
A Limitation1

While this paper contains an in-depth analysis of Tanh, it does not propose a function that is superior2

to existing activation functions. Generally, it is known that Tanh does not perform better than ReLU,3

but it’s hard to find a study that deeply analyzes the reasons for this. To our knowledge, this paper is4

the most comprehensive analysis of the performance degradation when Tanh is used in a conventional5

manner. Although it suggests strategies to utilize Tanh more effectively, achieving performance6

nearly on par with ReLU, it fundamentally does not assert that Tanh surpasses ReLU in terms of7

effectiveness.8

B Accuracy of the Shifted Tanh According to τ9

In this section, we focus on the hyperparameter τ in the shifted Tanh function. We carry out10

experiments using VGG16_11, MobileNet, and PreAct-ResNet models trained on CIFAR-10 and11

CIFAR-100 datasets, testing different values of the parameter τ (-1.5, -1.2, -1.0, -0.8, and -0.5). The12

performance results corresponding to each of these τ values are presented in Table B.1. In these13

experiments, all hyperparameters, except for τ , are maintained at their best-averaged accuracy settings14

based on each model trained on the CIFAR dataset. Our aim is to identify the effective τ value15

without pushing all inputs into the saturation zone due to excessive asymmetry. The best-performance16

τ is identified by averaging the accuracy across different models for each τ and selecting the one17

with the highest performance. In our case, -1 is the best.18

Table B.1: The results of shifted Tanh models on various τ values.

τ −1.5 -1.2 -1.0 -0.8 -0.5

Accuracy 80.56 83.86 84.15 84.01 83.58

C Metric19

C.1 Saturation and Skewness on Different Distribution Patterns20
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Figure C.1: The Saturation (left) and Skewness (right) values on different distributions.

Our saturation metric is designed to quantify the concentration of elements to the maximum absolute21

output values. The metric has bounds from 0 to 1, and it equates to 0 when all the elements are 0 in22

the Tanh case. Conversely, it grows larger as elements tend towards the maximum limit of the output23

range. For example, the saturation metric is evaluated at 0.5 in a uniform distribution. For saturation24

values of the Tanh output on the different Gaussian distributions, refer to Figure C.1 (left).25

Skewness is a measure that quantifies the asymmetry within a distribution. Symmetric distribution26

will yield the Skewness of 0, and the Skewness increases with the rise in asymmetry. Notably, we27

calculate the absolute skewness value in our asymmetry metric, ensuring that the metric remains28

1



unaffected by the direction of skewness. For a better understanding of how this measure applies to29

various distributions, Figure C.1 (right) provides Skewness on each distribution.30

C.2 Impacts of Mean and Standard Deviation Variations on Tanh Asymmetry31
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Figure C.2: Skewness value on the different means and standard deviations of the Gaussian distribu-
tion for Tanh input.

The mean and variance of input distribution on Tanh affect the asymmetry of Tanh output. The32

Skewness of Tanh output on various mean and standard deviation can be found in Figure C.2. In the33

Skewness of varied mean distribution, the Skewness is increased on the mean increase. However, the34

maximum Skewness does not align with the standard deviation increases. The Skewness decreases35

not only the small input standard deviation but also the large input standard deviation. Additionally,36

in the same mean condition, a decrease in standard deviation from the maximum skewness point37

more rapidly decreases the Skewness than an increase in standard deviation.38

C.3 The Proof of Demonstrating the Sparsity Metric Criteria39

This section examines the adequacy of our sparsity metric against the heuristic criteria for sparsity40

measures defined by Hurley & Rickard [1]. Our sparsity metric meets five of these criteria: Scaling,41

Rising Tide, Cloning, Bill Gates, and Babies. Without loss of generality, we consider the absolute42

operation as pre-applied to the metric input, according to Hurley & Rickard [1], and set the number43

of channels as one for simplicity. Thus, our sparsity metric is represented as f : x 7→ s, where44

x ∈ Rm+ is the vector of absolute values of one channel in BN output, i.e., [|Bi,0|, |Bi,1|, ..., |Bi,m|],45

and xmax+ signifies the maximum value in x, i.e., xmax+ = maxi xi. Below are the five criteria our46

sparsity metric meets, along with proof for each.47

Proof of Scaling. Sparsity is scale invariant. That is, for any scalar α ∈ R, where α > 0, the function48

f satisfies:49

f(αx) = f(x). (1)

The invariance of scale means that sparsity considers relative differences rather than absolute magni-50

tudes.51

Proof. If we scale the vector x by α, we also scale the maximum positive value xmax+ by α.52

Therefore, we have:53

f(αx) = 1− Σm
i=1αxi

mαxmax+

= 1− Σm
i=1xi

mxmax+

= f(x).

This demonstrates that the sparsity of the vector x remains the same when the vector is scaled by any54

positive scalar α.55
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Proof of Rising Tide. Adding a constant to each element decreases sparsity. Formally, for any scalar56

α ∈ R, where α > 0, the function f satisfies:57

f(α+ x) < f(x).

We exclude the case, as mentioned in [1], where all elements of x are the same.58

This property also indicates that sparsity increases as more values approach zero.59

Proof. We begin by noting the sparsity of the vector x+ α:60

f(x+ α) = 1− Σm
i=1xi +mα

mxmax+ +mα
.

Assume for contradiction that f(x+ α) ≥ f(x). This leads to the following inequalities:61

mxmax+ > Σm
i=1xi =⇒ Σm

i=1xi +mα

mxmax+ +mα
>

Σm
i=1xi

mxmax+
, (2)

1− Σm
i=1xi +mα

mxmax+ +mα
< 1− Σm

i=1xi

mxmax+
, (3)

(4)

which contradicts the initial assumption, thus implying that62

f(α+ x) < f(x),

as desired.63

Proof of Cloning. Sparsity is invariant under cloning.64

That is, for a vector x, the function f satisfies:65

f(x) = f(x||x) = f(x||x||x) = . . . = f(x||x|| . . . ||x),

where || denotes concatenation, such that x||x = [x1, x2, . . . , xm, x1, x2, . . . , xm].66

The principle of cloning implies that sparsity remains the same even if a set of values is replicated.67

Proof. Define a function g : x, δ 7→ y, where δ ∈ Z+ and y ∈ Rmδ is the result of concatenating x68

δ times. We then have:69

f(g(x, δ)) = 1− δΣm
i=1xi

δmxmax+

= 1− Σm
i=1xi

mxmax+

= f(x).

This shows that the sparsity of x remains the same even when it is concatenated with itself δ times.70

Proof of Bill Gates. As one individual element becomes infinitely large, the sparsity increases.71

Formally, for every i, there exists ρ > 0, such that for all α > 0:72

f([x1, ..., xi + ρ+ α, ..., xm]) > f([x1, ..., xi + ρ, ..., xm])

The implication is that if a single value grows without bounds, the sparsity also increases indefinitely.73

Proof. We first choose a sufficiently large ρ such that ∀i, xi + ρ > xmax+.74

Assume for contradiction that S([x1, ..., xi + ρ+ α, ..., xm]) ≤ S([x1, ..., xi + ρ, ..., xm]).75

This implies:76
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1− Σm
k=1xk + ρ+ α

m(xi + ρ+ α)
≤ 1− Σm

k=1xk + ρ

m(xi + ρ)

⇔ Σm
k=1xk + ρ+ α

m(xi + ρ+ α)
≥ Σm

k=1xk + ρ

m(xi + ρ)

⇔ Σk ̸=ixk + xi + ρ+ α

xi + ρ+ α
≥ Σk ̸=ixk + xi + ρ

xi + ρ

⇔ Σk ̸=ixk

xi + ρ+ α
≥ Σk ̸=ixk

xi + ρ

⇔ 1

xi + ρ+ α
≱

1

xi + ρ
,

Leading to a contradiction. Therefore,77

f([x1, ..., xi + ρ+ α, ..., xm]) > f([x1, ..., xi + ρ, ..., xm]).

78

Proof of Babies. Adding a new element of zero increases sparsity. Formally, for a vector x, the79

function f satisfies:80

f(x||0) > f(x) (5)

Concatenating zero elements to the existing values increases the relative difference to the other values,81

which increases sparsity.82

Proof.

1− Σm
k=1xk

m+ 1
> 1− Σm

k=1xk

m

We start by subtracting one from both sides of the inequality:83

−Σm
k=1xk

m+ 1
> −Σm

k=1xk

m
.

The negative sign can be removed by reversing the inequality:84

Σm
k=1xk

m+ 1
<

Σm
k=1xk

m
.

Multiplying both sides of the inequality by m(m+ 1) (since m is a positive integer, m+ 1 is also85

positive, and the inequality sign will not change), we get:86

mΣm
k=1xk < (m+ 1)Σm

k=1xk.

Subtracting mΣm
k=1xk from both sides of the inequality, we obtain:87

0 < Σm
k=1xk.

Since xk is not a negative value, the sum is also non-negative, which verifies the inequality. Therefore,88

the original inequality is proven.89
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D Deciding Model Configurations for Investigation90

D.1 Investigation of Depth Impact on Accuracy in VGG16 Models91

Table E.2: Experimental results of shortened VGG16 models with the Swap order for CIFAR-100.
The number of removed convolution layers in the VGG16_n model is the difference between 16 and
n.

VGG16 VGG16_15 VGG16_14 VGG16_13 VGG16_12 VGG16_11 VGG16_10 VGG16_9 VGG16_8
Accuracy 72.17 73.02 73.48 73.85 73.76 73.92 72.57 70.91 70.69

Table E.3: Experimental comparison between the official VGG11 and our VGG16_11 models trained
by CIFAR-100.

Models Order
Convention Swap

VGG11 64.55 69.94
VGG16_11 69.5 74.11

To identify a model for focused analysis using the CIFAR dataset, we examined various VGG1692

variants. This examination progressively removes convolution layers from the end towards the front93

of VGG16. The result can be seen in Table E.2. We observed an increase in accuracy until peaking at94

the VGG16_11 model, followed by a decline. Although a VGG11 model has already been proposed95

in Simonyan & Zisserman [2], the validation accuracy of VGG16_11 is significantly higher than96

VGG11 on CIFAR-100. The results can be seen in Table E.397

E Training Hyperparameters98

We sweep the learning rate and weight decay hyperparameter. The learning rate was 0.1 and 0.01.99

For CIFAR and Tiny-ImageNet datasets, we trained models with a batch size of 128, and the learning100

rate was reduced by one-tenth at 100 and 150 of the total 200 epochs, and we swept four weight101

decay of 0.005, 0.001, 0.0005, and 0.0001. For ImageNet datasets, we trained models with a batch102

size of 256, and the learning rate was reduced by one-tenth at 30 and 60 of the total 100 epochs, and103

we swept three weight decay of 0.001, 0.0005, and 0.0001. We chose the best averaged-accuracy104

model for the three random seeds and averaged the values of these three models for all measurements105

for analysis. Because of the computation issue, we only use one seed for the ImageNet dataset with106

early stopping. The hyperparameters of VGG, MobileNet, and PreAct-ResNet are shown in E.1, E.2,107

E.3, respectively.108
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E.1 VGG109

Table F.1: Hyperparameters of VGG11 with Tanh

Convention Swap NWDBN
Training Epochs 200 200 200
Learning Rate 0.1 0.1 0.1

Learning Rate Drop 100, 150 100, 150 100, 150
Weight Decay 0.0005 0.0005 0.0005

Batch Size 128 128 128

Table F.2: Hyperparameters of VGG16 with Tanh

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 90 200 200 200 90
Learning Rate 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0.01

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 30, 60
Weight Decay 0.0001 0.0005 0.001 0.0001 0.001 0.0005 0.001 0.001

Batch Size 128 128 128 256 128 128 128 256

Table F.3: Hyperparameters of VGG16 with the shifted Tanh

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 90 200 200 200 90
Learning Rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 30, 60
Weight Decay 0.0001 0.0005 0.0001 0.0001 0.0005 0.0005 0.0005 0.0001

Batch Size 128 128 128 256 128 128 128 256

Table F.4: Hyperparameters of VGG16 with the ReLU

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 90 200 200 200 90
Learning Rate 0.01 0.01 0.1 0.1 0.01 0.01 0.01 0.01

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 30, 60
Weight Decay 0.001 0.005 0.0001 0.0001 0.001 0.005 0.001 0.0005

Batch Size 128 128 128 256 128 128 128 256
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E.2 MobileNet110

Table F.5: Hyperparameters for MobileNet with Tanh

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 90 200 200 200 90
Learning Rate 0.1 0.1 0.01 0.1 0.1 0.1 0.01 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 30, 60
Weight Decay 0.0001 0.0005 0.005 0.0001 0.0001 0.0005 0.005 0.0001

Batch Size 128 128 128 256 128 128 128 256

Table F.6: Hyperparameters for MobileNet with the Shifted Tanh

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 90 200 200 200 90
Learning Rate 0.1 0.1 0.01 0.1 0.1 0.1 0.01 0.01

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 30, 60
Weight Decay 0.0001 0.0005 0.005 0.0001 0.0005 0.0005 0.005 0.0005

Batch Size 128 128 128 256 128 128 128 256

Table F.7: Hyperparameters for MobileNet with ReLU

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 90 200 200 200 90
Learning Rate 0.01 0.01 0.1 0.01 0.01 0.01 0.1 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 30, 60
Weight Decay 0.001 0.005 0.0001 0.0001 0.001 0.005 0.001 0.0001

Batch Size 128 128 128 256 128 128 128 256
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E.3 PreAct-ResNet111

Table F.8: Hyperparameters for PreAct-ResNet-18/34 with Tanh. PreAct-ResNet-18 is for the CIFAR
dataset, and PreAct-ResNet-34 is for the Tiny ImageNet dataset.

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet

Training Epochs 200 200 200 200 200 200
Learning Rate 0.1 0.1 0.1 0.1 0.1 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 100, 150 100, 150 100, 150
Weight Decay 0.0001 0.0001 0.0001 0.0005 0.0005 0.0005

Batch Size 128 128 128 128 128 128

Table F.9: Hyperparameters for PreAct-ResNet-18/34 with the Shifted Tanh. PreAct-ResNet-18 is for
the CIFAR dataset, and PreAct-ResNet-34 is for the Tiny ImageNet dataset.

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet

Training Epochs 200 200 200 200 200 200
Learning Rate 0.1 0.1 0.01 0.1 0.1 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 100, 150 100, 150 100, 150
Weight Decay 0.0001 0.0005 0.001 0.0005 0.0005 0.0005

Batch Size 128 128 128 128 128 128

Table F.10: Hyperparameters for PreAct-ResNet-18/34 with ReLU. PreAct-ResNet-18 is for the
CIFAR dataset, and PreAct-ResNet-34 is for the Tiny ImageNet dataset.

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet

Training Epochs 200 200 200 200 200 200
Learning Rate 0.01 0.01 0.1 0.01 0.01 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 100, 150 100, 150 100, 150
Weight Decay 0.005 0.005 0.0005 0.005 0.005 0.0005

Batch Size 128 128 128 128 128 128

8



References112

[1] Hurley, N. and Rickard, S. Comparing measures of sparsity. IEEE Transactions on Information113

Theory, 55(10):4723–4741, 2009.114

[2] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image115

recognition. arXiv preprint arXiv:1409.1556, 2014.116

9


	Limitation
	Accuracy of the Shifted Tanh According to tau
	Metric
	Saturation and Skewness on Different Distribution Patterns
	Impacts of Mean and Standard Deviation Variations on Tanh Asymmetry
	The Proof of Demonstrating the Sparsity Metric Criteria

	Deciding Model Configurations for Investigation
	Investigation of Depth Impact on Accuracy in VGG16 Models

	Training Hyperparameters
	VGG
	MobileNet
	PreAct-ResNet


