
7 Appendix469

7.1 Proof of Lemma 1470

Prior works [9, 10] have used the high-level notion that staying “close” to the pre-trained model can471

help maintain its robustness capability to justify using projection for fine-tuning. However, there is472

more than one way to encourage this, for example, regularization [28], a small learning rate [7], and473

projection [10]. It is not immediately clear why projection is a principled approach. To understand474

FTP’s capability to maintain the pre-trained mode’s robustness, we first propose to establish a475

connection between Lipschitz continuity, a commonly used measure of robustness [11, 12, 13], and476

fine-tuning through a new definition of difference function in the Lemma 1.477

Proof. We first expand the difference functions in Eq. 6, i.e. plugging in �h(·) = hf (·)� h0(·),478

k�h(x)��h(x0)kh  Ldkx� x
0kx 8(x,x0) 2 Rm (8)

!k (hf (x)� h0(x))� (hf (x
0)� h0(x

0)) kh  Ldkx� x
0kx

!k (hf (x)� hf (x
0))� (h0(x)� h0(x

0)) kh  Ldkx� x
0kx

Then we apply the reverse triangular inequality to the left-hand side of Eq. 8.479

|khf (x)� hf (x
0)kh � kh0(x)� h0(x

0)kh|  k (hf (x)� hf (x
0))� (h0(x)� h0(x

0)) kh
Therefore, we have,480

khf (x)� hf (x
0)kh � kh0(x)� h0(x

0)kh  Ldkx� x
0kx (9)

! khf (x)� hf (x
0)kh  Ldkx� x

0kx + kh0(x)� h0(x
0)kh

Assuming that the pre-trained model h0 is L0-Lipschitz, we know that kh0(x) � h0(x0)kh 481

L0kx� x
0kx, 8(x,x0) 2 Rm. Plug this into Eq. 9,482

khf (x)� hf (x
0)kh  (Ld + L0)kx� x

0kx (10)

483

7.2 Proof of Lemma 2484

In the previous section, we established a connection between the robustness of a fine-tuned model485

hf (·) and its difference function �h(·). Naturally, if we can limit the Lipschitz constant Ld of the486

difference function, we can maintain the robustness of the pre-trained model. In this section, we show487

projection as an effective method to enforce the Ld-Lipschitz condition in Eq 6.488

Proof. Linear Operators. A neural network is composed of linear operators with connecting489

non-linear activations. Following prior works [9, 10], we analyze the linear operators3: h(x) =490

Wx + b,W 2 Rn⇥m, b 2 Rn. Let’s define hf (x) = Wfx + bf and h0(x) = W0x + b0, and491

plug them in Eq. 6.492

k(Wf �W0)(x� x
0)kh  Ldkx� x

0kx 8(x,x0) 2 Rm.

Rearranging the above equation gives us an upper bound on Ld,493

Ld = sup

⇢
k(Wf �W0)(x� x

0)kh
kx� x0kx

8(x,x0) 2 Rm

�
. (11)

Matrix Norms. Eq. 11 matches the definition of a matrix norm for a matrix W 2 Rn⇥m: kWkh,x =494

sup
n

kWxkh

kxkx
, 8x 2 Rn with x 6= 0

o
. Therefore, to minimize Ld in Eq. 6, we just need to495

minimize the matrix norm kWf �W0kh,x. Note that different vector norm combinations (k · kh496

and k · kx) will lead to a different matrix norm k · kh,x. Certain vector norm combinations have a497

closed-form matrix norm while the majority do not. Following prior works [9, 10], we use Maximum498

Absolute Row Sum (MARS) matrix norm, which is characterized by l1 vector norms in both domains.499

3Convolutional layers can be also written in the matrix multiplication form using Toeplitz matrix.

14

Specifically, given a desired constraint Ld, we want kWf �W0k1,1  Ld. Per the definition of500

the MARS matrix norm, which is the largest l1 norm of each row of a matrix, the inequality can be501

equivalently enforced for each row independently, i.e.,502

kWf �W0k1,1  Ld () kwi
f �w

i
0k1  Ld, 8i 2 {1, ..., n}. (12)

where w
i denotes the i-th row of the matrix W.503

Projection. To ensure the inequality in Eq. 12, we can project Wf towards W0 using the following504

projection equation. For each row w
i in a matrix W, the projected weight w̃i

p is calculated by505

w
i
p = min

1,

�

kwi
f �wi

0k1

!
(wi

f �w
i
0) +w

i
0.

It is easy to check that wi
p satisfies Eq. 12, i.e., kwi

p �w
i
0k1  Ld if 0  �  Ld.506

Lipschitz Bound. Since a neural network is a composition of linear operators and non-linear507

activations, by the composition rule of the Lipschitz functions, an upper bound of the entire network508

is just the product of the Lipschitz constant for each linear operator and non-linear activations, where509

most non-linear activations are 1-Lipschitz [13]. However, the Lipschitz bound obtained by using510

the composition rule is not a tight bound on the entire network. While it is an active research area to511

find tighter bounds for neural networks without relying on the layer-wise composition rule [52, 12],512

the layer-wise approach is particularly suitable for connecting the fine-tuning process and Lipschitz513

continuity because it leads to layer-wise regularization techniques as we demonstrated above.514

7.3 FTP: Additional Discussion515

In the main paper Sec. 3.2, we described the algorithmic difference between TPGM and FTP. However,516

there is an implicit assumption made as a result of the difference. We now discuss the implication of517

it. After obtaining the updated constraints �t in Eq. 5, if the algorithm were to follow TPGM, the next518

step would be applying the updated constraints to re-calculate the previous model Wt�1. However,519

instead of rolling back, FTP applies the updated constraints directly to the current unconstrained520

model W̃t. This step assumes smoothness in the update of �t, i.e., the �t does not change drastically521

in consecutive steps. The assumption is valid since �t is updated by AdampUpdate (Alg. 2 below)522

which uses a moving average update with a momentum of 0.9. So the change of �t is very smooth523

because of the high discount factor of 0.9. Importantly, we have re-used the same gradient gt524

available for computing the current unconstrained model W̃t. This is the key to saving computation525

because calculating the forward and backward pass through the model is the main computation526

bottleneck in TPGM because it requires a separate training loop as a result of “rolling back”.527

Algorithm 2 AdampUpdate: AdamUpdate implements one step update of Adam [30]
Require: �t�1,r�t, t . Input
Require: µ 1e� 2, (�1,�2) (0.9, 0.999), ✏ 1e� 8 . Fixed parameters for AdamUpdate
Require: m1 0 . Initialize 1st moment vector
Require: v1 0 . Initialize 2nd moment vector
mt �1mt�1 + (1� �1)r�t
vt �2vt�1 + (1� �2)r�2

t
m̂t mt/(1� �t

1)
v̂t vt/(1� �t

2)
�t �t�1 � µm̂t/(

p
v̂t + ✏)

7.4 Image Classification Experiments Details and Additional Results528

In Sec. 4.1.1, we presented image classification results on DomainNet-100% data (111,307 images).529

Now we further present results using only 10% (11,031 images) of the training data in Tab. 6. In this530

case, projection-based methods, TPGM and FTP achieved the best performance, demonstrating their531

regularization capability under low-label conditions. Similar to findings in the main paper, FTP is532

15

Table 6: DomainNet Results using CLIP pre-trained ResNet50 with 10% Real Data. FFTP
achieves competitive OOD performance and is much faster than prior work TPGM [10] by 37%.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID � (%) OOD � (%) Time (s/it)#

Vanilla FT 57.35 (1.43) 17.48 (0.68) 25.60 (0.70) 10.30 (1.57) 23.01 (0.65) 19.10 0.00 0.00 0.54
LP 47.19 (0.93) 17.81 (0.25) 22.71 (2.08) 17.13 (0.75) 17.59 (0.69) 18.81 -17.71 -1.52 0.13

PF [25] 71.04 (0.91) 27.87 (1.04) 38.31(1.05) 19.85 (0.70) 33.92 (1.53) 29.99 23.86 57.01 0.31
L2-SP [28] 61.41 (0.92) 22.61 (0.52) 30.48 (0.42) 12.28 (0.50) 26.59 (0.57) 22.99 7.08 20.37 0.61

MARS-SP [9] 52.53 (0.84) 15.34 (0.54) 21.57 (0.45) 8.49 (0.60) 19.96 (0.01) 16.34 -8.41 -14.44 0.60
LP-FT [7] 64.11 (0.78) 20.54 (0.27) 30.89 (0.41) 13.58 (0.63) 29.55 (0.82) 23.64 11.78 23.77 -

TPGM [10] 73.16 (1.27) 29.88 (0.81) 36.80 (1.42) 19.72 (0.12) 35.28 (0.74) 30.42 27.56 59.27 1.10

FTP 72.89 (0.34) 27.44 (0.13) 38.11 (0.26) 20.20 (0.26) 33.58 (0.49) 29.83 27.10 56.19 0.69

up to 37% faster than TPGM during training. Next, we describe the hyper-parameters for all image533

classification experiments in Sec. 4.1 and above.534

DomainNet. We use the released code from the prior work, TPGM [10] to train our FTP model.535

Therefore, we directly use the reported results from TPGM for competing methods. For FTP, we apply536

constraints to all trainable layers except for the last linear classification layers. For all experiments,537

we use SGD as the base optimizer with a weight decay of 5e � 4. For DomainNet-100% and538

DomainNet-10% experiments, we train models for 50 and 150 epochs respectively with a batch size539

of 256. We sweep a range of learning rates and use the validation split to determine the best learning540

rate for FTP for each experiment. Here is the list of best-validated learning rates for all DomainNet541

experiments.542

• DomainNet-100% MOCO-V3 ResNet50 (Tab. 1): 1e� 2543

• DomainNet-100% CLIP ResNet50 (Tab. 2): 1e� 2544

• DomainNet-10% CLIP ResNet50 (Tab. 6): 1e� 1545

Note that we use the default  = 1 for all these experiments. Every DomainNet experiment was546

conducted using 4 RTX 2080 GPUs.547

ImageNet. For ImageNet experiments (Tab. 3, Fig. 3), we use a CLIP pre-trained ViT-Base [4].548

Unlike the DomainNet experiments, we also initialize the last linear layer with zero-shot weights549

extracted from a CLIP text encoder, following the prior work WISE [8]. Therefore, FTP is applied to550

all trainable layers including the last linear layer. Training Transformers have been well-studied with551

abundant regularization and augmentation techniques. To obtain the best fine-tuning performance, we552

follow the public code base of DEIT [31] to fine-tune all methods. Specifically, we use weight-decay553

(0.1), drop-path (0.2) [32], label-smoothing (0.1) [33], Mixup (0.8) [34] and Cutmix (1.0) [35]. One554

exception is Linear-Probing (LP), where we do not use any of the above augmentations because555

they have been shown to degrade linear probing performance [3, 1]. We train all methods using556

AdamW [14] as the base optimizer with a weight decay of 0.1, cosine learning rate schedule, and557

a batch size of 256 for 30 epochs. We also sweep relevant hyper-parameters for each method and558

document them below.559

• FT: learning rate 2e� 5560

• LP: learning rate 5e� 3561

• LP-FT: learning rate 2e� 5. We take the best LP model (trained for 30 epochs) and then562

fine-tune it for another 15 epochs with the learning rate specified above.563

• L2-SP: learning rate 2e� 5, regularization hyper-parameter 1e� 5.564

• FTP: learning rate 3e� 5, regularization hyper-parameter default  = 1.565

Every ImageNet classification experiment was conducted on 2 A40 GPUs.566

7.5 PASCAL Dense Vision Task Experiments Details and Additional Results567

In Sec. 4.2, we presented results on semantic segmentation. In this section, we provide the additional568

results on semantic segmentation and surface normal estimation in Tab, 7 and Tab. 8. FTP achieves the569

best ID and OOD performance with significantly improved computation efficiency over TPGM [10].570

Next, we will give more details on implementation.571

16

Table 7: Pascal Human Parts Segmentation Results using SWIN-Tiny transformers pre-trained on
ImageNet21K. Performance is measured by mIoU". FTP achieves the best OOD performance and is
much faster than prior work TPGM [10] by 34%.

ID OOD Statistics
Clean Fog Defocus Gaussian Brightness OOD Avg. ID � (%) OOD � (%) Time (s/it)#

Vanilla FT 62.61 (0.31) 57.50 (0.73) 40.76 (0.19) 30.64 (0.88) 57.47 (0.33) 46.59 0.00 0.00 0.280
Adapter 60.84 (1.27) 57.11 (0.39) 45.03 (3.96) 33.12 (1.92) 57.25 (0.68) 48.13 -2.81 3.30 0.221
BitFit 59.06 (0.97) 55.66 (1.36) 45.81 (1.27) 32.18 (2.59) 55.89 (0.97) 47.39 -5.67 1.70 0.235
L2-SP 62.26 (3.17) 58.46 (2.83) 45.35 (1.30) 34.36 (2.79) 58.40 (2.52) 49.14 -0.56 5.47 0.336

MARS-SP 62.92 (0.94) 58.04 (1.75) 42.51 (1.72) 32.66 (2.53) 58.33 (1.15) 47.89 0.50 2.77 0.308
LLRD 64.37 (1.80) 60.10 (2.58) 44.61 (1.95) 36.90 (4.84) 59.84 (2.06) 50.36 2.81 8.09 0.278
TPGM 63.29 (1.72) 60.16 (1.44) 46.91 (1.78) 37.30 (2.60) 59.81 (1.00) 51.04 1.10 9.55 0.602

FTP 65.50 (0.17) 61.73 (0.36) 44.97 (0.70) 40.55 (1.71) 61.23 (0.12) 52.12 4.63 11.86 0.397

Table 8: Pascal surface normal Results using SWIN-Tiny transformers pre-trained on ImageNet21K.
Performance is measured by RMSE#. FTP achieves the best OOD performance and is much faster
than prior work TPGM [10] by 35%.

ID OOD Statistics
Clean Fog Defocus Gaussian Brightness OOD Avg. ID � (%) OOD � (%) Time (s/it)#

Vanilla FT 18.98 (0.05) 22.25 (0.08) 23.51 (0.06) 27.33 (0.20) 20.83 (0.06) 23.48 0.00 0.00 0.288
Adapter 18.19 (0.05) 20.15 (0.04) 21.46 (0.02) 23.90 (0.14) 19.23 (0.06) 21.19 -4.15 -9.77 0.229
BitFit 20.01 (0.05) 21.93 (0.03) 23.95 (0.12) 26.92 (0.18) 21.28 (0.05) 23.52 5.43 0.17 0.240
L2-SP 16.51 (0.04) 19.26 (0.13) 20.49 (0.11) 24.46 (0.29) 18.08 (0.04) 20.57 -13.01 -12.38 0.343

MARS-SP 19.01 (0.04) 22.15 (0.13) 23.69 (0.11) 27.53 (0.29) 20.86 (0.04) 23.56 0.18 0.32 0.313
LLRD 15.54 (0.08) 18.31 (0.03) 20.01 (0.20) 26.47 (1.45) 17.36 (0.07) 20.54 -18.11 -12.54 0.279
TPGM 18.17 (0.02) 19.74 (0.04) 21.00 (0.15) 23.53 (0.27) 19.02 (0.03) 20.82 -4.24 -11.32 0.616

FTP 15.51 (0.10) 18.19 (0.09) 20.01 (0.21) 26.39(0.78) 17.32 (0.10) 20.48 -18.30 -12.79 0.403

Following prior works [42], we use a combination of Swin-Tiny Transformer [44] encoder and572

Segformer [45] decoder. The decoder is customized to allow different output formats. Only the Swin573

encoder is initialized with pre-trained weights (pre-trained on ImageNet-22k). Therefore, we only574

apply FTP to the encoder. For all methods, we use Adam as the base optimizer with a weight decay of575

1e� 4 and a learning rate of 1e� 4 for 60 epochs. For methods with regularization hyper-parameters,576

we sweep a range of values and report the best one. We provide Tab. 9 for reference.577

Table 9: Hyper-parameters for PASCAL Dense Vision Tasks Experiments.

Semseg Human Parts Surface Normal

L2-SP 5e-4 1e-4 1e-4
LLRD 0.65 0.45 0.65

MARS-SP 4 8 4
FTP 1.0 0.0 0.0

To test OOD robustness on the PASCAL-Context benchmark, we apply natural corruptions to the orig-578

inal clean images. Specifically, we select four types of corruptions from the popular benchmark [43],579

each of which is sampled from a main category: noise, blur, weather, and digital. Each corruption580

has five levels of severity. We report the average values over the five severity in our paper. Here, we581

also provide a detailed breakdown for each level of corruption in Fig. 5. Every PASCAL experiment582

was conducted on a single RTX 2080 GPU.583

7.6 Continual Learning Experiments Details and Additional Results584

In this section, we provide a brief overview of the settings in continual learning (CL). In CL, a585

model ✓ is trained on a sequence of task n 2 {1, ..., N}. Each task has a non-overlapping set of586

class labels Tn, and we denote the number of classes as |Tn|. For ImageNet-R, we split the 200587

classes into 10 tasks with 20 labels each, i.e., N = 10, |Tn| = 20. Our experiments belong to the588

class-incremental category in CL. With each new task, the final linear classifier layer is expanded589

with randomly initialized weights. We denote ✓i,1:n as the model that has been trained on i tasks and590

the classifier has all classes up to and including the n-th task (i � n).591

17

Figure 5: Performance Breakdown for each Level of Corruption on PASCAL-Context Vision Tasks.

To measure global performance, we first define the global task accuracy A1:N as,592

A1:N =
1

|Dtest|
X

(x,y)2Dtest

I(ŷ(x, ✓N,1:N) = y).

where Dtest is the test dataset which has data from all N tasks and ŷ(x, ✓) denotes the predicted class593

from the model with weights ✓. Then we define the global forgetting FN [53] as,594

FN =
1

N � 1

NX

i=2

i�1X

n=1

|TN |
T1:n

(Rn,n �Ri,n)

where,595

Ri,n =
1

|Dtest
n |

X

(x,y)2Dtest
n

I(ŷ(x, ✓i,1:n) = y).

Following the prior work [51], all experiments in Tab. 5 use a ViT-Base pre-trained on ImageNet.596

We tune FTP with the code provided by the authors and directly compare it to the results from the597

prior work. Specifically, all methods use Adam as the base optimizer with no weight decay and a598

batch size of 128. All results are averaged over 3 random seed trials where the class allocation to599

each task is shuffled. For FTP, we train the model for 25 epochs with an initial learning rate of 5e� 4600

and a cosine learning rate schedule. For all methods, we freeze the majority of the backbones and601

only fine-tune the QKV attention layers in the ViT. Please refer to the prior work for a more detailed602

description of the compared methods. Every CL experiment was conducted on 4 RTX2080 GPUs.603

7.7 Pytorch Code Example of FTP604

Here is an example of using SGDP (SGD+FTP) in Pytorch format. SGDP requires the common605

arguments for initializing an SGD optimizer class in Pytorch with two additional inputs: k and606

18

exclude_set. k is the hyper-parameter for positive gradient annealing (Sec. 3.2) and exclude_set607

contains the set of the names of parameters to be excluded from the projection operation. A complete608

demonstration of image classification is provided in the supplementary. You should be able to609

reproduce FTP results in Tab. 1 and Tab. 2.610

from FTP import SGDP611

612

Parameters to be optimized613

params_to_opt = [x[1] for x in model.named_parameters ()]614

Names of parameters to be optimized615

params_to_opt_name = [x[0] for x in model.named_parameters ()]616

Copy the initial parameters as the anchor617

params_anchor = copy.deepcopy(params_to_opt)618

Set up the parameter groups619

param_group = [{"params":params_to_opt ,620

"pre": params_anchor ,621

"name": params_to_opt_name }]622

Set up the optimization hyper -parameters623

optimizer_params = {624

"lr": 1e-2,625

"weight_decay": 5.0e-4,626

"momentum": 0.9,627

"nesterov": True ,628

"k":1.0,629

"exclude_set":{’module.head.weight ’,’module.head.bias’}630

}631

optimizer = SGDP(param_group ,** optimizer_params)632

19

	Introduction
	Related Works
	Method
	Review: Enforcing Projection and Learning Constraints
	FTP: Fast Trainable Projection
	Dual Perspective: Fine-tuning Robustness in Feature Space and Weight Space

	Experiments
	Image Classification Experiments
	DomainNet
	ImageNet

	PASCAL Dense Vision Task Experiments
	Continual Learning (CL) Experiments

	Limitations and Reproducibility
	Conclusion
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	FTP: Additional Discussion
	Image Classification Experiments Details and Additional Results
	PASCAL Dense Vision Task Experiments Details and Additional Results
	Continual Learning Experiments Details and Additional Results
	Pytorch Code Example of FTP

