.

We can thus conclude that since g(x) = x, we have that |Genre(µ)| = 1 as desired.

To prove Proposition 10, we also leverage the machinery in Lemma 1. We use Lemma 10 to rule out
all finite-genre equilibria except for two-genre equilibria. We can show that H1(w) and H2(w) grow
proportionally to w� . Then, we can implement this knowledge of H1 and H2 into the finite genre
formulation of condition (C2) in equation (26) and show that no solutions to the functional equation
exist for finite P . We formalize this below.

Proof of Proposition 10. By Claim 1, it suffices to focus on the case of 2 normalized users. We
further assume WLOG that u1 = e1 and u2 = [cos(✓⇤), sin(✓⇤)]. Since � > 2

1�cos(✓⇤) , we know by
Corollary 3 that there is no single-genre equilibrium. Assume for sake of contradiction that there
exists a finite-genre equilibrium µ with |Genre(µ)| � 2. By Lemma 1, we know that there exists
H1, H2 and S associated with µ that satisfy (C1)-(C3). Our proof boils down to two steps:

• Step 1: We show that Genre(µ) = {✓1, ✓2} for some ✓1 < ✓⇤/2 < ✓2.

• Step 2: We show that no two-genre distribution µ exists.
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Step 1. Let us first translate the concept of genres to the reparameterized space. First, we consider
the following set:

GenreZ(S) :=

⇢
1

cU(z)
[z1, z2] | z 2 S

�
.

Since vectors in GenreZ(S) are of the form [cos(✓), cos(✓⇤ � ✓)] by the normaalization by cU(z),
we can actually define a set of angles:

Genre⇥(S) :=
�
cos�1(z1) | [z1, z2] 2 GenreZ(S)

 
.

We see that ✓ 2 Genre⇥(S) if and only if [cos(✓), cos(✓⇤ � ✓)] 2 GenreZ(S) if and only if
[cos(✓), sin(✓)] 2 Genre(µ). Elements of Genre⇥(S) thus exactly corresponds to genres of
Genre(µ).

We first observe that every ✓ 2 Genre⇥(S) is in (0, ✓⇤). By (C1) of Lemma 1, the set S must
be contained in the convex cone of [1, cos(✓⇤)] and [cos(✓⇤, 1], which implies that ✓ 2 [0, ✓⇤].
It thus suffices to show that ✓ 6= 0 and ✓ 6= ✓⇤. We show that ✓ 6= 0 (the case of ✓ 6= ✓⇤
follows from an analogous argument). In this case, we see that there must be some set of the form
{[r, r cos(✓⇤)] | r 2 R�0} that is subset of S. If ✓⇤ = ⇡/2, then this would mean the distribution
given by H2 would have a point mass at 0, which is clearly not possible at equilibrium. Otherwise,
if ✓⇤ < ⇡/2, we apply (C1) and Lemma 10, and we see that h2(r cos(✓⇤)) = 0. However, this
is a contradiction, since there is positive probability mass on some line segment on this genre by
assumption.

Now, we observe that the support of the cdfs H1 and H2 must be bounded intervals of the form
[0, zmax

1 ] and [0, zmax
2 ]. First, we show that max(supp(H1)),max(supp(H1)) < 1. By (C1), we

see that a producer must achieve nonzero profit (since they always so cU(z)  2, which means
that z1, z2  2

↵ as desired. This means that we can set zmax
1 = max(supp(H1)) and zmax

2 =
max(supp(H2)). Next, we show that the supports of H1 and H2 contain the full intervals [0, zmax

1 ]
and [0, zmax

2 ], respectively. Assume for sake of contradiction that the support of H1 does not contain
some interval (x, x+ ✏) for ✏ > 0 within [0, zmax

1 ]. Let ✏ be defined so that z1 = x+ ✏ 2 supp(H1).
However, this means that there exists z2 such that [z1, z2] 2 S and, moreover, [z1, z2] must be located
on a genre ✓ 2 (0, ✓⇤). We can thus reduce z1 and hold z2 fixed, while keeping H1(z1) +H2(z2)
fixed, and reducing the cost cU(z), which violates the fact that [z1, z2] is a maximizer of (10). An
analogous argument shows that the support of H2 is the full interval [0, zmax

2 ].

Next, we show that for ✓, ✓0 2 Genre⇥(S), it must hold that

sin(✓⇤ � ✓)

cos��1(✓)
=

sin(✓⇤ � ✓0)

cos��1(✓0)
and

sin(✓)

cos��1(✓⇤ � ✓)
=

sin(✓0)

cos��1(✓⇤ � ✓0)
(29)

To prove this, suppose that |GenreZ(S)| = G and label the genres by the indices 1, . . . , G arbitrarily.
For z1 2 supp(H1) let T (z1) ✓ {1, . . . , G} be the set of genres j where there exists z2 such that
(z1, z2) 2 S and [z1, z2] points in the direction of [cos(✓j), cos(✓⇤ � ✓j)]. By Lemma 10, for all
i 2 T (z1), it must hold that:

h1(z1) = �z��1
1 ↵ · sin(✓

⇤ � ✓i)

sin(✓⇤)
· 1

cos(✓i)��1
.

This means that for i, i0 2 T (z1), it holds that

sin(✓⇤ � ✓i)

cos��1(✓i)
=

sin(✓⇤ � ✓i0)

cos��1(✓i0)
.

We now generalize this argument to arbitrary genres ✓, ✓0 2 Genre⇥(S). Consider 1  i, i0  G.
Even though ✓i and ✓i0 may not be in the same set T (z1), we show that there must be some
“path” connecting ✓i and ✓i0 . To formalize this, for each genre 1  i  G, let Si =
{z1 2 supp(H1) | i 2 T (zi)}. Let’s define an undirected graph vertices [G] and an edge (i1, i2) if
and only if Si1 \Si2 6= ;. The argument from the previous paragraph showed that if there an edge be-
tween i and i0, then sin(✓⇤�✓i)

cos��1(✓i)
= sin(✓⇤�✓i0 )

cos��1(✓i0 )
. Moreover, if there exists a path from i to i0 in this graph,

then we can chain together equalities along each edge in the path to prove sin(✓⇤�✓i)
cos��1(✓i)

= sin(✓⇤�✓i0 )
cos��1(✓i0 )

.
The only remaining case is that there is no path from i to i0. However, this would mean that the
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vertices [G] can be divided into a partition P1, . . . , Pn for n > 1 such that there is no edge across
partitions. Note that [1iGSi = supp(H1), which we already proved is equal to [0, zmax

1 ]. Thus,
this would mean that the disjoint, closed sets [i2P1Si, . . . ,[i2PnSi have union equal to [0, zmax

1 ],
which is not possible Sierpinski [1918]. Thus we have shown that sin(✓⇤�✓i)

cos��1(✓i)
= sin(✓⇤�✓i0 )

cos��1(✓i0 )
for any

1  i, i0  G and an analogous argument shows that sin(✓i)
cos��1(✓⇤�✓i)

= sin(✓i0 )
cos��1(✓⇤�✓i0 )

. This proves
equation (29).

We next show that there exist exactly 2 genres given by ✓1 < ✓2. Using Lemma 11, we see that
for any ✓, there are at most two values of ✓0 6= ✓1 such that equation (29) can hold. Moreover, by
Lemma 12, one of these values lies within the region where g0 would have to be negative (which
is not possible). Thus, there are at most two genres, and Lemma 11 further tells us that they lie on
opposite sides of ✓⇤/2.

Step 2. Condition (C2) gives us functional equations that the distribution µ must satisfy for P < 1.
More specifically, let F1 be the cdf of the magnitude of the genre given by ✓1, and let F2 be the cdf
of the magnitude of the genre given by ✓2. Then we obtain the following functional equations:

✓
↵1F1

✓
z1

cos(✓1)

◆
+ ↵2F2

✓
z1

cos(✓2)

◆◆P�1

= H1(z1)

✓
↵1F1

✓
z2

cos(✓⇤ � ✓1)

◆
+ ↵2F2

✓
z2

cos(✓⇤ � ✓2)

◆◆P�1

= H2(z1).

For these functional equations to be useful, we need to compute the cdfs H1 and H2. This will
involve some notation: as in the previous step, let the genres be {✓1, ✓2} where ✓1 < ✓⇤/2 < ✓2. Let
rmax
1 := max(supp(F1)) be the maximum value in the support of F1 and let rmax

2 := max(supp(F2))
be the maximum value in the support of F2. We define:

i1 := argmax
i2{1,2}

ri cos(✓i) i2 := argmax
i2{1,2}

ri cos(✓
⇤ � ✓i)

which correspond to which genre produces the highest value of z1 and z2 respectively.

We apply Lemma 10 to see that for all z1 and z2 in the support of H1 and H2, it holds that:

h1(z1) = �z��1
1 ↵ · sin(✓

⇤ � ✓i1)

sin(✓⇤)
· 1

cos(✓i1)
��1

h1(z2) = �z��1
2 ↵ · sin(✓i2)

sin(✓⇤)
· 1

cos(✓⇤ � ✓i2)
��1

.

We can integrate with respect to z1 and z2 to obtain that H1(z1) = c1z
�
1 and H1(z2) = c2z

�
2 , such

that:
c1 = ↵ · sin(✓

⇤ � ✓i1)

sin(✓⇤)
· 1

cos(✓i1)
��1

(30)

c2 = ↵ · sin(✓i2)
sin(✓⇤)

· 1

cos(✓⇤ � ✓i2)
��1

. (31)

WLOG assume that c1 � c2 for the remainder of the analysis.

Using this specification of H1 and H2, we can write the functional equations as

↵1F1

✓
z1

cos(✓1)

◆
+ ↵2F2

✓
z1

cos(✓2)

◆
= c

1
P�1

1 z
�

P�1

1

↵1F1

✓
z2

cos(✓⇤ � ✓1)

◆
+ ↵2F2

✓
z2

cos(✓⇤ � ✓2)

◆
= c

1
P�1

2 z
�

P�1

2 .

By taking a derivative with respect to z1 and z2, we see that for any z1 within the support of H1 and
z2 within the support of H2, it holds that:

↵1

cos(✓1)
f1

✓
z1

cos(✓1)

◆
+

↵2

cos(✓2)
f2

✓
z1

cos(✓2)

◆
= c

1
P�1

1

�

P � 1
z

�
P�1�1

1 . (32)
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↵1

cos(✓⇤ � ✓1)
f1

✓
z2

cos(✓⇤ � ✓1)

◆
+

↵2

cos(✓⇤ � ✓2)
f2

✓
z2

cos(✓⇤ � ✓2)

◆
= c

1
P�1

2

�

P � 1
z

�
P�1�1

2 .

(33)

We prove that these functional equations have no valid solution. To show this, we prove that any
solution to equations (32) and (33) would have negative density somewhere. Where the negative
density occurs depends on i1 and i2.

We thus do casework on i1 and i2. In this analysis, we will use the notation zmax
1 to denote

max(supp(H1)) and zmax
2 to denote max(supp(H2)). Note that by definition, zmax

1 = ri1 cos(✓i1)
and zmax

2 = ri2 cos(✓
⇤ � ✓i2).

First, we reduce the number of cases needed by using the fact that c1 � c2 (which we assumed earlier
WLOG). In particular, this turns out to imply that i2 6= 1. More precisely, we show:

rmax
1 cos(✓⇤ � ✓1) < rmax

2 cos(✓⇤ � ✓2) (34)
To show this, assume for sake of contradiction that rmax

1 cos(✓⇤ � ✓1) � rmax
2 cos(✓⇤ � ✓2). Then

we’d have that
zmax
2 = rmax

1 cos(✓⇤ � ✓1) < rmax
1 cos(✓1)  zmax

1

which would imply that c1 < c2, which is a contradiction.

We thus split into 2 cases based on i1.

• Case 1: rmax
2 cos(✓2) < rmax

1 cos(✓1)

• Case 2: rmax
1 cos(✓1)  rmax

2 cos(✓2)

Let’s first handle Case 1. Since zmax
1 = rmax

1 cos(✓1) > rmax
2 cos(✓2), we see that

zmax
1

cos(✓2)
> rmax

2

is not in the support of F2. This means that the density f2 of F2 at zmax
1

cos(✓2)
is equal to 0 and, moreover,

there exists z⇤1 < zmax
1 sufficiently close to zmax

1 such that z⇤1 is in the support of H1 and z⇤
1

cos(✓2)
is not

in the support of F2. At z⇤1 , by equation (32), we see that:
↵1

cos(✓1)
f1

✓
z⇤1

cos(✓1)

◆
=

↵1

cos(✓1)
f1

✓
z⇤1

cos(✓1)

◆
+

↵2

cos(✓2)
f2

✓
z⇤1

cos(✓2)

◆
= c

1
P�1

1

�

P � 1
(z⇤1)

�
P�1�1.

Now, let’s let z⇤2 be such that:

z⇤2 := z⇤1
cos(✓⇤ � ✓1)

cos(✓1)
.

At z⇤2 , we see that the left-hand side of equation (33) satisfies
↵1

cos(✓⇤ � ✓1)
f1

✓
z⇤2

cos(✓⇤ � ✓1)

◆
+

↵2

cos(✓⇤ � ✓2)
f2

✓
z⇤2

cos(✓⇤ � ✓2)

◆

� ↵1

cos(✓⇤ � ✓1)
f1

✓
z⇤2

cos(✓⇤ � ✓1)

◆

=
cos(✓1)

cos(✓⇤ � ✓1)

✓
↵1

cos(✓1)
f1

✓
z⇤1

cos(✓1)

◆◆

=
cos(✓1)

cos(✓⇤ � ✓1)

✓
c

1
P�1

1

�

P � 1
(z⇤1)

�
P�1�1

◆

=
cos(✓1)

cos(✓⇤ � ✓1)

 
c

1
P�1

1

�

P � 1

✓
z⇤2

cos(✓1)

cos(✓⇤ � ✓1)

◆ �
P�1�1

!

= c
1

P�1

1 (z⇤2)
�

P�1�1 �

P � 1

✓
cos(✓1)

cos(✓⇤ � ✓1)

◆ �
P�1

> c
1

P�1

2

�

P � 1
(z⇤2)

�
P�1�1,
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where the last inequality uses that c1 � c2 (which we assumed WLOG earlier) and ✓1 < ✓⇤/2.
However, this is a contradiction since (33) must hold.

Let’s next handle Case 2. By equation (34), we know that zmax
2 = rmax

2 cos(✓⇤� ✓2) > rmax
1 cos(✓⇤�

✓1), so there exists z2 such that z2 2 (rmax
1 cos(✓⇤�✓1), zmax

2 ). At this value of z2, we see by equation
(33) that

↵2

cos(✓⇤ � ✓2)
f2

✓
z2

cos(✓⇤ � ✓2)

◆
= c

1
P�1

2

�

P � 1
z

�
P�1�1

2 .

By assumption, we have that zmax
1 = rmax

2 cos(✓2) =
zmax
2 cos(✓2)

cos(✓⇤�✓2)
so z1 = z2 cos(✓2)

cos(✓⇤�✓2)
is in the support

of H1. By equation (32), for z1 = z2 cos(✓2)
cos(✓⇤�✓2)

:

↵2

cos(✓2)
f2

✓
z1

cos(✓2)

◆
� ↵1

cos(✓1)
f1

✓
z1

cos(✓1)

◆
+

↵2

cos(✓2)
f2

✓
z1

cos(✓2)

◆
= c

1
P�1

1

�

P � 1
z

�
P�1�1

1 .

Putting this all together, we see that:

c
1

P�1

1

�

P � 1
z

�
P�1�1

1  ↵2

cos(✓2)
f2

✓
z1

cos(✓2)

◆
=

↵2 cos(✓⇤ � ✓2)

cos(✓2)
f2

✓
z2

cos(✓⇤ � ✓2)

◆

= c
1

P�1

2

cos(✓⇤ � ✓2)

cos(✓2)

�

P � 1
z

�
P�1�1

2

= c
1

P�1

2

cos(✓⇤ � ✓2)

cos(✓2)

�

P � 1

✓
z1

cos(✓⇤ � ✓2)

cos(✓2)

◆ �
P�1�1

= c
1

P�1

2

�

P � 1
z

�
P�1�1

1

✓
cos(✓⇤ � ✓2)

cos(✓2)

◆ �
P�1

This implies that:
c1
c2


✓
cos(✓⇤ � ✓2)

cos(✓2)

◆�

.

However, by equations (30) and (31), we also see that:

c1
c2

=
sin(✓⇤ � ✓2)

sin(✓2)

cos(✓⇤ � ✓2)��1

cos(✓2)��1
=

tan(✓⇤ � ✓2)

tan(✓2)

cos(✓⇤ � ✓2)�

cos(✓2)�
>

cos(✓⇤ � ✓2)�

cos(✓2)�
, (35)

where the last step uses that ✓⇤ � ✓2 < ✓2. This is a contradiction.

G.4 Proofs for Section D.2

We prove Proposition 7, restated below.
Proposition 7. Suppose that there are 2 users located at the standard basis vectors e1, e2 2 R2

,

and the cost function is c(p) = kpk�2 . For P = 2 and � � �⇤ = 2, there is an equilibrium µ
supported on the quarter-circle of radius (2��1)1/� , where the angle ✓ 2 [0,⇡/2] has density

f(✓) = 2 cos(✓) sin(✓).

Conceptually speaking, the machinery given by Lemma 1 enables us to systematically identify the
equilibrium in the concrete market instance of Proposition 7. Condition (C1) is simple along the
quarter circle: by Lemma 10, the densities h1(u) and h2(v) are proportional to u and v. Since the
support of a single curve and P = 2, condition (C2) can be simplified to a clean condition on the
densities h1 and h2 given by (24).

To actually prove Proposition 7, we only need to verify that the equilibrium µ in Proposition 7 which
is easier.

Proof. By Lemma 1, it suffices to prove that (C1)-(C3) hold for H1, H2, and S associated with the
distribution µ in the statement of the proposition. Conditions (C2) and (C3) follow by construction of
µ, so it suffices to prove (C1).
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First, we claim that

H1(z1) =

✓
2

�

◆�2/�

z21 , and H2(z2) =

✓
2

�

◆�2/�

z22 .

We show that H2(z2) =
⇣

2
�

⌘�2/�
z22 (an analogous argument applies to H1). We see that H2 is

supported on

0,
⇣

2
�

⌘1/��
by construction, so it suffices to show that

h2(z2) = 2

✓
2

�

◆�2/�

z2

on this interval. Since z2 =
⇣

2
�

⌘1/�
sin(✓), by the change of variables formula for P = 2, we see

that

h2(z2)

✓
2

�

◆1/�

cos(✓) = f(✓) = 2 sin(✓) cos(✓).

We can solve and obtain:

h2(z2) = 2

✓
2

�

◆�1/�

sin(✓) = 2

✓
2

�

◆�2/�

z2,

as desired.

Now, we prove (C1). Applying Lemma 9, we see that:

H1(z1)+H2(z2)�cU(z) =

 
min

 ✓
2

�

◆�2/�

z21 , 1

!
+min

 ✓
2

�

◆�2/�

z22 , 1

!!
�(z21+z22)

�/2.

Thus, equation (10) can be written as:

max
z1,z2�0

  
min

 ✓
2

�

◆�2/�

z21 , 1

!
+min

 ✓
2

�

◆�2/�

z22 , 1

!!
� (z21 + z22)

�/2

!
(36)

We wish to show equation (36) is maximized whenever z 2 S. Since z21 + z22 =
⇣

2
�

⌘2/�
for any

z 2 S, this follows from Lemma 13.

We prove Proposition 8, restated below.
Proposition 8. Suppose that there are 2 users located at the standard basis vectors e1, e2 2 R2

, with

cost function c(p) = kpk�2 . For � = 2, there is a multi-genre equilibrium µ with support equal to

��
x, (1� x

2
P�1 )

P�1
2
�
| x 2 [0, 1]

 
, (9)

and where the distribution of x has cdf equal to min(1, x2/(P�1)).

Again, the machinery given by Lemma 1 enables us to systematically identify the equilibrium in
the concrete market instance of Proposition 8. Since we need to consider P 6= 2, the condition
(C2) does not take as clean of a form: as shown by (25), it depends on both the densities h1 and h2

along with the cdfs H1 and H2. Nonetheless, in the special case of � = 2, we can compute the cdf
in closed-form: Lemma 10 implies that the density h1(z1) is entirely specified by z1 and does not
depend on z2, so we can integrate over the density to explicitly compute the cdf. We can obtain the
equilibria in Proposition 8 as a solution to a differential equation.

To prove Proposition 7, we again only need to verify that the equilibrium µ in Proposition 8 which is
easier.

Proof of Proposition 8. By Lemma 1, it suffices to prove that (C1)-(C3) hold for H1, H2, and S for
the distribution µ given in the statement of the proposition. Conditions (C2) and (C3) follow by
construction of µ, so it suffices to prove (C1).
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First, we claim that H1(z1) = z21 and H1(z1) = z22 . We see that since the cdf of p1 for p ⇠ µ is z1,
we know that H1(z1) = z21 by construction. For z2, first we note that the cdf of p2 for p2 ⇠ µ is
given by:

Pp2⇠µ[p2  p02] = Pp1⇠µ

h
p1 � (1� (p02)

2
P�1 )

P�1
2

i
= 1� (1� (p02)

2
P�1 ) = (p02)

2
P�1 .

By definition, this means that H2(z2) = z22 as desired.

Now, we prove (C1). Applying Lemma 9, we see that:

H1(z1) +H2(z2)� cU(z) =
�
min

�
z21 , 1

�
+min

�
z22 , 1

��
� (z21 + z22).

Thus, equation (10) can be written as:

max
z1,z2�0

⇣
min

�
z21 , 1

�
+min

��
z22 , 1

��
� (z21 + z22)

�/2
⌘

(37)

We wish to show equation (37) is maximized whenever z 2 S. Since z21 + z22 = 1 for any z 2 S, this
follows from Lemma 13 applied to � = 2.

G.5 Formalization of the infinite-producer limit

Since our characterization result (Theorem 3) focuses on finite-genre equilibria, we restrict our formal
definition of the infinite-producer limit to case of finite genres for technical convenience.

We arrive at a formalism by taking a limit of the conditions in Lemma 1 as P ! 1. Let µ be a
finite-genre distribution over RD

�0. We can specify µ by the three attributes: the genres d1, . . . , dG,
the distributions Fg over R�0 corresponding to the distribution of kpk for p drawn from µ conditioned
on p pointing in the direction of dg , and the weights ↵g corresponding to the probability that p ⇠ µ
points in the direction of dg . In particular, µ can be described as follows: with probability ↵g , choose
the vector qgdg where qg is drawn from a distribution with cdf Fg. We see that the corresponding
function Hi from Lemma 1 will be equal to:

Hi(zi) =

 
GX

g=1

↵gFg

✓
hui, pi
hui, dgi

◆!P�1

.

Note that the conditions (C2) and (C3) are essentially satisfied by construction; condition (C1)
requires that

max
p2RD

�0

 
NX

i=1

Hi(hui, pi)� c(p)

!

is maximized for any p 2 supp(µ). This can be rewritten as requiring that any p⇤ 2 supp(µ) satisfies:

p⇤ 2 argmax
p2RD

�0

0

@
NX

i=1

 
GX

g=1

↵gFg

✓
hui, pi
hui, dgi

◆!P�1

� c(p)

1

A .

Let’s rewrite this in terms of winning producers: more formally, let Fmax
g (·) = (Fg(·))P�1 denote

the cumulative distribution function of the maximum quality in a genre, conditioned on all producers
choosing that genre. We call the distributions Fmax

1 , . . . , Fmax
G the conditional quality distributions.

Then we obtain the following:

p⇤ 2 argmax
p2RD

�0

0

@
NX

i=1

 
GX

g=1

↵g

✓
Fmax
g

✓
hui, pi
hui, dgi

◆◆1/(P�1)
!P�1

� c(p)

1

A . (38)

Taking a limit as P ! 1, we see that
 

GX

g=1

↵gFg

✓
hui, pi
hui, dgi

◆1/(P�1)
!P�1

!
GY

g=1

✓
Fg

✓
hui, pi
hui, dgi

◆◆↵i

.
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Thus, equation 38 (informally speaking) approaches the following condition in the limit:

p⇤ 2 argmax
p2RD

�0

0

@
NX

i=1

 
GX

g=1

↵gFg

✓
hui, pi
hui, dgi

◆1/(P�1)
!P�1

� c(p)

1

A . (39)

Motivated by equation 39, we specify µ by three attributes—the genres d1, . . . , dG, the conditional

quality distributions Fmax
g over R�0, and the weights ↵g corresponding to the probability that p ⇠ µ

points in the direction of a given genre—as follows.

Definition 1 (Finite-genre equilibria for P = 1). Let u1, . . . , uN 2 RD
�0 be a set of users and let

c(p) = kpk�2 be the cost function. A set of genres d1, . . . , dG 2 RD
�0 such that kdik2 = 1 for all

1  g  G, a set of conditional quality distributions F1, F2, . . . , FG over R�0, and a set of weights

↵1, . . . ,↵G � 0 such that
PG

g=1 ↵g = 1 forms a finite-genre equilibrium if the following condition

holds for

p⇤ 2 argmax
p2RD

�0

 
NX

i=1

 
GY

g=1

✓
Fmax

g

✓
hui, pi
hui, dgi

◆◆↵i
!

� c(p)

!
(40)

for any p⇤ = qidi such that 1  i  G and qi 2 supp(Fi).

Using the formalization in Definition 1 of equilibria for P = 1, we investigate the case of two
homogeneous populations of users, and we characterize two-genre equilibria.

Theorem 4. [Formal version of Theorem 3] Suppose that there are 2 users located at two linearly

independently vectors u1, u2 2 RD
�0, let ✓⇤ := cos�1

⇣
hu1,u2i

ku1k2ku2k

⌘
< 0 be the angle between them.

Suppose we have cost function c(p) = kpk�2 , � > �⇤ = 2
1�cos(✓⇤) , and P = 1 producers. Then,

the genres d1, d2, conditional quality distributions Fmax

1 = Fmax
and Fmax

2 = Fmax
, and weights

↵1 = ↵2 = 2 form an equilibrium (as per Definition 1), where

{d1, d2} :=
�
[cos(✓G + ✓min), sin(✓

G + ✓min)], [cos(✓
⇤ � ✓G + ✓min), sin(✓

⇤ � ✓G + ✓min)]
 

such that ✓G := argmax✓✓⇤/2

�
cos�(✓) + cos�(✓⇤ � ✓)

�
and ✓min :=

min
⇣
cos�1

⇣
hu1,e1i
ku1k

⌘
, cos�1

⇣
hu2,e1i
ku2k

⌘⌘
, and where

Fmax(q) :=

8
><

>:

C(2n+2)�
2 if q 2 C1/�

1 C2n+1
2 [C2, 1] for n � 0

C�2
1 C�2n�

2 q2� if q 2 C1/�
1 C2n

2 [C2, 1] for n � 0

1 if q � C1/�
1 ,

,

such that the constants are defined by C1 := sin(✓⇤) cos(✓G)
sin(✓⇤�✓G) and C2 := cos(✓⇤�✓G)

cos(✓G) .

G.6 Proofs for Section D.3

To recover the equilibrium in the infinite-producer limit, we need to show that there exists a two-genre
equilibrium and find this equilibrium. We can apply machinery that is conceptually similar to Lemma
1 enables us to systematically identify the particular equilibrium within the family of two-genre
equilibrium. The first-order condition (Lemma 10) given by condition (C1) helps identify the location
of the genre directions, and this further enables us to compute the cdfs H1 and H2. At this stage,
the proof boils down to solving for the conditional quality distributions F1 and F2. We obtain an
infinite-producer limit of the functional equations in (26) which can be solved directly.

To actually prove Theorem 4, we again only need to verify that the equilibrium µ in Theorem 4 which
is easier.
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Proof of Theorem 4. WLOG, we assume that ku1k = ku2k = 1. It suffices to verify that the genres,
conditional quality distributions, and weights satisfy (40). Motivated by Lemma 1, we define:

H1(z1) =

s

Fmax
1

✓
z1

hu1, d1i

◆
Fmax
2

✓
z1

hu1, d2i

◆

H2(z2) =

s

Fmax
1

✓
z2

hu1, d1i

◆
Fmax
2

✓
z2

hu1, d2i

◆
.

We define the support S to be

S := {[hu1, qd1i, hu2, qd1i] | q1 2 supp(Fmax
1 )} [ {[hu1, qd1i, hu2, qd1i] | q2 2 supp(Fmax

2 )} .
Using this notation, we can rewrite (40) as requiring that:

max
z

(H1(z1) +H2(z2)� cU(z)) (41)

is maximized for every z 2 S.

First, we show that

sin(✓G) cos��1(✓G) = sin(✓⇤ � ✓G) cos��1(✓⇤ � ✓G) (42)

This immediately follows from using that ✓G 2 argmax✓
�
cos�(✓) + cos�(✓⇤ � ✓)

�
and applying

the first-order condition.

For the remainder of the proof, we define:

c :=
sin(✓⇤ � ✓G)

sin(✓⇤) cos��1(✓G)
=

sin(✓G)

sin(✓⇤) cos��1(✓⇤ � ✓G)
,

Computing H1 and H2. We show that:

H1(z1) = min
⇣
cz�1 , 1

⌘
and H2(z2) = min

⇣
1, cz�2

⌘
.

We show that
H1(z1) = min

⇣
cz�1 , 1

⌘
, (43)

and observe that the expression for H2 follows from an analogous argument. By definition, we see
that:

H1(z1) =

s

F1

✓
z1

hu1, d1i

◆
F2

✓
z1

hu1, d2i

◆

=

s

F

✓
z1

hu1, d1i

◆
F

✓
z1

hu1, d2i

◆
.

We know that either (1) hu1, d1i = hu2, d2i = cos(✓G) and hu1, d2i = hu2, d1i = cos(✓⇤ � ✓G), or
(2) hu1, d2i = hu2, d1i = cos(✓G) and hu1, d1i = hu2, d2i = cos(✓⇤ � ✓G). WLOG, we assume
that (1) holds. This means that:

H1(z1) =

s

Fmax

✓
z1

hu1, d1i

◆
Fmax

✓
z1

hu1, d2i

◆

=

s

Fmax

✓
z1

cos(✓G)

◆
Fmax

✓
z1

cos(✓⇤ � ✓G)

◆

Let’s reparameterize and let:
q1 =

z1
cos(✓⇤ � ✓G)

.

This means that:

H1(q1 cos(✓
⇤ � ✓G)) =

s

Fmax(q1)Fmax

✓
q1

cos(✓⇤ � ✓G)

cos(✓G)

◆
.
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Equation (43) reduces to
s

Fmax(q1)Fmax

✓
q1

cos(✓⇤ � ✓G)

cos(✓G)

◆
= min

⇣
1, c cos(✓⇤ � ✓G)�q�1

⌘
.

which simplifies to
s

Fmax(q1)Fmax

✓
q1

cos(✓⇤ � ✓G)

cos(✓G)

◆
= min

✓
1,

sin(✓G) cos(✓⇤ � ✓G)

sin(✓⇤)
q�1

◆

which simplifies to p
Fmax(q1)Fmax (q1C2) = min

⇣
1, C�1

3 q�1

⌘
(44)

We verify equation (44) by doing casework on q1. Note that C1/�
1 = C1/�

3 C2. If q1 � C1/�
3 C�1/�

2 ,
then we see that Fmax(q1) = Fmax (q1C2) = 1 and the equation holds. In fact, if q1 � C1/�

3 C1�1/�
2 ,

then we see that Fmax(q1) = 1 and

Fmax (q1C2) = C�2
3 C2�2�

2 (q1C2)
2� = C�2

3 C2
2q

2�
1

, so equation (44) is satisfied. Otherwise, if q1 = C1/�
3 C2C2n

2 � for n � 0 and � 2 [C2, 1], then

Fmax(q1) = C�2
3 C�2��2n�

2 q2�

and
Fmax(q1C2) = C(2n+2)�

2 ,

so:
p
Fmax(q1)Fmax (q1C2) =

q
C�2

3 C�2��2n�
2 C(2n+2)�

2 =
q

C�2
3 C2

2q
2� = C�1

3 C2q
�
1

as desired. Finally, if q1 = C1/�
1 C1�1/�

2 C2n+1
2 � for n � 0 and � 2 [C2, 1], then

Fmax(q1) = C(2n+2)�
2

and
Fmax(q1C2) = C�2

3 C�(2n+4)�
2 q2� ,

so: p
Fmax(q1)Fmax (q1C2) =

q
C(2n+2)�

2 C�2
3 C(2n+4)�

2 q2�C2�
2 = C�1

3 q� .

This proves the desired formulas for H1 and an analogous argument applies to H2.

Showing equation (41) is maximized at every z 2 S. We need to show that for every z 2 S, it
holds that:

H1(z1) +H2(z2)� cU(z) = max
z0

(H1(z
0
1) +H2(z

0
2)� cU(z0)).

Plugging in our expressions above, our goal is to show:

min(1, cz�1 ) + min(1, cz�2 )� cU(z) = max
z0

(H1(z
0
1) +H2(z

0
2)� cU(z0))

for every z 2 S.

We split into two steps: first, we show that

min(1, cz�1 ) + min(1, cz�2 )� cU(z) = 0 (45)

for every z 2 S, and next we show that:

max
z0

(H1(z
0
1) +H2(z

0
2)� cU(z0))  0. (46)

To show (45), let’s first consider [z1, z2] = [r cos(✓G), r cos(✓G � ✓⇤)] 2 S. Then we see that:

min(1, cz�1 ) + min(1, cz�2 )� cU(z) = cz�1 + cz�2 � cU(z)

= r�
�
c cos�(✓G) + c cos�(✓⇤ � ✓G)� 1

�
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Thus, it suffices to show that:

cos�(✓G) + cos�(✓⇤ � ✓G) =
1

c
. (47)

We now show equation (47):

cos�(✓G) + cos�(✓⇤ � ✓G) =(A)
cos(✓G) cos��1(✓⇤ � ✓G) sin(✓⇤ � ✓G)

sin(✓G)
+ cos�(✓⇤ � ✓G)

=
cos��1(✓⇤ � ✓G)

sin(✓G)

�
cos(✓G) sin(✓⇤ � ✓G) + cos(✓⇤ � ✓G) sin(✓G)

�

=
cos��1(✓⇤ � ✓G)

sin(✓G)
sin(✓⇤)

=
1

c
.

where (A) follows from applying equation (42). Let’s now consider let’s first consider [z1, z2] =
[r cos(✓G � ✓⇤), r cos(✓⇤)] 2 S. Then, we see that

min(1, cz�1 )+min(1, cz�2 )�cU(z) = cz�1+cz�2�cU(z) = r�
�
c cos�(✓G) + c cos�(✓⇤ � ✓G)� 1

�
= 0,

where the last equality follows from equation (47). This establishes equation (46).

Now, we show equation (46). Let’s represent z0 as U[r0 cos(✓), r0 sin(✓)]. Then this becomes:

c(r0)� cos�(✓) + c(r0)� cos�(✓⇤ � ✓)  (r0)� .

Dividing by r0� , we obtain:

cos�(✓) + cos�(✓⇤ � ✓)  1

c
.

To show this, observe that:

cos�(✓) + cos�(✓⇤ � ✓)  cos�(✓G) + cos�(✓⇤ � ✓G) =
1

c
.

where the first inequality follows from the fact that ✓G is a maximizer of cos�(✓) + cos�(✓⇤ � ✓) by
definition, and the second equality follows from equation (47). This establishes equation (46).

This proves that equation (47) is maximized at every z 2 S, and thus the conditions of Definition 1
are satisfied.

G.7 Proofs of auxiliary lemmas

We state and prove Lemma 13, a lemma which we used in the proofs of Proposition 8 and Proposition
7.
Lemma 13. For any � � 2, the expression

max
z1,z2�0

  
min

 ✓
2

�

◆�2/�

z21 , 1

!
+min

 ✓
2

�

◆�2/�

z22 , 1

!!
� (z21 + z22)

�/2

!

is maximized for any (z1, z2) such that z21 + z22 =
⇣

2
�

⌘2/�
.

Proof. First, for z1, z2 such that z21 + z22 =
⇣

2
�

⌘2/�
, we have that

✓
2

�

◆�2/� �
z21 + z22

�
� (z21 + z22)

�/2 = 1� 2

�
.

It thus suffices to prove that:
 
min

 ✓
2

�

◆�2/�

z21 , 1

!
+min

 ✓
2

�

◆�2/�

z22 , 1

!!
� (z21 + z22)

�/2  1� 2

�
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for any z1, z2 � 0. It suffices to prove the stronger statement that:
✓
2

�

◆�2/�

(z21 + z22)� (z21 + z22)
�/2  1� 2

�

Let c = z21 + z22 ; then we can rewrite the desired condition as:

max
c�0

 ✓
2

�

◆�2/�

c2 � c�
!

 1� 2

�
.

A first-order condition tells us for � � 2, that
⇣

2
�

⌘�2/�
c2 � c� is maximized at c =

⇣
2
�

⌘1/�
, which

proves the desired statement.

We prove Lemma 9.

Proof of Lemma 9. It suffices to show that if z1 = hu1, pi and z2 = hu2, pi, then:

kpk2 =
z21 + z22 � 2z1z2 cos(✓⇤)

sin2(✓⇤)
(48)

WLOG, let u1 = e1 and let u2 = [cos(✓⇤), sin(✓⇤)]. We see that:

z21 + z22 � 2z1z2 cos(✓⇤)

sin2(✓⇤)
=

p21 + (p1 cos(✓⇤) + p2 sin(✓⇤))2 � 2p1(p1 cos(✓⇤) + p2 sin(✓⇤)) cos(✓⇤)

sin2(✓⇤)

=
p21 sin

2(✓⇤) + p22 sin
2(✓⇤)

sin2(✓⇤)

= p21 + p22

= kpk22,
which proves equation (48).

We prove Lemma 10.

Proof of Lemma 10. Since µ is a symmetric mixed equilibrium, z must be a maximizer of equation
(10). The equation 

h1(z1)
h2(z2)

�
= rz(cU(z))

is the first-order condition and thus holds for every z is in the support of µ.

Next, we show that:

rz(cU(z)) = �↵� sin��(✓⇤)

✓�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
◆

z1 � z2 cos(✓⇤)
z2 � z1 cos(✓⇤)

�
.

By applying Lemma 9, we see that:

rz(cU(z)) = rz

✓
↵� sin�2�(✓⇤)

�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2

◆

= ↵� sin��(✓⇤) ·rz

✓�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2

◆

= �↵� sin��(✓⇤)

✓�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
◆

z1 � z2 cos(✓⇤)
z2 � z1 cos(✓⇤)

�
,

as desired.

Finally, we show that

rz(cU(z)) = �↵� sin��(✓⇤)
�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1

z1 � z2 cos(✓⇤)
z2 � z1 cos(✓⇤)

�
.
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We see that:

rz(cU(z)) = �↵� sin��(✓⇤)

✓�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
◆

z1 � z2 cos(✓⇤)
z2 � z1 cos(✓⇤)

�

= �↵�r��2

"
z1�z2 cos(✓⇤)

sin2(✓⇤)
z2�z1 cos(✓⇤)

sin2(✓⇤)

#

= �↵�r��1

"
cos(✓)�cos(✓⇤�✓) cos(✓⇤)

sin2(✓⇤)
cos(✓⇤�✓)�cos(✓) cos(✓⇤)

sin2(✓⇤)

#

= �↵�r��1

"
cos(✓⇤�(✓⇤�✓))�cos(✓⇤�✓) cos(✓⇤)

sin2(✓⇤)
sin(✓⇤) sin(✓)

sin2(✓⇤)

#

= �↵�r��1

"
sin(✓⇤) sin(✓⇤�✓)

sin2(✓⇤)
sin(✓)
sin(✓⇤)

#

= �↵�r��1

"
sin(✓⇤�✓)
sin(✓⇤)
sin(✓)
sin(✓⇤)

#
,

as desired.

We prove Lemma 11.

Proof of Lemma 11. By construction, we see that z 2
�
Up | p 2 RD

�0

 
. We can apply Lemma 10 to

see that
@2cU(z)

@z1@z2
=

@2

@z1@z2

✓
sin�2�(✓⇤)

�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2

◆

=
@

@z2

✓
�↵� sin��(✓⇤)

�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
(z1 � z2 cos(✓

⇤))

◆

= �↵� sin��(✓⇤)
@

@z2

✓�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
(z1 � z2 cos(✓

⇤))

◆
.

This is the same sign as:
@

@z2

✓�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
(z1 � z2 cos(✓

⇤))

◆

= (� � 2)
�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �2
(z1 � z2 cos(✓

⇤))(z2 � z1 cos(✓
⇤))�

�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �1
cos(✓⇤)

=
�
z21 + z22 � 2z1z2 cos(✓

⇤)
� �

2 �2 �
(� � 2)(z1 � z2 cos(✓

⇤))(z2 � z1 cos(✓
⇤))� cos(✓⇤)

�
z21 + z22 � 2z1z2 cos(✓

⇤)
��

This is the same sign as:
(� � 2)(z1 � z2 cos(✓

⇤))(z2 � z1 cos(✓
⇤))� cos(✓⇤)

�
z21 + z22 � 2z1z2 cos(✓

⇤)
�
.

Let’s represent z as [r cos(✓), r cos(✓⇤ � ✓)]. The above expression is the same sign as:

(� � 2)(cos(✓)� cos(✓⇤ � ✓) cos(✓⇤))(cos(✓⇤ � ✓)� cos(✓) cos(✓⇤))� cos(✓⇤) sin2(✓⇤)

= (� � 2)(sin(✓⇤) sin(✓⇤ � ✓))(sin(✓) sin(✓⇤))� cos(✓⇤) sin2(✓⇤)

= sin2(✓⇤) ((� � 2) sin(✓⇤ � ✓) sin(✓)� cos(✓⇤)) .

This is the same sign as:

(��2) sin(✓⇤�✓) sin(✓)�cos(✓⇤) = (
�

2
�1)(cos(✓⇤�2✓)�cos(✓⇤))�cos(✓⇤) =

✓
�

2
� 1

◆
(cos(✓⇤�2✓)��

2
cos(✓⇤).

This is the same sign as:
� � 2

�
cos(✓⇤ � 2✓)� cos(✓⇤).
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We prove Lemma 12.

Proof of Lemma 12. By Lemma 11, we see that
⇣

��2
� cos(✓⇤ � 2✓)� cos(✓⇤)

⌘
has the same sign

as @2cU(z)
@z1@z2

. Thus it suffices to show that g0(z1) · @2cU(z)
@z1@z2

 0. When @2cU(z)
@z1@z2

= 0, the condition in
the proposition statement is trivially satisfied. We thus assume for the remainder of the proof that
@2cU(z)
@z1@z2

6= 0.

The second-order condition for z to be a maximizer of equation (10) is the following:

h0
1(z1) 0
0 b h0

2(z2)

�
�r2cU(z) � 0. (49)

Let’s apply Lemma 10, to see that:

h1(x) =
@cU([x, g(x)])

@z1
.

Since this holds in a neighborhood of z1, we see that:

h0
1(z1) =

@2cU(z)

@z21
+ g0(z1)

@2cU(z)

@z1@z2
.

An analogous argument, coupled with the inverse function theorem, shows that:

h0
2(z2) =

@2cU(z)

@z22
+

1

g0(z1)

@2cU(z)

@z1@z2
.

Plugging this into equation (49), we obtain:

0 ⌫

h0
1(z1) 0
0 b h0

2(z2)

�
�r2cU(z)

=

2

4
@2cU(z)

@z2
1

+ g0(z1)
@2cU(z)
@z1@z2

0

0 @2cU(z)
@z2

2
+ 1

g0(z1)
@2cU(z)
@z1@z2

3

5�r2cU(z)

=

"
g0(z1)

@2cU(z)
@z1@z2

�@2cU(z)
@z1@z2

�@2cU(z)
@z1@z2

1
g0(z1)

@2cU(z)
@z1@z2

#

=
@2cU(z)

@z1@z2


g0(z1) �1
�1 1

g0(z1)
.

�

When @2cU(z)
@z1@z2

= 0, the condition in the proposition statement is trivially satisfied. Since we’ve

assumed that @2cU(z)
@z1@z2

6= 0, the eigenvectors are [1, g0(u)] which has eigenvalue 0 and [�g0(u), 1]
which has eigenvalue

(g0(z1))2 + 1

g0(z1)
· @

2cU(z)

@z1@z2
.

The sign of that eigenvalue is equal to the sign of g0(z1) · @2cU(z)
@z1@z2

. Since the matrix must be negative

semidefinite, we see that g0(z1) · @2cU(z)
@z1@z2

 0.

H Proofs for Section 4

We prove Proposition 2, restated below.
Proposition 2. Suppose that

max
kpk1

min
1iN

D
p,

ui

||ui||

E
< N�P/� . (8)

Then for any symmetric equilibrium µ, the profit Peq(µ) is strictly positive.
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Proof. Without loss of generality, we assume user vectors have unit norm kuik. Given an equilibrium
µ, we will construct an explicit vector p that generates positive profit. This proves that the equilibrium
profit is positive because no vector can achieve higher than the equilibrium profit. The vector p is of
the form (Q

�
maxp02supp(µ) ||p0||

�
+ ✏) · ui⇤ for some i⇤ 2 [1, N ].

Cluster the set of unit vectors p into N groups G1, . . . , GN , based on the user for whom they generate
the lowest value. That is, each vector p belongs to the group Gi where ui = argmin1i0N hp, ui0i.
This means that if all producers choose (unit vector) directions in Gi, then the maximum value
received by user ui is

max
1jP

hpj , uii  max
kpk1

min
1iN

hp, uii = Q. (50)

Let Gi⇤ be the group with highest probability of appearing in µ, that is i⇤ 2
argmaxi Pv⇠µ

h
v

||v|| 2 Gi

i
.

Let E be the event that all of the other P � 1 producers choose directions in Gi⇤ . The event E
happens with probability at least Pv⇠µ

h
v

||v|| 2 Gi⇤

i
� (1/N)P�1. Since the value received by the

user is linear in the magnitude of the producer action, we see that the maximum possible value that
could be received by user ui from the other producers is Q

�
maxp02supp(µ) ||p0||

�
. On the other hand,

the action p results in value (Q
�
maxp02supp(µ) ||p0||

�
+ ✏) for ui⇤ , so it wins ui⇤ with probability 1

on the event E. This means that the expected profit obtained by p is at most
✓

1

N

◆P�1

�
✓
Q

✓
max

p02supp(µ)
||p0||

◆
+ ✏

◆�

.

Taking a limit as ✏ !+ 0, we obtain the profit can be set arbitrarily close to:
✓

1

N

◆P�1

�
✓
Q

✓
max

p02supp(µ)
||p0||

◆◆�

. (51)

It suffices to bound maxp02supp(µ) ||p0||. The action p00 2 argmaxp02supp(µ) ||p0|| produces a profit

of at most N �
�
maxp2supp(µ) ||p||

�� . Thus,
�
maxp2supp(µ) ||p||

��  N , so
�
maxp2supp(µ) ||p||

�


N1/� .

Plugging this into (51), we see that there exist actions that produces profit arbitrarily close to
✓

1

N

◆P�1

�NQ� .

Thus, a strictly positive profit will be obtained if:

Q <

✓
1

N

◆P/�

,

as desired.

We prove Proposition 3, restated below.
Proposition 3. If µ is a single-genre equilibrium, then the profit Peq(µ) is equal to 0.

Proof. Since µ is an equilibrium, all choices p in the support of µ achieve profit equal to the

equilibrium profit. We apply Lemma 3 to see that the cdf of µ is F (p) = min

✓
1,
⇣

p�

N

⌘1/(P�1)
◆

,

which shows that p = 0 is in supp(µ). For this choice of p, the cost is 0, but the producer also never
wins any users, so the profit is also zero, as claimed.
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