
Idempotent Learned Image Compression with
Right-Inverse

Yanghao Li, Tongda Xu, Yan Wang∗, Jingjing Liu, Ya-Qin Zhang∗
Institute for AI Industry Research (AIR), Tsinghua University

liyangha18@mails.tsinghua.edu.cn, wangyan@air.tsinghua.edu.cn

Abstract

We consider the problem of idempotent learned image compression (LIC). The
idempotence of codec refers to the stability of codec to re-compression. To achieve
idempotence, previous codecs adopt invertible transforms such as DCT [Wallace,
1991] and normalizing flow [Papamakarios et al., 2021]. In this paper, we first
identify that invertibility of transform is sufficient but not necessary for idem-
potence. Instead, it can be relaxed into right-invertibility. And such relaxation
allows wider family of transforms. Based on this identification, we then implement
an idempotent codec using our proposed blocked convolution and null-space en-
hancement. Empirical results show that we achieve state-of-the-art rate-distortion
performance among idempotent codecs. Furthermore, our idempotent codec can
be extended into near-idempotent codec by relaxing the right-invertibility. And
this near-idempotent codec has significantly less quality decay after 50 rounds of
re-compression compared with other near-idempotent codecs.

1 Introduction

Learned Image Compression (LIC) has been widely studied in recent years [Ballé et al., 2017, 2018,
Minnen et al., 2018, Cheng et al., 2020, Minnen et al., 2020, He et al., 2021, 2022] and has shown
promising rate-distortion (RD) performance. However, the loss caused by re-compression is much
more severe in LIC compared with traditional codec, which seriously limits the practical application
of LIC [Kim et al., 2020]. In this paper, we study the idempotence of LIC, which refers to the stability
of codec to re-compression. More specifically, denote the original image as x, the encode-then-decode
procedure as f(·), and the reconstructed image as f(x), we say a codec is idempotent if:

f(x) = f(f(x)). (1)

For traditional codecs such as JPEG [Wallace, 1991] and JPEG2000 [Taubman et al., 2002], idempo-
tence is easily achieved. This is because those codecs adopt invertible transforms such as Discrete
Cosine transform (DCT) and Discrete Wavelet transform (DWT). And the only non-invertible oper-
ation is the scalar quantization. As scalar quantization using rounding is naturally idempotent, the
idempotence of the whole codec can be easily assured. For LIC, however, neural-network-based
transform is introduced for expressiveness. And as most neural networks are non-invertible, the
idempotence of LIC is not trivial.

A natural solution to this problem is replacing the non-invertible encoding transform with invertible
ones. [Helminger et al., 2021] construct the encoding transform with only invertible normalizing flow
[Papamakarios et al., 2021]. However, due to the limited expressiveness of invertible operations, a
dramatic RD performance drop is observed. Another line of works are targeted at near-idempotence,
which means that they achieve a small |f(x) − f(f(x))|, but not f(x) = f(f(x)). These works

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

adopt partially invertible encoding transform [Cai et al., 2022] or use additional regularization loss
[Kim et al., 2020] to constrain re-compression loss, but none of them is able to achieve idempotence
like JPEG and JPEG2000.

In this work, we �rst identify that invertibility is suf�cient but not necessary for idempotent codecs.
Instead, it can be relaxed into right-invertibility, and such relaxation allows for more �exible and
expressive encoding transforms. Based on this observation, we investigate practical implementation
of right-inverse, and propose a highly ef�cient blocked convolution to overcome the forbidding
time complexity of right-inverse. Additionally, we leverage the null space decomposition [Schwab
et al., 2019, Wang et al., 2022a,b] to further boost the expressiveness of the right-invertible encoding
transform. Empirically, we achieve state-of-the-art RD performance among existing idempotent
codecs. Further, our idempotent codec can be easily extended into a near-idempotent codec, which
also achieves state-of-the-art re-compression performance among near-idempotent codecs.

2 Suf�ciency of Right-Invertibility for Idempotence

Most modern LIC [Ballé et al., 2017, 2018, Cheng et al., 2020, He et al., 2022] are composed of
four components: the encoding transformE, the decoding transformD, the quantizationQ, and the
entropy model. On the encoder side, the encoding transformE transform the input imagex to some
latent representation, which is then quantized byQ to give the codey. The entropy model models the
entropy of codey, and is then used losslessly compressy to a bitstream, On the decoder side, the
received bitstream is losslessly decompressed to codey with the help of the entropy model. After
that, the decoding transformD transforms they to the decompressed̂x. This compress-decompress
procedure can be represented as

y = Q � E(x); x̂ = D(y): (2)

Note that the codey is losslessly encoded and decoded, regardless of how good the entropy model is.
Therefore entropy model does not in�uence the distortion, and is thus omitted for simplicity.

Using similar notations, the re-compression cycle can be represented as

yn = Q � E(xn � 1); xn = D(yn) = D � Q � E(xn � 1); (3)

wherex0 is the original image,yn is the code aftern times' re-compression, andxn is the corre-
sponding decompressed image. We say a codec is idempotent if and only if

xn = x1 = D � Q � E(x0); 8n � 1: (4)

An obvious suf�cient condition for idempotence (or for Eq. 4) is

D = E � 1: (5)

In other words,D andE are inverse of each other. Then, the only difference betweenx1 andxn is
the number of applications of quantization operationQ:

xn = D � Q � � � �E � D � Q � E(xn � 2) = ::: = D � Qn � E (x0): (6)

This re-compression procedure is idempotent as long asQ is idempotent. UsuallyQ is a scalar
quantization implemented by rounding, then this procedure is naturally idempotent. The invertibility
of encoding transform is satis�ed in traditional image codecs like JPEG and JPEG2000, and can
also be achieved using normalizing �ow [Helminger et al., 2021], thus these codecs are idempotent.
However, invertibility ofE (Eq. 5) is suf�cient but not necessary. We notice that forE � D in Eq. 6
to be canceled out, it is suf�cient to have

E � D(yi) = yi ; (7)

which is exactly the de�nition of right-invertibility.

Relaxing the requirement forE from invertibility to right-invertibility brings two advantages. On the
one hand, the family of right-invertible functions is much less constrained than the family of invertible
functions, which means we have wider choices forE and its easier to improve the expressiveness of
E . On the other hand, the suf�cient condition forE to be invertible is thatE is bijective, and the
suf�cient condition forE to be right-invertible is thatE is surjective [Mac Lane, 2013]. A surjective
E can transform different input imagesx into the same code to save the bits for distinguishing them,
while bijectiveE always transforms different input images into different codes. As later shown in the
experiment section 4.3, this bit saving property bene�ts the RD performance of lossy compression.

2

Figure 1: Right-Invertible Convolution. (a) Naïve convolution matrix (upper) and blocked convolu-
tion matrix (lower). (b) Receptive �eld pattern for the proposed blocked convolution. (c) Null-space
enhancement (NE) and coupling enhancement (CE) to improve expressiveness.

3 Practical Design of Right-Invertible Codec

In the previous section, we have shown that if an encoding transformE and quantizationQ are
right-invertible, we only need the decoding transformD to be the right-inverse ofE to formulate
an idempotent codec. Since the success of LIC is, to a large extent, owing to the expressive power
of the learned encoding and decoding transforms, our task becomes how to design an expressive
yet right-invertible encoding transform. As composition of surjections is still surjective [Mac Lane,
2013], this task can be further decomposed into designing small components of right-invertible
transforms and combining them altogether. Speci�cally, we construct the encoding transformE in a
composition form asE = En � En � 1 � ::: � E1, and make eachE i a right-invertible sub-transform.

This section is organised as follows: In Sec. 3.1-Sec.. 3.3, we discuss how to design expressive yet
right-invertible atom transforms used in LIC, such as convolution, normalization and quantization. In
Sec. 3.4, we discuss how to organize those atom transforms into an idempotent codec. And In Sec.
3.5, we discuss how to relax this idempotent codec into near-idempotent codec.

3.1 Ef�cient & Expressive Right-Invertible Convolution

Convolution is of great importance to LIC and makes up the majority of computation cost. Here,
we discuss how to implement right-invertible convolution with ef�ciency and expressiveness. The
overall design of right-invertible convolution is illustrated in Fig.1(c).

3.1.1 Blocked Convolution for Ef�ciency

The right-inverse of a convolution can be calculated in serial (if it exists), but the time complexity is
forbiddingly high. To see why, consider a 1-d convolution with kernel size 5, padding 2, stride 2, and
channel 1. The input and output arex = (x1; x2; :::; x12) andy = (y1; y2; :::; y6) respectively.

The serial solution of right-inverse goes as follows: �rst solve(x1; x2; x3) given y1, then solve
(x4; x5) giveny2 andalready solved(x1; x2; x3), and so on till the wholex is solved. This serial
solution cannot be made parallel because solving(x4; x5) needs(x1; x2; x3) to bealready solved,
and is thus extremely time-consuming. The fundamental reason for the dependency in solvingx is
that, somesamex i is involved in the forward calculation ofdifferentyi , i.e., the overlapping receptive
�eld. Therefore, if we make the receptive �eld non-overlapping, then parallel solution of right-inverse
becomes possible.

Inspired by the non-overlapping1 � 1 convolution for inverse [Kingma and Dhariwal, 2018], we
propose blocked convolution for right-inverse. Blocked convolution is also non-overlapping, but
extends invertibility to right-invertibility. As shown in Sec. 4.3, this extension boots the the R-D
performance of idempotent LIC by a large margin.

3

With this non-overlapping blocked convolution, we can make solution of right-inverse parallel.
Following the previous example, using the same input and output with a4 � 2 blocked-convolution
kernel, for now, solving(x1; :::; x4) only needs to know(y1; y2), and solving(x5; :::; x8) only needs
to know(y3; y4), and these procedures can be made parallel. Matrix multiplication equivalents of
normal convolution and blocked convolution are depicted in the upper and lower parts of Fig.1(a)
respectively, using the well-known GEMM [GEM] formation. And an analysis of time complexity of
2D convolution can be found in appendix A.1.

3.1.2 Null-Space Enhancement and Coupling Enhancement for Expressiveness

Null-Space Enhancement

To solve the right-inverse of the proposed blocked convolution in parallel, we adopt the widely-used
Moore–Penrose pseudo-inverse [Moo] as

X = Y K + ; (8)

whereY 2 Rb� d is the output of blocked convolution,X 2 Rb� D is the solved right-inverse, and
K + 2 Rd� D is the Moore-Penrose pseudo-inverse of the kernelK 2 RD � d. b is the batch size,D
andd are the input and output dimension of convolution in GEMM formation [GEM].

However, simple Moore-Penrose pseudo-inverse does not have enough expressiveness. This is
because right-inverse of a surjection might not be unique [Mac Lane, 2013], and the Moore-Penrose
pseudo-inverse might not be the optimal choice to calculate the right-inverse for blocked convolution.
Therefore, we leverage the null-space decomposition [Schwab et al., 2019, Wang et al., 2022a,b] to
identify a right-inverse that is most suitable. More speci�cally, Eq. 8 can be extended to

X = Y K + + F (I � KK +): (9)

HereF 2 Rb� D can be an arbitrarily chosen variable. Utilizing this property, we propose to learn a
functionf (Y) to identify anF that is the most suitable as:

X = Y K + + f (Y)(I � KK +): (10)

We call this approach null-space enhancement (NE). In this way, right-inverseX can be made more
than just linear transformation ofY and thus become more expressive. Ablation study of the proposed
null-space enhancement can be found in Sec.4.3. Derivation of Eq.9 and parameterization of kernel
K can be found in appendix A.2.

Coupling Enhancement

The proposed blocked convolution makes the calculation of right-inverse parallel-friendly, but it also
restricts the receptive �eld to a blocked pattern (Fig. 1(b)). This restriction limits the exchange of
information across different spatial locations. To overcome this drawback, we propose to introduce a
coupling enhancement (CE) after the blocked convolution.

Speci�cally, we implement a coupling structure [Dinh et al., 2016], and utilize normal convolutions
without blocked limitation as its scale and translation functions. This structure is formulated as

x = [x 1 x 2] ; y1 = x 1; y2 = x 2 � exp (s(x 1)) + t(x 1); y = [y1 y2] (11)

Here,x andy are the input and output, respectively.[�] is the split/concatenate operation along
the channel dimension, and� is the element-wise multiplication.s(�) andt(�) are the scale and
translation functions, respectively. This structure is fully invertible as

y = [y1 y2] ; x 1 = y1; x 2 = (y2 � t(x 1))=exp (s(x 1)) ; x = [x 1 x 2] (12)

Note that the invertibility of this coupling structure does not require the invertibility of the scale and
translation functionss(�) andt(�), thuss(�) andt(�) can be arbitrary learned transforms. Since the
proposed coupling enhancement utilize normal convolutions as itss(�) andt(�), its receptive �eld is
not restricted to be blocked, and can thus serve as an enhancement of expressiveness.

3.2 Right-Invertible Generalized Divisive Normalization

The widely-used generalized normalization (GDN)[Ballé et al., 2015] in LIC is invertible in theory,
and is thus quali�ed as a surjection. However, the inverse of GDN has to be solved for every input

4

Figure 2: Comparison between (a) baseline framework [Ballé et al., 2018] and (b) proposed
framework. To make the framework idempotent, we replace conv/deconv with right-invertible
convolution (described in Sec. 3.1), GDN/iGDN with c-GDN (described in Sec. 3.2), and quantization
Q with idempotent quantizationQi (described in Sec. 3.3) Both frameworks use the same mean-scale
Gaussian entropy model [Minnen et al., 2018]. AE/AD are arithmetic encoder/decoder, respectively.

image in an iterative manner, and is even not guaranteed to converge in �nite steps. Therefore, the
original GDN is not suitable for idempotent compression.

We propose a coupling GDN layer (c-GDN) that combines the coupling structure [Dinh et al.,
2016] and GDN. The inverse of c-GDN layer can be solved in a much simpler analytical manner.
Speci�cally, we implement a coupling structure [Dinh et al., 2016] with normal GDN as its scale
and translation functions (s(�) andt(�)). And just like the aforementioned coupling enhancement,
the forward and inverse of this c-GDN layer can be calculated according to Eq. 11 and Eq. 12,
respectively. We demonstrate empirically in Sec. 4.3 that the proposed c-GDN layer can achieve
comparable RD performance with the original GDN.

3.3 Right-Invertible Quantization

As previously discussed, the vanilla scalar quantization using rounding is naturally idempotent.
However, the widely adopted mean-shift trick quantization for mean-scale Gaussian entropy model
[Minnen et al., 2018] is not guaranteed to be idempotent. As proposed by [Minnen et al., 2020], the
mean-shifted quantization can be formulated as

Q(y) = by � � e+ � ; (13)

whereb�eis scalar quantization and� is the predicted mean ofy . Let y1 denote the result after the
�rst application ofQ, then idempotence requires thatQ(y1) = y1, which in turn requiresy1 � �
to be integer. However, no existing method can meet this requirement, thusQ is not ensured to be
idempotent.

We propose two types of circumvention to solve this issue. For the �rst-type circumvention, we
change the quantization into

Qi (y) = by � b � ee+ b� e (14)

By addingb�earound the predicted mean� , we force the quantization result to be integer, thus
y � b � e is guaranteed to be integer from the second application ofQi , and thenQi is idempotent.

For the second-type circumvention, we resort to the original de�nition of mean-scale Gaussian
entropy model [Minnen et al., 2018], and calculate the quantized CDF (cumulative distribution
function) regardingQi (y) = byeon the �y during inference.

3.4 Overall Framework of Right-Invertible Codec

The overall framework is depicted in Fig. 2. Following prior works [Ballé et al., 2017, 2018,
Cheng et al., 2020, He et al., 2022] in LIC, We use the mainstream four-stage framework in our
work. Speci�cally, the encoding transform is divided into four stages, and each stage decreases the
resolution by a factor of 2. For the �rst 3 stages, each stage starts with a right-invertible convolution
layer (described in Sec. 3.1) and ends with a c-GDN normalization layer (described in Sec. 3.2). The
last stage only consists of one right-invertible convolution layer.

5

(a) (b)

Figure 3: Performance of different codecs on Kodak. Idempotent codecs are marked asidemp,
near-idempotent codec are marked asnear id and non-idempotent codecs are marked asnon id .
(a) First-time and re-compression (upto 50 times) RD performance of different codecs. Idempotent
codecs only report �rst-time RD performance (re-compression RD performance is the same). (b)
PSNR drop during re-compression (upto 50 re-compression) of different codecs. Note that idempotent
codecs are straight lines and cover each other in the �gure.

The decoding transform is built to be a right-inverse of the encoding transform. Note that not all layer
in the decoding transform has its own weights. Speci�cally, for c-GDN normalization layers, there is
no additional weights since they are the inverse of their counterparts in the encoding transform. For
right-invertible convolution layers, the only additional weights appear in the null-space enhancement
(Sec. 3.1).

Entropy model does not in�uence idempotence in the proposed framework, thus we use the off-the-
shelf mean-scale Gaussian entropy model [Minnen et al., 2018] for its availability and ef�ciency.
Additionally, we use the right-invertible quantization (described in Sec. 3.3) for quantizing the code.

3.5 Extension to Near-Idempotent Learned Image Codec

Idempotent codec can make sure that the RD performance keeps unchanged during any times of
re-compression. However, this strict idempotence comes with a price that the decoding transform
must be the right-inverse of encoding transform. This limitation reduces the expressiveness of
transforms and is empirically harmful to the �rst-time RD performance.

To adapt to the cases where �rst-time RD performance also matters, we propose to extend our
idempotent codec near-idempotent codec by relaxing the right-invertibility. The relaxation of right-
invertibility is simple yet effective: we change the �rst right-invertible convolution layer (described
in Sec.1) to be non-surjective, and keep all the rest layers surjective. This is done by allowingD
to be smaller thand for the kernelK in the �rst right-invertible convolution layer. By keeping the
right-invertibility of most layers, our near-idempotent codec is more stable to re-compression than
existing near-idempotent codecs [Kim et al., 2020, Cai et al., 2022], while achieving comparable or
better �rst-time RD performance.

4 Experiments

4.1 Experiment Setup

All the models are trained on the training split of open-images dataset [Kuznetsova et al., 2020], and
all the evaluations are conducted on the Kodak dataset [Franzen, 1999].

We sketch the training schedule accordingly from existing literature [Ballé et al., 2017, 2018, Minnen
et al., 2018, 2020, Cheng et al., 2020]. Images are randomly cropped to256� 256for training, and a
batch size of 16 is used. All the models are trained using an Adam optimizer. The learning rate is
initially set to10� 1, and decays by a factor of 10 when plateaued.

6

We choose four bitrate level accoding to the benchmark setting in [Kim et al., 2020]. Speci�cally, we
set� = f 18; 67; 250; 932g � 10� 4, and models trained with these� reaches average bitrates from
0.2-1.5 on Kodak dataset. Following prior works [Ballé et al., 2017, 2018], we use a smaller code
channels (192) for lower-bpp points, and use a bigger code channels (320) for higher-bpp points. The
learned functionf (�) in Eq.10 is implemented with a residual block.

All the experiments are conducted on a computer with AMD EPYC 7742 64-Core Processor and
8 Nivida A30 GPU. All the code is implemented based Python 3.9, Pytorch 1.12 and CompressAI
[Bégaint et al., 2020].

4.2 Overall Performance

4.2.1 Results of Idempotent Codec

We compare with [Helminger et al., 2021], which is the only prior LIC that achieves idempotent lossy
compression to the best of our knowledge. We also compare with traditional idempotent codecs such
as JPEG2000.

We report �rst-time compression RD performance of the above idempotent codecs in Fig. 3(a), and
detailed BD-BR and BD-PSNR are listed in Tab. 1. Multi-time re-compression RD performance does
not change for idempotent codecs. From the result we see that, our proposed framework exceeds prior
art [Helminger et al., 2021] by a large margin, which clearly validates the superiority of right-inverse
over strict inverse on the idempotent lossy compression task.

We also compare the FLOPs and encode-decode time in Tab. 1. The results clearly shows that the
proposed idempotent framework is also more ef�cient than [Helminger et al., 2021].

Table 1: The BD-BR, BD-PSNR, FLOPs and encode-decode time of different methods on Kodak
dataset. FLOPs and enc-dec time are calcualted on an input of shape256� 256� 3.

Methods BD-BR (%)# BD-PSNR (dB)" GFLOPs# time (ms)#

Idempotent Codec
JPEG2000 0.00 0.00 - -
[Helminger et al., 2021] 4.83 -0.21 15.89 185
Proposed Idempotent -28.75 1.63 8.40 110

4.2.2 Results of Near-Idempotent Codec

For near-idempotent codecs, we compare against prior work [Kim et al., 2020], as well as [Cai
et al., 2022] which utilizes a partially invertible structure. To demonstrate the advantages over
non-idempotent codecs, we also compare with non-idempotent learned codecs [Ballé et al., 2018,
Cheng et al., 2020, He et al., 2022] as well as traditional codecs BPG and VTM.

Following the benchmark protocol in [Kim et al., 2020], we report the PSNR drop of the above
codecs upto 50 re-compression. RD trade-off points whose �rst-time bpp is closest to but not greater
than 0.8 bpp are chosen for each codec. The results is shown in Fig. 3(b) and listed in detail in
Tab. 2. From the result we see that, in the near-idempotent setting, the PSNR drop of proposed
framework is 0.87dB, whereas [Kim et al., 2020] and [Cai et al., 2022] has more than 2dB PSNR drop.
Additionally, the PSNR drop of the proposed framework almost converges within 10 re-compression,
while other near-idempotent frameworks still experience evident PSNR drop after 30 or even 50
re-compression. Codecs that do not consider idempotence suffers a much more severe drop of PSNR
during re-compression.

We also provide the RD performance of the proposed idempotent and near-idempotent frameworks, as
is shown in Fig.3(a). It is clear that near-idempotent framework has much better �rst-time compression
RD performance than idempotent framework. In terms of re-compression RD performance, however,
near-idempotent can only reach similar RD performance with much higher computation cost (8.40
GFLOPs v.s. 48.78 GFLOPs in Tab.1 and Tab.2).

These results clearly demonstrate that, even if we break the right-invertibility of the �rst layer in
order to get higher �rst-time RD performance, the performance drop during re-compression is still
acceptable and highly controllable, as opposed to prior works [Kim et al., 2020, Cai et al., 2022].

7

	Introduction
	Sufficiency of Right-Invertibility for Idempotence
	Practical Design of Right-Invertible Codec
	Efficient & Expressive Right-Invertible Convolution
	Blocked Convolution for Efficiency
	Null-Space Enhancement and Coupling Enhancement for Expressiveness

	Right-Invertible Generalized Divisive Normalization
	Right-Invertible Quantization
	Overall Framework of Right-Invertible Codec
	Extension to Near-Idempotent Learned Image Codec

	Experiments
	Experiment Setup
	Overall Performance
	Results of Idempotent Codec
	Results of Near-Idempotent Codec

	Ablation Studies

	Related Work
	Discussion & Conclusion
	Additional Explanation for the Methods
	Complexity Analysis of Block Convolution
	More on Null-space Enhancement

	More Experimental Results
	More Experiment Setup
	More Quantitative & Qualitative Results

	More Discussion
	Limitation
	Broader Impact
	Reproducibility Statement

