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Abstract

Monocular 3D detection of vehicle and infrastructure sides are two important
topics in autonomous driving. Due to diverse sensor installations and focal lengths,
researchers are faced with the challenge of constructing algorithms for the two
topics based on different prior knowledge. In this paper, by taking into account the
diversity of pitch angles and focal lengths, we propose a unified optimization target
named normalized depth, which realizes the unification of 3D detection problems
for the two sides. Furthermore, to enhance the accuracy of monocular 3D detection,
3D normalized cube depth of obstacle is developed to promote the learning of
depth information. We posit that the richness of depth clues is a pivotal factor
impacting the detection performance on both the vehicle and infrastructure sides. A
richer set of depth clues facilitates the model to learn better spatial knowledge, and
the 3D normalized cube depth offers sufficient depth clues. Extensive experiments
demonstrate the effectiveness of our approach. Without introducing any extra
information, our method, named MonoUNI, achieves state-of-the-art performance
on five widely used monocular 3D detection benchmarks, including Rope3D and
DAIR-V2X-I for the infrastructure side, KITTI and Waymo for the vehicle side,
and nuScenes for the cross-dataset evaluation.

1 Introduction

Accurate 3D detection [14, 21, 25] is crucial for autonomous driving. Although LIDAR sensors
[8, 18, 47, 51] provide high precision, camera sensors [7, 39, 52] are cost-effective and have a wider
range of perception. Typically, autonomous driving systems employ frontal-view cameras mounted
on the vehicle for 3D detection. As intelligent transportation continues to advance, there is increasing
interest in using infrastructure-side cameras for 3D detection [13, 49, 53].

Due to the different installations and focal lengths between the vehicle and infrastructure-side
cameras, researchers usually design algorithms to solve these two problems separately, which adds
an additional application limitation. Fig. 1 illustrates the imaging process and the corresponding
visual feature under different installations and focal lengths. With respect to the different installations,
most vehicle-side cameras are installed on the top of the vehicle with a near-zero pitch angle, leading
to a prior assumption that the optical axis is parallel to the ground. Most vehicle-side methods
[4, 19, 27] are designed based on this assumption. In contrast, the infrastructure-side cameras, which
are mounted on poles, typically have large pitch angles, rendering most of the existing vehicle-side
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Figure 1: Schematic diagram of the camera imaging process and visual feature under different
focal lengths and pitch angles. We assume that there is a scene where four cameras in different
positions capture the same car (the white car highlighted in the four corresponding images). Camera
1,2,3 are infrastructure-side cameras, and camera 4 is the vehicle-side camera. The pitch angles of
camera 1 and camera 2 are similar. Camera 2 is closer to the vehicle, and the focal length is relatively
small. Due to the substantial variation in focal length between the two cameras, although the distance
between the two cameras and the white car is significantly different, the visual features of the vehicle
in the two images are nearly identical, which creates ambiguity in the depth estimation. The focal
lengths of camera 2 and camera 3 are comparable. However, due to the different pitch angles of
the two cameras, the same car at a similar depth appears with different visual features, resulting in
increased difficulty for accurate depth regression. Camera 4 is on the vehicle side with a near-zero
pitch angle, leading to a prior assumption that the optical axis is parallel to the ground which is not
satisfied on the infrastructure side.

methods unsuitable for direct application, and the diversity of pitch angles also further increases the
difficulty of object detection. According to the various focal lengths, the type of vehicle-side cameras
are relatively uniform, and the focal lengths are thus similar, while the infrastructure-side cameras
have a wide range of focal lengths. This results in a new challenge of 1-to-N ambiguity for depth
estimation in monocular 3D detection, which has already been an ill-posed problem.

In this work, to address the above problems, we developed the obstacle projection models of the
vehicle and infrastructure sides, and found that the former can actually be regarded as a special case
of the latter, where the pitch angle is approximately 0 and the focal length is fixed. Consequently, we
propose a unified optimization target: normalized depth, which is independent of focal length and
pitch angle, so that the prediction of the obstacle depth on the two sides is no longer disturbed by the
diversity of focal length and pitch angle. Furthermore, to enhance the performance of 3D detection,
we draw inspiration from methods like AutoShape [26] and DID-M3D [37], which introduce new
depth clues. For instance, AutoShape uses dense key points on the vehicle surface to establish
geometric constraints, while DID-M3D employs depth maps to enable the network to predict object
surface depth. They both add spatially correlated depth clues to the model in different ways with
auxiliary data. We suggest that incorporating rich depth clues has a greater impact on depth estimation
accuracy. Thus, we use the geometric relationship to create a 3D normalized cube depth for the
obstacle, allowing the model to predict the normalized depth of the obstacle’s 3D bounding box
without introducing any extra data. By predicting the bias depth from each point on the 3D bounding
box to the obstacle center, we can obtain the final depth conveniently. The approach of predicting
obstacle 3D normalized cube depth maximizes depth clues and improves detection performance
without additional data.

In summary, incorporating the above techniques, our method MonoUNI first achieves state-of-the-art
(SOTA) performance on both vehicle and infrastructure-side monocular 3D detection. The main
contributions of this work are as follows: 1) We proposed a unified optimization target, namely
normalized depth, to address the differences between vehicle and infrastructure-side 3D detection
caused by the diversity of pitch angle and focal length. This optimization target can be considered as
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the standard solution for future monocular 3D detection of both sides. 2) We posit that rich depth
clues are crucial in 3D detection, and thus propose the use of a 3D normalized cube depth to facilitate
the learning of depth information. 3) Without using any additional information, MonoUNI ranks 1st
in both the Rope3D [53] and DAIR-V2X-I [55] infrastructure-side benchmarks. Moreover, we apply
our method to the vehicle-side benchmarks, such as KITTI [10] and Waymo [42], and also achieve
competitive results. Cross-dataset evaluation of the KITTI val model on the nuScenes [3] val set
demonstrates the generalizability of our method. The code is available at https://github.com/Traffic-
X/MonoUNI.

2 Related Work

Vehicle-side Monocular 3D Object Detection. Vehicle-side monocular 3D detection refers to
the process of analyzing a single image captured by a camera mounted on a vehicle to predict the
3D locations, dimensions, and orientations of the interest obstacles. These methods can be mainly
categorized into two groups based on whether additional data is utilized. The first type of method
uses additional data, such as depth maps [9, 28, 38], CAD models [5, 26, 35, 34] or LIDAR [6, 39]
to enhance the detection accuracy. Pseudo-LIDAR methods [29, 46] utilize the depth map predicted
by the additional network to assist the monocular image to generate a pseudo point cloud and then
adopt existing LIDAR-based 3D object detection pipeline. DID-M3D [37] uses a dense depth map to
generate visual depth for powerful data augmentation. CaDDN [39] uses LIDAR points to supervise
additional monocular network estimates dense depth map and converts the feature to BEV perspective
for prediction. AutoShape [26] utilizes CAD models to generate dense key points to alleviate the
sparse constraints. NeurOCS [32] attempts to introduce the Neural Radiance Field (NeRF) [31] to
solve the problem of lack of supervision information. Mix-Teaching [50] utilizes unlabeled data to
achieve semi-supervised learning. Although utilizing additional information allows these methods
to achieve improved performance, it inevitably leads to increased labeling and computational costs.
Moreover, obtaining such data is challenging in various scenarios, especially when it comes to the
infrastructure side.

The second kind of method only uses a single image as input without any extra information. Some
methods [23, 27, 45, 56] use geometric projection assumptions to improve the accuracy of 3D
detection. GUPNet [27] uses the 2D and 3D heights of the object to construct similar triangles to
assist in regression depth. MonoFlex [56] and MonoDDE [23] further extend this similar triangle
relationship using the position of key corner points to assist regression depth. PGD [45] constructs
geometric relation graphs across predicted objects and uses the graph to facilitate depth estimation.
Due to the installed pitch angle of infrastructure-side cameras, these geometric projections cannot be
applied to infrastructure-side monocular 3D detection. Other methods [25, 30, 44] directly predict
the dimensions, orientations, and locations of obstacles without the aid of geometric projections.
However, these methods are designed for the vehicle side, ignoring the pitch angle diversity and the
ambiguity introduced by the focal length gap between different cameras on the infrastructure side.

Infrastructure-side Monocular 3D Object Detection. Compared to vehicle-side monocular 3D
object detection, which is typically limited to short-range perception, infrastructure-side 3D detection
can overcome the problem of frequent occlusion in vehicle-based detection by increasing the sensor
installation height, thereby providing long-range perception capabilities. Recently, DAIR-V2X-I [55]
and Rope3D [53] are proposed to promote the development of 3D perception in infrastructure-side
scenarios. Nonetheless, the challenges mentioned above, including the focal length difference and the
variable pitch angle of the cameras, make it arduous to transfer the vehicle-side 3D detection method
to the infrastructure-side setting, which results in relatively sluggish progress in infrastructure-side
monocular 3D detection. BEVHeight [49] mitigates the issues arising from variations in camera
pose parameters by directly predicting object height instead of object depth and achieves competitive
performance in Rope3D and DAIR-V2X-I.

3 Method

3.1 Overview

Monocular 3D object detection extracts features from a single RGB image, predicting the category
and 3D bounding box for each object in the image. The 3D bounding box can be further divided
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Figure 2: Overview. The left side of the picture describes the network architecture of MonoUNI,
which uses a 2D detector to obtain object features, and then adopts different heads to estimate the
cube depth, bias depth, and corresponding uncertainty, as well as other 3D properties. The right side
depicts how we use the 3D label to generate the normalized cube depth and bias depth.

into 3D center location (x, y, z), dimension (h, w, l) and orientation (yaw angle) θ. Among these
properties, dimension, and orientation are easily learned by the network due to their strong correlation
with visual features [15], but the 3D location is challenging because depth estimation is ill-posed.

The main idea of MonoUNI is to unify 3D detection targets for both vehicle and infrastructure
sides, and further achieve accurate 3D location. The overall framework is depicted in Fig. 2. We
use CenterNet [57] as the base model to generate discriminative representation, with DLA34 [54]
serving as the backbone for feature extraction from images. Several network heads are established in
MonoUNI to predict object properties, such as categorical heatmap, 2D bounding box, 3D offset,
dimension, orientation, 3D normalized cube depth, bias depth, and depth uncertainty items [16, 27].
Depth uncertainty is widely used in 3D detection, which can enhance the loss’s robustness against
noisy inputs. The loss function is roughly similar to DID-M3D [37]. In the inference process, by
leveraging the predicted 3D normalized cube depth and bias depth, and utilizing the known pitch
angle and focal length information, our method can obtain the final obstacle depth.

3.2 Unified Optimization Target

Problem Analysis. In order to construct a unified optimization target for the vehicle and infras-
tructure sides, we analyze the significant difference in monocular 3D detection between them. First,
the camera on the infrastructure side is typically installed at an elevated position with a specific
pitch angle (the angle between the optical axis of the camera and the ground) to capture a wider
view and detect more potential obstacles, which invalidates the commonly used assumption on the
vehicle side that the optical axis of the camera is parallel to the ground. Not only that, due to different
scenarios and installation methods, the pitch angle of the installed camera is varied. For instance,
in the Rope3D dataset, the pitch angle of the camera ranges from 5 to 20 degrees. Second, to cope
with different situations, the internal parameters of different infrastructure-side cameras usually have
a relatively large difference. For example, the camera focal length of Rope3D ranges from 2100
to 2800 pixels, while the camera focal lengths of the KITTI dataset are all between 715 pixels and
721 pixels. The huge gap in focal length can lead to an ambiguity that obstacles of similar visual
features in two images captured by cameras with different focal lengths can have different depths. To
explore the influence of focal length diversity, we conducted experiments on Rope3D using both the
popular single-stage and two-stage monocular object detection methods. Since the focal length of
most images is centered around 2100 and 2700 pixels, we further split the dataset into train_2100,
train_2700, val_2100, and val_2700. The experimental results are shown in Table 1.

As a consequence of the aforementioned ambiguity, utilizing two train sets for mixed training will
decrease the accuracy of both validation sets when compared to training the network solely with
images in a single focal length range. In particular, the average precision (AP) of GUPNet experiences
a significant reduction of 70% on the val_2700. This decrease in accuracy can be attributed to the
dominance of images with a focal length of around 2100 pixels during the training process.

Normalized Depth. In this subsection, we first build the simple projection models of the vehicle
(Fig. 3 (a)) and infrastructure sides (Fig. 3 (b)). Taking the infrastructure-side projection model
as an example, O in the figure is the optical center of the camera, the ray OZ denotes the optical
axis (z-axis), point C represents the center point of the obstacle, P represents the intersection point
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Table 1: Analysis for different focal lengths on Rope3D dataset with new train/val division.
Method Train_set AP3D(IOU = 0.5|R40)

val_2100 val_2700 val_all
GUPNet [27] train_2100 13.20 0.03 7.42
GUPNet [27] train_2700 0.17 21.65 3.07
GUPNet [27] train_all 10.82 5.85 9.38
SMOKE [25] train_2100 9.77 0.13 6.19
SMOKE [25] train_2700 0.04 23.20 3.64
SMOKE [25] train_all 6.04 18.01 8.48
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Figure 3: Simple projection models of the vehicle and infrastructure-side.

between the vertical line from the center point C to the ground and the ground plane, H denotes the
3D distance of PC, and h is the pixel distance from the center point C to the ground in the imaging
plane, θ is the pitch angle of the camera, z denotes the depth of center point C, f represents the focal
length and δ is the included angle between the line connecting the point P to the optical center O and
OZ. Extend a line from the obstacle’s center point C along the camera’s imaging plane direction,
intersecting line OP at point P ′. The distance CP ′ is denoted as H ′. According to the parallel
relationship, the following can be easily deduced:

H ′

h
=

z

f
(1)

After a simple geometric calculation, the following equation can be derived3:

H ′ = H ∗ (cos θ − sin θ ∗ tan δ) (2)

Substitute it into equation (1) and we get:

z =
H

h
∗ (cos θ − sin θ ∗ tan δ) ∗ f (3)

Among them, H and h are easy to learn based on visual features, while δ, θ, and f are challenging
to directly learn from the image. Therefore, learning z directly requires the model to have a strong
ability to infer focal length and angle information. However, from the above analysis, it is difficult or
even ambiguous. Typically, the focal length f can be obtained as prior knowledge, the pitch angle
θ can be calculated as θ = arctan(γ/β) from the ground equation αx + βy + γz + d = 0, and δ
can be calculated through simple calculation δ = arctan((vp − cy)/f), where vp is the y-axis pixel
coordinates of Point P and cy is the principal point in y-axis. In particular, vp can be simply and
roughly replaced by vc which may introduce an average relative error of 2.9% (statistics based on the

3See the Supplementary Material for more proof details.
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Figure 4: The generation process of the 3D cube depth.

Rope3D dataset), or be predicted by the model. Therefore, a simple transformation of the formula (3)
yields:

Normalized_depth =
z

(cos θ − sin θ ∗ tan δ) ∗ f
(4)

Formula (4) represents the new unified optimization target: normalized depth, which makes depth
prediction independent of pitch angle and focal length, simplifying the task difficulty. When θ is
equal to 0, the normalized depth degenerates into a situation where only the focal length is used for
normalization ( zf ), that is, the vehicle-side projection model. In fact, simplifying the normalized
depth with either the focal length ( zf ) or pitch angle ( z

cos θ−sin θ∗tan δ ) can also partially reduces the
learning difficulty and improve detection accuracy, which we will analyze in detail in the ablation
experiments in section 4.4. During inference, the model outputs normalized depth, and we multiply it
by the denominator in the formula (4) to get the final instance depth.

3.3 3D Normalized Cube Depth

To enrich depth clues and further improve detection performance, we utilize original labels to generate
3D cube depth for each obstacle. Based on the analysis in section 3.2, our 3D cube depth need to be
normalized and become 3D normalized cube depth finally. The generation process of the 3D cube
depth is shown in Fig. 4. Firstly, we use the location, orientation, and dimension information from the
label to obtain the positions of the 8 corner points in the 3D bounding box in the camera coordinate
system. These points are then marked in a specific sequence (1-8). Secondly, we calculate the plane
equation αix+ βiy + γiz + di = 0 for each surface of the obstacle. To determine the equation, we
select any 3 of the 4 vertices of the surface since a plane can be uniquely defined by 3 non-collinear
points. Thirdly, we generate the 3D cube depth for the obstacle and project it onto the imaging plane.
Specifically, each pixel (u, v) in the 2D bounding box is traversed to determine whether it belongs to
any surface in the 2D image. Then, utilizing the internal parameters of the camera, the intersection
point (x, y, z) of the pixel’s ray with the corresponding plane can be computed and the depth z is
thus achieved. The mathematical expression for this computation is as follows:

{
αix+ βiy + γiz + di = 0, for i = 1, ..., 6
fx

x
z + cx = u

fy
y
z + cy = v

(5)

where fx and fy are the focal length of the camera, and cx and cy are the principal points. i denotes
the index of the surface on the 3D bounding box. The depth z can be calculated as:

z =
−di

αi(u−cx)
fx

+
βi(v−cy)

fy
+ γi

(6)

In cases where a pixel belongs to multiple faces in the 2D image, we select the smallest depth value
as the final depth. This is because, during the camera imaging process, points with larger depth
values are obstructed by ones closer to the camera. The same strategy is also applied when a pixel
simultaneously belongs to multiple obstacles. Once the 3D cube depth is obtained, we apply Equation
3 to each depth value in the cube, resulting in a 3D normalized cube depth that can be used for
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Table 2: Monocular 3D detection performance of Car category on Rope3D val, DAIR-V2X-I val
and KITTI test sets. We highlight the best results in bold and the second ones in underlined. For the
extra data, the first column means whether using depth maps as additional input on the infrastructure
side and the second column means on the vehicle side. ’-’ means that no official results or reasonable
reproduction results in the new dataset.

Method Extra Data Rope3D DAIR KITTI
AP3D Rscore Easy Mod. Hard Easy Mod. Hard

M3D-RPN [1] Depth | None 67.17 73.14 - - - 14.76 9.71 7.42
MonoDLE [30] Depth | None 77.50 80.84 - - - 7.23 12.26 10.29
MonoFlex [56] Depth | None 59.78 66.66 - - - 19.94 13.89 12.07
DID-M3D [37] None | Depth - - - - - 24.40 16.29 13.75
CMKD [11] None | Depth - - - - - 25.09 16.99 15.30
LPCG+MonoFlex [36] None | Depth - - - - - 25.56 17.80 15.38
MonoEF [58] None | None - - - - - 21.29 13.87 11.71
DEVIANT [20] None | None - - - - - 21.88 14.46 11.89
MonoCon [48] None | None - - - - - 22.50 16.46 13.95
MonoATT [60] None | None - - - - - 24.72 17.37 15.00
MoGDE [59] None | None - - - - - 27.07 17.88 15.66
Kinematic3D [2] None | None 50.57 58.86 - - - 19.07 12.72 9.17
SMOKE [25] None | None 72.13 76.26 66.03 62.24 60.71 14.03 9.76 7.84
GUPNet [27] None | None 66.52 70.14 62.22 55.94 55.90 22.26 15.02 13.12
Imvoxelnet [40] None | None - - 44.78 37.58 37.55 17.15 10.97 9.15
BEVFormer [24] None | None 50.62 58.78 61.37 50.73 50.73 - - -
BEVDepth [22] None | None 69.63 74.70 75.50 63.58 63.67 - - -
BEVHeight [49] None | None 74.60 78.72 77.78 65.77 65.85 - - -
MonoUNI(Ours) None | None 92.45 92.63 90.92 87.24 87.20 24.75 16.73 13.49

supervision. In order to get the center point depth, we also supervise the bias depth from each point on
the cube depth to the center point depth. The utilization of cube depth can maximize the enrichment
of depth clues based on existing labels without additional information such as depth maps, CAD, or
LIDAR points. Compared with only supervising the depth of the center point and corner points, the
3D cube depth is a sufficient way to utilize the depth information.

4 Experiments

4.1 Dataset and Evaluation Metrics

Rope3D. Rope3D [53] is a comprehensive real-world benchmark for infrastructure-side 3D de-
tection, featuring over 50,000 images and more than 1.5 million 3D objects in diverse scenes. The
benchmark comprises various settings, such as different cameras with ambiguous mounting positions,
diverse camera specifications, as well as different environmental conditions. For the evaluation
metrics, we follow the official settings using AP3D|R40 and Ropescore [53], which is a combined
metric of the 3D AP and other similarities, such as Average Ground Center Similarity (ACS). We
follow the proposed homologous setting to utilize 70% of the images as training, and the remaining
as validating. All images are randomly sampled.

DAIR-V2X-I. DAIR-V2X-I [55] is a subset of DAIR-V2X, which is a large-scale multimodal
vehicle-infrastructure collaborative perception dataset. It contains 10,000 infrastructure-side images
and 493,000 3D bounding boxes with 10 classes. We follow the official train/val division for
evaluation, and use AP3D|R40 as the main metric, with an IOU threshold of 0.5.

KITTI. KITTI [10] is a widely used benchmark consisting of 7481 training images and 7518 testing
images for vehicle-side monocular 3D detection. The dataset contains three classes: Car, Pedestrian,
and Cyclist, each with three difficulty levels: Easy, Moderate, and Hard. Moderate difficulty is
considered the official rank level of the KITTI leaderboard. To ensure a fair comparison with previous
methods, results are submitted to an official server for evaluation on the test set. AP3D|R40 is used as
the main metric with IOU thresholds of 0.7 for cars, and 0.5 for Pedestrians and Cyclists respectively.
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Table 3: Monocular 3D detection performance
of Pedestrian and Cyclist category on KITTI
test set.

Method
AP3D

Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard

DFR-Net [61] 6.09 3.62 3.39 5.69 3.58 3.10
CaDDN [39] 12.87 8.14 6.76 7.00 3.41 3.30
MonoCon [48] 13.10 8.41 6.94 2.80 1.92 1.55
GUPNet [27] 14.95 9.76 8.41 5.58 3.21 2.66
MonoDTR [12] 15.33 10.18 8.61 5.05 3.27 3.19
MonoUNI 15.78 10.34 8.74 7.34 4.28 3.78

Table 4: Monocular 3D detection performance
of Big Vehicle category on Rope3D val set.

Method Big Vehicle
AP3D Rscore

M3D-RPN [1] 32.19 40.52
MonoDLE [30] 44.71 52.83
SMOKE [25] 52.04 59.23
GUPNet [27] 45.27 52.19
BEVFormer [24] 34.58 45.16
BEVDepth [22] 45.02 54.64
BEVHeight [49] 48.93 57.70
MonoUNI 76.30 79.20

Table 5: Ablation Study on different components of our overall framework on Rope3D and
KITTI val set for Car category.

Experiments Normlized Depth Cube Rope3D KITTI
Focal Pitch AP3D Rscore Easy Mod. Hard

(a) 79.37 81.38 21.71 14.93 12.10
(b) ✓ 83.42 84.91 22.35 15.29 12.34
(c) ✓ 81.55 83.53 21.68 14.85 12.12
(d) ✓ ✓ 86.69 87.99 22.19 14.94 12.45
(e) ✓ 87.07 88.16 24.66 17.07 14.06
(f) ✓ ✓ ✓ 92.45 92.63 24.51 17.18 14.01

Waymo. Waymo [42] assesses objects using a dual-tiered categorization: Level 1 and Level 2.
The assessment is performed across three distance intervals: [0, 30), [30, 50), and [50, ∞) meters.
Waymo employs the APH3D percentage metric, which integrates heading data into the AP3D, as a
reference benchmark for evaluation.

nuScenes. nuScenes [3] comprises 28,130 training and 6,019 validation images captured from the
front camera. We use validation split for cross-dataset evaluation.

4.2 Implementation Details

Our proposed MonoUNI is trained on 4 Tesla V100 GPUs with a batch size of 16 for 150 epochs. We
use Adam [17] as our optimizer with an initial learning rate 1.25× e− 3. Images are all resized to
the same size of 960× 512 for infrastructure side and 1280× 384 for vehicle side. Following [37],
the ROI-Align size d× d is set to 7× 7. Inspired by [33], we adopt the multi-bin strategy for heading
angle and depth prediction in our baseline. Random crop and expand along principal points are used
to achieve more physical data augmentation.

4.3 Main Results

Results of Car Category. Since there was no previous method designed for supporting both the
vehicle and infrastructure sides at the same time, the results of some methods were reproduced by us
or other published papers (BEVHeight [49], Rope3D [53] and DAIR-V2X [55]). As shown in Table 2,
our proposed MonoUNI achieves superior performance than previous methods on infrastructure-side
benchmarks, even those with extra data. Specifically, compared with BEVHeight which is the recent
top1-ranked image-only method for infrastructure side, MonoUNI gains significant improvement of
17.85%/13.91% in AP3D and Rscore on Rope3D benchmark. According to DAIR-V2X, our method
achieves over 21% improvement compared with BEVHeight on Moderate difficulty. For vehicle-side
benchmark, although our method did not rank first, it reached a competitive result on Easy difficulty.
On the Moderate and Hard difficulties, MonoUNI is slightly inferior to methods such as MonoATT
[60] and MoGDE [59], probably because the gain of the 3D cube depth is weakened in the case of
far-distance or severe truncation.

Results of Other Categories. In Table 3, we present the results of pedestrians and cyclists on the
test set of KITTI. MonoUNI outperforms all methods by a large margin. This may be because the
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Table 6: Analysis of MonoUNI for
different focal lengths on Rope3D
with new train/val division.

Method TrainAP3D(IOU = 0.5|R40)
val_2100val_2700val_all

MonoUNI 2100 25.78 21.30 24.47
MonoUNI 2700 5.77 23.42 9.25
MonoUNI all 26.63 38.10 28.91

Table 7: Cross-dataset evaluation of the KITTI val model
on KITTI val and nuScenes val cars with depth MAE.

Method KITTI Val nuScenes frontal Val
0-20 20-40 40-∞ All 0-20 20-40 40-∞ All

M3D-RPN [1] 0.56 1.33 2.73 1.26 0.94 3.06 10.36 2.67
MonoRCNN [41] 0.46 1.27 2.59 1.14 0.94 2.84 8.65 2.39
GUPNet [27] 0.45 1.10 1.85 0.89 0.82 1.70 6.20 1.45
DEVIANT [20] 0.40 1.09 1.80 0.87 0.76 1.60 4.50 1.26
MonoUNI 0.38 0.92 1.79 0.865 0.72 1.79 4.98 1.43

Table 8: Monocular 3D detection performance of Vehicle category on Waymo val set.

IOU3D Difficulty Method Extra AP3D APH3D

All 0-30 30-50 50-∞ All 0-30 30-50 50-∞

0.7 Level_1

CaDDN [39] LIDAR 5.03 15.54 1.47 0.10 4.99 14.43 1.45 0.10
PatchNet [28] in [43] Depth 0.39 1.67 0.13 0.03 0.39 1.63 0.12 0.03
PCT [43] Depth 0.89 3.18 0.27 0.07 0.88 3.15 0.27 0.07
M3D-RPN [1] in [39] None 0.35 1.12 0.18 0.02 0.34 1.10 0.18 0.02
GUPNet [27] in [20] None 2.28 6.15 0.81 0.03 2.27 6.11 0.80 0.03
DEVIANT [20] None 2.69 6.95 0.99 0.02 2.67 6.90 0.98 0.02
MonoUNI (Ours) None 3.20 8.61 0.87 0.13 3.16 8.50 0.86 0.12

0.7 Level_2

CaDDN [39] LIDAR 4.49 14.50 1.42 0.09 4.45 14.38 1.41 0.09
PatchNet [28] in [43] Depth 0.38 1.67 0.13 0.03 0.36 1.63 0.11 0.03
PCT [43] Depth 0.66 3.18 0.27 0.07 0.66 3.15 0.26 0.07
M3D-RPN [1] in [39] None 0.35 1.12 0.18 0.02 0.33 1.10 0.17 0.02
GUPNet [27] in [20] None 2.14 6.13 0.78 0.02 2.12 6.08 0.77 0.02
DEVIANT [20] None 2.52 6.93 0.95 0.02 2.50 6.87 0.94 0.02
MonoUNI (Ours) None 3.04 8.59 0.85 0.12 3.00 8.48 0.84 0.12

0.5 Level_1

CaDDN [39] LIDAR 17.54 45.00 9.24 0.64 17.31 44.46 9.11 0.62
PatchNet [28] in [43] Depth 2.92 10.03 1.09 0.23 2.74 9.75 0.96 0.18
PCT [43] Depth 4.20 14.70 1.78 0.39 4.15 14.54 1.75 0.39
M3D-RPN [1] in [39] None 3.79 11.14 2.16 0.26 3.63 10.70 2.09 0.21
GUPNet [27] in [20] None 10.02 24.78 4.84 0.22 9.94 24.59 4.78 0.22
DEVIANT [20] None 10.98 26.85 5.13 0.18 10.89 26.64 5.08 0.18
MonoUNI (Ours) None 10.98 26.63 4.04 0.57 10.73 26.30 3.98 0.55

0.5 Level_2

CaDDN [39] LIDAR 16.51 44.87 8.99 0.58 16.28 44.33 8.86 0.55
PatchNet [28] in [43] Depth 2.42 10.01 1.07 0.22 2.28 9.73 0.97 0.16
PCT [43] Depth 4.03 14.67 1.74 0.36 4.15 14.51 1.71 0.35
M3D-RPN [1] in [39] None 3.61 11.12 2.12 0.24 3.46 10.67 2.04 0.20
GUPNet [27] in [20] None 9.39 24.69 4.67 0.19 9.31 24.50 4.62 0.19
DEVIANT [20] None 10.29 26.75 4.95 0.16 10.20 26.54 4.90 0.16
MonoUNI (Ours) None 10.38 26.57 3.95 0.53 10.24 26.24 3.89 0.51

introduction of depth clues promotes pedestrians and cyclists better learn spatial features. Table 4
shows the results of Big Vehicle on the Rope3D benchmark.

4.4 Ablation Study

Effectiveness of Different Components in MonoUNI on Rope3D and KITTI val set for Car
category. We evaluate the effectiveness of the normalized depth and the 3D cube depth through
ablations on two datasets. As shown in Table 5, the normalized depth, particularly the focal length,
has a significant improvement on the infrastructure side, but only a minor effect on the vehicle side.
This is due to the fact that the focal length of the camera is similar across the KITTI data, and the
pitch angle is close to 0. On the other hand, the cube depth improves results for both the vehicle and
infrastructure sides, providing evidence of its efficacy.

Analysis for different focal lengths. Table 6 presents the performance of MonoUNI at different
focal lengths. Compared with the results in Table 1, our method has obvious benefits in solving the
problem of focal length diversity. In the case of using all training data, our method can improve
19.53% and 20.43% AP respectively compared with GUPNet and SMOKE.
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Rope3D KITTI

Figure 5: Qualitative visualization on the Rope3D and KITTI val set. The 3D green boxes are
produced by MonoUNI and the red boxes are the ground truths.

Cross-dataset evaluation. Tabel 7 shows the result of our KITTI val model on the KITTI val and
nuScenes [3] frontal val images, using mean absolute error (MAE) of the depth [41]. MonoUNI is
better than GUPNet [27] and achieves similar competitive performance to DEVIANT [20]. This is
because DEVIANT is equivariant to the depth translations and is more robust to data distribution
changes.

Performance of cube depth on large dataset Waymo. In order to fully verify the effectiveness
of cube depth, we verified MonoUNI on Waymo, which is a large-scale vehicle-side 3D detection
dataset, as shown in Table 8.

4.5 Qualitative Results

We visualize the detection results of the MonoUNI on the both vehicle and infrastructure sides in Fig.
5. As can be seen, the MonoUNI can accurately estimate the 3D position of objects, even those not
labeled by the annotators due to severe occlusion in the first row of KITTI. However, for far-distance
and severely truncated obstacles, our model suffers from missed detections.

5 Conclusion

In this paper, we propose a new optimization target named normalized depth to unify monocular
3D detection for both vehicle and infrastructure sides, addressing the problem of focal length and
pitch angle diversity. Furthermore, we introduce 3D Cube Depth as an additional supervision clue to
improve the 3D detection performance. Experiments on five datasets (Rope3D, DAIR-V2X-I, KITTI,
Waymo and nuScenes) fully demonstrate the effectiveness of our method.

6 Limitations and Future Work

Although the normalized depth unifies the optimization target of the vehicle and infrastructure sides,
separate training for the two sides is still necessary instead of direct hybrid training. In the future, we
aim to enable one model file to support 3D detection for both sides which would hold significant value
for industrial applications, such as the domain gap problem in the vehicle-infrastructure collaborative
perception and fusion. In addition, global depth clues such as depth similarity (i.e., contrastive
learning) or the global topological relationship can be further developed.
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