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1 Scaling Up Forecast Horizon1

In this section, we introduce the capability of Koopa to scale up forecast horizon. In detail, we train2

a Koopa model with forecast length Htr and attempt to apply it on a larger length Hte. The basic3

approach conducts rolling forecast by taking the model prediction as the input of the next iteration4

until the desired forecast horizon is all filled. Instead, we further assume that after the model gives a5

prediction, the model can utilize the incoming ground truth for model adaptation and continue rolling6

forecast for the next iteration. It is notable that we do not retrain parameters during model adaptation,7

since it will lead to overfitting on the incoming ground truth and Catastrophic Forgetting [3, 5, 10].8

Koopa can naturally cope with the scenario by learning Koopman embedding and operator Kinv in9

Time-invariant KPs while calculating localized operator Kvar to describe the dynamics in the temporal10

neighborhood. Therefore, we freeze the parameters of Koopa but only use the incoming ground truth11

for operator adaptation of Kvar in Time-variant KPs.12

1.1 Implementation of Operator Adaptation13

At the beginning of rolling forecast, the Encoder in Time-variant KP outputs D-dimensional Koopman14

embedding for each observed series segment as [z1, z2, . . . , zF ], where F = Htr
S is the segment15

number with S as the segment length. The operator Kvar in Time-variant KP is calculated as follows:16

Zback = [z1, z2, . . . , zF−1], Zfore = [z2, z3, . . . , zF ], Kvar = ZforeZ
†
back, (1)

where Zback, Zfore ∈ RD×(F−1),Kvar ∈ RD×D. With the calculated operator, we obtain the next17

predicted Koopman embedding by one-step forwarding:18

ẑF+1 = KvarzF . (2)

After decoding the embedding ẑF+1 to the series prediction, we can utilize the true value of incoming19

Koopman embedding zF+1 obtained by Koopa with frozen parameters. Instead of using Kvar to20

obtain the next embedding ẑF+2, we use incremental embedding collections Zback+, Zfore+ ∈ RD×F21

to obtain a more accurate operator Kvar+ ∈ RD×D to describe the local dynamics:22

Zback+ = [Zback, zF ], Zfore+ = [Zback, zF+1], Kvar+ = Zfore+Z
†
back+. (3)

The procedure repeats for L times (L ∝ Hte) until the forecast horizon is all filled, we formulate23

it as Algorithm 1. And experimental results (Koopa OA) in the Section 5.3 of the main text have24

demonstrated the promotion of forecasting performance due to more precisely fitted dynamics.25
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1.2 Computational Acceleration26

The naïve implementation shown in Algorithm 1 repeatedly conducts Equation 3 on the incremental27

embedding collection to obtain new operators, which has a complexity of O(LD3). We propose an28

equivalent algorithm with improved complexity of O((L+D)D2) as shown in Algorithm 2.29

Theorem. Algorithm 2 gives the same Kvar as Algorithm 1 in each iteration with O(D2) complexity.30

Proof. We start with the first iteration analysis. By the definition of Moore–Penrose inverse, we31

have Z†
backZback = IF−1, where IF−1 is an identity matrix with the dimension of F − 1. When the32

model receives the incoming embedding zF+1, incremental embedding m = zF , n = zF+1 will33

be appended to Zback and Zfore respectively. Instead of calculating new Kvar+ from incremental34

collections, we utilize calculated Kvar to find the iteration rule on Kvar+. Concretely, we suppose35

Z†
back+ =

[
Z†

back −∆
b⊤

]
∈ RF×D, (4)

where ∆ ∈ R(F−1)×D, b ∈ RD are variables to be identified. By the definition of Moore–Penrose36

inverse, we have Z†
back+Zback+ = IF . By unfolding it, we have the following equations:37

∆Zback = 0, b⊤Zback = 0⃗, b⊤m = 1, Z†
backm−∆m = 0⃗. (5)

We suppose ∆ = δb⊤, where δ ∈ RF−1, such that when b⊤Zback = 0⃗, then ∆Zback = 0. Then we38

have Z†
backm− δb⊤m = Z†

backm− δ = 0⃗, thus ∆ = Z†
backmb⊤. Given equations that b⊤Zback = 0⃗39

and b⊤m = 1, we have the analytical solution of b:40

b = r/||r||2, where r = m− ZbackZ
†
backm. (6)

Therefore, we find the equation between the incremental version Kvar+ and calculated Kvar:41

Z†
back+ =

[
Z†

back(ID −mb⊤)
b⊤

]
, Kvar+ = Zfore+Z

†
back+ = Kvar + (n−Kvarm)b⊤, (7)

where m,n are the incremental embedding of Zback, Zfore and b can be calculated by Equation 6. We42

also derive the iteration rule on X = ZbackZ
†
back to obtain b, which is formulated as follows:43

X+ = Zback+Z
†
back+ = X + (m−Xm)b⊤ = X + rb⊤. (8)

By adopting Equation 7– 8 and permuting the matrix multiplication order, we reduce the complexity44

of each iteration to O(D2). Therefore, Algorithm 2 has a overall complexity of O((L + D)D2).45

Since L ∝ Hte, Algorithm 1–2 have O(HteD
3) and O((Hte +D)D2) complexity respectively.

Algorithm 1 Koopa Operator Adaptation.
Require: Observed embedding Z = [z1, . . . , zF ] and successively incoming ground truth embedding

[zF+1, . . . , zF+L] with each embedding zi ∈ RD.

1: Zback = [z1, . . . , zF−1], Zfore = [z2, . . . , zF ] ▷ Zback, Zfore ∈ RD×(F−1)

2: Kvar = ZforeZ
†
back ▷ Kvar ∈ RD×D

3: ẑF+1 = Kvarn ▷ ẑF+1 ∈ RD

4: for l in {1, . . . , L}: ▷ zF+l comes successively

5: for m = zF+l−1, n = zF+l ▷ m, n ∈ RD

6: for Zback ← [Zback,m], Zfore ← [Zfore, n] ▷ Zback, Zfore ∈ RD×(F+l−1)

7: for Kvar = ZforeZ
†
back ▷ Kvar ∈ RD×D

8: for ẑF+l+1 = Kvarn ▷ ẑF+l+1 ∈ RD

9: End for

10: Return [ẑF+1, . . . , ẑF+L+1] ▷ Return predicted embedding
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Algorithm 2 Accelerated Koopa Operator Adaptation.
Require: Observed embedding Z = [z1, . . . , zF ] and successively incoming ground truth embedding

[zF+1, . . . , zF+L] with each embedding zi ∈ RD.

1: Zback = [z1, . . . , zF−1], Zfore = [z2, . . . , zF ] ▷ Zback, Zfore ∈ RD×(F−1)

2: Kvar = ZforeZ
†
back, X = ZbackZ

†
back ▷ Kvar, X ∈ RD×D

3: ẑF+1 = Kvarn ▷ ẑF+1 ∈ RD

4: for l in {1, . . . , L}: ▷ zF+l comes successively

5: for m = zF+l−1, n = zF+l ▷ m, n ∈ RD

6: for r = m−Xm ▷ r ∈ RD

7: for b = r/||r||2 ▷ b ∈ RD

8: for Kvar ← Kvar + (n−Kvarm)b⊤ ▷ Kvar ∈ RD×D

9: for X ← X + rb⊤ ▷ X ∈ RD×D

10: for ẑF+l+1 = Kvarn ▷ ẑF+l+1 ∈ RD

11: End for

12: Return [ẑF+1, . . . , ẑF+L+1]
⊤ ▷ Return predicted embedding

2 Implementation Details47

Koopa is trained with L2 loss and optimized by ADAM [4] with an initial learning rate of 0.00148

and batch size set to 32. The training process is early stopped within 10 epochs. We repeat each49

experiment three times with different random seeds to obtain average test MSE/MAE and detailed50

results with standard deviations are listed in Table 1. All experiments are implemented in PyTorch [9]51

and conducted on NVIDIA TITAN RTX 24GB GPUs.52

All the baselines that we reproduced are implemented based on the benchmark of TimesNet [14]53

Repository, which is fairly built on the configurations provided by each model’s original paper or offi-54

cial code. Since several baselines adopt Series Stationarization from Non-stationary Transformers [6]55

while others do not, we equip all models with the method for a fair comparison.56

Table 1: Detailed performance of Koopa. We report the MSE/MAE and standard deviation of different
forecast horizons {H1, H2, H3, H4} = {24, 36, 48, 60} for ILI and {48, 96, 144, 192} for others.

Dataset ECL ETTh2 Exchange

Horizon MSE MAE MSE MAE MSE MAE

H1 0.130±0.003 0.234±0.003 0.226±0.003 0.300±0.003 0.042±0.002 0.143±0.003
H2 0.136±0.004 0.236±0.005 0.297±0.004 0.349±0.004 0.083±0.004 0.207±0.004
H3 0.149±0.003 0.247±0.003 0.333±0.004 0.381±0.003 0.130±0.005 0.261±0.003
H4 0.156±0.004 0.254±0.003 0.356±0.005 0.393±0.004 0.184±0.009 0.309±0.005

Dataset ILI Traffic Weather

Horizon MSE MAE MSE MAE MSE MAE
H1 1.621±0.008 0.800±0.006 0.415±0.003 0.274±0.005 0.126±0.005 0.168±0.004
H2 1.803±0.040 0.855±0.020 0.401±0.005 0.275±0.004 0.154±0.006 0.205±0.003
H3 1.768±0.015 0.903±0.008 0.397±0.004 0.276±0.003 0.172±0.005 0.225±0.005
H4 1.743±0.040 0.891±0.009 0.403±0.007 0.284±0.009 0.193±0.003 0.241±0.004

3 Hyperparameter Sensitivity57

We verify the robustness of Koopa with respect to hyperparameters as follows: the dimension of58

Koopman embedding D, the hidden layer number l and the hidden dimension d used in Encoder and59

3



Decoder. Considering the efficiency of hyperparameters search, we fix the segment length S = T/260

and the number of Koopa blocks B = 3. As the detailed hyperparameter sensitivity analysis is shown61

in Figure 1, we find the proposed model is insensitive to the choices of above hyperparameters, which62

can be beneficial for practitioners to reduce hyperparameters search burden in real-world applications.63
M
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Figure 1: Hyperparameter sensitivity with respect to the dimension of Koopman embedding, hidden
layer number, and hidden dimension of Encoder and Decoder in Koopa. The results are recorded
with forecast window length H = 48 in ETT datasets.

4 Supplementary Experimental Results64

4.1 Full Forecasting Results65

Due to the limited pages, we list additional multivariate benchmarks on ETT datasets [17] in Table 2,66

which includes the hourly recorded ETTh2 and 15-minutely recorded ETTm1/ETTm2, and the full67

univariate results of M4 [11] in Table 3, which contains the yearly, quarterly and monthly collected68

univariate marketing data. Notably, Koopa still achieves competitive performance compared with69

state-of-the-art deep forecasting models and specialized univariate models.70

Table 2: Forecasting results with different forecast window lengths H ∈ {48, 96, 144, 192} on ETT
dataset. We set the lookback window length T = 2H .

Models KooPA PatchTST [7] TimesNet [14] DLinear [16] MICN [12] KNF [13] FiLM [18] Autoformer [15]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 48 0.283 0.333 0.286 0.336 0.308 0.354 0.322 0.355 0.294 0.353 1.026 0.792 0.324 0.353 0.592 0.419
96 0.294 0.345 0.299 0.346 0.329 0.370 0.309 0.346 0.306 0.364 0.957 0.782 0.311 0.346 0.493 0.469

144 0.322 0.366 0.325 0.363 0.358 0.387 0.327 0.359 0.342 0.390 0.921 0.760 0.328 0.358 0.735 0.569
192 0.337 0.378 0.343 0.375 0.462 0.441 0.337 0.365 0.386 0.415 0.896 0.731 0.339 0.366 0.592 0.506

E
T

T
m

2 48 0.134 0.226 0.135 0.231 0.142 0.234 0.144 0.240 0.131 0.238 0.621 0.623 0.146 0.243 0.191 0.280
96 0.171 0.254 0.171 0.255 0.187 0.269 0.172 0.256 0.197 0.295 1.535 1.012 0.174 0.257 0.241 0.311

144 0.206 0.280 0.205 0.282 0.216 0.291 0.200 0.276 0.210 0.297 1.337 0.876 0.204 0.279 0.300 0.352
192 0.226 0.298 0.221 0.294 0.243 0.313 0.219 0.290 0.248 0.328 1.355 0.908 0.224 0.293 0.324 0.370

E
T

T
h1

48 0.336 0.377 0.337 0.375 0.365 0.399 0.343 0.371 0.375 0.406 0.876 0.709 0.407 0.427 0.442 0.438
96 0.371 0.405 0.372 0.393 0.411 0.430 0.379 0.393 0.406 0.429 0.975 0.744 0.429 0.431 0.634 0.523

144 0.405 0.418 0.394 0.412 0.442 0.447 0.393 0.403 0.437 0.448 0.801 0.662 0.451 0.448 0.522 0.491
192 0.416 0.429 0.416 0.439 0.469 0.470 0.407 0.416 0.518 0.496 0.941 0.744 0.460 0.459 0.525 0.501

4.2 Full Ablation Results71

We elaborately conduct model ablations in Table 4 to verify the effect of our proposed modules:72

Time-invariant KP, Time-variant KP, Fourier Filter and the choices to tackle dynamics.73

Dynamics underlying time series As shown in Table 4, Time-variant and Time-invariant KPs74

perform as complementary modules for exploring the dynamics underlying time series, discarding75

any one of them (Only Kinv and Only Kvar) will lead to the inferior forecasting performance. It is76

also a surprising finding that only utilizing Time-invariant KP surpasses only utilizing Time-variant77

KP in more cases (ECL, ETTh2, Exchange, Traffic), indicating the time-variant dynamics plays a78
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Table 3: Full univariate forecasting results for M4 dataset. We follow the same data processing
and forecasting length settings used in TimesNet [14] benchmark. Additional forecasting models
N-HiTS [1] and N-BEATS [8] are also included.

Models KooPA N-HiTS N-BEATS PatchTST TimesNet DLinear MICN KNF FiLM Autoformer

Y
ea

r sMAPE 13.352 13.371 13.466 13.517 13.394 13.866 14.532 13.986 14.012 14.786
MASE 2.997 3.025 3.059 3.031 3.004 3.006 3.359 3.029 3.071 3.349

OWA 0.786 0.790 0.797 0.795 0.787 0.802 0.867 0.804 0.815 0.874

Q
ua

rt
er sMAPE 10.159 10.454 10.074 10.847 10.101 10.689 11.395 10.343 10.758 12.125

MASE 1.189 1.219 1.163 1.315 1.183 1.294 1.379 1.202 1.306 1.483
OWA 0.895 0.919 0.881 0.972 0.890 0.957 1.020 0.965 0.905 1.091

M
on

th sMAPE 12.730 12.794 12.801 14.584 12.866 13.372 13.829 12.894 13.377 15.530
MASE 0.953 0.960 0.955 1.169 0.964 1.014 1.082 1.023 1.021 1.277

OWA 0.901 0.895 0.893 1.055 0.894 0.940 0.988 0.985 0.944 1.139

O
th

er
s sMAPE 4.861 4.696 5.008 6.184 4.982 4.894 6.151 4.753 5.259 5.841

MASE 3.124 3.130 3.443 4.818 3.323 3.358 4.263 3.138 3.608 4.308
OWA 1.004 0.988 1.070 1.140 1.048 1.044 1.319 1.019 1.122 1.294

W
ei

gh
te

d

A
ve

ra
ge sMAPE 11.863 11.960 11.910 13.022 11.930 12.418 13.023 12.126 12.489 14.057

MASE 1.595 1.606 1.613 1.814 1.597 1.656 1.836 1.641 1.690 1.954
OWA 0.858 0.861 0.862 0.954 0.867 0.891 0.960 0.874 0.902 1.029

Table 4: Model ablation with detailed forecasting performance. We report forecasting results with
different prediction lengths {24, 36, 48, 60} for ILI and H ∈ {48, 96, 144, 192} for others. For
columns: Only Kinv uses one-block Time-invariant KP; Only Kvar stacks Time-variant KPs only;
Truncated Filter replaces Fourier Filter with High-Low Frequency Pass Filter; Branch Switch changes
the order of KPs to deal with disentangled components.

Models KooPA Only Kinv Only Kvar Truncated Filter Branch Switch

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

48 0.130 0.234 0.150 0.243 1.041 0.777 0.149 0.245 0.137 0.234
96 0.136 0.236 0.137 0.242 4.643 1.669 0.172 0.280 2.240 0.724
144 0.149 0.247 0.150 0.252 0.238 0.327 0.149 0.246 0.226 0.331
192 0.156 0.254 0.158 0.260 0.267 0.355 0.152 0.248 0.181 0.284

E
T

T
h2

48 0.226 0.300 0.235 0.304 0.271 0.334 0.340 0.310 0.245 0.317
96 0.297 0.349 0.311 0.353 0.382 0.405 0.301 0.352 0.343 0.384
144 0.333 0.381 0.337 0.379 0.427 0.444 0.338 0.386 0.403 0.418
192 0.356 0.393 0.363 0.397 0.402 0.437 0.363 0.400 0.384 0.420

E
xc

ha
ng

e 48 0.042 0.143 0.046 0.150 0.065 0.184 0.048 0.150 0.055 0.165
96 0.083 0.207 0.083 0.210 0.147 0.274 0.087 0.210 0.151 0.277
144 0.130 0.261 0.149 0.281 0.222 0.351 0.150 0.278 0.254 0.369
192 0.184 0.309 0.200 0.322 0.385 0.456 0.229 0.345 0.463 0.490

IL
I

24 1.621 0.800 2.165 0.882 1.972 0.919 2.140 0.874 2.092 0.894
36 1.803 0.855 1.815 0.882 2.675 1.091 1.692 0.844 2.116 0.950
48 1.768 0.903 2.107 0.981 2.446 1.045 1.762 0.895 2.394 1.084
60 1.743 0.891 2.496 1.108 2.387 0.970 2.357 1.018 1.917 0.926

Tr
af

fic

48 0.415 0.274 0.445 0.295 0.915 0.536 0.668 0.363 0.468 0.300
96 0.401 0.275 0.403 0.277 0.833 0.465 0.441 0.323 0.429 0.298
144 0.397 0.276 0.400 0.278 0.816 0.452 0.436 0.321 0.438 0.307
192 0.403 0.284 1.371 0.788 1.224 0.723 0.597 0.331 0.469 0.312

W
ea

th
er 48 0.126 0.168 0.142 0.181 0.140 0.190 0.125 0.166 0.130 0.173

96 0.154 0.205 0.164 0.209 0.169 0.224 0.154 0.202 0.163 0.210
144 0.172 0.225 0.178 0.226 0.194 0.247 0.176 0.226 0.187 0.238
192 0.193 0.241 0.195 0.245 0.217 0.268 0.195 0.244 0.212 0.261
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dominant role in these time series datasets and it also emphasizes the significance to first establish79

the time-invariant dynamics and then assisted it with adapted local time-variant dynamics.80

Appropriate disentanglement By replacing the proposed Fourier Filter with another disentangling81

method (Truncated Filter), we validate the effectiveness of our proposed modules to disentangle82

time-variant and time-invariant dynamics, since the amplitude statistics of frequency spectrums work83

as a global view to exhibit the time-agnostic information, and thus reveals perfectly the specific and84

common dynamics underlying each series window. Besides, Koopa fundamentally considers the85

properties of disentangled time series with the right Koopman Predictors, and switching the order of86

KPs (Branch Switch) will lead to degrading performance.87

4.3 Model Efficiency88
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Figure 2: Model efficiency comparison with forecast length H = 144 for ETTh2 and Traffic.
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Figure 3: Model efficiency comparison with forecast length H = 144 for Exchange and ECL.

We comprehensively compare the forecasting performance, training speed, and memory footprint89

of our model with well-acknowledged deep forecasting models. The results are recorded with the90

official model configuration and the same batch size. We visualize the model efficiency under all91

six multivariate datasets in Figure 2– 4. In detail, compared with the previous state-of-the-art model92

PatchTST [2], Koopa consumes only 15.2% training time and 3.6% memory footprint respectively in93

ECL, 37.8% training time and 26.8% memory in ETTh2, 23.5% training time and 37.3% memory in94

Exchange, 50.9% training time and 47.8% memory in ILI, 3.5% training time and 2.9% memory in95

Traffic, and 5.4% training time and 25.4% memory in Weather, leading to the averaged 77.3% and96

76.0% saving of training time and memory footprint in all six datasets. The remarkable efficiency can97

be attributed to Koopa with MLPs as the building blocks, and we find the budget saving becoming98

more significant on datasets with more series variables (ECL, Traffic).99

Besides, as an efficient linear model, the performance of Koopa still surpasses other MLP-based100

models. Especially, Compared with DLinear [16], our model reduces 38.0% MSE (2.852→1.768) in101
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Figure 4: Model efficiency comparison with forecast length H = 144 for Weather and 48 for ILI.

ILI and 13.6% MSE (0.452→0.397) in Weather. And the average MSE reduction of Koopa compared102

with the previous state-of-the-art MLP-based model reaches 12.2%.103

Therefore, our proposed Koopa is efficiently built with MLP networks and shows great model capacity104

to exploit nonlinear dynamics and complicated temporal dependencies in real-world time series.105

5 Broader Impact106

5.1 Impact on Real-world Applications107

This paper copes with real-world time series forecasting, which is characterized by intrinsic non-108

stationarity that poses fundamental challenges for deep forecasting models. Since previous studies109

hardly research the theoretical basis that can naturally address the time-variant property in non-110

stationary data, we propose a novel Koopman forecaster that fundamentally considers the implicit111

time-variant and time-invariant dynamics based on Koopman theory. Our model achieves the state-of-112

the-art performance on six real-world forecasting tasks, covering energy, economics, disease, traffic,113

and weather, and demonstrates remarkable model efficiency in training time and memory footprint.114

Therefore, the proposed model makes it promising to tackle real-world forecasting applications, which115

helps our society prevent risks in advance and make better decisions with limited computational116

budgets. Our paper mainly focuses on scientific research and has no obvious negative social impact.117

5.2 Impact on Future Research118

In this paper, we find modern Koopman theory natural to learn the dynamics underlying non-stationary119

time series. The proposed model explores complex non-stationary patterns with temporal localization120

inspired by Koopman approaches and implements respective deep network modules to disentangle121

and portray time-variant and time-invariant dynamics with the enlightenment of Wold’s Theorem.122

The remarkable efficiency and insights from the theory can be instructive for future research.123

6 Limitation124

Our proposed model does not respectively considers dynamics in different variates, which leaves125

improvement for better multivariate forecasting with the consideration of various evolution patterns126

and series relationships. And Koopman spectral theory is still under leveraging in our work, which127

can discover Koopman modes to interpret the linear behavior underlying non-stationary data in a128

high-dimensional representation. Besides, Koopman theory for control considering factors outside129

the system can be promising for series forecasting with covariates, which leaves our future work.130

7



References131

[1] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler, and Artur132

Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. arXiv preprint133

arXiv:2201.12886, 2022.134

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas135

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and136

Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR,137

2021.138

[3] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation139

of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.140

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint141

arXiv:1412.6980, 2014.142

[5] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,143

Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic144

forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.145

[6] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking the146

stationarity in time series forecasting. arXiv preprint arXiv:2205.14415, 2022.147

[7] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:148

Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.149

[8] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis150

expansion analysis for interpretable time series forecasting. ICLR, 2019.151

[9] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,152

Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin153

Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.154

Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, 2019.155

[10] Quang Pham, Chenghao Liu, Doyen Sahoo, and Steven CH Hoi. Learning fast and slow for online time156

series forecasting. arXiv preprint arXiv:2202.11672, 2022.157

[11] Spyros Makridakis. M4 dataset, 2018.158

[12] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale local159

and global context modeling for long-term series forecasting. In The Eleventh International Conference on160

Learning Representations, 2023.161

[13] Rui Wang, Yihe Dong, Sercan O Arik, and Rose Yu. Koopman neural forecaster for time series with162

temporal distribution shifts. arXiv preprint arXiv:2210.03675, 2022.163

[14] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal164

2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186, 2022.165

[15] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers166

with Auto-Correlation for long-term series forecasting. In NeurIPS, 2021.167

[16] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?168

arXiv preprint arXiv:2205.13504, 2022.169

[17] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.170

Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, 2021.171

[18] Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film: Frequency172

improved legendre memory model for long-term time series forecasting. Advances in Neural Information173

Processing Systems, 35:12677–12690, 2022.174

8


	Scaling Up Forecast Horizon
	Implementation of Operator Adaptation
	Computational Acceleration

	Implementation Details
	Hyperparameter Sensitivity
	Supplementary Experimental Results
	Full Forecasting Results
	Full Ablation Results
	Model Efficiency

	Broader Impact
	Impact on Real-world Applications
	Impact on Future Research

	Limitation

