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A Structural encoding and generalization of split-latent permutation loss

We observed a tendency in the SLP-AE model trained using only the split-latent permutation loss, in
which the model would simply learn identical latent spaces. We discussed how this tendency stems
from the information-propagation through one of the latents during training. Split-latent permutation
is trained using the self-reconstruction loss where one of the latents given as input to the decoder is
swapped with that of another sample where both samples either belong to the same task or the same
subject. Given that only one latent is swapped at a time, the model can learn a permutation-invariant
encoding of the signal not specific to either the subject or task content of the signal, and it could rely
on this information during (S.s., S.t.), (D.s., S.t.), (S.s., D.t.) conversion.

In this material we generalize the split-latent permutation using a quadruplet sampling method
instead to instances where the input sample and the reconstruction target (output sample) is not
the same, but which in special cases becomes identical to both the split-latent permutation and the
self-reconstruction loss.

During training we sample a batch of K quadruplets, {(X ,EA), X ,EB), X 20)7 X ,gD))}le. For each

k we choose two random subjects, Uy, and Vj, and two random tasks, My, and Ny. The quadruplet
samples are sampled such that

X ,EA) has subject and task (Uy,, My,) ()
X,iB) has subject and task (V,, M) )
X has subject and task (U, Ny, 3)
X](CD) has subject and task (V}, Ni) 4)

Similar to the split-latent permutation, the encoding of these quadruplets should match and disentan-
gle the subject and task content into their respective latent spaces, such that a latent-swap between
two latents (which ideally encode the same information) has minimal impact on the reconstruc-
tion/conversion. With these quadruplets we can now generalize the split-latent permutation such that
both latents are swapped with latents from other samples which should encode the same information.
The samples encode the following latents

X encodes (25, 2Ty )
X( ) encodes (z,(f , IST b)) 6)
X ,EC) encodes ( (T <)y (7
X( ) encodes (z (s, d) (T d)) 8)
where
z,(gs’u) and z](cs’c) both ideally encode Uy, 9)
zl(f’b) and z,(cs’d) both ideally encode V}, (10)
z,(CT’a) and z,iT’b) both ideally encode M), (11)
z,gT’c) and z,(j’d) both ideally encode Ny (12)

All of these pairs of latents which ideally encode the same information are swapped in the generalized
split-latent permutation loss, which we will refer to as the quadruplet permutation loss (QP-loss).
With this full swap of latents, there is no direct path between the input sample and the output sample,
and the model is forced to encode the subject and task content into their respective latents. The
reconstructions are as follows

XM = Dy(259 2T b)) should reconstruct X\ (13)
X Dy(2t d) 7)) should reconstruct X\ (14)
X(C) Dy (2, (s, a) (T d)) should reconstruct X}gc) (15)
X, ()~ p, (z ) 2 (T “)) should reconstruct X IED) (16)
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Figure 1: Illustration of the quadruplet permutation loss. The quadruplet permutation loss is a generalization of
the split-latent permutation loss, where the latents are swapped in pairs such that there is no direct path between

the input sample and the reconstruction. The quadruplet permutation loss is illustrated with the quadruplet

(xM, x P x {9 xP)) where the latents are swapped such that z>** and 2> are swapped, and z{”

and inT,b) are swapped, etc., before decoding. This is done for all quadruplet samples yielding the quadruplet

permutation loss as the MSE loss between the input sample and the reconstruction.
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The swap of latents is illustrated in Figure

The quadruplet permutation loss is defined as

K
1 A o (A B (B c 5 (C D & (D
Lo = 7= 30 (10 = X+ 1 = XD+ 16 - %O+ X8 - X(7|3)
k=1
a7

The quadruplet permutation loss collapses to the split-latent permutation loss in some special cases.

When input samples X IEA) and X éc) are the same, then it becomes the same-subject permutation loss,

and when input samples X ,EA) and X ,gB) are the same, then it becomes the same-task permutation

loss. In the case where all input samples are the same, then the quadruplet permutation loss becomes
the self-reconstruction loss.

A.1 Quadruplet permutation loss results

We provide here results using the same training and testing setup as in the paper. We conduct an
ablation study on contrastive learning, latent-permutation and quadruplet permutation loss. The
following four models are trained in five repetitions each:

* SQP-AE: Quadruplet permutation loss only.

* CSQP-AE: Quadruplet permutation loss and contrastive loss in conjunction.

* SQLP-AE: Quadruplet permutation loss and latent-permutation loss in conjunction.

* CSQLP-AE: Quadruplet permutation loss, contrastive loss and latent-permutation loss in
conjunction.



Table 1: Single-trial balanced subject classification accuracy (S.acc%), task-on-subject classification accuracy
(THS.acc%), task classification accuracy (T.acc%), subject-on-task classification accuracy (SHT.acc%), and zero-
shot same-subject same-task ERP conversion MSE (S.s., S.t.), different-subject different-task ERP conversion
MSE (D.s, D.t.), different-subject same-task ERP conversion MSE (D.s., S.t.), same-subject different-task ERP
conversion MSE (S.s., D.t.). All ERP conversion MSE values have scales of 10~'*V?2. Epoch window was 1s.

Model S.acc% THS.acc% T.acc% SHT.acc% (S.s., S.t) (D.s, D.t) (D.s., S.t.) (S.s.,D.t)

CSQLP-AE  76.10 £0.76 4336+ 046 46.17£025 7647046 191+£0.08 690+£0.05 343£005 3.94+0.16
SQLP-AE  69.26 +0.50 46.86 +1.35 44.80+£0.77 69.60 025 1.48+0.05 6.44+0.03 2.87+0.10 297 +0.05
CSQP-AE  73.04 £0.50 35.89+042 4483 +£021 71.56+£0.64 620+0.12 7.00£0.08 6.60£0.11 6.59+0.10
SQP-AE 73.444+0.33 43924029 48.88+0.13 7042+039 558+0.07 649+0.04 6.07£004 599 +0.06

CSLP-AE 80.32 +0.28 4541 +0.37 4848 £0.34 79.64 £037 421+0.12 20.06+£0.10 580=£0.15 6.6540.23
SLP-AE 74.63 £0.74 4723 +031 47.00£ 032 7470+£0.73 3.82+0.04 1992+0.10 6.12£0.09 5.0240.08

C-AE 79.42 4048 3734+ 045 4659 +£023 7327 +£025 4284+0.06 2028 +£0.07 11.33 £047 10.64 £ 0.30

Here we see that the quadruplet permutation loss degrades performance on subject classification
accuracy considerably, but with similar performance on task classification accuracy. We also see that
the (D.s., D.t.) conversion loss now is on the same level as (D.s., S.t.) and (S.s., D.t.) conversion for
the models without latent permutation. Adding the latent-permutation, although it introduces the
structural encoding pathway to the model again, considerably decreases both (S.s., S.t.) conversion
compared to CSLP-AE and SLP-AE from the paper.

We provide ¢-SNE [l [14} 20] plots of the generalized models here and the CSLP-AE model from the
paper in Figure Furthermore, we provide (D.s., D.t.) conversion examples in Figure [2b]for the
generalized models and the CSLP-AE model from the paper.

The SQP-AE model achieves specialized latent spaces with disentangled subject and task content as
evident from the ¢-SNE plots in Figure[Za] Notably, the latent space is similar to the CSLP-AE model,
but using simply the quadruplet permutation loss. In this sense, the quadruplet permutation loss is
similar to the contrastive loss in that it encourages the model to learn a disentangled latent space
while also directly learning all conversion schemes. Further research could focus on this quadruplet
permutation loss and its relation to the contrastive loss. We view it as a contrastive loss that relates
input samples to the output sample (the reconstruction), i.e. an auto-encoder contrastive loss, whereas
a standard contrastive loss operates in the latent space itself. When we add the latent-permutation
loss back to the model, we see that the structural encoding property occurs again in the SQLP-AE
model, while the CSQLP-AE model does not have this property due to the contrastive loss used
in specializing the latent space. Therefore, the SQP-AE model might be most comparable to the
CSLP-AE model from the paper, as it both optimizes for conversion and latent disentanglement.
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Figure 2: (a) t-SNE plots of split-latents as encoded on the test set (unseen subjects), colored by true labels.
Rows show subject and task latent spaces, respectively, while columns indicate models CSLP-AE, SQP-AE,
CSQP-AE, SQLP-AE, and CSQLP-AE respectively. (b) (D.s., D.t.) converted ERPs from the same five models
for a random target subject and target paradigm. All latents used in conversion were from unseen subjects on the
test set, i.e. unseen to unseen conversion.



A.2 Smoothness, disentanglement and conversion

In this section we will discuss how we can modify and guide the latent space to achieve the desired
conversion. Meta-priors are auxiliary priors which, when present, can relieve strain on the model and
provide guidance for the model to learn good representations.

Given the ith pair of input samples (X ¢, X?), we use the encoder (Ep) to split the latent space into

two parts yielding (z,?s*“), zl(T’a)) and (zi(s’b), zi(T’b)). These two input samples have some factor in

common, e.g. they are samples from the same task, and as such, we would like the latent space to be
locally smooth, i.e. zi(T’a) ~ Z-(T’b) since they should encode the same task content (information)
and a swap should have minimal effect on the output in the ideal conversion case. This can be thought
of as the smoothness meta-prior proposed by Bengio et al. [2] where a representation should be
invariant to local perturbations. Here the local perturbations are the other factors of variance in the
data which do not belong to the given latent space, e.g. the subject variability in the case of the
task latent space, for which we desire these representations to be invariant to. This is illustrated in
Figure [3| where the desired property is the task content of the signal and the other factor of variation
is the subject variability.

Disentangled and smooth Disentangled and not smooth

/Shm‘t Swap

Entangled and smooth Entangled and not smooth

Long swap
Medium swap

Figure 3: Illustration of latent space with and without the disentanglement and smoothness meta-priors present.
Here colors denote the desired property of the latent space (e.g. the task content of the signal) and the shapes
denote another factor of variation in the data (e.g. subject variability in the case of desired property task content)
The disentangled and smooth latent space is the goal of the meta-priors. It is possible to perform conversion in
the disentangled and not smooth latent space, however, there is a strain on the decoder since it might need to
map multiple regions of the latent space to the same output. Smoothness itself is not enough as shown in the
entangled and smooth latent space since there is no way to distinguish between classes in the conversion.

This is a property we wish to achieve by using the latent-permutation loss where we first encode a
pair of samples

Bo(X2) = (25, 27 (18)
S,b) (T,b)) (19)



and then swap the latents corresponding to the desired property of the latent space, here the task
latents, such that the reconstructed samples become

X(T,a) _ Dd)( S,a)7z(7'.,b)) (20)

% zi( %
X7 = Dy(z5, 27) 1)

)

the latent-permutation loss used to guide the smoothness meta-prior is then the reconstruction loss
between the input sample and the reconstructed sample

N
“ 1 o  w(La & (L,b
Lip(LiX2 XD = 53 (Il = ZEP3 + Xt - XEV)) @)
in this case the desired property is the latent space and the loss becomes

N
1 A A
Lop(T: X7, X0 = 5 3 (I1X = XT3+ %2 - X703) (23)
i=1

Consider the first term of the sum in Eq. where we have the Lo-norm between the input sample
X and the reconstructed sample X i(T’a). When local smoothness is obtained then

2T 270 (24)

which then implies that
Dy(2(, 2") % Dy(2(, 27") (25)
X7 ~ X0 (26)

as this local approximation in Eq. 1D becomes more accurate where D¢(z§5’a), z,§T’a)) =X s
the self-reconstruction. This means that the reconstruction loss between the input sample and the

reconstructed sample becomes

a (T ,a a )
X - XT3 ~ | xg - X213 @7)
(28)

Therefore, as local smoothness becomes more exact, as achieved by a consistent encoder and decoder,
the latent-permutation loss approximates the self-reconstruction loss, i.e. the default auto-encoder
reconstruction loss.

However, the local smoothness meta-prior is not enough to achieve the desired conversion, and a
trivial solution where all latents are identical is a possible outcome of this smoothness meta-prior.
Therefore, we need to introduce a disentanglement method to ensure that the latents are not identical.
We do this by introducing contrastive learning to specialize each latent space. This is beneficial in the
following ways: (a) it ensures that the latents are not identical, i.e. different classes of the desired
property are represented by different groupings/clusters of latents, and (b) contrastive learning itself
provides in-cluster smoothness as the similarity between samples in the same class is maximized.



B Conversion schemes

B.1 Conversion schemes in-depth

Given the kth sample X, with corresponding task ¢ and subject sy, from the test set, we can encode
the samples into task and subject latents

S) (T
Eo(Xi) = (22,27 vke{1,...,N} (29)
where z,(cs) and z,(CT) are the kth subject and task latents respectively. We can then use these latents to
perform conversion using the conversion method described in the paper. Using different conversion
schemes we can produce different levels of abstraction from the input sample by choosing which
latents we sample from depending on a target task and subject class.

Conversion is only valid if the latents correspond to input samples from the same subject and task
class as the target subject and task class.

For this purpose, given target subject and task label o and y respectively, a valid conversion pair of
subject and task latents can be sampled from the test set in the following proposed ways:

(T) (8)

Same subject, same task (S.s., S.t.): 2z, " where ty =y A sy = 0,2, wherety =y Asx =0
Same subject, different task (S.s., D.t.): z,(CT) where t, = v A s, = o, z,is) where ty, Y Asy =0
Different subject, same task (D.s., S.t.): z,(CT) where t, = v A sk # o, z,is) where t, =y A sk =0

Different subject, different task (D.s., D.t.): z,gT) where tr, = v A s # 0, z,is) where ty, ZYAsy =0

where k is the index of the sample in the test set, z,(:—) and z,(cs) are the kth task and subject latents
respectively. In the results we sample IV of valid pairs for a given conversion scheme. The effect of

the number of samples used in the construction of a converted ERP is analyzed in Section[B.2}

The conversion schemes are illustrated in Figure 4]
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Figure 4: The four different conversion schemes. The colors represent the subject of the latent, and the shapes
represent the task of the latent. Each input sample has both a subject and task latent. The marked regions (red
ellipse) indicate the latents from the target task or subject condition, while the directly marked latents (red
outline) represent the latents from the condition scheme. The target task and subject conditions are the same for
all conversion schemes because the latents need to be valid for conversion. The target task is represented by
triangle shape and the target subject is represented by blue color. The conversion schemes differentiate between
using latents from the same or different out-of-space target. For example, in the (S.s., D.t.) conversion scheme,
since the target subject is blues, we only sample from the region in the subject latent space that corresponds to
blues. Additionally, the D.t. conversion notation means that we only sample from latents that are not the target
subject, which in this case is every shape but the triangles. Since the target task is triangles, we only sample
from the region in the task latent space that corresponds to triangles. Furthermore, the S.s. conversion notation
means that we only sample from latents that are the same as the target task, which in this case is the blue latents.
So, from the subject latent space, we sample latents that are blue but not triangles, and from the task latent space,
we sample latents that are both triangles and blue in the (S.s., D.t.) conversion scheme.
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B.2 Number of samples for latent pair sampling

In this section we show the effect of the number of samples /N used for sampling the latent pairs for
conversion. We show the results for the C-AE, SLP-AE, and CSLP-AE models for all conversion
schemes. The results are shown in Figure[5] We see that the conversion loss decreases as the number
of samples increases. However, the decrease is not very significant for N > 1000 samples. We
choose N = 2000 samples for the experiments in the paper. The ERP conversion loss provided here
is the mean of the conversion loss across all subject and paradigm combinations on the test set for
each conversion scheme and for a given number of latent pair samples V.

ERP Conversion Loss for each conversion scheme

le—11 (S.s., S.t.) le—11 (S.s., D.t.)
" —— CSLP-AE XS \’V
3 SLP-AE I
S 1.21 S 3.5
) - ..
< —— C-AE <
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Figure 5: Mean ERP conversion loss across all subject and paradigm combinations on the test set for each
conversion scheme. Note that the x-axis is not linear.
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C CheckKlist of items to include in a DL-EEG study

We fill in a checklist of items to include in a DL-EEG study as proposed and provided by Roy et al.
[L9].

C.1 Data

* Number of subjects: 40 in total; 15 male, 25 female, mean age and SD 21.5 & 2.87, age
range 18-30. All had normal color perception, normal/corrected-to-normal vision, no history
of neurological injury/disease indicated by self-report. For more details, see Kappenman
etal. [12]].

* Electrode montage including reference(s): International 10/20 System with 30 scalp
electrodes. Single-ended mode without the use of a reference. Channels were referenced
offline to the average of EEG P9 and EEG P10 for the MMN, N2pc, N400, P3, LRP and
ERN component paradigms, and to the EEG average for the N170 paradigm. For more
details, see Kappenman et al. [12]].

* Shape of one example: 256 samples x 30 channels.
* Data augmentation technique: None.

* Number of examples in training, validation and test sets: In total: 49943 examples in
training set, 7161 examples in evaluation (validation) set, and 14485 examples in test set. 28
subjects in training set, 4 subjects in evaluation (validation) set, and 8 subjects in test set.

C.2 EEG Processing

* Temporal filtering: Before digitization all signals were low-pass filtered using a 5th order
sinc filter, 204.8 Hz half-power cutoff. After digitization and down-sampling all signals
were high-pass filtered using a non-causal Butterworth impulse response function, 0.1 Hz
half-amplitude cut-off, and 12 dB/oct roll—offﬂ

* Spatial filtering: None.
¢ Artifact handling techniques: None.
* Resampling: Digitized at 1024 Hz with 24 bits. Downsampled to 256 Hz.

C.3 Neural network architecture

* Architecture type: Autoencoder with residual CNNs and transformer bottleneck. Split
latent space.

* Number of layers: 69 layers in total. 3 layers per ConvBlock. 4 layers per transformer.
24 layers in encoder: 1 input convolution, 5 ConvBlocks, 4 strided convolutions, and 1
transformer. 21 layers in bottleneck: 7 ConvBlocks. 24 layers in decoder: 1 transformer, 5
ConvBlocks, 4 transposed convolutions, and 1 output convolution. Illustrated in Figure 1 in
the paper.

* Number of learnable parameters: ~ 10 million in total. ~ 5 million in encoder (including
pre-latent space bottleneck). ~ 5 million in decoder (including post-latent space bottleneck).

C.4 Training hyperparameters

* Parameter initialization: All layer initialization is done using the default PyTorch package
[L6] initialization methods. Convolutions are initialized using He initialization [[11]. The
linear layers of the transformer are initialized using Glorot initialization [8]]. The learned
temperature-scales for similarity matrices in the contrastive loss were initialized to 75 =

~ 14.2857143 and 71 = = ~ 14.2857143 following the implementation of Radford

1
0.07 0.07

etal. [18ﬂ
"Procedure after digitization available here: https://github.com/lucklab/ERP_CORE/blob/master/
N400/N400%20Analysis%20Procedures.pdf| Note: we only used Script #1 of this procedure.

“Their  initialization is  available  here: https://github.com/openai/CLIP/blob/
a9b1bf5920416aaeaec965c25dd9e8f98c8641f16/clip/model . py#LL295C65-L295C65/ Note: the
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* Loss function: Latent permutation, contrastive loss, autoencoder reconstruction loss, super-
vised cross-entropy.

* Batch size: 256.

* Number of epochs: 200.

* Stopping criterion: None.

* Regularization: None.

* Optimization algorithm: Adam optimizer [13].

* Learning rate schedule and optimizer parameters: Learning rate cosine annealing starting
at 100th epoch with a final divide-factor of 10. Learning rate starts at 7o = 1.0 x 10~* and
ends at np = 1.0 x 107°. Running average coefficients were 3; = 0.9 and 8> = 0.999.
Epsilon was € = 1.0 x 1078,

 Values of all hyperparameters for the results that are presented in the paper:

— Number of channels per layer: 256.

Latent dimension: 64.

Number of downsampling layers: 4.

Latent example size: 22%6 X 64 = 16 x 64. Where 16 is the time-resolution in the latent
space and 64 is the number of channels. The effective latent size was 16 x 64 = 1024.
Loss weights: All losses were weighed equally (by 1).

e Hyperparameter search method: Non-critical hyperparameters were found during devel-
opment by performance on the evaluation set (validation). Critical hyperparameters; latent
dimension size and number of repeated time-resolution downsamples in the encoder and
decoder, were validated on the evaluation set (validation) using grid-search.

C.5 Performance and model comparison

* Performance metrics: Balanced classification accuracy, ERP Conversion loss and ¢-SNE
plots in the paper. Per-subject and per-task F1-score, precision, recall provided here in
supplementary materials, together with confusion matrices and training/test ¢-SNE plots.
Paradigm classification repurposed from task-classification also reported here in supplemen-
tary.

* Type of validation scheme: 5-fold stratified cross-validation on unseen subjects.

* Description of baseline models: All models used the same autoencoder model architecture
with split latent spaces, although some models did not have a decoder. CSLP-AE used same-
task and same-subject latent permutation in conjunction with subject and task contrastive loss.
SLP used same-task and same-subject latent permutation. C-AE used standard autoencoder
reconstruction loss in conjunction with subject and task contrastive loss. CL used subject and
task contrastive loss (and no decoder). CE used supervised task and subject cross-entropy
loss (and no decoder). CE(t) used supervised task cross-entropy loss (and no decoder).
C-AE was considered the baseline for solving the conversion problem using contrastive
learning and auto-encoders.

parameter is initialized as the logarithm, and when the similarity matrices are scaled the exponential is used to
constrain the parameter to the positive numbers domain.
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D Data and training

D.1 Model overview

Here is provided a quick overview of the models used in the paper. All models used the same
architecture and hyperparameters except the common spatial pattern (CSP) method [4] [15] which
used no model.

CSLP-AE: Contrastive split-latent permutation over both subjects and latents (L1 p(S;, ),
Lrp(T;+)s Leure(S;+, ) and Leuwe (75, )

SLP-AE: Split-latent permutation over both subjects and latents (Lpp(S;-,-) and
Lip(T;-0)

C-AE: Contrastive over both subjects and latents and the default auto-encoder reconstruction
loss (Lerp(S; -y ), Leue (T +, +) and self-reconstruction loss)

AE: Default auto-encoder reconstruction loss (self-reconstruction loss)

CL: Contrastive learning with no decoder (Lcpp(S; -, -) and Lepp(T 5, +))

CE: Supervised cross-entropy with no decoder (supervised cross-entropy loss in both latent
spaces)

CE(t): Supervised cross-entropy with no decoder (supervised cross-entropy loss in the task
latent space)

CSP: Common spatial pattern [4} [15] using the multi-class generalization from Grosse-
Wentrup and Buss [10] trained to discriminate on tasks, where latent-space from transform
into “CSP space” is used as the task-latent space.

D.2 Data, training and evaluation details

We use the ERP Core dataseﬂ from Kappenman et al. [[12] providing a standardized ERP dataset con-
taining data from 40 subjects across six different tasks based on seven widely used ERP components:

N170: Face Perception Paradigm

Mismatch Negativity (MMN): Passive Auditory Oddball Paradigm
N2pc: Simple Visual Search Paradigm

N400: Word Pair Judgement Paradigm

P3: Active Visual Oddball Paradigm

Lateralized Readiness Potential (LRP): Flankers Paradigm
Error-related Negativity (ERN): Flankers Paradigm

However, since the N170 paradigm used a different offline reference than the other paradigms,
we excluded it from the data set. We extracted epochs according to the time-locking events from
Kappenman et al. [12] yielding two ERP components per paradigm.

We wanted to perform minimal pre-processing on the data, and as such we only followed the ERP
procedure in Script #1 of each ERP component, i.e. up until [CA preparatimﬂ since ICA preparation
and artifact rejection requires expert knowledge. Following this procedure we pre-process the data as

follows:

Shift the event codes of paradigms with LCD monitor delay by 26 ms
Downsample from 1024 Hz to 256 Hz
Re-reference to P9 and P10 for all included paradigms

Create bipolar HEOG and VEOG channel from HEQG_left - HEOG_right and
VEOG_lower - FP2 respectively

*ERP Core info: https://erpinfo.org/erp-core. Data available at: https://osf.io/thsqg/

4See the full ERP Core procedure here: https://github. com/lucklab/ERP_CORE/blob/master/ERN/
ERN720Analysis’,20Procedures.pdf
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e Remove DC offsets

* Apply high-pass filter (non-causal Butterworth impulse response function, half-amplitude
cutoff at 0.1 Hz, 12 dB/oct roll-off)

* Normalization using the per-channel mean and standard deviation over all examples
Following the pre-processing we split the data into a training set, an evaluation (validation) set
and a test set based on subjects, such that the training set had 70% (28 subjects) of the data, the

evaluation (validation) set had 10% (4 subjects) and the test set had 20% (8 subjects). The subjects
were distributed across the data sets as follows

* Training set: {1, 2,3,6,8,9, 10, 11, 12, 13, 16, 17, 18, 19, 21, 24, 25, 28, 30, 31, 32, 34, 35,
36, 37, 38, 39, 40}

* Evaluation (validation) set: {4, 7, 27, 33}

» Test set: {5, 14, 15, 20, 22, 23, 26, 29}

with total samples across the data sets as follows

* Training set: 49943 examples
* Evaluation (validation) set: 7161 examples

* Test set: 14485 examples
The ERP component distribution across all samples was as follows

* ERN/Correct: 14083

* ERN/Incorrect: 1679

* LRP/Contralateral: 3160

» LRP/Ipsilateral: 3860

e MMN/Standards: 23270

* MMN/Deviants: 7967

* N2pc/Ipsilateral: 2790

* N2pc/Contralateral: 2835

* N400/Related: 2237

* N400/Unrelated: 2260

» P3/Rare: 1340

* P3/Frequent: 6108
Notice the class-imbalance between MMN/Standards and MMN/Deviants and to other components
as well. We performed undersampling in the cross-validation procedure to account for this.

All models used the same architecture as described in the paper with the following hyperparameters:

* Number of downsampling blocks: 4

* Latent dimension size: 64

* Channels: 256

* Softmax Temperature: Initialized as ~ 14.29 for models using contrastive loss
The encoder had ~ 5 million parameters and the decoder had ~ 5 million parameters, for a total of
~ 10 million parameters.

The models were all trained using the PyTorch package [16l] and logging was done using the Weights
& Biases MLOps platfornE] [3]. The models were trained on a single NVIDIA A100 GPU (Nvidia
Corporation, Santa Clara, CA, USA) with 40 GB of memory. In total ~ 600 total GPU hours were

*Main site: https://wandb.ai/site
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used for training, with ~ 100 GPU hours for the main results provided in the paper. One model takes
about 2 hours to train on a single A100 GPU.

The training procedure used the following hyperparameters:

* Batch size: 256
* Epochs: 200
* Optimizer: Adam [13] with learning rate 0.001

* Learning rate scheduler: Cosine annealing scheduleﬁ] with a div_factor=10 starting at
epoch 100

* Loss weighting: Equal weighting across all losses

It is worth mentioning that the notion of epochs used here is fluid since the dataset was sampled
from instead of exhaustively traversed. An epoch was counted as the number of times the model was
trained on a number of samples equal to the size of the dataset. Since the same-task batch construction
requires two samples for each task, it is expected that the underrepresented classes are repeated more
than the overrepresented classes.

For models using supervised cross-entropy a softmax layer (a linear-layer with softmax activation)
was applied before the loss function. For models using contrastive loss the softmax temperature
is a learned parameter which was initialized as ~ 14.29 following the implementation of Radford
et al. [18ﬂ The value is initialized as the logarithm and the exponential is taken before scaling the
similarity matrix to constrain it to the positive numbers domain.

During training some loss methods required special batch construction while some did not. For
methods not requiring a special method we simply sampled a batch of examples from the training set.
For methods requiring special batch reconstruction we sampled from the training set with conditions
as follows:

* Same-task permutation and task latent space contrastive loss: A pair of examples is
sampled from each task class to yield Ny pairs of examples, where #7" is the number of
unique tasks in the training set. Each pair has a different task class. The batch size is then
N. #T X 2.

* Same-subject permutation and subject latent space contrastive loss: A pair of examples
is sampled from each subject class to yield N4 g pairs of examples, where #.S is the number
of unique subjects in the training set. Each pair has a different subject class. The batch size
is then Nyg x 2.

Given batch size B, to match the batch size of the other methods we then complete | B/(Nyr X 2)|
or | B/(Ngs x 2)| of such batch cosntructions, where the loss is now the mean over the inner-
batch and then the mean over the outer-batch. In this case where there are 28 different subjects
in the training set, the batch size for special subject batch construction is achieved by performing
[256/(28 x 2)| = 4 batch constructions. There are 12 different tasks in the training set and so the
batch size for special task batch construction is achieved by performing |256/(12 x 2)] = 10 batch
constructions.

During training the models were evaluated on the evaluation set every epoch using a simple stratified
train/test-split of the dataset with a 20% test ratio. The training split was undersampled using the least
represented class of the set. A XGBoos [5] classifier was trained on the training split to classify
tasks and evaluated on the test split to yield the task classification accuracy.

Once training was complete, the models were evaluated on the test set. Here two 5-fold crossvalida-
tions were performed, one for the subject latents and one for the task latents. This is illustrated in

Figure[6]

Shttps://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
CosineAnnealingLR.html

'Their  initialization is  available  here: https://github.com/openai/CLIP/blob/
a9b1bf5920416aaeaec965c25dd9e8£98c864f16/clip/model . py#LL295C65-L295C65

*Documentation: https://xgboost.readthedocs.io/en/stable/python/python_api.html#
xgboost.XGBClassifier
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Figure 6: Illustration of the two cross-validations performed for each latent space.

Evaluation was performed by first encoding every sample in the test set yielding a subject and task
latent for each example. The subject latent crossvalidation was stratified on subjects and the task
latent crossvalidation was stratified on tasks. In each crossvalidation the training split of the fold
was undersampled according to the least represented class of the set. Two XGBoost classifiers were
trained on the training split of each crossvalidation fold to classify subjects and tasks respectively
and evaluated on the test split to yield the subject and task classification accuracy respectively on
each latent space. From this we obtain subject classification on subject latents, task classification
on subject latents, subject classification on task latents, and task classification on task latents. We
used the balanced accuracy metricﬂ from the scikit-learn package [17] to account for the class
imbalance in the dataset. This is equivalent to the average of the per-class recall.

The XGBoost classifier had the following hyperparameters:

* n_estimators: 300

* max_bin: 100

* learning_rate: 0.3

e grow_policy: depthwise

* objective: multi:softmax

* tree_method: gpu_hist
The CSP method used the following hyperparameters:

* cov_est: epoch
* n_components: 16
* norm_trace: True
* reg: shrinkage

* shrinkage: 0.1

We used the MNE Package [9] implementation of CSPH

Both sets of hyperparameters for the CSP and XGBoost methods were found using the Bayesian
optimization sweep implementation of the Weights & Biases MLOps platfomﬂ [3] on the evaluation
(validation) set.

We provide the task classification accuracies on the evaluation (validation) set during training in
Figure[7]

“Documentation:  https://scikit-learn.org/stable/modules/generated/sklearn.metrics,
balanced_accuracy_score.html

"https://mne.tools/stable/generated/mne.decoding.CSP.html

""Main site: https://wandb.ai/site Bayesian Optimization sweep: https://docs.wandb.ai/
guides/sweeps
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Figure 7: Task classification accuracy progression on evaluation (validation) set over training for all deep
learning models. The standard deviation over the five repeats is illustrated as the corresponding area around the
mean.

D.3 Additional datasets

EEG Motor Movement/Imagery Dataset We used the raw waveform data from the EEGMMI
dataset using only a 3 second epoch window similarly to [21]. We used the same training and
evaluation methodology as for the ERP Core for the EEGMMI dataset using a train/test/validation
split with the following division of subjects:

 Training set: {1, 2,4,5,6,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 28,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57,
59,62, 63,64, 69,71, 73,74,75,717,79, 82, 83, 84, 85, 86, 90, 93, 94, 97, 98, 99, 102, 103,
104, 105, 107, 109}

* Validation set: {23, 24, 27, 52, 61, 68, 72, 78, 80, 87}
» Testset: {3, 7,29, 42, 43, 48, 58, 60, 65, 66, 67, 70, 76, 81, 91, 95, 96, 101, 108}

The samples had 3 seconds duration at a sampling rate of 160 Hz, and we therefore needed to use five
blocks instead of four to match the latent dimension of ERP Core models. The models were run to
convergence for 800 epochs. No other tweaks were made to conform the framework to this dataset.

No data-specific hyperparameter tuning was performed here, and all hyperparameters, except the
number of blocks, were reused from the ERP Core models.

Sleep-EDF Expanded Database Since the SleepEDFx dataset contains a limited number of EEG
channels, we only considered a single EEG channel and applied a short-time Fourier transform to
fit the data to the same setup as used for ERP Core. We have employed the conventional 30s time
series windows with associated sleep stage labels as common in the sleep stage literature (as well as
being the conventional clinical procedure). The single channel EEG time information sampled at 100
Hz is transformed using a 128-point short-time-Fourier transform with a 100-point window size and
15-point step size.

We applied our framework (from the ERP Core setup) “as is” with the following minor modifications:
To match the latent dimension of the models from ERP Core, we opted to only use three blocks
instead of four and resized the latent dimension’s temporal resolution from 64 to 40 to end up with
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latents of size 25 x 40 compared to the ERP Core models which had 16 x 64 latents. Finally, these
models were only run for 50 epochs.

Instead of using a train/test/dev split evaluation method, we performed a 5-fold cross-validation
where we trained a new model with the same architecture on each fold. For each fold, however, we
used the first seven subjects for run-time validation.

No data-specific hyperparameter tuning was performed here, and all hyperparameters, except the
number of blocks, were reused from the ERP Core models.
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E Impact of latent dimension and number of blocks

In this material we provide a surface-level grid search for the latent dimension size and the number
of layers in the encoder downsample block. We provide results with half the latent dimension and
double the latent dimension of the default model. We also provide results with two less and two
more layers than the default model. The latent dimension size is the number of channels for each
time step in the latent representation. The number of layers is the number of downsample blocks in
the encoder, which subsequently determines the time resolution of the latent representation. Here
the time resolution is reduced by 2Niers where Nayers is the number of layers. As such, the size
of the latent representation i Lefrsize = Clatent X Tlatent Where Claen 1 the latent dimension size,
Thatent = 256/ 2Ners {5 the time resolution and Leg i is the effective size of the latent representation.

The metric of comparison is the task classification accuracy on the evaluation (validation) set of the
data. A cross-validation is not performed here, but rather a simple train/test split of the data to yield a
training portion and a testing portion. We used a 20% test split ratio.

It is worth noting that the largest latent representations here (Claent = 128 and Niayers = 2) had an
effective size of Legrgie = 8192 that is larger than the input sample size, 30 x 256 = 7680.

Some models did not converge/diverged/failed to train yielding a degenerate model. These models
were excluded from the grid search results. The results are shown in Table 2] and Figure[8]

Latent dimension seemed to have little to no overall effect on the task classification accuracy on the
evaluation (validation) set, whereas Ni,yers = 4 had the best performance of the three values tested.

Table 2: Grid search results for latent dimension and number of blocks in terms of task classification accuracy.
N/A indicates degenerate model. Bold denotes the best set of latent dimension and number of downsampling
blocks per model.

Latent Dim 32 64 128
Model Num Layers

44.58 44.13 45.71
54.76 51.69 54.01
50.39 51.19 48.99

35.64 36.69 3991
48.72 47.50 54.63
N/A N/A N/A

42776 43.46 44.46
53.05 52.11 55.04
47.37 45.61 48.67

29.22 30.65 32.63
33.64 35.41 34.73
N/A 1528 24.81

CSLP-AE

SLP-AE

C-AE

AE

[N SN (ST e W S S e L =2 Y S
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Task Accuracy vs. Num Layers
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Figure 8: Grid search results for latent dimension and number of layers. Degenerate models were excluded. (a)
Task accuracy vs. number of layers for models with latent dimensions of 32, 64, and 128. (b) Task accuracy vs.

latent dimension for models with 2, 4, and 6 layers.
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F Additional results

F.1 Per-subject and per-task results

In this material we provide per-subject and per-task F1-scores, precision, and recall from the cross-
validation on the test set, and (S.s., S.t.) conversion error, (S.s., D.t.) conversion error, (D.s., S.t.)
conversion error, and (D.s., D.t.) conversion error sampled from the test set with N = 2000. See
Section [B.2] for an analysis of how this parameter affects the conversion error.

In the below result tables sem denotes the standard error of the mean over the five repeats.

Table 3: Per-subject single-trial F1 score (%) from cross-validation on unseen subjects (test data)

name CE(t) CE CL AE C-AE SLP-AE CSLP-AE
mean 42.75 79.20 78.73 60.28 79.20 74.46 80.15

all

sem 070 039 052 026 0.51 0.92 0.30
g5 Mmean 54.77 81.28 81.56 69.76 80.40 78.62 83.45
sem 070 0.79 073 0.63 1.09 0.71 1.22
gl4 Mean 38.93 85.61 8548 60.15 87.47 83.98 86.04
sem .18 1.14 083 125 0.70 3.27 0.47
g15 mMmean 38.92 7529 79.26 58.33 78.04 70.10 77.68
sem 0.70 0.67 131 0.63 2.04 1.15 0.74
gpo mMmean 35.32 70.01 70.18 49.01 70.14 64.99 71.61
sem 070 0.69 060 054 1.18 0.98 0.79
gyp Mean 50.65 79.68 77.74 66.28 80.01 8241 80.84
sem 0.74 041 098 0.58 0.69 0.75 0.33
gp3 mMmean 50.15 80.98 77.68 68.67 77.40 77.57 80.57
sem 085 1.14 048 029 129 0.38 0.63
g Mmean 41.54 91.43 91.32 63.79 91.82 76.12 92.15
sem 0.88 0.73 040 048 043 0.89 0.24
gpg mMmean 31.74 69.36 66.66 46.31 68.36 61.99 68.92
sem 093 098 149 029 0.63 0.93 0.80
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Table 4: Per-task single-trial F1 score (%) from cross-validation on unseen subjects (test data)

name CSP CE(t) CE CL AE C-AE SLP-AE CSLP-AE

all mean 36.90 50.80 49.74 5091 30.38 52.46 52.26 53.31

sem 009 016 026 044 024 024 024 023
ERN/Income | Mean 2180 4247 4080 3862 23.11 4117 4442 46.19
sem 014 078 057 045 024 065 095 0.97
ERN/Cormect mean 59.70 89.00 87.76 88.61 4273 8943 8933 91.17
sem 043 044 029 030 068 017 036 031
LRP/Contralaterg  M€AN 2605 4655 4258 4289 2692 4519 4090 4477
sem 082 040 088 062 043 071 057 1.16
LRP/Ipsilateral TN 2045 4675 4474 4632 2697 4751 4527 4878
sem 063 117 057 058 059 099 022 0.67
MMN/Devians | Mean 2387 3013 2080 30.64 2206 3092 3214 3128
sem 025 008 041 022 034 058 030 0.48
mean 3845 4931 4822 50.17 33.64 52.09 5229 5175
MMN/Standards (0" "o'4s 030 052 074 070 066 068 021
N2pe/Contralateral e 2852 3221 3274 3308 2421 3510 3657 3743
sem 016 132 080 149 050 037 055 1.30
Nopoflpsilateral | Mean 3091 2922 2829 3191 2006 3624  32.99 35.21
sem 047 049 038 112 030 076 095 1.12
mean 19.19 24.97 2542 2707 1895 2998  28.00  31.23
N400/Unrelated (/™ 527 T091 085 095 059 0.69 0.74 1.30
mean 21.90 27.30 2592 2833 1747 2787 2855 29.63
N400/Related sem 054 0338 073 088 065 048 059 0.48
P3/Rare mean 1691 23.04 22.890 2326 13.84 2470 2613 2548
sem 0.6 056 087 080 076 087 086 0.64
p3/Frequent mean 32.14 4120 40.62 39.75 24.93 41.65 4142 4485
sem 050 108 054 126 092 102 03l 121

Table 5: Per-subject single-trial precision (%) from cross-validation on unseen subjects (test data)

name CE(t) CE CL AE C-AE SLP-AE CSLP-AE
mean 42.85 79.17 78.770 60.43 79.17 74.47 80.15

all

sem 0.70 039 053 028 0.51 0.92 0.30
g5 mean 55.30 81.92 81.68 71.19 80.56 79.34 83.46
sem 095 054 096 1.03 1.06 0.63 1.06
gl4 Mean 39.49 8391 83.07 60.66 84.87 81.64 83.77
sem 1.08 1.09 095 149 0.66 3.28 0.50
gy5 Mean 40.30 75.59 7990 56.22 77.19 69.67 76.74
sem 0.66 071 135 049 181 0.97 0.99
gy Mean 3345 72.15 71.68 49.35 7351 64.55 74.94
sem 0.59 057 084 061 096 1.02 0.58
gpp Mean 48.30 79.57 78.78 61.74 81.12 79.97 81.62
sem 092 042 080 043 041 0.67 0.42
gp3 Mean 5043 81.66 76.84 71.34 76.37 78.39 79.82
sem 052 1.08 051 029 1.02 0.56 0.68
gpe Mean 4296 88.50 88.12 63.72 89.18 77.33 89.26
sem 1.17 080 056 081 0.63 0.72 0.30
gpg Mean 32.54 70.09 69.56 49.05 70.69 64.97 71.60
sem 1.05 078 1.13 0.17 048 0.74 1.08
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Table 6: Per-task single-trial precision (%) from cross-validation on unseen subjects (test data)

name CSP CE() CE CL AE C-AE SLP-AE CSLP-AE
Al mean 4596 5736 5679 5732 3947 5835  58.63 59.03
sem 013 011 019 035 025 023 021 027
ERN/Incomee | Mean 1352 2870 2728 2585 1483 2795 3042 3236
sem 012 071 047 039 014 050 08l 0.82
ERN/Cormect mean 73.19 96.13 9540 96.85 57.62 97.09  96.61 97.29
sem 054 029 017 027 046 008 033 0.14
LRP/Contralatergl  M€AN 2255 4235 3839 4051 2215 43.08 3724 4229
sem 074 035 089 059 037 033 040 1.42
LRP/Ipsilateral M0 2300 4371 4105 4505 2274 4584 4184 4667
sem 065 113 059 078 049 117 055 0.72
MMN/Devians | Mean 2140 2424 2422 2385 2032 2412 2581 24.42
sem 025 007 027 019 039 041 015 0.40
mean 61.78 6842 68.68 66.88 5659 67.82 7050 6831
MMN/Standards (0" 047 004 026 041 062 035 035 0.44
N2pe/Contralateral e 2447 2932 2963 30.79 1929 3388 3363 35.40
sem 010 1.11 089 154 042 045 087 1.17
Nopollpsilateral TN 2523 2575 2498 2849 1577 3252 2058 32.00
sem 037 039 034 082 029 077 083 0.91
mean 15.03 2096 2088 2371 1443 2619  24.13 27.46
N400/Unrelated (0" "5 075 062 093 052 0.65 0.78 1.30
mean 16.56 2377 2176 25.67 1323 2632 2470 2737
N400/Related sem 054 034 049 095 052 063 039 0.61
P3/Rare mean 11.15 16.56 1631 16,79 8.87 18.10  18.80 18.85
sem 014 036 069 062 047 053 071 0.56
p3/Frequent mean 3600 5034 49.67 51.54 2690 5211 5224 5497
sem 047 103 081 155 087 135 050 1.48

Table 7: Per-subject single-trial recall (%) from cross-validation on unseen subjects (test data)

name CE(t) CE CL AE C-AE SLP-AE CSLP-AE
o] mean 42779 79.32 7890 60.38 79.38 74.58 80.32
sem 0.69 039 051 026 0.51 0.93 0.32
g5 mean 54.35 80.70 81.47 68.47 80.30 71.97 83.50
sem 051 1.17 057 034 121 0.79 1.48
gl4 Mean 38.43 87.41 88.05 59.75 90.26 86.48 88.49
sem .30 1.19 071 1.11 0.84 3.27 0.80
gy5 Mean 37.70 75.03 78.68 60.67 78.97 70.61 78.70
sem 079 065 140 085 2.28 1.34 0.75
gy Mean 3743 68.04 68.79 48.73 67.11 65.49 68.60
sem 0.84 0.89 057 062 1.46 1.07 1.07
gpp Mean 53.30 79.83 76.76 71.60 78.99 85.05 80.13
sem 0.63 051 120 0.85 1.11 1.04 0.72
gp3 Mean 4993 80.38 78.59 66.23 78.51 76.82 81.37
sem 1.25 143 057 037 1.65 0.46 0.65
gpe Mean 40.27 94.58 94.79 63.93 94.66 74.98 95.26
sem 0.71 065 025 040 032 1.14 0.31
gpg Mean 31.03 68.69 64.06 43.92 66.28 59.40 66.54
sem 0.86 1.18 1.86 045 1.06 1.30 0.87
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Table 8: Per-task single-trial recall (%) from cross-validation on unseen subjects (test data)

name CSP CE(t) CE CL AE C-AE SLP-AE CSLP-AE

all mean 34.31 48.70 47.57 48.72 2826 50.37 50.18 51.38

sem 009 016 027 041 021 025 022 0.24
ERN/Incorme €N 5665 8220 8145 7675 5259 78.54  83.07 81.10
sem 051 125 121 110 089 093 085 0.75
ERN/Cormect mean 5047 82.87 8127 81.69 34.00 8292  83.10 85.79
sem 045 066 051 048 079 035  0.66 0.48
L RP/Contralatergy €8N 3105 5190 4797 4572 3445 4774 4555 4777
sem 101 069 107 080 063 135 082 1.03
LRP/Ipsilaeral T 3122 5040 4930 4782 3331 4955 4947 51.20
sem 060 127 060 042 076 104 048 0.81
MMN/Devians €80 2711 3985 3881 4296 2421 4316 4266 4357
sem 035 035 071 042 032 105 065 0.60
mean 27.99 38.57 37.21 4023 2397 4237  41.63 4171
MMN/Standards (0" To'43 T032 055 0.88 061 088 079 0.24
N2pe/Contralateral e 3438 3588 3683 3621 3258 3656 4028 39.96
sem 028 1.62 081 185 066 048 065 177
Nopoflpsilateral | Mean 4011 3397 3274 3647 2773 4122 3744 39.42
sem 087 072 066 169 029 106 111 1.54
mean 2671 3125 32.60 3177 27.72 3526 3356  36.39
N400/Unrelated (" '35 138 124 098 071 1.07 0.69 1.32
mean 3252 3224 3225 31.85 2589 2981  34.09 32.43
N400/Related sem 065 083 121 091 091 066 103 043
P3/Rare mean 3533 38.00 38.51 38.17 31.66 3935  43.11 39.83
sem 059 119 114 153 18 192 112 0.98
p3/Frequent mean 29.09 34.98 3449 3252 2328 3482 3438 38.06
sem 055 112 046 112 097 086 034 125

Table 9: Per-subject zero-shot (S.s., S.t.) ERP conversion error ( 1071*V?) on the test data
name AE C-AE SLP-AE CSLP-AE

] Mean 3.54 428 3.82 4.21
sem 0.14 0.06 0.04 0.14
g5 Mmean 9.04 12.29 10.13 10.48
sem 0.34 0.59 0.17 0.61
g4 Mean 0.77 1.11 1.17 1.13
sem 0.01 0.03 0.05 0.02
gy5 Mmean 036 0.57 0.56 0.65
sem 0.01 0.01 0.01 0.02
gpo Mean 111 1.71 1.30 1.51
sem 0.05 0.09 0.03 0.05
gyp Mmean 0.62 0.78 0.84 0.86
sem 0.02 0.02 0.01 0.02
gp3 Mmean 13.52 13.99 13.35 15.31
sem 0.66 0.76 0.23 0.72
gog Mean 1.51 1.98 1.56 1.92
sem 0.06 0.12 0.06 0.08
gpg Mmean 141 1.80 1.65 1.81
sem 0.02 0.03 0.05 0.01

25



Table 10: Paradigm zero-shot (S.s., S.t.) ERP conversion error (10~ '*V?) on the test data
name AE C-AE SLP-AE CSLP-AE

all mean 3.54 428 3.82 421
sem 014 006 004 0.14
mean 6.39 7.31 6.73 7.74
ERN em 027 021 013 0.15
mean 1.13 1.50 1.33 1.70
LRPem 007 005 002 0.06
mean 0.81 1.10 0.95 0.99
MMN m 005 004 001 0.02
N2pe mean 1.24 1.73 1.71 1.95
PC sem 003 0.04 0.04 0.01
mean 7.51 8.70 7.81 7.96
N400 v 026 018 0.9 0.38
P3 mean 4.17 5.34 4.37 4.90
sem 017 018  0.06 0.30

Table 11: Per-subject zero-shot (S.s., D.t.) ERP conversion error (10~V?2) on the test data
name AE C-AE SLP-AE CSLP-AE

] Mean 11.20 11.33 6.12 5.80
sem 0.35 0.53 0.10 0.17
g5 Mmean 2320 24.23 14.26 13.18
sem 0.50 1.48 0.12 0.70
g14 Mean 1.48 1.87 1.51 1.25
sem 0.03 0.08 0.06 0.03
g15 Mean 1.19  1.69 1.01 0.93
sem 0.06 0.07 0.03 0.05
gy Mmean 421 5.08 3.53 2.90
sem 021 035 0.12 0.14
gpp Mean 148 1.90 1.22 1.18
sem 0.10 0.08 0.04 0.03
gp3 Mmean 49.70 46.55 23.21 22.98
sem 1.80 2.46 0.61 0.93
gog Mean 6.35 6.82 2.20 2.00
sem 0.28 0.31 0.07 0.08
gpg Mean 201 252 2.04 1.95
sem 0.02 0.09 0.04 0.06
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Table 12: Paradigm zero-shot (S.s., D.t.) ERP conversion error (10~ V?) on the test data
name AE C-AE SLP-AE CSLP-AE

L mean 1120 1133 612 5.80
sem 035 053  0.10 0.17
ppy Mean 2456 2306 9.98 10.04
sem 095 121 025 027
LRP mean 5.89 5.95 2.74 2.97
sem 028 039 0.9 0.11
mean (.80 1.13 1.05 0.95
MMN cm 004 004 003 0.03
Nppe mean 238 304 249 2.15
sem 005 008 005 0.05
mean 19.03 1999  13.00 11.64
N400 e 050 080 020 0.40
py  mean 1456 1474 748 7.03
sem 041 087 030 035

Table 13: Per-subject zero-shot (D.s., S.t.) ERP conversion error (10~V?2) on the test data
name AE C-AE SLP-AE CSLP-AE

] Mean 10.74 10.64 5.02 6.65
sem 0.54 034 0.08 0.25
g5 Mean 21.99 23.75 12.94 14.43
sem 1.28 0.84 0.23 0.91
g14 Mean 1.71 1.77 1.23 1.37
sem 0.08 0.07 0.03 0.05
g15 Mean 1.09 0.95 0.58 0.66
sem 0.05 0.04 0.01 0.01
gpo Mean 3.57 3.78 1.64 3.22
sem 022 0.19 0.08 0.07
gyp Mmean 0.89 1.00 0.82 0.93
sem 0.03 0.04 0.01 0.02
$23 mean 45.01 42.18 18.22 27.47
sem 221 192 0.43 1.03
gog Mean 8.84 8.88 2.62 2.35
sem 046 0.37 0.08 0.11
gpg Mean 278 2.82 2.11 2.74
sem 0.08 0.08 0.04 0.02
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Table 14: Paradigm zero-shot (D.s., S.t.) ERP conversion error (10~ V?) on the test data
name AE C-AE SLP-AE CSLP-AE

all mean 10.74 10.64 5.02 6.65
sem 054 034 008 025

mean 2330 2291  8.09 9.13

ERN em 126 106 0.9 043
LRP mean 4.83 5.14 2.10 3.26
sem 032 034  0.06 0.10

mean 291 2.28 1.20 2.13
MMN cm 017 016 001 0.14
N2pc mean 3.12 344 2.68 3.12
P€ cem 0.18 0.18 0.06 0.08
mean 17.18 1743 1015 1275

N400 e 074 023 015 0.52
py  mean 1307 1264 590 9.48
sem 060 033 0.2 0.58

Table 15: Per-subject zero-shot (D.s., D.t.) ERP conversion error (10_11\/2) on the test data
name AE C-AE SLP-AE CSLP-AE

mean 20.82 20.28 19.92 20.06

all

sem 0.08 0.08 0.11 0.11
g5 Mmean 42.07 40.50 35.94 39.50
sem 0.54 0.39 0.17 0.58
g14 Mean 2.68 298 3.74 3.12
sem 0.06 0.13 0.11 0.05
gy5 Mmean 233 252 4.28 2.74
sem 0.03 0.07 0.09 0.09
gpo Mean 8.32 9.06 11.67 9.93
sem 0.09 0.20 0.07 0.24
gyp Mmean 233 263 4.32 2.73
sem 0.10 0.12 0.12 0.07
gp3 Mmean 89.47 85.50 81.26 82.72
sem 0.38 0.57 0.67 0.50
gog Mean 15.72 15.29 13.79 15.44
sem 0.11 0.07 0.03 0.32
gpg Mmean 3.64 3.74 4.37 4.29
sem 0.04 0.13 0.04 0.08
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Table 16: Paradigm zero-shot (D.s., D.t.) ERP conversion error (10~'*V?) on the test data
name AE C-AE SLP-AE CSLP-AE

mean 20.82 20.28 19.92 20.06

all

sem 008 008  0.11 0.11
ERN mean 46.84 45.46 44 .67 44.03
sem 022 026 033 0.54
gp mean 1150 1143 1182 11.47
sem 008 007 012 0.09
mean 2.76 2.17 1.65 4.07
MMN cm 017 015 006 025
N2pe mean 4.97 5.23 5.53 5.79
sem 0.0 0.3 003 0.11
mean 31.56 31.07 3026 29.74
N400 e 014 020 013 0.16
py  mean 2728 2631 2562 25.26
sem 011 029 0.5 0.09
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F.2 Confusion matrices

In this material we provide confusion matrices as the summary of the predictions of each fold in the
cross-validation, i.e. through the cross-validation each sample in the test-set is predicted once (by
leaving it out in one of the folds), the confusion matrices below are the sum over all these prediction
and normalized by true instances of the label (row-wise normalization). In more technical terms:
we train the classifier on the train-split of a fold and then predict on the test-split of a fold, these
predictions on each fold are then concatenated and the confusion matrix is simply created from the
concatenated predictions and normalized row-wise.

We did not train any classifiers to directly classify paradigm. Instead we repurposed the task-
predictions such that ERP-components from the same paradigm were relabelled to a paradigm label,
i.e. ERN/Incorrect and ERN/Correct predictions and truth labels were all relabelled to just ERN,
etc. This is equivalent to simply summing over the task confusion matrix with 2 x 2-block patches.
Note: the classifier was not directly trained on paradigm-classification, and therefore, this might
not be the most useful or accurate representation of the paradigm content of the latent since most of
the misclassifications were in-paradigm, i.e. the classifier had a hard time distinguishing between
in-paradigm ERP components. However, it is clear that task (ERP-component) classification is much
harder than paradigm classification.

AE AE AE
Subject 10 Task 10 Paradigm 10
Balanced Accuracy: 60.08% Balanced Accuracy: 32.17% Balanced Accuracy: 46.86%
5 JI0.03 0,06 0,06 0,04 0,04 0,05 0.0 ERN/Incorrect JJ0.060.090.050,030,030.040.050.020.010.03.0.01 e =
0.8 ERN/Correct 0.0 10.030.030.070.080.060.05.0.04.0.05.0.120.07 0.8 : : : g : 0.8
S14 004@0.06009008 0.03 0.03 0.07
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LRP4 0.11 0.16 0.07 0.07 0.05
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3 ] ] 011 014 010 0.0 0.09
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$ 522 {0.01 0.06 0.05 0.080.02002004 & N2pc/Contralateral 0050.0500400005005 1 0230.080040050.04 8 iope T ol
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526 40.03 0.03 0.08 0.07 0.02 007006 N40O/Related -0.040.050.050.040.05 0,06 0.07 0.06 0,14 0.250.110.09
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Figure 9: Confusion matrices on the cross-validation of the test set for the AE model. Left: Subject classification.
Middle: Task classification. Right: Repurposed task- to paradigm-classification

CL CL CL
Subject 10 Task 10 Paradigm 10
Balanced Accuracy: 77.20% Balanced Accuracy: 46.54% Balanced Accuracy: 72.34%
ERN/I  J5§0:240.000.000.000.000.000.000.000.000.000.00]
[¥:4 0.00 0.02 0.06 0.02 0.06 0.01 0.02 /incarrec ™ 000 000 000 000 0.00
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_ 06 -  MMN/Deviants -0.000.000.020.02/) 10.:400.020.010.020.020.010.02 0.6 _ 0.6
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= 04 B N2pcfipsi 2 0.14 OGN 0.07 0.08
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i 0.5 (60 5 B 0_000 0 N400/Related 0.000.000030.020.050.040.030070.180.330.130.11 : : . : :
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0.07 0.12 0.18 JUCI)
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222838 8 8 EE R R R g &8 g § 8 ¢
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Figure 10: Confusion matrices on the cross-validation of the test set for the CL model. Left: Subject classifica-
tion. Middle: Task classification. Right: Repurposed task- to paradigm-classification
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Figure 11: Confusion matrices on the cross-validation of the test set for the CE model. Left: Subject classifica-

tion. Middle: Task classification. Right: Repurposed task- to paradigm-classification
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Figure 13: Confusion matrices on the cross-validation of the test set for the C-AE model. Left:
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Figure 14: Confusion matrices on the cross-validation of the test set for the SLP-AE model. Left: Subject
classification. Middle: Task classification. Right: Repurposed task- to paradigm-classification
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Figure 15: Confusion matrices on the cross-validation of the test set for the CSLP-AE model. Left: Subject
classification. Middle: Task classification. Right: Repurposed task- to paradigm-classification

F.3 Additional t-SNE plots

In this material we provide ¢-SNE plots [} 14} 20] on the training and test set. For each set (training
or test) we run t-SNE on each latent space (subject or task latent space) and then we color each of
these either by subject or task.

We end up with training set subject latent space colored by subjects, training set subject latent space
colored by tasks, training set task latent space colored by tasks, and training set task latent space
colored by subjects. These are available in Figure [T6] Furthermore, we provide test set subject
latent space colored by subjects, test set subject latent space colored by tasks, test set task latent
space colored by tasks, and test set task latent space colored by subjects. These are available in
Figure[I7} All ¢-SNE applications used perplexity=30 and the Barnes-hut approximation using the
scikit-learn implementatiorﬂ [17]. All initializations used random_state=1968125571. We
used the default parameters of the scikit-learn implementation since these were found to give
good clustering on the evaluation (validation) set.

2Documentation  here: https://scikit-learn.org/stable/modules/generated/sklearn,
manifold.TSNE.html
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Figure 16: t-SNE plots of the subject and task latent space of each model on the training data colored by both subject and task. Legend on the right corresponds to each row. Note that
the subject latent space for the CE(t) model is not trained (it is part of the model architecture, but no losses backpropagate through it)
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Figure 17: t-SNE plots of the subject and task latent space of each model on the test data colored by both subject and task. Legend on the right corresponds to each row.
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G Other classifiers

In Tablewe provide cross-validation results using multiple classifiers, here XGBoos (5, KN
[6], and ExtraTrees E] [7]. The K-nearest neighbor classifier and ExtraTrees classifier were trained
using the scikit-learn [17] package.

For K -nearest neighbor classification we used K = 15 and cosine distance as the distance metric to
match the similarity metric used in the contrastive loss.

For ExtraTrees we used n_estimators=200, max_features=0.2, max_depth=60,

and

class_weight="balanced". These were chosen by using the Bayesian optimization sweep imple-
mentation of the Weights & Biases MLOps platfor [3]]. The hyperparameter search was done over
the evaluation (validation) set.

Table 17: Results using other classifiers on the test data. Best classifier and model is marked in bold.

XGBoost [3]] KNN [6] ExtraTrees [7]]
S.acc% T.acc% S.acc% T.acc% S.acc% T.acc%

CSLP-AE 80.32 4+ 0.28 48.10 + 0.32 72.65 £ 0.69 44.66 £ 0.55 72.18 +0.35 46.55 +0.37
SLP-AE  74.63 +0.74 47.00 + 0.32 59.08 +£ 0.16 45.84 + 0.03 60.30 + 1.00 45.71 +0.17
C-AE 79.42 +0.48 46.59 +0.23 71.21 +0.63 43.85 £ 0.29 72.09 £+ 0.53 45.58 £ 0.25
AE 60.68 +£ 0.16 31.43 +0.28 60.76 4= 0.38 29.86 = 0.35 41.53 £ 0.22 26.24 +0.24
CL 78.82 £ 0.46 45.36 +0.37 71.53 +0.59 43.75 +0.35 73.05 £+ 0.64 44.88 + 0.25
CE 79.25 £0.37 45.22 £ 0.23 75.18 £ 0.48 43.39 £ 0.82 73.48 £ 0.46 44.76 4 0.22
CE(t) - 45.80 £0.24 - 43.00 4+ 0.60 - 45.38 +£0.27

BDocumentation: https://xgboost.readthedocs.io/en/stable/python/python_api.html#

xgboost .XGBClassifier

"*Documentation: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

“Documentation: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble,
ExtraTreesClassifier.html

'®Main site: |https://wandb.ai/site Bayesian Optimization sweep: https://docs.wandb.ai/
guides/sweeps

35


https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://wandb.ai/site
https://docs.wandb.ai/guides/sweeps
https://docs.wandb.ai/guides/sweeps

H Conversion examples

In this material we provide examples from ten random pairs of target subject and target paradigms
realized using the C-AE, SLP-AE, and CSLP-AE models over all conversion method schemes. Since
the subjects are different in the training set and test set, five random subjects from the training set and
five random subjects from the test set were chosen with corresponding random paradigms. These are
all sampled using N = 2000 samples from the conversion scheme.

H.1 Conversion examples for train data (seen subjects)

(S.s., S.t.) conversion on Train set
Target Subject: 40, Target Paradigm: ERN, Channel: FCz
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(S.s., D.t.) conversion on Train set
Target Subject: 40, Target Paradigm: ERN, Channel: FCz
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Figure 18: Example ERPs for Train set, Target Subject: 40, Target Paradigm: ERN, Channel: FCz.
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Target Subject: 34, Target Paradigm: N2pc, Channel: PO7
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Figure 19: Example ERPs for Train set, Target Subject: 34, Target Paradigm: N2pc, Channel: PO7.
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(S.s., S.t.) conversion on Train set (S.s., D.t.) conversion on Train set
Target Subject: 38, Target Paradigm: LRP, Channel: FCz Target Subject 38 Target Paradigm: LRP, Channel: FCz
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Figure 20: Example ERPs for Train set, Target Subject: 38, Target Paradigm: LRP, Channel: FCz.
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Figure 21: Example ERPs for Train set, Target Subject: 2, Target Paradigm: MMN, Channel: FCz.

(S.s., S.t.) conversion on Train set (S.s., D.t.) conversion on Train set
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Figure 22: Example ERPs for Train set, Target Subject: 11, Target Paradigm: MMN, Channel: FCz.
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H.2 Conversion examples for test data (unseen subjects)

(S.s., S.t.) conversion on Test set
Target Subject: 26, Target Paradigm: ERN, Channel: FCz
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Figure 23: Example ERPs for Test set, Target Subject: 26, Target Paradigm: ERN, Channel: FCz.
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Figure 24: Example ERPs for Test set, Target Subject: 15, Target Paradigm: MMN, Channel:

(S.s., S.t.) conversion on Test set
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Figure 25: Example ERPs for Test set, Target Subject: 22, Target Paradigm: P3, Channel: Pz.

38



(S.s., S.t.) conversion on Test set (S.s., D.t.) conversion on Test set
Target Subject: 20, Target Paradigm: LRP, Channel: FCz Target Subject: 20, Target Paradigm: LRP, Channel: FCz
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Figure 26: Example ERPs for Test set, Target Subject: 20, Target Paradigm: LRP, Channel: FCz.
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Figure 27: Example ERPs for Test set, Target Subject: 29, Target Paradigm: P3, Channel: Pz.
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