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We provide more details and results about our work in the appendices. Here are the contents:

* Appendix [A} The extended version of the Related Work section in the main body.
* Appendix [B} Proofs of Corollary 1 and Corollary 2.

* Appendix [C} More details about experimental settings.

* Appendix |D} Additional experiments (e.g., a real-world application).

Appendix [Ef Broader impacts of our proposed method.
* Appendix [F} Limitations of our proposed method.

* Appendix [G} Data distribution visualizations for different scenarios in our experiments.

A Related Work

As the number of users and sensors rapidly increases with massive growing services on the Internet,
the privacy concerns about private data also draw increasing attention of researchers [34} 159, [61]].
Then a new distributed machine learning paradigm, federated learning (FL), comes along with the
privacy-preserving and collaborative learning abilities [34} /50, 63]]. Although there are horizontal
FL [411 150, 163]], vertical FL [47, 156l 63]], federated transfer learning[14, 45]], etc., we focus on the
popular horizontal FL and call it FL for short in this paper.

Traditional FL methods concentrate on learning a single global model among a server and clients,
but it suffers an accuracy decrease under statistically heterogeneous scenarios, which are common
scenarios in practice [42, 150, 58| 166]]. Then, many FL methods propose learning personalized models
(or modules) for each client besides learning the global model. These FL. methods are specifically
called personalized FL (pFL) methods [18 20} 60].

A.1 Traditional Federated Learning

FL methods perform machine learning through iterative communication and computation on the
server and clients. To begin with, we describe the FL procedure in one iteration based on FedAvg [50],
which is a famous FL method and a basic framework for later FL methods. The FL procedure includes
five stages: (1) A server selects a group of clients to join FL in this iteration and sends the current
global model to them; (2) these clients receive the global model and initialize their local model by
overwriting their local model with the parameters in the global model; (3) these clients train their
local models on their own private local data, respectively; (4) these clients send the trained local
models to the server; (5) the server receives client models and aggregates them through weighted
averaging on model parameters to obtain a new global model.
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Then, massive traditional FL. methods are proposed in the literature to improve FedAvg regarding
privacy-preserving [43} 152} [70]], accuracy [35} 140, [71], fairness [30,164], overhead [26, 138} 48], etc.
Here, we focus on the representative traditional FL methods that handle the heterogeneity issues in
four categories: update-correction-based FL [23], 135 154], regularization-based FL [} [16, 37, 41],
model-split-based FL [33}40]], and knowledge-distillation-based FL [25} 31} 167, [71]].

Among update-correction-based FL methods, SCAFFOLD [35] witnesses the client-drift phe-
nomenon of FedAvg under statistically heterogeneous scenarios due to local training and proposes
correcting local update through control variates for each model parameter. Among regularization-
based FL methods, FedProx [41] modifies the local objective on each client by adding a regularization
term to keep local model parameters close to the global model during local training in an element-wise
manner. Among model-split-based FL methods, MOON [40] observes that local training degenerates
representation quality, so it adds a contrastive learning term to let the representations outputted by the
local feature extractor be close to the ones outputted by the received global feature extractor given
each input during local training. However, input-wise contrastive learning relies on biased local data
domains, so MOON still suffers from representation bias. Among knowledge-distillation-based
FL methods, FedGen [71]] learns a generator on the server to produce additional representations,
shares the generator among clients, and locally trains the classifier with the combination of the
representations outputted by the local feature extractor and the additionally generated representations.
In this way, FedGen can reduce the heterogeneity among clients with the augmented representations
from the shared generator via knowledge distillation. However, it only considers the local-to-global
knowledge transfer for the single global model learning and additionally brings communication and
computation overhead for learning and transmitting the generator.

A.2 Personalized Federated Learning

Different from traditional FL, pFL additionally learns personalized models (or modules) besides
the global model. In this paper, we consider pFL methods in four categories: meta-learning-based
pFL [12, 20]], regularization-based pFL [42,|58]], personalized-aggregation-based pFL [19, 46, 68]],
and model-split-based pFL [3} 13} 18 155].

Meta-learning-based pFL. Meta-learning is a technique that trains deep neural networks (DNNs)
on a given dataset for quickly adapting to other datasets with only a few steps of fine-tuning, e.g.,
MAML [22]. By integrating MAML into FL, Per-FedAvg [20] updates the local models like MAML
to capture the learning trends of each client and then aggregates the learning trends by averaging on
the server. It obtains personalized models by fine-tuning the global model for each client. Similar to
Per-FedAvg, FedMeta [12] also introduces MAML on each client during training and fine-tuning the
global model for evaluation. However, it is hard for these meta-learning-based pFL methods to find a
consensus learning trend through averaging under statistically heterogeneous scenarios.

Regularization-based pFL. Like FedProx, pFedMe [58] and Ditto [42] also utilize the regularization
technique, but they modify the objective for additional personalized model training rather than the
one for local model training. In pFedMe and Ditto, each client owns two models: the local model that
is trained for global model aggregation and the personalized model that is trained for personalization.
Specifically, pFedMe regularizes the model parameters between the personalized model and the
local model during training while Ditto regularizes the model parameters between the personalized
model and the received global model. Besides, Ditto simply trains the local model similar to FedAvg
while pFedMe trains the local model based on the personalized model. Although the local model
is initialized by the global model, but the initialized local model gradually loses global information
during local training. Thus, the personalized model in Ditto can be aware of more global information
than the one in pFedMe. Both pFedMe and Ditto require additional memory space to store the
personalized model and double the computation resources at least to train both the local model and
the personalized model.

Personalized-aggregation-based pFL. These pFL methods adaptively aggregate the global model
and local model according to the local data on each client, e.g., APFL [19], or directly generate the
personalized model using other client models through personalized aggregation on each client, e.g.,
FedFomo [[68] and APPLE [46]. Specifically, APFL aggregates the parameters in the global model
and the local model with weighted averaging and adaptively updates the scalar weight based on the
gradients. On each client, FedFomo generates the client-specific aggregating weights for the received
client models through first-order approximation while APPLE adaptively learns these weights based



on the local data. Both FedFomo and APPLE require multiple communication overhead than other
FL methods, but FedFomo costs less computation overhead than APPLE attributed to approximation.

Model-split-based pFL. These pFL methods split a given model into a feature extractor and a
classifier. They treat the feature extractor and the classifier differently. Concretely, FedPer [3]] and
FedRep [[18] keep the classifier locally on each client. FedPer trains the feature extractor and the
classifier together while FedRep first fine-tunes the classifier and then trains the feature extractor in
each iteration. For FedPer and FedRep, the feature extractor intends to extract representations to
cater to these personalized classifiers, thus reducing the generic representation quality. FedRoD [13]]
trains the local model with the balanced softmax (BSM) loss function [S7]] and simultaneously
learns an additional personalized classifier for each client. However, the BSM loss is useless for
missing labels on each client while label missing is a common situation in statistically heterogeneous
scenarios [44, 66l [68]]. Moreover, the uniform label distribution modified by the BSM cannot
reflect the original distribution. The above pFL methods learn personalized models (or modules)
in FL, but FedBABU [535]] firstly trains the global feature extractor with the frozen classifier during
the FL process, then it fine-tunes the global model on each client after FL to obtain personalized
models. However, this post-FL fine-tuning is beyond the scope of FL. Almost all the FL. methods
have multiple fine-tuning variants, e.g., fine-tuning the whole model or only a part of the model.
Furthermore, training the feature extractor with the naive and randomly initialized classifier in FL has
an uncontrollable risk due to randomness.

B Theoretical Derivations

B.1 Notations and Preliminaries

Following prior arts [19,149, 160, [71], we consider a binary classification problem in FL here. Recall
that ¥ C R” is an input space, Z C R¥ is a representation space, and ) C {0, 1} is a label space.
Let 7 : X — Z be a representation function that maps from the input space to the representation
space. We denote D := (U, c*) as a data domain where the distributionf C X and ¢* : X — Yisa
ground-truth labeling function. ¢ is the induced distribution of I/ over the representation space Z
under F [6]], i.e., U4 C Z, that satisfies

E. i [B(2)] = Exne [B (F (2))], M
where B is a probability event. Given fixed but unknown I/ and c*, the learning task on one domain

is to choose a representation function F and a hypothesis class H C {h : Z — Y} to approximate
the function c*.

Then, we provide the definition and theorem from Ben-David et al. [6} [7], Blitzer et al. [8]], Kifer et al.
[36] under their assumptions:

Definition 1. If a space Z with U and U distributions over Z, let H be a hypothesis class on Z
and Zj, C Z be the subset with characteristic function h, the H-divergence between U® and U is

dy, (aa,db) = 2 sup [Pry. [24] — Pryp 20l
heH

where Zp, ={z € Z:h(z)=1},h € H.

Deﬁnitionimplies that dy (Z:la,b?b) =dy (db,da).

Theorem 1. Consider a source domain Dg and a target domain Dy. Let Dg = (Ug,c*) and
Dr = (Up,c*), whereUs C X, Uy C X, and c¢* : X — Y is a ground-truth labeling function. Let
H be a hypothesis space of VC dimension d and h : Z — Y,V h € H. Given a feature extraction
function F : X — Z that shared between Dg and Dy, a random labeled sample of size m generated

by applying F to a random sample from Ugs labeled according to c*, then for every h € H, with
probability at least 1 — §:

4 2em 4 ~ -
Lp, (k) < Ly, (k) + \/m <dlog 7 + log 5) + dy (Z/{S,UT) + A,

where ﬁﬁs is the empirical loss on Dg, e is the base of the natural logarithm, and dy (-, -) is the

‘H-divergence between two distributions. Us and Uy are the induced distributions of Us and Ur



under F, respectively, s.t. E__ ;7 [B(2)] = Exus [B(F (z))] given a probability event B, and so
forlUr. Us C Z and Uy C Z. \ := miny, Lp, (k) + Lp,. (k) denotes an oracle performance.

The traditional FL methods, which focus on enhancing the performance of a global model, regard
local domains D;,i € [N] and the virtual global domain D as the source domain and the target
domain, respectively [71]], which is called local-to-global knowledge transfer by us. In contrast, pFL
methods that focus on improving the performance of personalized models regard D and D;, i € [N]
as the source domain and the target domain, respectively [19, 49} 160]. We call this kind of adaptation
global-to-local knowledge transfer. The local-to-global knowledge transfer happens on the server
while the global-to-local one occurs on the client.

B.2 Derivations of Corollary 1

As we focus on the local-to-global knowledge transfer on the server side, in the FL scenario, we can
rewrite Theorem [1] to

Theorem 2. Consider a local data domain D; and a virtual global data domain D. Let D; = (U;, ¢*)
and D = (U, c*), where U; C X and U C X. Given a feature extraction function F : X — Z that
shared between D; and D, a random labeled sample of size m generated by applying F to a random
sample from U; labeled according to c*, then for every h € H, with probability at least 1 — §:

4 2em 4 ~ o~
< [ . il - = ) )
Lo (h) < Ly, (h) + \/m (dlog = +log 5> +dye (U, 20) + N,

where U; and U are the induced distributions of U; and U under F, respectively. U C ZandU C Z.
A; = miny, Lp, (h) + Lp (h) denotes an oracle performance.

Corollary 1. Consider a local data domain D; and a virtual global data domain D for client © and
the server, respectively. Let D; = (U;, c*) and D = (U, c*), where ¢* : X +— Y is a ground-truth
labeling function. Let H be a hypothesis space of VC dimension d and h : Z — Y, ¥ h € ‘H. When
using DBE, given a feature extraction function F9 : X — Z that shared between D; and D, a random
labeled sample of size m generated by applying F9 to a random sample from U; labeled according
to c*, then for every h9 € H, with probability at least 1 — §:

4 2em 4 S
9N <. g = 9 779 )
’CD(h)‘CDi(h)+\/m(d10g d +10g6>+d7{(u1,1/{)+)\“

whereL s, is the empirical loss on D, e is the base of the natural logarithm, and dy (+,-) is the
H-divergence between two distributions. \; := minps Lp (h9) + Lp, (h9), Z;{Zg CZ Ul C Z,
and dy (1;{5’,1;{9> < dy (L?Y,Z:{> U? and U9 are the induced distributions of U; and U under F?,

respectively. U; and U are the induced distributions of U; and U under F, respectively. F is the
feature extraction function in the original FedAvg without DBE.

Proof. Computing dy (-, -) is identical to learning a classifier to achieve a minimum error of discrimi-

nating between points sampled from ¢/ and I/’, i.e., a binary domain classification problem [6}[7]. The
more difficult the domain classification problem is, the smaller dy (-, -) is. Unfortunately, computing
the error of the optimal hyperplane classifier for arbitrary distributions is a well-known NP-hard
problem [} 16]. Thus, researchers approximate the error by learning a linear classifier for the binary
domain classification [5, I8} 9]]. Inspired by previous approaches [4} 39} 51], we consider using Linear
Discriminant Analysis (LDA) for the binary domain classification. The discrimination ability of LDA
is measured by the Fisher discriminant ratio (F1) [10, 28 162]

2
o B, —
F1 (ua,ub) _ (5532 N (Z:Z)b)z

2 -
where N]Z;a and (0}]},&) are the mean and variance of the values in the kth dimension over /. The

b

smaller the Fisher discriminant ratio is, the less discriminative the two domains are. Theorem [2] holds



with every h € H, so we omit PRBM here. MR (27, 29) forces the local domain to be close to the
global domain in terms of the mean value at each feature dimension in the feature representation
independently, therefore, V k € [K],

k k k k
Ho = Higs < My~ By

As the feature extractors share the same structure with identical parameter initialization and the
feature representations are extracted from the same data domain D; (D) [17, 32], we assume that
o0 = oy, and o3, = 0. Thus, V k € [K],

2 2

() +(ot) (ot) +(t)

As this inequality is satisfied in all dimensions including the dimension where the maximum value
exists, so for the Fisher discriminant ratio, we have

2 2
(1t — 1) (rs, — 1) _
2 2 S max 2 2 iau) .
(k) + (o) ] © L(ef) +(o8)
uy us 25 u

The smaller the Fisher discriminant ratio is, the less discriminative the two domains are. The less
discriminative the two domains are, the smaller dy (-, -) is. Thus, finally, we have

o (09,07 < dye (W, 11)

i

F1(0¢,00) = max = F1

B.3 Derivations of Corollary 2

When we focus on the global-to-local knowledge transfer on the client side, in the FL scenario, we
rewrite Theorem [1] as

Theorem 3. Consider a virtual global data domain D and a local data domain D;. Let D = (U, c*)
and D; = (U;, c*), where U C X and U; C X. Given a feature extraction function F : X — Z that
shared between D and D;, a random labeled sample of size m generated by applying F to a random
sample from U labeled according to c*, then for every h € H, with probability at least 1 — §:

4 2 4 ~ o~
Lo, () < Lp (W) + | = (dlog = +1og = | +dae (U0 + i,
m d é
where ZJZ and U are the induced distributions of U; and U under F, respectively. Z]Z C Zand U C Z.
Ai :=miny, Lp (h) + Lp, (h) denotes an oracle performance.

Corollary 2. Let D;, D, F9, and \; defined as in Corollary|l| Given a translation transformation
function PRBM : Z — Z that shared between D; and virtual D, a random labeled sample of size m
generated by applying F' to a random sample from U; labeled according to ¢*, 7' = PRBM o F9 :
X — Z, then for every h' € H, with probability at least 1 — §:

4 2em 4 S
Lp (K)< LR+ 4] — =yl )
D; (W) < D(h) \/m (dlog / log 5) +dy (U ,UZ> + A,

where dy (I;{/,Z:ll’) = dy (Z:lﬂl:lf) < dy (I;{,L?Z) = dy (ZL,I;{) U and Z;{z’ are the induced
distributions of U and U; under F', respectively.
Proof. PRBM is a translation transformation with parameters 27, s.t. V @; € U;, z; = z] + 27, where

zi = F'(x;) € U] and 2¢ = F9 (x;) € U?. In other words, V zJ € U7, 3! z; € U!. Therefore,
we have Pryo [{z € Z}] = Pr;, [{z € Z}] and the same applies to the pair of /7 and U/’, i.e.,



Prj, [{z € Z}] = Pry, [{z € Z}]. Then the subtraction of the probability on each side is also
equal, i.e.,

PI‘Z/"{g [{Z S ZH — Prdg [{Z S ZH = PI‘Z;{_/ [{Z S Z}] — PI‘Z/"[, [{Z S ZH .
Vh' € H,h9 = W oPRBM € H,s0V z* € Zif h9 (z%) = 1, then 1’ (zb) =1, where z? = z0+zP.
Therefore, we have
Pryo [Zno] — Pryge [Zne] = Pry, [21] — Pry, [20],
where Zpo = {z€ Z:h9(z)=1},h9 € Hand 2y ={z € Z: 1/ (z) = 1},h’ € H. According
to Definition [T} we have

o (U',U]) =2 sup |Prg, (2] — Pry [20]
h'eH v

= 2 sup
hyIecH

Prdg [Zhg] — Prz;{g [Zhg]

i

')

79
< dy (uu) .

— dy (ug

C Detailed Settings

C.1 Implementation Details

We create the datasets for each client using six public datasets: Fashion-MNIST (FMNISTﬂ Ci-
far10F} Tiny-ImageNef] (100K images with 200 labels) and AG News’|(a news classification dataset
with four labels, more than 30K samples per label). The MDL is calculated through the public codeﬂ
We run all experiments on a machine with two Intel Xeon Gold 6140 CPUs (36 cores), 128G memory,
eight NVIDIA 2080 Ti GPUs, and CentOS 7.8.

C.2 Hyperparameters of DBE

For hyperparameter tuning, we use grid search to find optimal hyperparameters, including « and .
Specifically, grid search is performed in the following search space:

* x:0,0.001, 0.01, 0.1, 1, 5, 10, 20, 50, 100, 200, 500
* 1:0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7,0.8,0.9, 1.0

In this paper, we set K = 50, 4 = 1.0 for the 4-layer CNN, x = 1, = 0.1 for the ResNet-18,
and k = 0.1, = 1.0 for the fastText. We only set different values for the hyperparameters «
and p on different model architectures but use identical settings for one architecture on all datasets.
Different models exhibit diverse capabilities in both feature extraction and classification. Given
that our proposed DBE operates by integrating itself into a specific model, it is crucial to tune the
parameters x and p to adapt to the feature extraction and classification abilities of different models.

As for the criteria for hyperparameter tuning, x and p require different tunning methods according to
their functions. Specifically, i is a momentum introduced along with the widely-used moving average
technology in approximating statistics, so for the model architectures that originally contain statistics
collection operations (e.g., the batch normalization layers in ResNet-18) one can set a relatively small
value by tuning 1 from O to 1 with a reasonable step size. For other model architectures, one can
set a relatively large value for ¢ by tuning it from 1 to 0. The parameter « is utilized to regulate the
magnitude of the MSE loss in MR. However, different architectures generate feature representations
with varying magnitudes, leading to differences in the magnitude of the MSE loss. Thus, we tune s
by aligning the magnitude of the MSE loss with the other loss term.

“https://pytorch.org/vision/stable/datasets.html#fmnist
*https://pytorch.org/vision/stable/datasets.html#cifar
*http://cs231n.stanford.edu/tiny- imagenet-200.zip
Shttps://pytorch.org/text/stable/datasets.html#ag-news
Shttps://github.com/willwhitney/reprieve
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https://pytorch.org/text/stable/datasets.html#ag-news
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D Additional Experiments

D.1 Convergence
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Figure 1: The training loss and test accuracy curve of FedAvg+DBE on FMNIST dataset using the
4-layer CNN in the practical setting.

Recall that our objective is
min Eie[N] [[’Di (Bl)}, (2)

01,....0N

and its empirical version is ming, . g, > =1 %Eﬁ(&-). Here, we visualize the value of
’ = L 7

Zf-vzl %E@i (6;) and the corresponding test accuracy during the FL process. Figure |1| shows
the convergence of FedAvg+DBE and its stable training procedure. Besides, we also report the total
iterations required for convergence on Tiny-ImageNet using ResNet-18 in Table 2] Based on the
findings from Table 2] we observe that the utilization of DBE can yield a substantial reduction from
230 to 107 (more than 50%) in the total number of communication iterations needed for convergence,

as compared to the original requirements of FedAvg.

D.2 Model-Splitting in ResNet-18

In the main body, we have shown that DBE improves the per-layer MDL and accuracy of FedAvg no
matter how we split the 4-layer CNN. In Table[T] we report the per-layer MDL and accuracy when
we consider model splitting in ResNet-18, a model deeper than the 4-layer CNN. No matter at which
layer we split ResNet-18 to form a feature extractor and a classifier, DBE can also reduce MDL and
improve accuracy, showing its general applicability.

Table 1: The MDL (bits, |) of layer-wise representations, test accuracy (%, 1), and the number of
trainable parameters () in PRBM when adding DBE to FedAvg on Tiny-ImageNet using ResNet-18 in
the practical setting. The “B”, “CONV”, “POOL”, and “FC” means the “block”, “convolution block”,
“average pool layer”, and “fully connected layer” in ResNet-18 [27]], respectively.

Metri | MDL | |
etrics Accuracy ' Param.
‘ CONV—B1 B1—B2 B2—B3 B3—B4 B4—POOL POOL—FC Logits ‘ ‘
Original (FedAvg) | 4557 4198 3598 3501 3445 3560 3679 | 1945 | 0
CONV—DBE —B1 4332 4050 3528 3407 3292 3347 3493 19.96 16384
B1—DBE —B2 4527 4072 3568 3456 3361 3451 3560 19.50 16384
B2—DBE —B3 4442 4091 3575 3474 3326 3411 3520 19.55 8192
B3—DBE —B4 4447 4073 3511 3414 3259 3346 3467 20.72 4096
B4—DBE —POOL 4424 4030 3391 3304 3284 3511 3612 39.99 2048
POOL—DBE —FC 4432 4035 3359 3298 3209 3454 3594 42.98 512




D.3 Distinguishable Representations

As our primary goal is to demonstrate the elimination of representation bias rather than improving
discrimination in Figure 3 (main body), we present the t-SNE visualization for our largest dataset
in experiments, Tiny-ImageNet (200 labels). Given that the 200 labels are distributed around the
chromatic circle, adjacent labels are assigned similar colors, resulting in Figure 3 (main body) being
indistinguishable by the label. Using a dataset AG News with only four labels for t-SNE visualization
can clearly show that the representations extracted by the global feature extractor are distinguishable
in Figure 2]

Figure 2: t-SNE visualization for the representations extracted by the global feature extractor on
AG News (four labels) in FedAvg+DBE. We use color and shape to distinguish labels and clients,
respectively.

D.4 A Practical Scenario with New Participants

To simulate a practical scenario with new clients joining for future FL, we perform method-specific
local training for 10 epochs on new participants for warming up after their local models are initialized
by the learned global model (or client models in FedFomo). Since FedAvg, Per-FedAvg, and
FedBABU do not generate personalized models during the FL process, we fine-tune the entire global
model on new clients for them to obtain test accuracy. Specifically, using Cifar100 and 4-layer CNN,
we conduct FL on 80 old clients (p = 0.5 or p = 0.1) and evaluate accuracy on 20 new joining clients
after warming up. We utilize the data distribution depicted in Figure[§] According to Table[2] FedAvg
shows excellent generalization ability with fine-tuning. However, DBE can still improve FedAvg by
up to +6.68 with more stable performance for different p.

D.5 Large Local Epochs

We also conduct experiments with more local epochs in each iteration on FMNIST using the 4-layer
CNN, as shown in Table[2] All the pFL methods perform similarly with the results for one local
epoch, except for Per-FedAvg, which degenerates around 1.18 in accuracy (%).

D.6 Real-World Application

We also evaluate the performance of our DBE in a real-world application. Specifically, we apply DBE
to the Internet-of-Things (IoT) scenario on a popular Human Activity Recognition (HAR) dataset [2]]
with the HAR-CNN [65]] model. HAR contains the sensor signal data collected from 30 users who
perform six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING,
STANDING, LAYING) wearing a smartphone on the waist. We show the results in Table 3] where
FedAvg+DBE still achieves superior performance.



Table 2: The total iterations for convergence and the averaged test accuracy (%, 1) of pFL methods.

Items | Tterations | New Participants | Local Epochs
\ | p=05 p=01] 1 5 10

Per-FedAvg [20] 34 48.66 48.36 95.10 9392 9391
pFedMe [58]] 113 41.20 38.39 9725 9744 97.32
Ditto [42]] 27 36.57 45.06 9747 97.67 97.64
FedPer [3]] 43 39.86 42.39 9744 9750 97.54
FedRep [118]] 115 38.75 35.09 97.56 97.55 97.55
FedRoD [13] 50 50.10 51.73 9752 9749 97.35
FedBABU [55]] 513 48.60 42.29 9746 97.57 97.65
APFL [19] 57 38.19 45.16 97.25 9731 97.34
FedFomo [68]] 71 27.50 27.47 9721 97.17 97.22
APPLE [46] 45 — — 97.06 97.07 97.01
FedAvg 230 52.52 49.44 85.85 85.96 85.53
FedAvg+DBE 107 57.62 56.12 97.69 97.75 97.78

Table 3: The test accuracy (%) on the HAR dataset.

Methods | Accuracy

FedAvg 87.20+0.27
SCAFFOLD | 91.344+0.43
FedProx 88.34+0.24
MOON 89.86+0.18
FedGen 90.8240.21
Per-FedAvg | 77.12+0.17
pFedMe 91.57+0.12
Ditto 91.534+0.09
FedPer 75.58+0.13
FedRep 80.4440.42
FedRoD 89.911+0.23
FedBABU 87.12+0.31
APFL 92.1840.51
FedFomo 63.39+0.48
APPLE 86.46+0.35

FedAvg+DBE | 94.5310.26

E Broader Impacts

The representation bias and representation degeneration naturally exist in FL under statistically
heterogeneous scenarios, which are derived from the inherently separated local data domains on
individual clients. In the main body, we show the general applicability of our proposed DBE to
representative FL. methods. More than that, DBE can also be applied to other practical fields, such as
the Internet of Things (IoT) [24} 29, 153] and digital health [14,15]. Furthermore, introducing the
view of knowledge transfer into FL sheds light on this field.

F Limitations

Although FL comes along for privacy-preserving and collaborative learning, it still suffers from
privacy leakage issues with malicious clients [11} [69] or under attacks [21, 47]. We design DBE
based on FL to improve generalization and personalization abilities, and we only modify the local
training procedure without affecting the downloading, uploading, and aggregation processes. Thus,
the DBE-equipped FL methods still suffer from the originally existing privacy issues like the original
version of these FL methods when attacks happen. It requires future work to devise specific methods
for privacy-preserving enhancement.



G Data Distribution Visualization

We illustrate the data distributions (including training and test data) in our experiments here.
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Figure 3: The data distributions of all clients on FMNIST, Cifar100, and Tiny-ImageNet, respectively,
in the pathological settings. The size of a circle represents the number of samples.
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Figure 4: The data distributions of all clients on FMNIST, Cifar100, and Tiny-ImageNet, respectively,
in the practical settings (8 = 0.1). The size of a circle represents the number of samples.
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Figure 5: The data distribution on all clients on Tiny-ImageNet in three additional practical settings.
The size of a circle represents the number of samples. The degree of heterogeneity decreases as (3 in

Dir(3) increases.
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