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Abstract

Nonlinear independent component analysis (ICA) aims to uncover the true latent
sources from their observable nonlinear mixtures. Despite its significance, the
identifiability of nonlinear ICA is known to be impossible without additional as-
sumptions. Recent advances have proposed conditions on the connective structure
from sources to observed variables, known as Structural Sparsity, to achieve identi-
fiability in an unsupervised manner. However, the sparsity constraint may not hold
universally for all sources in practice. Furthermore, the assumptions of bijectivity
of the mixing process and independence among all sources, which arise from the
setting of ICA, may also be violated in many real-world scenarios. To address these
limitations and generalize nonlinear ICA, we propose a set of new identifiability re-
sults in the general settings of undercompleteness, partial sparsity and source depen-
dence, and flexible grouping structures. Specifically, we prove identifiability when
there are more observed variables than sources (undercomplete), and when certain
sparsity and/or source independence assumptions are not met for some changing
sources. Moreover, we show that even in cases with flexible grouping structures
(e.g., part of the sources can be divided into irreducible independent groups with
various sizes), appropriate identifiability results can also be established. Theoretical
claims are supported empirically on both synthetic and real-world datasets.

1 Introduction

The unveiling of the true generating process of observations is fundamental to scientific discovery.
Nonlinear independent component analysis (ICA) provides a statistical framework that represents
a set of observed variables x as a nonlinear mixture of independent latent sources s, i.e., x = f(s).
Unlike linear ICA (Comon, 1994), the mixing function f can be an unknown nonlinear function, thus
generalizing the theory to more real-world tasks. However, the identifiability of nonlinear ICA has
been a long-standing problem for decades. The main obstacle is that, without additional assumptions,
there exist infinite spurious solutions returning independent variables that are mixtures of the true
sources (Hyvärinen and Pajunen, 1999). In the context of machine learning, this makes the theoretical
analysis of unsupervised learning of disentangled representations difficult (Locatello et al., 2019).

To overcome this challenge, recent work has introduced the auxiliary variable u, and assumed that
all sources are conditionally independent given u. Most of these methods require auxiliary variables
to be observable, such as class labels and domain indices (Hyvärinen and Morioka, 2016; Hyvärinen
et al., 2019; Khemakhem et al., 2020a; Sorrenson et al., 2020; Lachapelle et al., 2022; Lachapelle and
Lacoste-Julien, 2022), with the exceptions being those for time series (Hyvärinen and Morioka, 2017;
Hälvä et al., 2021; Yao et al., 2021, 2022). While the use of the auxiliary variable u allows for the
identifiability of nonlinear ICA with mild restrictions on the mixing process, it also necessitates a large
number of distinct values of u, which can be difficult to obtain in tasks with insufficient side informa-
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tion. Moreover, since these results assume that all sources are dependent on u, they cannot accommo-
date a subset of sources with invariant distributions (e.g., content may not change with different styles).

Another possible direction is to impose appropriate conditions on the mixing process, but limited
results are available in the literature. For example, it has been shown that conformal maps are
identifiable up to specific indeterminacies (Hyvärinen and Pajunen, 1999; Buchholz et al., 2022).
Moreover, Taleb and Jutten (1999) identify the latent sources when the mixing process is a
component-wise nonlinear function added to a linear mixture. These methods do not rely on
conditional independence given the auxiliary variable and thus achieve the identifiability in a fully
unsupervised setting. At the same time, the requirement of above-mentioned classes of the mixing
function, such as conformal maps and post-nonlinear models, restricts the applicability of the results
in another way. For instance, according to Liouville’s theorem (Monge, 1850), conformal maps
in Euclidean spaces of dimensions higher than two are Möbius transformations, which appear to
be overly restrictive for most data-generating processes. As an alternative, Zheng et al. (2022)
prove that, under the assumption of Structural Sparsity, the true sources can be identified up to
trivial indeterminacies. Since the proposed condition is on the connective structure from sources to
observed variables, i.e., the support of the Jacobian matrix of the mixing function, it does not require
the mixing function to be of any specific algebraic form. Thus, Structural Sparsity may serve as one
of the first general principles for the identifiability of nonlinear ICA in a fully unsupervised setting.

While being a potential solution to the identifiability of nonlinear ICA without side information, the
assumption of Structural Sparsity has its limitations from a pragmatic viewpoint. The most obvious
one arises from the fact that it may fail in a number of situations where the generating processes
are heavily entangled. Although the principle of simplicity may be a general rule in nature, it is
intuitively possible that Structural Sparsity does not apply to at least a subset of sources, such as
one or a few speakers in a crowded room. Unfortunately, Zheng et al. (2022) require Structural
Sparsity to hold for all sources in order to provide any identifiability guarantee. Therefore, it would
be desirable in practice to provide weaker notions of identifiability, such as the ability to identify
a subset of sources to a trivial degree of uncertainty, in cases of partial sparsity.

In addition to partial sparsity, identifiability with Structural Sparsity also fails with the undercomplete-
ness (more observed variables than sources) and/or partial source dependence (potential dependence
among some hidden sources). These limitations are not unique to the sparsity assumption, but rather
a result of the traditional setting of ICA, where the numbers of the sources and observed variables
must be equal and dependencies among sources are not allowed. However, both situations are quite
common in practice. One may easily have millions of pixels (observed variables) but only dozens
of hidden concepts (sources) in a picture, constituting an undercomplete case that cannot be handled
by previous results. Meanwhile, dependencies among some variables are also prevalent in tasks such
as computational biology (Cardoso, 1998; Theis, 2006). The alternative assumption of conditional
independence given auxiliary variables may still be overly restrictive if applied universally to all
sources. For the identifiability of nonlinear ICA to truly benefit scientific discovery in a wider range
of scenarios, these methodological limitations should be properly addressed.

Aiming to generalize nonlinear ICA with Structural Sparsity, we first present a set of new identifiabil-
ity results to address these fundamental challenges of undercompleteness, partial sparsity, and source
dependence. We show that, under the assumption of Structural Sparsity and without auxiliary vari-
ables, latent sources can be identified from their nonlinear mixtures up to a component-wise invertible
transformation and a permutation, even when there are more observed variables than sources (Thm.
3.1). Moreover, if the assumption of sparsity and/or source independence does not hold for some
changing sources, we provide partial identifiability results, showing that the remaining sources can
still be identified up to the same trivial indeterminacy (Thm. 4.1, Thm. 4.2). Furthermore, in the cases
with flexible grouping structures (e.g., part of the sources can be grouped into irreducible independent
subgroupings with various sizes, such as mixtures of signals with various dimensions), certain types
of identifiability are also guaranteed with auxiliary variables (Thm. 4.3, Thm. 4.4). Therefore, we
establish, to the best of our knowledge, one of the first general frameworks for uncovering latent
variables with appropriate identifiability guarantees in a principled manner. The theoretical claims are
validated empirically through our experiments and many previous works involving disentanglement.
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2 Preliminaries

The data-generating process of nonlinear ICA is as follows:

ps(s) =

n∏
i=1

psi(si), (1)

x = f(s), (2)

where s = (s1, . . . , sn) ∈ S ⊆ Rn is a latent vector representing the independent sources, and
x = (x1, . . . ,xm) ∈ X ⊆ Rm denotes the observed random vector. The mixing function f is
assumed to be smooth in the sense that its second-order derivatives exist. The primary objective of
ICA is to establish identifiable models, i.e., the sources s are identifiable (recoverable) up to certain
indeterminacies by learning an estimated mixing function f̂ : Ŝ → X with assumptions identical to
the generating process (Comon, 1994). Different from most ICA results where m = n and f : S → X
must be linear, we allow m > n (i.e., undercompleteness) and f to be a general nonlinear function,
therefore extending the previous setting. Thus, we relax the previous assumption on the invertibility
of f , only necessitating it to be injective and its Jacobian to be of full column rank. Furthermore, we
denote psi as the marginal probability density function (PDF) of the i-th source si and ps as the joint
PDF of the random vector s. Moreover, we introduce some additional technical notations as follows:
Definition 2.1. Given a subset A ⊆ {1, . . . , n}, the subspace Rn

A is defined as

Rn
A := {z ∈ Rn | i /∈ A =⇒ zi = 0} ,

where zi is the i-th element of the vector z.

That is, Rn
A denotes the subspace of Rn specified by an index set A. Furthermore, we define the

support of a matrix as follows:
Definition 2.2. The support of a matrix M ∈ Rm×n is defined as

supp(M) := {(i, j) | Mi,j ̸= 0} .

With a slight abuse of notation, we reuse supp(·) to denote the support of a matrix-valued function:
Definition 2.3. The support of a function M : Θ → Rm×n is defined as

supp(M(Θ)) := {(i, j) | ∃θ ∈ Θ,M(θ)i,j ̸= 0} .

For brevity, we denote F and F̂ as the support of the Jacobian Jf (s) and Jf̂ (ŝ), respectively. Ad-
ditionally, T refers to a set of matrices with the same support of T(s) in Jf̂ (ŝ) = Jf (s)T(s), where
T(s) is a matrix-valued function. Throughout this work, for any matrix M, we use Mi,: to denote its
i-th row, and M:,j to denote its j-th column. For any set of indices B ⊂ {1, . . . ,m} × {1, . . . , n},
analogously, we have Bi,: := {j | (i, j) ∈ B} and B:,j := {i | (i, j) ∈ B}.

3 Identifiability with undercompleteness

We first present the result on removing one of the major assumptions in ICA, i.e., the number of
observed variables m must be equal to that of hidden sources n. We prove that, in the undercomplete
case (m > n), sources can be identified up to a trivial indeterminacy under Structural Sparsity.
Theorem 3.1. Let the observed data be a large enough sample generated by an undercomplete
nonlinear ICA model as defined in Eqs. (1) and (2). Suppose the following assumptions hold:

i. For each i ∈ {1, . . . , n}, there exist {s(ℓ)}|Fi,:|
ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 = Rn

Fi,:
and

[
Jf (s

(ℓ))T
]
i,:

∈ Rn
F̂i,:

.

ii. (Structural Sparsity) For each k ∈ {1, . . . , n}, there exists Ck s.t.
⋂

i∈Ck
Fi,: = {k}.

Then s is identifiable up to an element-wise invertible transformation and a permutation.

The proof is included in Appx. A.1, of which part of the conditions and techniques are based on
(Zheng et al., 2022). It is noteworthy that, same as previous work, we also need to add a sparsity
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regularization on the learned Jacobian during the estimation so that |F̂ | ≤ |F|, which is required for
all sparsity-based identifications throughout the paper and we only emphasize here for brevity.

Assumption i avoids some pathological conditions (e.g., samples are from very limited sub-
populations that only span a degenerate subspace) and is typically satisfied asymptotically. The first
part implies that there are at least |Fi,:| observed samples spanning the support space, which is almost
always satisfied asymptotically. The second part is also relatively mild. Note that T refers to a set of
matrices with the same support of T(s) in Jf̂ (ŝ) = Jf (s)T(s) and Jf̂ (ŝ)i,: ∈ Rn

F̂i,:
. Since we only

necessitate the existence of one matrix T ∈ T in the entire space, even in rare cases where these two
matrices do not share the same non-zero coordinates due to non-generic canceling between specific
values of elements, there is almost always an existence of a matrix T ∈ T fulfilling the assumption.

Figure 1: The structural sparsity assumption
in the undercomplete case, where the matrix
represents supp(Jf (s)).

Assumption ii, i.e., Structural Sparsity, originates
from (Zheng et al., 2022). Intriguingly, compared to
the original bijective setting considered by (Zheng
et al., 2022), this assumption is much more likely
to be satisfied in the undercomplete case. The key
reason is that it only necessitates the existence of
a subset of observed variables whose intersection
uniquely identifies the target source variable. For
instance, regarding s1 in Fig. 1, there exist x1 and
x4 s.t. the intersection of their parents is only s1.
In principle, the size of this set can be quite small
(e.g., one or two). Hence, it is very likely to be
satisfied when there is a sufficient number of observed
variables (e.g., millions of pixels for images), which has also been verified empirically in our
experiments (e.g., Fig. 4 in Sec. 5). Additionally, in some tasks, we might even construct or select
observations in a data-centric manner to satisfy this assumption. Without the previous constraint of
bijectivity, structural sparsity can truly be applied in a much broader range of practical scenarios.

By proving the identifiability in the undercomplete case, we remove the previous assumption of
bijectivity on the mixing function f and thus generalizing the theory to more application scenarios. It
is worth noting that, while some work has provided results without assuming bijectivity (Khemakhem
et al., 2020a), they rely on extra information from many distinct values of auxiliary variables. Dif-
ferently, we do not need any auxiliary variables and follow a fully unsupervised setting; Zheng et al.
(2022); Kivva et al. (2022) explore the undercompleteness without any auxiliary variable. However,
Zheng et al. (2022) only remove the rotational indeterminacy in the nonlinear case and Kivva et al.
(2022) assume Gaussian mixture priors, while we provide the full identifiability result without distribu-
tional assumptions. At the same time, as elaborated above, the assumption of Structural Sparsity has
been significantly weakened in the undercomplete case considered by our theorem. Moreover, iden-
tifiability with undercompleteness is also essential if assumptions are partially violated w.r.t. a subset
of sources, of which the intuition is verified by theoretical results introduced in the following sections.

4 Identifiability with partial sparsity and source dependence

Under the condition of Structural Sparsity, we show the identifiability of undercomplete ICA with
general nonlinear functions (Thm. 3.1). While this removes the restriction of bijectivity between
sources and observed variables, it remains uncertain as to whether Structural Sparsity holds for all
sources in a universal way. At the same time, even in the scenarios that Structural Sparsity may not be
universally satisfied for all sources, it is still valuable to consider its potential to hold true for a subset
of sources. This type of partial sparsity may often be the case in practical scenarios, as illustrated
by our experiments (e.g., Fig. 5 in Sec. 5). However, the corresponding partial identifiability, i.e., the
theoretical guarantee for the identification of the subset of sources satisfying Structural Sparsity, is not
achieved by (Zheng et al., 2022). In fact, as long as one or a few sources do not meet the assumption
of Structural Sparsity, the previous work is unable to provide any identifiability guarantees.

Furthermore, in addition to the universal sparsity, the statistical independence between sources is
another fundamental assumption. This assumption arises from the original setting of ICA and has
been adopted in most related works. However, in many real-world scenarios, requiring all sources
to be mutually independent might be impractical, and there are likely to be a subset of sources that
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are dependent in some way. For example, the frequency and duration of smoking, as well as the
type of tobacco products used, are all interrelated factors that contribute to the development of lung
cancer. Without any identifiability guarantees in the case where there exist any dependent sources,
it is quite restrictive for nonlinear ICA, and even its undercomplete extension, to successfully deal
with real problems in practice. Therefore, similar to the partial sparsity case, it is highly desirable
that alternative theoretical results, i.e., identifiability for independent sources, can be guaranteed
even with the existence of dependent sources.

To deal with these remaining challenges in the considered undercomplete case, we further relax other
assumptions with additional information. To start with, we provide an identifiability result when
Structural Sparsity holds true for only a subset of sources, thus alleviating the obstacle of partial
sparsity. Moreover, we relax the mutual independence assumption and allow for some changing
sources to be dependent on each other. To this end, we partition the sources into two parts s = [sI , sD],
where variables in sI are mutually independent, but those in sD do not need to be. Let sI and sD
correspond to variables in s with indices {1, . . . , nI} and {nI+1, . . . , n}, respectively. That is,
sI = (s1, . . . , snI

) ∈ SI ⊆ RnI and sD = (snI+1, . . . , sn) ∈ SD ⊆ RnD . We denote the i-th scalar
element in a vector, say s, as si. For sources in sD, they do not need to be mutually independent as
long as they are dependent on a variable u, i.e.,

ps|u(s|u) = psD|u(sD|u)
ni∏
i=1

psi(si). (3)

It is noteworthy that we allow arbitrary relations between sources in sD. These sources might be
grouped into several subspaces or actually be mutually independent, but we do not need to obtain this
information as prior knowledge. This is essential since the exact dependence structures, or even the
number of dependent variables, are usually unknown in practice. By keeping this type of uncertainty
for both partial sparsity and/or partial source dependence, one can be more confident in applying
the theoretical advancements of nonlinear ICA in various tasks. We prove the identifiability for this
arguably more flexible scenario as the following theorems:

Theorem 4.1. Let the observed data be a large enough sample generated by an undercomplete
nonlinear ICA model defined in Eqs. (2) and (3). Suppose the following assumptions hold:

i. There exist nD + 1 distinct values of u, i.e., uj with j ∈ {0, 1, . . . , nD}, s.t. the nD vectors
w(sD,u, i) with i ∈ {nI + 1, ..., n} are linearly independent, where vector w(sD,u, i) is
defined as follows:

w(sD,u, i) =
(∂ (log p(sD|u1)− log(p(sD|u0))

∂si
, . . . ,

∂ (log p(sD|unD
)− log(p(sD|u0))

∂si

)
.

ii. There exist u1,u2 ∈ u, s.t., for any set As ⊆ S with non-zero probability measure and
cannot be expressed as BsI × sD for any BsI ⊂ SI , we have∫

s∈As

ps|u (s | u1) ds ̸=
∫
s∈As

ps|u (s | u2) ds.

Then sD is identifiable up to an subspace-wise invertible transformation.

Thm. 4.1 ensures the subspace-wise identifiability of sD, i.e., the estimated subspace ŝD contains all
and only information from sD. This implies that we can disentangle and extract the invariant part
of the latents, beneficial for tasks like domain adaptation where recovering each individual source
might not be necessary as long as the subspace that is invariant across domains can be disentangled.
Furthermore, we also prove the component-wise identifiability as follows:

Theorem 4.2. In addition to assumptions in Thm. 4.1, suppose the following assumptions hold:

i. For each i ∈ {1, . . . , nI}, there exist {s(ℓ)}|Fi,:nI
|

ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = RnI

Fi,:nI
and

[
Jf (s

(ℓ))T
]
i,:nI

∈ RnI

F̂i,:nI

.

ii. (Structural Sparsity) For all k ∈ {1, . . . , nI}, there exists Ck s.t.
⋂

i∈Ck
Fi,:nI

= {k}.
Then sI is identifiable up to an element-wise invertible transformation and a permutation.

5



The proofs are presented in Appx. A.2 and Appx. A.3. We tackle the challenge of partial sparsity and
dependence by necessitating Structural Sparsity and independence only on a subset of sources in sI
and prove that these sources can be identified up to trivial indeterminacies. For the remaining sources
in sD, they only need to be dependent on an auxiliary variable u without necessitating conditional
independence among sources or distributional assumption. This extends previous models that assume
all sources to be conditionally independent given u (Hyvärinen et al., 2019; Lachapelle et al., 2022) or
require the conditional distribution of the sources to be of a specific form (Khemakhem et al., 2020b).

The assumption on p(sD|u) in Thm. 4.1 indicates that the auxiliary variable u should have a suf-
ficiently diverse impact on sources without independence assumption (i.e., sD). It follows a similar
spirit to the standard assumption of variability (Hyvärinen et al., 2019) but we further relax it. Specifi-
cally, we only need nD+1 values of u for the identifiability of sources in sI . This is intuitively reason-
able since the fewer changes (smaller nD) a system has, the easier (fewer required values, i.e., nD+1)
that a larger part of it (larger nI , i.e., n−nD) is identifiable. In contrast, most previous works require
all sources to be dependent on an auxiliary variable u with 2n+1 distinct values of u: no identifiability
for any subset of sources can be provided if there exists any degree of violations, either on the number
of sources dependent on u or the number of values of u. This limits the application of these results to
ideal scenarios where all sources are influenced by the same auxiliary variable with sufficient changes
without any type of compromise. In practice, however, it is often the case that only a subset of sources
benefit from the additional information provided by auxiliary variables, different auxiliary variables
may affect different sources, or auxiliary variables do not contain sufficient information. Assumption
ii in Thm. 4.1 is originally from (Kong et al., 2022) and also necessitate the presence of change. Intu-
itively, the chance of having a subset As on which all domain distributions have an equal probability
measure is very slim, which has been verified empirically in (Kong et al., 2022). For both theorems,
we consider the more challenging undercomplete case, for which the related identifiability results
are lacking in the literature. Additionally, unlike previous works assuming specific distributions of
sources such as exponential families, we do not have similar distributional assumptions on the sources.

4.1 Results with flexible grouping structures

If we further have access to the dependence structure among variables in sD, additional identi-
fiability results for these sources may also be established. For example, consider the setting that
sD = (snI+1, . . . , sn) can be decomposed to d irreducible independent subspaces {sc1 , . . . , scd}, of
which each is a multi-dimensional vector consisting multiple sources. We denote the j-th consecutive
d-dimensional vector (j-th subspace) in s as scj = (s(j−1)d+1, . . . , sjd) = (scj(l) , . . . , scj(h)),
where scj(l) and scj(h) are the first and the last sources in scj , respectively. Then we have

ps|u(s|u) =
ni∏
i=1

psi(si)

cd∏
j=c1

pscj |u(scj |u). (4)

This is similar to Independent Subspace Analysis (ISA) (Hyvärinen and Hoyer, 2000; Theis, 2006)
but we allow only a subset of sources as a composition of (conditionally) independent subspaces
instead of all, which formalizes the tasks of blind source separation or uncovering latent variable
models with mixtures of both high-dimensional and one-dimensional signals. The considered general
setting essentially covers ICA and ISA as special cases: if nI = n, it is consistent with the ICA
problem; if nI = 0, all sources can be decomposed into irreducible independent subspaces, and
thus it becomes an ISA problem. The identifiability result under this setting is shown in the following
theorem with its proof provided in Appx. A.4:

Theorem 4.3. Let the observed data be a large enough sample generated from an undercomplete
nonlinear ICA model as defined in Eqs. (2) and (4). Suppose the following assumptions hold:

i. For each i ∈ {1, . . . , nI}, there exist {s(ℓ)}|Fi,:nI
|

ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = RnI

Fi,:nI
and

[
Jf (s

(ℓ))T
]
i,:nI

∈ RnI

F̂i,:nI

.

ii. There exist 2nD + 1 values of u, i.e., ui with i ∈ {0, 1, . . . , 2nD}, s.t. the 2nD vectors
w(sD,ui) − w(sD,u0) with i ∈ {1, . . . , 2nD} are linearly independent, where vector
w(sD,ui) is defined as follows:

w(sD,ui) = (v(sc1 ,ui), · · · ,v(scd ,ui),v
′(sc1 ,ui), · · · ,v′(scd ,ui)) ,

6



where

v(scj ,ui) =
(∂ log p(scj |ui)

∂scj(l)
, · · · ,

∂ log p(scj |ui)

∂scj(h)

)
,

v′(scj ,ui) =
(∂2 log p(scj |ui)

(∂scj(l))
2

, · · · ,
∂2 log p(scj |ui)

(∂scj(h))2

)
.

iii. There exist u1,u2 ∈ u, s.t., for any set As ⊆ S with nonzero probability measure and
cannot be expressed as BsI × SD for any BsI ⊂ SI , we have∫

s∈As

ps|u (s | u1) ds ̸=
∫
s∈As

ps|u (s | u2) ds.

iv. (Structural Sparsity) For all k ∈ {1, . . . , nI}, there exists Ck s.t.
⋂

i∈Ck
Fi,:nI

= {k}.

Then sI is identifiable up to an element-wise invertible transformation and a permutation, and sD is
identifiable up to a subspace-wise invertible transformation and a subspace-wise permutation.

All assumptions align with the same principles as those elaborated in the theorems proposed above and
have been adapted to cater to the flexible grouping structure. Specifically, in addition to the identifia-
bility of sources in sI , we prove that we can also identify sources in sD up to an indeterminacy that, for
each ci ∈ {c1, . . . , cd}, there exists an invertible transformation hci s.t. hci(sci) = ŝci , which is anal-
ogous to the previous element-wise indeterminacy. Consequently, even when dealing with mixtures of
high and one-dimensional sources, like in the case of multi-modal data, we can still recover the hidden
generating process to some extent. Based on the aforementioned theoretical results, which consider un-
dercompleteness, partial sparsity, and partial source dependence, Thm. 4.3 further generalizes the iden-
tifiability of nonlinear ICA by relaxing the dimensionality constraint of the latent generating factors.

In this vein, it is natural to consider another dependence structure, i.e., sources in sD are not marginally
but conditionally independent given an auxiliary variable u. This is similar to the assumption made
in most previous works on identifiable nonlinear ICA with surrogate information, which assume that
all sources are conditionally independent of each other given the auxiliary variable. However, our
setting is more flexible in the sense that we do not assume all sources to be influenced by the auxiliary
variable. Specifically, sources in sI are mutually independent as in the original ICA setting, while only
sources in sD have access to the side information from the conditional independence given u, i.e.,

ps|u(s|u) =
nI∏
i=1

psi(si)

n∏
j=nI+1

psj |u(sj |u). (5)

The identifiability result for all sources (sI and sD) is as follows with proof in Appx. A.5:
Theorem 4.4. Let the observed data be a large enough sample generated from an undercomplete
nonlinear ICA model as defined in Eqs. (2) and (5), suppose the following assumptions hold:

i. For each i ∈ {1, . . . , nI}, there exist {s(ℓ)}|Fi,:nI
|

ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = RnI

Fi,:nI
and

[
Jf (s

(ℓ))T
]
i,:nI

∈ RnI

F̂i,:nI

.

ii. There exist 2nD + 1 values of u, i.e., ui with i ∈ {0, 1, . . . , 2nD}, s.t. the 2nD vectors
w(sD,ui) − w(sD,u0) with i ∈ {1, . . . , 2nD} are linearly independent, where vector
w(sD,u) is defined as follows:

w(sD,ui) = (v(sD,ui),v
′(sD,ui)) ,

where

v(sD,ui) =
(∂ log p(snI+1|ui)

∂snI+1
, · · · , ∂ log p(sn|ui)

∂sn

)
,

v′(sD,ui) =
(∂2 log p(snI+1|ui)

(∂snI+1)2
, · · · , ∂

2 log p(sn|ui)

(∂sn)2

)
.

iii. There exist u1,u2 ∈ u, s.t., for any set As ⊆ S with nonzero probability measure and
cannot be expressed as BsI × SD for any BsI ⊂ SI , we have∫

s∈As

ps|u (s | u1) ds ̸=
∫
s∈As

ps|u (s | u2) ds.
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iv. (Structural Sparsity) For all k ∈ {1, . . . , nI}, there exists Ck s.t.
⋂

i∈Ck
Fi,:nI

= {k}.

Then s is identifiable up to an element-wise invertible transformation and a permutation.

With different assumptions on different sets of sources, one could view this theorem as an expansion
of both previous theoretical findings that impose distributional constraints on sources with auxiliary
variables (e.g., (Hyvärinen et al., 2019)) and those that constrain the mixing function with Structural
Sparsity (Zheng et al., 2022). This is particularly helpful in the context of self-supervised learning
(Von Kügelgen et al., 2021) or transfer learning (Kong et al., 2022), where latent representations are
modeled as a changing part and an invariant part. In (Kong et al., 2022), the component-wise iden-
tifiability for variables changing across domains (i.e., sD with multiple values of u in our setting) are
provided but not those in the invariant part (i.e., sI in our setting). With the help of Thm. 4.4, we can
show identifiability up to an element-wise invertible transformation and a permutation for each source,
regardless of whether it changes across domains or not, which may help some related tasks where full
identifiability is necessary. Furthermore, for causal reasoning or disentanglement with observational
time-series data, our theorem benefits the identifiability of temporal processes involving instantaneous
relations. Previous works in that area can only deal with time-delayed/changing influences, as they
rely on the global conditional independence of all sources given the changing time index as the
auxiliary variable (Hyvärinen and Morioka, 2016, 2017; Yao et al., 2022). Our theorem, on the other
hand, provides the added ability to identify unconditional sources, thanks to the partially satisfied
sparsity assumption, and thus aids the uncovering of latent processes with instantaneous relations.

5 Experiments
In order to validate the proposed identifibaility results, we conduct experiments using both simulated
data and real-world images. It is noteworthy that there has been extensive research that has empirically
verified that deep latent variable models are likely to be identifiable in complex scenarios, particularly
in the disentanglement task (Kumar et al., 2017; Klys et al., 2018; Locatello et al., 2018; Rubenstein
et al., 2018; Chen et al., 2018; Burgess et al., 2018; Duan et al., 2020; Falck et al., 2021; Carbonneau
et al., 2022). While we are not sure of the exact inductive biases or side information that are available
during the real-world application, which has been proved to be necessary (Hyvärinen and Pajunen,
1999; Locatello et al., 2019), the empirical success of these methods sheds light on the possibility of
identification in the general settings considered in this work.

Setup. For settings with the auxiliary variable u, u is always available during estimation and we
consider the dataset as D =

{(
x(1),u(1)

)
, . . . ,

(
x(N),u(N)

)}
, where N is the sample size and u(i)

is the value of u (or class label) corresponding to the data point x(i). Given the estimated model f̂
parameterized by θ, similar to (Sorrenson et al., 2020), we consider a regularized maximum-likelihood
approach for the required sparsity regularization during estimation with the objective function as:
L(θ) = E(x,u)∈D

[
log pf̂−1(x|u)− λR

]
, where λ ∈ [0, 1] is a regularization parameter and R is the

regularization term on the Jacobian of the estimated mixing function, i.e., Jf̂ . Based on our experimen-
tal results (Fig. 8 in Appx. B.2), we adopt the minimax concave penalty (MCP) (Zhang, 2010) as the
regularization term. For settings without the auxiliary variable, we remove the access of u and follow
the same objective function in (Zheng et al., 2022). We train a General Incompressible-flow Network
(GIN) (Sorrenson et al., 2020), which is a flow-based generative model, to maximize the objective
function L(·). Following (Sorrenson et al., 2020), where necessary, we concatenate the latent sources
with independent Gaussian noises to meet the dimensionality requirements. All results are from 20
trials with random seeds. Additional details of the experimental setup are included in Appx. B.

Ablation study. We perform an ablation study to verify the necessity of the proposed assumptions.
Specifically, we focus on the following models corresponding to different assumptions: (UCSS) The
assumption of Structural Sparsity, as well as other assumptions in the undercomplete case (Thm.
3.1), are satisfied; (Mixed) The assumption of Structural Sparsity with undercompleteness and the
required dependence structure among sources influenced by the auxiliary variable, as well as other
assumptions in the partial sparsity and dependence case (Thm. 4.4), are satisfied; (Base) The vanilla
baseline in the undercomplete case, where the assumption of Structural Sparsity is not satisfied
compared to UCSS. The datasets are generated according to the required assumptions, the details of
which are included in Appx. B. All experiments are conducted in the undercomplete case, where the
number of observed variables is twice the number of sources. For datasets that contain both sources
in sI and sD (Mixed case), we set half as sI and the other half as sD, and the minimum required
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gree of undercompleteness (i.e., m/n).
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Figure 5: Percentage of sources satisfying
Structural Sparsity w.r.t. different numbers
of sources in the bijective setting (m/n = 1).

numbers of required distinct values have been assigned to the auxiliary variable u. Following
previous works (Hyvärinen and Morioka, 2016; Lachapelle et al., 2022), we use the mean correlation
coefficient (MCC) between the true sources and the estimated ones as the evaluation metric.

Results for each model are summarised in Fig. 2 and Fig. 3. It can be observed that when the
proposed assumptions are met (UCSS and Mixed), our models achieve higher MCCs than Base.
This indicates that it is indeed possible to identify sources from nonlinear mixtures up to trivial
indeterminacy in the general settings with undercompleteness, partial sparsity, and partial source
dependence. Additionally, we conduct experiments with different numbers of sources n to evaluate
the stability of the identification. Our results show that both models consistently outperform Base
across all values of n, further supporting the theoretical claims.

Undercomplete Structural Sparsity. As previously discussed, the assumption of Structural
Sparsity (Assumption ii in Thm. 3.1) is far more plausible in an undercomplete setting considered
in our theory (i.e., the number of observed variables m is larger than the number of sources n)
than in the more restrictive bijective scenario required in (Zheng et al., 2022) (i.e., the numbers
are equal, m = n). Consequently, extending the identifiability with structural sparsity from a
bijective to an undercomplete setting significantly broadens its applicability in real-world contexts.
In order to validate the necessity of the proposed generalization empirically, we construct several
experiments studying the Structural Sparsity assumption in the undercomplete case. We consider
different numbers of sources n with different degrees of undercompleteness (m/n, where m is the
number of observed variables). For each setting, we generate 50 random matrices where each entry is
independently determined with an equal probability to be either zero or non-zero. The results of the
percentages of matrices satisfying the assumption of Structural Sparsity are presented in Fig. 4. We
could observe that there exists a significant gap on the percentages between the cases where m/n = 1,
i.e., the bijective setting, and the undercomplete settings where m/n > 1. Thus, it is clear that the
assumption is much more likely to hold true when we have more observed variables than sources.
Furthermore, when the degree of undercompleteness increases, the percentage of cases satisfying
structural converges to 1. This further suggests that the assumption will almost always hold with a
sufficient degree of undercompleness, which is rather common in practice. For instance, a photo can
easily have millions of pixels (observed variables) but only a dozen of hidden concepts (sources).

Partial Structural Sparsity. Moreover, as previously noted, it is not uncommon for Structural
Sparsity to be violated for a subset of sources. For instance, certain sources (such as high-decibel
sound sources) may exert influence over all observed variables (microphones). Nonetheless, the
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Figure 6: Results on Triangles. The rows
may correspond to rotation, height, width, and
brightness, respectively.

Figure 7: Results on EMNIST. The rows
may correspond to line thickness, angle, upper
width, and height, respectively.

prior study (Zheng et al., 2022) necessitates that the sparsity assumption holds true for all sources,
providing no identifiability assurance in cases of any degree of violation. To confront this practical
obstacle, we propose Thm. 4.1 and Thm. 4.2 to demonstrate that the remaining sources (i.e., nI

sources) can still be identified even when the sparsity assumption does not universally hold for
some sources. These results can also be motivated empirically. For instance, from Fig. 4, one may
find that Structural Sparsity does not likely to hold for all sources when m/n = 1, which is the
bijective setting considered in (Zheng et al., 2022). However, as discussed above, if a subset of
sources satisfies the assumption, at least the identifiability for these sources could be guaranteed
by our proposed theorems (Thm. 4.1 and Thm. 4.2) under certain conditions. To illustrate this,
we conduct experiments in the bijective setting (m/n = 1) and report the percentage of sources
satisfying Structural Sparsity in Fig. 4. We consider datasets with different number of sources and
generate 50 random matrices for each of these. Each entry is independently determined with an
equal probability to be either zero or non-zero. Combining results from both Fig. 4 and Fig. 5, we
observe that, even in scenarios where Structural Sparsity is rarely satisfied for all sources (m/n = 1
in Fig. 4), it is almost always satisfied for a significant fraction of sources (Fig. 5). Consequently,
our generalization also proves helpful even within the confines of the earlier bijective setting.

Image datasets. To study how reasonable the proposed theories are w.r.t. the practical generating
process of observational data in complex scenarios, we conduct experiments on "Triangles" (Yang
et al., 2022) and EMNIST (Cohen et al., 2017) datasets. The "Triangles" dataset consists of 60, 000
synthetic 28× 28 images of triangles, which are generated from 4 factors: rotation, height, width,
and brightness. By fixing the number of pixels (observed variables) and generating factors (sources),
we can guarantee that the images are generated according to an undercomplete process, although the
exact generating process is still unknown (e.g., a pixel could be (indirectly) influenced by multiple
factors in a complicated way). For the real-world dataset, EMNIST contains 240, 000 28 × 28
images of handwritten digits and is a larger version of the classical MNIST dataset. Although we
do not know the exact number of sources, it is highly possible that it is smaller than the number of
pixels (784). We present the identified sources with the top four standard deviations (SDs) from both
datasets in Fig. 6 and Fig. 7. In both figures, each row represents a source identified by our model,
with it varying from −4 to +4 SDs to illustrate its influence. The rightmost column is a heat map
given by the absolute pixel difference between −1 and +1 SDs. By observing the identified sources
with the top four standard deviations, one could find that it is possible to identify semantically
meaningful attributes from practical image datasets, which further suggests the potential of our
theory in real-world scenarios. Additional results are available in Appx. B.2.

6 Conclusion
We establish a set of new identifiability results of nonlinear ICA in general settings with undercom-
pleteness, partial sparsity and source dependence, and flexible grouping structures, thereby extending
the identifiabilty theory to a wide range of real-world scenarios. Specifically, we prove the identi-
fiability when there are more observed variables than underlying sources, and when sparsity and/or
independence are not met for a subset of sources. Moreover, by leveraging various dependence struc-
tures among sources, further identifiability guarantees can also be obtained. Theoretical results have
been validated through a combination of extensive previous studies and our own experiments, which
involve both synthetic and real-world datasets. Future work includes adopting the theoretical frame-
work for related tasks, such as disentanglement, transfer learning, and causal discovery. Furthermore,
the proposed identifiability guarantees on generalized latent variable models bolster our confidence in
uncovering hidden truths across diverse real-world settings in scientific discovery. We have only ex-
plored the visual disentanglement task, and the lack of other applications is a limitation of this work.
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A Proofs

A.1 Proof of Theorem 3.1

Theorem 3.1. Let the observed data be a large enough sample generated by an undercomplete
nonlinear ICA model as defined in Eqs. (1) and (2). Suppose the following assumptions hold:

i. For each i ∈ {1, . . . , n}, there exist {s(ℓ)}|Fi,:|
ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 = Rn

Fi,:
and

[
Jf (s

(ℓ))T
]
i,:

∈ Rn
F̂i,:

.

ii. (Structural Sparsity) For each k ∈ {1, . . . , n}, there exists Ck s.t.
⋂

i∈Ck
Fi,: = {k}.

Then s is identifiable up to an element-wise invertible transformation and a permutation.

Proof. Let h : s → ŝ denotes the transformation between the true sources and estimated sources. We
can apply the chain rule repeatedly to get:

Jf (s) = Jf̂◦h(s)

= Jf̂ (ŝ)Jh(s).
(6)

Since Jf̂ (ŝ) and Jf (s) both possess full column rank, Jh(s) should have a non-zero determinant.
From this, we can deduce by incorporating the inverse of h:

Jf̂ (ŝ) = Jf (s)Jh(s)
−1

. (7)

Our objective here is to demonstrate that the function h is a composition of a permutation and
a component-wise invertible transformation. Let D(s) denote a diagonal matrix and P denote a
permutation matrix, our goal can be rewritten as demonstrating that Jh(s)

−1
= D(s)P. This leads

us to demonstrate that:
Jf̂ (ŝ) = Jf (s)D(s)P. (8)

Further, we can express:
Jf̂ (ŝ) = Jf (s)T(s), (9)

where T(s) ∈ Rn×n is a square matrix. Here, we define F as the support of Jf (s), F̂ as the support
of Jf̂ (ŝ) and T as a set of matrices with the same support of T(s). Furthermore, T ∈ T is a matrix
with the same support as T(s). Based on Assumption i, we have:

span{Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 = Rn

Fi,:
. (10)
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Given that the set {Jf (s
(ℓ))i,:}

|Fi,:|
ℓ=1 forms a basis of Rn

Fi,:
, we can express any vector in this space

as a linear combination of these basis vectors. In particular, for any j0 ∈ Fi,:, the one-hot vector
ej0 ∈ Rn

Fi,:
can be written as

ej0 =
∑

ℓ∈Fi,:

αℓJf (s
(ℓ))i,:, (11)

where αℓ denotes the respective coefficient.

With this in mind, we can find the transformation of ej0 under T as

Tj0,: = ej0T =
∑

ℓ∈Fi,:

αℓJf (s
(ℓ))i,:T. (12)

According to Assumption i, each term in the above summation belongs to the space Rn
F̂i,:

. Therefore,
Tj0,: itself resides in Rn

F̂i,:
, i.e., Tj0,: ∈ Rn

F̂i,:
. Thus

∀j ∈ Fi,:, Tj,: ∈ Rn
F̂i,:

. (13)

Then the connections between these supports can be established according to Defn. 2.3

∀(i, j) ∈ F , {i} × Tj,: ⊂ F̂ . (14)

It is noteworthy that a similar strategy to derive Eq. 14 has been applied in (Zheng et al., 2022) and
part of the proof technique is inspired by that work. In contrast to the proof by Zheng et al. (2022),
which assumes the invertibility of f , we only necessitate its injectivity. This distinction allows for the
inclusion of undercomplete cases.

Since Jf (s
(ℓ)) and Jf̂ (ŝ

(ℓ)) have full column rank n, T(s(ℓ)) must have a non-zero determinant.
Otherwise, it would follow that the rank of T(s(ℓ)) is less than n, which would imply a contradiction
that Jf̂ (ŝ

(ℓ)) = Jf (s
(ℓ))T(s(ℓ)) has a column rank less than n. Representing the determinant of the

matrix T(s(ℓ)) as its Leibniz formula yields

det(T(s(ℓ))) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

T(s(ℓ))i,σ(i)

)
̸= 0, (15)

where Sn is the set of n-permutations. Thus, there is at least one term in the sum that is non-zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , n}, sgn(σ)
n∏

i=1

T(s(ℓ))i,σ(i) ̸= 0, (16)

which is equivalent to

∃σ ∈ Sn, ∀i ∈ {1, . . . , n}, T(s(ℓ))i,σ(i) ̸= 0. (17)

Then we can conclude that this σ is in the support of T(s) since s(ℓ) ∈ s. Therefore, it follows that

∀j ∈ {1, . . . , n}, σ(j) ∈ Tj,:. (18)

Together with Eq. (14), we have

∀(i, j) ∈ F , (i, σ(j)) ∈ {i} × Tj,: ⊂ F̂ . (19)

Denote
σ(F) = {(i, σ(j)) | (i, j) ∈ F}. (20)

Then we have
σ(F) ⊂ F̂ . (21)

Because of the sparsity regularization on the estimated Jacobian, we further have

|F̂ | ≤ |F| = |σ(F)|. (22)

Combining this with Eq. (21), we derive

σ(F) = F̂ . (23)
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Suppose T(s) ̸= D(s)P, then

∃j1 ̸= j2, Tj1,: ∩ Tj2,: ̸= ∅. (24)

Additionally, consider j3 ∈ {1, . . . , n} for which

σ(j3) ∈ Tj1,: ∩ Tj2,:. (25)

Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. A similar strategy has been used
previously in (Lachapelle et al., 2022; Zheng et al., 2022). Based on Assumption ii, there exists
Cj1 ∋ j1 such that

⋂
i∈Cj1

Fi,: = {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,:, (26)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,:. (27)

Since j1 ∈ Fi3,:, it follows that (i3, j1) ∈ F . Therefore, according to Eq. (14), we have

{i3} × Tj1,: ⊂ F̂ . (28)

Notice that σ(j3) ∈ Tj1,: ∩ Tj2,: implies

(i3, σ(j3)) ∈ {i3} × Tj1,:. (29)

Then by Eqs. (28) and (29), we have

(i3, σ(j3)) ∈ F̂ . (30)

This further implies (i3, j3) ∈ F by Eq. (20) and (23), which contradicts Eq. (27). Therefore, we
have proven by contradiction that T(s) = D(s)P. By replacing T(s) with D(s)P in Eq. (9), we
obtain Eq. (8), which is the goal.

A.2 Proof of Theorem 4.1

Theorem 4.1. Let the observed data be a large enough sample generated by an undercomplete
nonlinear ICA model defined in Eqs. (2) and (3). Suppose the following assumptions hold:

i. There exist nD + 1 distinct values of u, i.e., uj with j ∈ {0, 1, . . . , nD}, s.t. the nD vectors
w(sD,u, i) with i ∈ {nI + 1, ..., n} are linearly independent, where vector w(sD,u, i) is
defined as follows:

w(sD,u, i) =
(∂ (log p(sD|u1)− log(p(sD|u0))

∂si
, . . . ,

∂ (log p(sD|unD
)− log(p(sD|u0))

∂si

)
.

ii. There exist u1,u2 ∈ u, s.t., for any set As ⊆ S with non-zero probability measure and
cannot be expressed as BsI × sD for any BsI ⊂ SI , we have∫

s∈As

ps|u (s | u1) ds ̸=
∫
s∈As

ps|u (s | u2) ds.

Then sD is identifiable up to an subspace-wise invertible transformation.

Proof. Let h : s → ŝ denotes the transformation between the true and estimated sources. By using
chain rule repeatedly, we have

Jf (s) = Jf̂◦h(s)

= Jf̂ (ŝ)Jh(s).
(31)

Since Jf̂ (ŝ) and Jf (s) both possess full column rank, Jh(ŝ) should have a non-zero determinant.
Thus, Jh(s) must be invertible and have a non-zero determinant. Otherwise, one of them would not
be of full column rank, which leads to a contradiction.

Applying the change of variable rule, we have

ps|u(s|u)|det(Jh−1(ŝ))| = pŝ(ŝ|u). (32)
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Taking the logarithm on both sides yields

log ps|u(s|u) + log |det(Jh−1(ŝ))| = log pŝ|u(ŝ|u). (33)

Note that according to the model defined in Eqs. (2) and (3), the joint densities can be factorized as

ps|u(s|u) = psD|u(sD|u)
nI∏
i=1

psi(si),

pŝ|u(ŝ|u) = pŝD|u(ŝD|u)
nI∏
i=1

pŝi(ŝi).

(34)

Then we define the difference across domains as follows

q(s,uj) = log ps|u(s|uj)− log ps|u(s|u0). (35)

By taking the difference on both sides of Eq. (33) corresponding to uj and u0, we obtain

q(ŝD,uj) = q(sD,uj), (36)

where, for i ∈ {1, . . . , nI}, log pŝ|u(ŝi|uj) and log ps|u(si|uj) have been canceled because sources
in sI are not dependent on uj . That is, q(si,uj) = 0 if i ∈ {1, . . . , nI}.

Taking the derivatives of both sides of Eq. (36) w.r.t. ŝk where k ∈ {1, . . . , nI}, we have

∂q(ŝD,uj)

∂ŝk
=

n∑
i=nI+1

(
∂q(sD,uj)

∂si

∂si
∂ŝk

)
, (37)

Clearly, LHS of Eq. (37) equals zero. By considering each j ∈ {1, . . . , nD} for uj , we have nD

equations like Eq. (37), which constitute a linear system with a nD × nD coefficient matrix.

According to the assumption, the coefficient matrix of the linear system has full rank. Thus, the only
solution of Eq. (37) is ∂si

∂ŝk
= 0 for i ∈ {nI + 1, . . . , n} and k ∈ {1, . . . , nI}.

As h−1(·) is smooth, its Jacobian can be written as:

Jh−1(ŝ) =

[
A := ∂sI

∂ŝI
B := ∂sI

∂ŝD

C := ∂sD
∂ŝI

D := ∂sD
∂ŝD

]
. (38)

Since ∂sj
∂ŝk

= 0 for j ∈ {nI + 1, . . . , n} and k ∈ {1, . . . , nI}, entries in the submatrix C must all
be zero. Thus, the submatrix D must be invertible, otherwise Jh−1(ŝ) will not be invertible, which
is a contradiction. Besides, based on Assumption ii, one can show that all entries in the submatrix
B are zero according to part of the proof of Theorem 4.2 in (Kong et al., 2022) (Steps 1, 2, and 3).
Therefore, ŝD is an invertible transformation of sD.

A.3 Proof of Theorem 4.2

Theorem 4.2. In addition to assumptions in Thm. 4.1, suppose the following assumptions hold:

i. For each i ∈ {1, . . . , nI}, there exist {s(ℓ)}|Fi,:nI
|

ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = RnI

Fi,:nI
and

[
Jf (s

(ℓ))T
]
i,:nI

∈ RnI

F̂i,:nI

.

ii. (Structural Sparsity) For all k ∈ {1, . . . , nI}, there exists Ck s.t.
⋂

i∈Ck
Fi,:nI

= {k}.
Then sI is identifiable up to an element-wise invertible transformation and a permutation.

Proof. Our goal here is to show that ŝI is a composition of a permutation and a component-wise
invertible transformation of sources in sI . By using chain rule repeatedly, we have

Jf̂ (ŝ) = Jf◦h−1(ŝ)

= Jf (h
−1(ŝ))Jh−1(ŝ)

= Jf (s)Jh−1(ŝ).

(39)
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As h−1(·) is smooth, its Jacobian can be written as:

Jh−1(ŝ) =

[
A := ∂sI

∂ŝI
B := ∂sI

∂ŝD

C := ∂sD
∂ŝI

D := ∂sD
∂ŝD

]
. (40)

In the proof of Thm. 4.1, we have shown that all entries in the submatrix C are zero. Then we have

Jf̂ (ŝ):,:nI
= Jf (s)Jh−1(ŝ):,:nI

(⋆)
= Jf (s):,:nI

Jh−1(ŝ):nI ,:nI
,

(41)

where Eq. (⋆) is directly from the result that all entries in C, i.e., those in Jh−1(ŝ)nI+1:,:nI
, are zero.

Moreover, in the proof of Thm. 4.1, we have also shown that all entries in the submatrix B are
zero. Let D(s) represent a diagonal matrix and P represent a permutation matrix. Thus, our
goal is equivalent to show that Jh(s):nI ,:nI

= PIDI(s) or Jh−1(ŝ):nI ,:nI
= Jh−1(ŝ):nI ,:nI

=

Jh(s)
−1
:nI ,:nI

= DI(s)
−1

PI
−1. Then we need to prove that

Jf̂ (ŝ):,:nI
= Jf (s):,:nI

DI(s)
−1

PI
−1. (42)

Additionally, we have
Jf̂ (ŝ):,:nI

= Jf (s):,:nI
T(s), (43)

where T(s) ∈ RnI×nI is a square matrix. Note that we have denoted F as the support of Jf (s), F̂
as the support of Jf̂ (ŝ) and T as the support of T(s). Besides, we have also denoted T as a matrix
with the same support of T . According to Assumption i, we have

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = Rn
Fi,:nI

. (44)

Since {Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 forms a basis of RnI

Fi,:nI
, for any j0 ∈ Fi,:nI

, we are able to rewrite the
one-hot vector ej0 ∈ RnI

Fi,:nI
as

ej0 =
∑

ℓ∈Fi,:nI

αℓJf (s
(ℓ))i,:nI

, (45)

where αℓ is the corresponding coefficient. Then

Tj0,: = ej0T =
∑

ℓ∈Fi,:nI

αℓJf (s
(ℓ))i,:nI

T, (46)

According to Assumption i, each term in the above summation belongs to the space RnI

F̂i,:nI

. Therefore,

Tj0,: itself resides in RnI

F̂i,:nI

, i.e., Tj0,: ∈ RnI

F̂i,:nI

. Thus

∀j ∈ Fi,:nI
, Tj,: ∈ RnI

F̂i,:nI

. (47)

Then the connections between these supports can be established according to Defn. 2.3

∀(i, j) ∈ F:,:nI
, {i} × Tj,: ⊂ F̂:,:nI

. (48)

Since Jf (s
(ℓ)):,:nI

and Jf̂ (ŝ
(ℓ)):,:nI

have full column rank nI , T(s(ℓ)) must have a non-zero deter-
minant. Otherwise, it would follow that the rank of T(s(ℓ)) is less than nI , which would imply a
contradiction that Jf̂ (ŝ

(ℓ)):,:nI
= Jf (s

(ℓ)):,:nI
T(s(ℓ)) has a column rank less than nI .

The determinant of the matrix T(s(ℓ)) can be represented as its Leibniz formula as

det(T(s(ℓ))) =
∑

σ∈SnI

(
sgn(σ)

nI∏
i=1

T(s(ℓ))i,σ(i)

)
̸= 0, (49)
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where SnI
is the set of nI -permutations. Therefore, there is at least one term in the sum that is

non-zero, i.e.,

∃σ ∈ SnI
, ∀i ∈ {1, . . . , nI}, sgn(σ)

nI∏
i=1

T(s(ℓ))i,σ(i) ̸= 0, (50)

which is equivalent to

∃σ ∈ SnI
, ∀i ∈ {1, . . . , nI}, T(s(ℓ))i,σ(i) ̸= 0. (51)

Then we can conclude that this σ must present in the support of T(s) since s(ℓ) ∈ s. Therefore, it
follows that

∀j ∈ {1, . . . , nI}, σ(j) ∈ Tj,:. (52)

Together with Eq. (48), we have

∀(i, j) ∈ F:,:nI
, (i, σ(j)) ∈ {i} × Tj,: ⊂ F̂:,:nI

. (53)

Denote
σ(F:,:nI

) = {(i, σ(j)) | (i, j) ∈ F:,:nI
}. (54)

Then we have
σ(F:,:nI

) ⊂ F̂:,:nI
. (55)

Because of the sparsity regularization on the estimated Jacobian, we further have

|F̂:,:nI
| ≤ |F:,:nI

| = |σ(F:,:nI
)|. (56)

Combined with Eq. (55), we have
σ(F:,:nI

) = F̂:,:nI
. (57)

Suppose T(s) ̸= DI(s)
−1

PI
−1, then

∃j1 ̸= j2, Tj1,: ∩ Tj2,: ̸= ∅. (58)

Additionally, consider j3 ∈ {1, . . . , nI} for which

σ(j3) ∈ Tj1,: ∩ Tj2,:. (59)

Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. Based on Assumption ii, there
exists Cj1 ∋ j1 such that

⋂
i∈Cj1

Fi,:nI
= {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,:nI
, (60)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,:nI

. (61)

Since j1 ∈ Fi3,:nI
, it follows that (i3, j1) ∈ F:,:nI

. Therefore, according to Eq. (48), we have

{i3} × Tj1,: ⊂ F̂:,:nI
. (62)

Notice that σ(j3) ∈ Tj1,: ∩ Tj2,: implies

(i3, σ(j3)) ∈ {i3} × Tj1,:. (63)

Then by Eqs. (62) and (63), we have

(i3, σ(j3)) ∈ F̂:,:nI
. (64)

This further implies (i3, j3) ∈ F:,:nI
by Eqs. (54) and (57), which contradicts Eq. (61). Thus, we

have proven by contradiction that T(s) = DI(s)
−1

PI
−1. By replacing T(s) with DI(s)

−1
PI

−1 in
Eq. (43), we obtain Eq. (42), which is the goal.
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A.4 Proof of Theorem 4.3

Theorem 4.3. Let the observed data be a large enough sample generated from an undercomplete
nonlinear ICA model as defined in Eqs. (2) and (4). Suppose the following assumptions hold:

i. For each i ∈ {1, . . . , nI}, there exist {s(ℓ)}|Fi,:nI
|

ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = RnI

Fi,:nI
and

[
Jf (s

(ℓ))T
]
i,:nI

∈ RnI

F̂i,:nI

.

ii. There exist 2nD + 1 values of u, i.e., ui with i ∈ {0, 1, . . . , 2nD}, s.t. the 2nD vectors
w(sD,ui) − w(sD,u0) with i ∈ {1, . . . , 2nD} are linearly independent, where vector
w(sD,ui) is defined as follows:

w(sD,ui) = (v(sc1 ,ui), · · · ,v(scd ,ui),v
′(sc1 ,ui), · · · ,v′(scd ,ui)) ,

where

v(scj ,ui) =
(∂ log p(scj |ui)

∂scj(l)
, · · · ,

∂ log p(scj |ui)

∂scj(h)

)
,

v′(scj ,ui) =
(∂2 log p(scj |ui)

(∂scj(l))
2

, · · · ,
∂2 log p(scj |ui)

(∂scj(h))2

)
.

iii. There exist u1,u2 ∈ u, s.t., for any set As ⊆ S with nonzero probability measure and
cannot be expressed as BsI × SD for any BsI ⊂ SI , we have∫

s∈As

ps|u (s | u1) ds ̸=
∫
s∈As

ps|u (s | u2) ds.

iv. (Structural Sparsity) For all k ∈ {1, . . . , nI}, there exists Ck s.t.
⋂

i∈Ck
Fi,:nI

= {k}.

Then sI is identifiable up to an element-wise invertible transformation and a permutation, and sD is
identifiable up to a subspace-wise invertible transformation and a subspace-wise permutation.

Proof. Let h : s → ŝ denotes the transformation between the true and estimated sources. By using
chain rule repeatedly, we have

Jf (s) = Jf̂◦h(s)

= Jf̂ (ŝ)Jh(s).
(65)

Because Jf̂ (ŝ) and Jf (s) have full column rank, Jh(s) must be invertible and have a non-zero
determinant. Otherwise, one of them would not be of full column rank, which leads to a contradiction.

Applying the change of variable rule, we have

ps|u(s|u)|det(Jh−1(ŝ))| = pŝ(ŝ|u). (66)

Taking the logarithm on both sides yields

log ps|u(s|u) + log |det(Jh−1(ŝ))| = log pŝ|u(ŝ|u). (67)

Note that according to the model defined in Eqs. (2) and (3), the joint densities can be factorized as

ps|u(s|u) =
nI∏
i=1

psi(si)

cd∏
j=c1

psj |u(sj |u),

pŝ|u(ŝ|u) =
nI∏
i=1

pŝi(ŝi)

cd∏
j=c1

pŝj |u(ŝj |u).
(68)

Together with Eq. (67), we have
nI∑
i

log psi(si) +

cd∑
j=c1

log psj |u(sj |u) + log |det(Jh−1(ŝ))|

=

nI∑
i

log pŝi(ŝi) +

cd∑
j=c1

log pŝj |u(ŝj |u).
(69)
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Therefore, for u = u0, . . . ,u2nD
, we have 2nD + 1 such equations. Subtracting each equation

corresponding to u1, . . . ,u2nD
with the equation corresponding to u0 results in 2nD equations:

cd∑
i=c1

(
log psi|uj

(si|uj)− log psi|u0
(si|u0)

)
=

cd∑
i=c1

(
log pŝi|uj

(ŝi|uj)− log pŝi|u0
(ŝi|u0)

)
.

(70)

Then we take the derivatives of both sides of Eq. (70) w.r.t. ŝk and ŝv where k, v ∈ {1, . . . , n} and
k ̸= v. Besides, if both k > nI and v > nI , then they are not indices of the same subspace. It is clear
that the RHS of Eq. (70) equals to zero. For the i-th term of the summation on the LHS, we have the
following equation after taking the derivatives:

i(h)∑
l=i(l)

((
∂2 log psi|uj

(si|uj)

(∂sl)2
−

∂2 log psi|u0
(si|u0)

(∂sl)2

)
· ∂sl
∂ŝk

∂sl
∂ŝv

+

(
∂ log psi|uj

(si|uj)

∂sl
−

∂ log psi|u0
(si|u0)

∂sl

)
· ∂2sl
∂ŝk∂ŝv

)
= 0,

(71)

where il and ih corresponds to the minimum and maximum indices of elements in si = (sil , . . . , sih).
By iterating i from c1 to cd, we are also iterating l from nI + 1 to n. Thus by considering all those
equations as well as iterating j in uj from 0 to 2nD, we have a linear system with a 2nD × 2nD

coefficient matrix.

Then, according to Assumption ii, the coefficient matrix of the linear system has full rank. Thus, the
only solution of Eq. (71) is ∂sl

∂ŝk
∂sl
∂ŝv

= 0 and ∂2sl
∂ŝk∂ŝv

= 0.

Note that k ̸= v and, if both k > nI and v > nI , they are not indices of sources in the same
subspace. Besides, ∂sl

∂ŝk
∂sl
∂ŝv

= 0 indicates that it is impossible for both ∂sl
∂ŝk

and ∂sl
∂ŝv

to be non-zero.
Furthermore, because h is invertible, they cannot be both zero, indicating that it is either ∂sl

∂ŝk
= 0

or ∂sl
∂ŝv

= 0. Then, because sI has invariant distribution w.r.t. u, if ∂sl
∂ŝk

̸= 0 (i.e., ∂sl
∂ŝv

= 0), then

k̂ /∈ {1, . . . , nI}. Otherwise, sl will also be invariant, which is a contradiction. Therefore, k̂ can
only be the index of an estimated source from one independent subspace, which, together with
the invertibility, leads to the conclusion that sD is a composition of an invertible subspace-wise
transformation and a subspace-wise permutation of ŝD. So it is the mapping from ŝD to sD since the
subspace-wise transformation is invertible and the inverse of a block-wise permutation matrix is still
a block-wise invertible matrix.

Now we have shown the identifiability result for sD = (snI+1, . . . , sn), then we need to show that
for the remaining sources sI = (s1, . . . , snI

).

By using chain rule repeatedly, we have

Jf̂ (ŝ) = Jf◦h−1(ŝ)

= Jf (h
−1(ŝ))Jh−1(ŝ)

= Jf (s)Jh−1(ŝ).

(72)

Since we have shown that, for every l ∈ {nI + 1, . . . , n} and k ∈ {1, . . . , nI}, ∂sl
∂ŝk

= 0, all entries
of Jh−1(ŝ)nI+1:n,:nI

must be zero.

Then we have
Jf̂ (ŝ):,:nI

= Jf (s)Jh−1(ŝ):,:nI

(⋆)
= Jf (s):,:nI

Jh−1(ŝ):nI ,:nI
,

(73)

where Eq. (⋆) is directly from the result that all entries in Jh−1(s)nI+1:,:nI
are zero.

Based on the proof of Theorem 4.2 in Kong et al. (2022) and Assumption iii, particularly, steps 1, 2,
and 3, one can show that ŝI does not depend on sD. Let D(s) represents a diagonal matrix and P
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represent a permutation matrix. Thus, our goal is equivalent to show that Jh(s):nI ,:nI
= PIDI(s)

or Jh−1(ŝ):nI ,:nI
= Jh−1(ŝ):nI ,:nI

= Jh(s)
−1
:nI ,:nI

= DI(s)
−1

PI
−1. Then we need to prove that

Jf̂ (ŝ):,:nI
= Jf (s):,:nI

DI(s)
−1

PI
−1. (74)

Additionally, we have
Jf̂ (ŝ):,:nI

= Jf (s):,:nI
T(s), (75)

where T(s) ∈ RnI×nI is a square matrix. Note that we have denoted F as the support of Jf (s), F̂
as the support of Jf̂ (ŝ) and T as the support of T(s). Besides, we have also denoted T as a matrix
with the same support of T . According to Assumption i, we have

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = Rn
Fi,:nI

. (76)

Since {Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 forms a basis of RnI

Fi,:nI
, for any j0 ∈ Fi,:nI

, we are able to rewrite the
one-hot vector ej0 ∈ RnI

Fi,:nI
as

ej0 =
∑

ℓ∈Fi,:nI

αℓJf (s
(ℓ))i,:nI

, (77)

where αℓ is the corresponding coefficient. Then

Tj0,: = ej0T =
∑

ℓ∈Fi,:nI

αℓJf (s
(ℓ))i,:nI

T ∈ RnI

F̂i,:nI

, (78)

where the final “∈” follows from Assumption i that each element in the summation belongs to RnI

F̂i,:nI

.

Thus
∀j ∈ Fi,:nI

, Tj,: ∈ RnI

F̂i,:nI

. (79)

Then the connections between these supports can be established according to Defn. 2.3

∀(i, j) ∈ F:,:nI
, {i} × Tj,: ⊂ F̂:,:nI

. (80)

Since Jf (s
(ℓ)):,:nI

and Jf̂ (ŝ
(ℓ)):,:nI

have full column rank nI , T(s(ℓ)) must have a non-zero deter-
minant. Otherwise, it would follow that the rank of T(s(ℓ)) is less than nI , which would imply a
contradiction that Jf̂ (ŝ

(ℓ)):,:nI
= Jf (s

(ℓ)):,:nI
T(s(ℓ)) has a column rank less than nI .

The determinant of the matrix T(s(ℓ)) can be represented as its Leibniz formula as

det(T(s(ℓ))) =
∑

σ∈SnI

(
sgn(σ)

nI∏
i=1

T(s(ℓ))i,σ(i)

)
̸= 0, (81)

where SnI
is the set of nI -permutations. Thus, there is at least one non-zero term in the sum, i.e.,

∃σ ∈ SnI
, ∀i ∈ {1, . . . , nI}, sgn(σ)

nI∏
i=1

T(s(ℓ))i,σ(i) ̸= 0, (82)

which is equivalent to

∃σ ∈ SnI
, ∀i ∈ {1, . . . , nI}, T(s(ℓ))i,σ(i) ̸= 0. (83)

Then we can see that this σ must present in the support of T(s) since s(ℓ) ∈ s. It follows that

∀j ∈ {1, . . . , nI}, σ(j) ∈ Tj,:. (84)

Together with Eq. (80), we have

∀(i, j) ∈ F:,:nI
, (i, σ(j)) ∈ {i} × Tj,: ⊂ F̂:,:nI

. (85)

Denote
σ(F:,:nI

) = {(i, σ(j)) | (i, j) ∈ F:,:nI
}. (86)
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Then we have
σ(F:,:nI

) ⊂ F̂:,:nI
. (87)

Because of the sparsity regularization on the estimated Jacobian, we further have

|F̂:,:nI
| ≤ |F:,:nI

| = |σ(F:,:nI
)|. (88)

Together with Eq. (87), we have
σ(F:,:nI

) = F̂:,:nI
. (89)

Suppose T(s) ̸= DI(s)
−1

PI
−1, then

∃j1 ̸= j2, Tj1,: ∩ Tj2,: ̸= ∅. (90)

Additionally, consider j3 ∈ {1, . . . , nI} for which

σ(j3) ∈ Tj1,: ∩ Tj2,:. (91)

Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. Based on Assumption iv, there
exists Cj1 ∋ j1 such that

⋂
i∈Cj1

Fi,:nI
= {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,:nI
, (92)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,:nI

. (93)
Since j1 ∈ Fi3,:nI

, we have (i3, j1) ∈ F:,:nI
. Therefore, according to Eq. (80), we have

{i3} × Tj1,: ⊂ F̂:,:nI
. (94)

Notice that σ(j3) ∈ Tj1,: ∩ Tj2,: implies

(i3, σ(j3)) ∈ {i3} × Tj1,:. (95)

Then by Eqs. (94) and (95), we have

(i3, σ(j3)) ∈ F̂:,:nI
, (96)

which implies (i3, j3) ∈ F:,:nI
by Eqs. (86) and (89), therefore contradicting Eq. (93). Thus, we

have proven by contradiction that T(ŝ) = DI(s)
−1

PI
−1. By replacing T(s) with DI(s)

−1
PI

−1 in
Eq. (75), we obtain Eq. (74), which is the goal.

Therefore, sI is identifiable up to a composition of a component-wise invertible transformation and a
permutation, and sD is identifiable up to a composition of a subspace-wise invertible transformation
and a subspace-wise permutation.

A.5 Proof of Theorem 4.4

Theorem 4.4. Let the observed data be a large enough sample generated from an undercomplete
nonlinear ICA model as defined in Eqs. (2) and (5), suppose the following assumptions hold:

i. For each i ∈ {1, . . . , nI}, there exist {s(ℓ)}|Fi,:nI
|

ℓ=1 and a matrix T ∈ T s.t.

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = RnI

Fi,:nI
and

[
Jf (s

(ℓ))T
]
i,:nI

∈ RnI

F̂i,:nI

.

ii. There exist 2nD + 1 values of u, i.e., ui with i ∈ {0, 1, . . . , 2nD}, s.t. the 2nD vectors
w(sD,ui) − w(sD,u0) with i ∈ {1, . . . , 2nD} are linearly independent, where vector
w(sD,u) is defined as follows:

w(sD,ui) = (v(sD,ui),v
′(sD,ui)) ,

where

v(sD,ui) =
(∂ log p(snI+1|ui)

∂snI+1
, · · · , ∂ log p(sn|ui)

∂sn

)
,

v′(sD,ui) =
(∂2 log p(snI+1|ui)

(∂snI+1)2
, · · · , ∂

2 log p(sn|ui)

(∂sn)2

)
.
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iii. There exist u1,u2 ∈ u, s.t., for any set As ⊆ S with nonzero probability measure and
cannot be expressed as BsI × SD for any BsI ⊂ SI , we have∫

s∈As

ps|u (s | u1) ds ̸=
∫
s∈As

ps|u (s | u2) ds.

iv. (Structural Sparsity) For all k ∈ {1, . . . , nI}, there exists Ck s.t.
⋂

i∈Ck
Fi,:nI

= {k}.

Then s is identifiable up to an element-wise invertible transformation and a permutation.
Proof. Let h : s → ŝ denotes the transformation between the true and estimated sources. By using
chain rule repeatedly, we have

Jf (s) = Jf̂◦h(s)

= Jf̂ (ŝ)Jh(s).
(97)

Because Jf̂ (ŝ) and Jf (s) have full column rank, Jh(s) must be invertible and have a non-zero
determinant. Otherwise, one of them would not be of full column rank, which leads to a contradiction.

Applying the change of variable rule, we have

ps|u(s|u)|det(Jh−1(ŝ))| = pŝ(ŝ|u). (98)

Taking the logarithm on both sides yields

log ps|u(s|u) + log |det(Jh−1(ŝ))| = log pŝ|u(ŝ|u). (99)

Note that according to the model defined in Eqs. (2) and (3), the joint densities can be factorized as

ps|u(s|u) =
nI∏
i=1

psi(si)

n∏
j=nI+1

psj |u(sj |u) =
n∏

i=1

psi|u(ŝi|u),

pŝ|u(ŝ|u) =
nI∏
i=1

pŝi(ŝi)

n∏
j=nI+1

pŝj |u(ŝj |u) =
n∏

i=1

pŝi|u(ŝi|u).
(100)

Together with Eq. (99), we have
n∑
i

log psi|u(si|u) + log |det(Jh−1(ŝ))| =
n∑
i

log pŝi|u(ŝi|u). (101)

Then we take the derivatives of both sides of Eq. (101) w.r.t. ŝk and ŝv where k, v ∈ {1, . . . , n} and
k ̸= q. For brevity, we first define the following terms:

h′
i,(k) :=

∂si
∂ŝk

, (102)

h′′
i,(k,v) :=

∂2si
∂ŝk∂ŝv

, (103)

η′i(si,u) :=
∂ log psi|u(si|u)

∂si
, (104)

η′′i (si,u) :=
∂2 log psi|u(si|u)

(∂si)2
. (105)

Then we have
n∑

i=1

(
η′′i (si,u) · h′

i,(k)h
′
i,(v) + η′i(si,u) · h′′

i,(k,v)

)
+

∂2 log |det(Jh−1(ŝ))|
∂ŝk∂ŝv

= 0. (106)

Therefore, for u = u0, . . . ,u2nD
, we have 2nD + 1 such equations. Subtracting each equation

corresponding to u1, . . . ,u2nD
with the equation corresponding to u0 results in 2nD equations:

n∑
i=nc+1

(
(η′′i (zi,uj)− η′′i (zi,u0)) · h′

i,(k)h
′
i,(v) (107)

+ (η′i(zi,uj)− η′i(zi,u0)) · h′′
i,(k,v)

)
= 0, (108)
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where j = 1, . . . 2nD. Note that for i ∈ {1, . . . , nI}, si does not depend on u. Thus, we have
η′′i (zi,uj) = η′′i (zi,uj′) and η′i(zi,uj) = η′i(zi,uj′),∀j, j′. Hence only sources dependent on u
(i.e., sD) remain in Eq. (107).

By considering each j ∈ {1, . . . , 2nD} for uj , we have 2nD equations like Eq. (107), which
constitute a linear system with a 2nD × 2nD coefficient matrix.

According to Assumption ii, the coefficient matrix of the linear system has full rank. Thus, the
only solution of Eq. (107) is h′

i,(k)h
′
i,(q) = 0 and h′′

i,(k,v) = 0 for i = nc + 1, . . . , n and k, v ∈
{1, . . . , n}, k ̸= v.

As h−1(·) is smooth, its Jacobian can be written as:

Jh−1(ŝ) =

[
A := ∂sI

∂ŝI
B := ∂sI

∂ŝD

C := ∂sD
∂ŝI

D := ∂sD
∂ŝD

]
. (109)

Because h′
i,(k)h

′
i,(v) = 0, k, v ∈ {1, . . . , n}, k ̸= v, for each i = nI + 1, . . . , n, there is at most one

index r ∈ {1, . . . , n} s.t. h′
i,(r) ̸= 0. Therefore, there is at most one non-zero entry in each row

indexed by i = nD + 1, . . . , n in the Jacobian matrix Jh−1(ŝ). Further, the invertibility of h−1(·)
necessitates Jh−1 to be full-rank which implies that there is exactly one non-zero component in each
row of sub-matrices C and D.

Suppose that non-zero component lies in the sub-matrix C, then sD is not dependent on u. Thus, the
only non-zero component must lie in D. Because Jh is of full-rank and C is a zero sub-matrix, D
must have full rank. Hence, ŝD must be a composition of a component-wise invertible transformation
and a permutation of sD. Moreover, according to part of the proof of Theorem 4.2 in Kong et al.
(2022) (Steps 1, 2, and 3), the submatrix B is zero if Assumption iii holds.

Now we have shown that, for the matrix Jh−1 , its submatrix D is a generalized permutation matrix
and both submatrices B and C are zero-matrices). Because h−1 is smooth and invertible, the
sub-matrices of the corresponding positions of Jh have the same properties. Then, we need to
show the identifiability for the remaining sources sI = (s1, . . . , snI

), i.e., ŝI is a permutation with
component-wise invertible transformation of sI .

Let D(s) represents a diagonal matrix and P represent a permutation matrix. Thus, our goal is equiv-
alent to show that Jh(s):nI ,:nI

= PIDI(s) or Jh−1(ŝ):nI ,:nI
= Jh−1(ŝ):nI ,:nI

= Jh(s)
−1
:nI ,:nI

=

DI(s)
−1

PI
−1. By using chain rule repeatedly, we have

Jf̂ (ŝ) = Jf◦h−1(ŝ)

= Jf (h
−1(ŝ))Jh−1(ŝ)

= Jf (s)Jh−1(ŝ).

(110)

Then we have
Jf̂ (ŝ):,:nI

= Jf (s)Jh−1(ŝ):,:nI

(⋆)
= Jf (s):,:nI

Jh−1(ŝ):nI ,:nI
,

(111)

where Eq. (⋆) is directly from the result that all entries in C, i.e., those in Jh−1(ŝ)nI+1:,:nI
, are zero.

Therefore our goal is equivalent to show that

Jf̂ (ŝ):,:nI
= Jf (s):,:nI

DI(s)
−1

PI
−1. (112)

Additionally, we have
Jf̂ (ŝ):,:nI

= Jf (s):,:nI
T(s), (113)

where T(s) ∈ RnI×nI is a square matrix. Note that we have denoted F as the support of Jf (s), F̂
as the support of Jf̂ (ŝ) and T as the support of T(s). Besides, we have also denoted T as a matrix
with the same support of T . According to Assumption i, we have

span{Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 = Rn
Fi,:nI

. (114)
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Since {Jf (s
(ℓ))i,:nI

}|Fi,:nI
|

ℓ=1 forms a basis of RnI

Fi,:nI
, for any j0 ∈ Fi,:nI

, we are able to rewrite the
one-hot vector ej0 ∈ RnI

Fi,:nI
as

ej0 =
∑

ℓ∈Fi,:nI

αℓJf (s
(ℓ))i,:nI

, (115)

where αℓ is the corresponding coefficient. Then

Tj0,: = ej0T =
∑

ℓ∈Fi,:nI

αℓJf (s
(ℓ))i,:nI

T ∈ RnI

F̂i,:nI

, (116)

where the final “∈” follows from Assumption i that each element in the summation belongs to RnI

F̂i,:nI

.

Thus
∀j ∈ Fi,:nI

, Tj,: ∈ RnI

F̂i,:nI

. (117)

Then the connections between these supports can be established according to Defn. 2.3

∀(i, j) ∈ F:,:nI
, {i} × Tj,: ⊂ F̂:,:nI

. (118)

Since Jf (s
(ℓ)):,:nI

and Jf̂ (ŝ
(ℓ)):,:nI

have full column rank nI , T(s(ℓ)) must have a non-zero deter-
minant. Otherwise, it would follow that the rank of T(s(ℓ)) is less than nI , which would imply a
contradiction that Jf̂ (ŝ

(ℓ)):,:nI
= Jf (s

(ℓ)):,:nI
T(s(ℓ)) has a column rank less than nI .

The determinant of the matrix T(s(ℓ)) can be represented as its Leibniz formula as

det(T(s(ℓ))) =
∑

σ∈SnI

(
sgn(σ)

nI∏
i=1

T(s(ℓ))i,σ(i)

)
̸= 0, (119)

where SnI
is the set of nI -permutations. Thus, there is at least one term in the sum that is non-zero,

i.e.,

∃σ ∈ SnI
, ∀i ∈ {1, . . . , nI}, sgn(σ)

nI∏
i=1

T(s(ℓ))i,σ(i) ̸= 0, (120)

which is equivalent to

∃σ ∈ SnI
, ∀i ∈ {1, . . . , nI}, T(s(ℓ))i,σ(i) ̸= 0. (121)

Then we can conclude that this σ is in the support of T(s) since s(ℓ) ∈ s. Therefore, it follows that

∀j ∈ {1, . . . , nI}, σ(j) ∈ Tj,:. (122)

Combined with Eq. (118), we have

∀(i, j) ∈ F:,:nI
, (i, σ(j)) ∈ {i} × Tj,: ⊂ F̂:,:nI

. (123)

Denote
σ(F:,:nI

) = {(i, σ(j)) | (i, j) ∈ F:,:nI
}. (124)

Then we have
σ(F:,:nI

) ⊂ F̂:,:nI
. (125)

Because of the sparsity regularization on the estimated Jacobian, we further have

|F̂:,:nI
| ≤ |F:,:nI

| = |σ(F:,:nI
)|. (126)

Together with Eq. (125), it follows that

σ(F:,:nI
) = F̂:,:nI

. (127)

Suppose T(s) ̸= DI(s)
−1

PI
−1, then

∃j1 ̸= j2, Tj1,: ∩ Tj2,: ̸= ∅. (128)
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Additionally, consider j3 ∈ {1, . . . , nI} for which

σ(j3) ∈ Tj1,: ∩ Tj2,:. (129)

Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. Based on Assumption iv, there
exists Cj1 ∋ j1 such that

⋂
i∈Cj1

Fi,:nI
= {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,:nI
, (130)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,:nI

. (131)
Since j1 ∈ Fi3,:nI

, we have (i3, j1) ∈ F:,:nI
. Therefore, according to Eq. (118), we have

{i3} × Tj1,: ⊂ F̂:,:nI
. (132)

Note that σ(j3) ∈ Tj1,: ∩ Tj2,: implies

(i3, σ(j3)) ∈ {i3} × Tj1,:. (133)

Then by Eqs. (132) and (133), we have

(i3, σ(j3)) ∈ F̂:,:nI
. (134)

This implies (i3, j3) ∈ F:,:nI
by Eqs. (124) and (127), which contradicts Eq. (131). Therefore, we

have proven by contradiction that T(s) = DI(s)
−1

PI
−1. By replacing T(s) with DI(s)

−1
PI

−1 in
Eq. (113), we obtain Eq. (112), which is the goal.
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B Experiments

In this section, we describe the experimental settings as well as some additional results.

B.1 Supplementary experimental settings

To produce observational data that meets the required assumptions for different models, we simulate
the sources and mixing process as follows:

UCSS. To ensure that the true nonlinear mixing process adheres to the Structural Sparsity condition
(Assumption ii in Thm. 3.1), as per previous work (Zheng et al., 2022), we generate observed variables
in a structured way: Each observed variable is only a nonlinear mixture of its direct ancestors. For
instance, if the observed variable x1 has parents s1 and s2, then x1 = f1(s1, s2). We use Generative
Flow (GLOW) (Kingma and Dhariwal, 2018) with a projection layer as the nonlinear function fi. The
difference between GLOW and GIN is that GLOW does not impose a constraint on the determinant
of the Jacobian, thus being more suitable for the general nonlinear function since it has less inductive
bias. The implementation of GLOW is a part of FrEIA1 (Ardizzone et al., 2018-2022).

The ground-truth sources are sampled from a multivariate Gaussian, with zero means and variances
sampled from a uniform distribution on [0.5, 3], which are of the same values as in previous works
(Khemakhem et al., 2020a; Sorrenson et al., 2020; Zheng et al., 2022). It is worth noting that we
sample sources from a single multivariate Gaussian so that all sources are marginally independent,
unlike from most previous works assuming conditional independence given auxiliary variables.

Mixed. For the Mixed model, we partition sources into sI and sD. For sources in sI , we sample them
in the same way as that for UCSS. For sources in sD, we sample them from 2nD + 1 multivariate
Gaussian distributions as required by Assumption ii in Thm. 4.4. Similarly, these multivariate
Gaussian distributions are of zero means and variances sampled from a uniform distribution on
[0.5, 3]. For sources in sI , we generate their influences on the observed variables in a structured way
described above to satisfy the partial sparsity assumption (Assumption iv in Thm. 4.4); for sources in
sD, we remove the constraint on the structure and permit each source to affect all observed variables.

Base. For the Base model, following (Sorrenson et al., 2020), we use GLOW (Kingma and Dhariwal,
2018) as the mixing function to generate the data. The sources are from a single multivariate
Gaussian distribution with zero means and variances uniformly sampled from the interval [0.5, 3].
No constraints on the structure have been imposed for the Base model.

In the evaluation of our model, we utilize the Mean Correlation Coefficient (MCC) as a metric for
assessing the correspondence between the ground-truth and recovered latent sources. The MCC is cal-
culated by first determining the pair-wise correlation coefficients between the true sources and the re-
covered sources after a nonlinear component-wise transformation learned by regression. Subsequently,
an assignment problem is solved to match each recovered source with the corresponding ground-truth
source that exhibits the highest correlation. MCC is a widely accepted metric in the literature for
measuring the degree of identifiability, accounting for component-wise transformations (Hyvärinen
and Morioka, 2016). Our results are all based on 20 trials, each with a different random seed.

For the synthetic datasets used in our experiments, the sample size is 2000. The parameters used for
training include a learning rate of 0.01 and a batch size of 200. Additionally, the number of coupling
layers for both GIN and GLOW is set as 10. In regard to the "Triangles" dataset, it comprises 60, 000
32× 32 images of drawn triangles. The statistics of the dataset are described in (Yang et al., 2022).
For the experiments conducted on this dataset, the learning rate is set at 3×10−4 and the batch size is
100. Concerning the EMNIST dataset, it includes 240, 000 28× 28 images of real-world handwritten
digits. The learning rate and batch size used for these experiments are 3× 10−4 and 240, respectively.
The experiments are conducted directly using the official implementation of GIN2(Sorrenson et al.,
2020) with an additional sparsity regularization term on the Jacobian of the estimated mixing function.

1https://github.com/vislearn/FrEIA
2https://github.com/VLL-HD/GIN
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B.2 Supplementary experimental results

In this section, we delve deeper into the applicability of our results by offering additional empirical
studies that further illuminate the implications of the proposed theory. Specifically, we focus on the
following aspects: (1) the effect of different regularization terms on the performance of identification;
(2) the applicability of the theory as illustrated by additional real-world examples.

3 4 5 6
Number of sources

0.78

0.80

0.82

0.84

0.86

M
CC

1
MCP
SCAD

Figure 8: MCC of UCSS w.r.t. different sparsity
regularizations and numbers of sources.

Regularization. For the regularization term,
directly utilizing the ℓ0 penalty may be compu-
tationally infeasible as it results in a discrete
optimization problem. To overcome this issue,
we adopt the ℓ1 regularizer, which has been
extensively studied in the literature for high-
dimensional support recovery, particularly for
variable selection (Wainwright, 2009) and Gaus-
sian graphical model selection (Ravikumar et al.,
2008). The usage of ℓ1 regularizer induces spar-
sity in the solution; however, it may also intro-
duce bias which can negatively affect the perfor-
mance (Fan and Li, 2001; Breheny and Huang,
2011). This is because the ℓ1 norm penalty also
penalizes both small and large entries, unlike the ℓ0 norm which remains constant for nonzero entries.
To remedy this bias issue, we explore alternative penalties, such as the smoothly clipped absolute
deviation (SCAD) penalty (Fan and Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010),
which can be interpreted as hybrids of ℓ0 and ℓ1 penalties. Additionally, we note that the support
recovery of the ℓ1 penalty is based on the incoherence conditions in various cases (Wainwright, 2009;
Ravikumar et al., 2008, 2011), which may be restrictive in practice, whereas the SCAD and MCP
penalties do not rely on such conditions (Loh and Wainwright, 2017). Based on our experimental
results (Fig. 8), we adopt the MCP penalty as the regularization term.

EMNIST. To further demonstrate the generalizability of the proposed identifiability results, we
present identification results for all digits on the EMNIST dataset. As previously mentioned, we show
the recovered attributes with the top-4 singular values. From Fig. 9, it is clear that these attributes are
highly interpretable and appear to be the underlying concepts that influence the process of writing
digits by hand. This indicates the potential applicability of our assumptions in real-world scenarios.
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(a) Line thickness (b) Angle

(c) Upper width (d) Height

Figure 9: Results for all digit classes within the EMNIST dataset. We present the identified sources
with the top-4 standard deviations SDs. Each sub-figure represents a source identified by our model,
with its value varying from −4 to +4 SDs to illustrate its influence. The rightmost column presents a
heat map given by the absolute pixel difference between the −1 and +1 SDs. The interpretation of
these sources may correspond to line thickness, angle, upper width, and height, respectively.
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