
A Proof of Lemma 3.1

Let D = {(xi, yi)}ni=1 denote the set of points associated to a task, and a untrained policy π that
collects a trajectory of length T by iteratively drawing points in D uniformly without replacement.
We note (z1, . . . , zT ) the sequence of function values observed during the trajectory, and (r1, . . . , rT )
the sequence of rewards obtained. We remind that rt = max

1≤ℓ≤t
zℓ, and we consider that rt (and zt) is

informative if zt = max
1≤ℓ≤t

zℓ. We want to compute the probability of obtaining exactly m informative

rewards by sampling a trajectory from π. As each sequence is equiprobable, we do so by counting
the number of sequences leading to m informative rewards. We assume for now that the values in
{yi}ni=1 are pairwise distinct.

We first note that there are
(
n
T

)
ways to choose the T ≤ n points composing a trajectory of length

T from Dn. We now consider that the set of T sampled value functions is fixed (without loss of
generality we note this set V = {vℓ}1≤ℓ≤T ). For 1 ≤ k ≤ T , we note C(k, T ) the number of ways
to order them such that the resulting trajectory (z1, . . . , zn) contains exactly k informative values,
and we will give a recurrent formula for C(k, T ).

We can see that k = 1 necessarily implies that z1 = max
1≤ℓ≤T

vℓ. Thus there are (T − 1)! ways to order

the remaining elements of the trajectory {zℓ}2≤ℓ≤n, hence C(1, T ) = (T − 1)!. On the other hand,
k = T informative rewards are only obtained for when the element of V are sorted in increasing
order, i.e. with (z1 < z2 < · · · < zT ), and therefore C(T, T ) = 1.

Finally, for 2 ≤ k < T we can establish a recurrence relation by reasoning on zn, the last element of
the sequence:

• If zT = max
1≤ℓ≤n

vℓ, then zT is informative, and there remains to count the number of ways to

order the first T − 1 elements V \{zT } to get k− 1 informative steps, which is by definition
C(k − 1, T − 1).

• If zT = vj < max
1≤ℓ≤T

vℓ, then zT is not informative. We note that there are T − 1 choices

for such vj , and for each choice of vj there remains to order V \{vj} such that the resulting
sub-trajectory (z1, . . . , zT−1) has exactly k informative values. There are therefore (T −
1)C(k, T − 1) trajectories with k informative rewards such that zT ̸= max

1≤ℓ≤T
vℓ

From this analysis we get that C(k, T ) = C(k − 1, T − 1) + (T − 1)C(k, T − 1).

This relation, along with boundary values C(1, T ) = (T − 1)! and C(T, T ) = 1, allow to identify
C(k, T ) as the Stirling number of first kind

[
T
k

]
. This number notably corresponds to the number of

permutations in ST made of exactly k cycles.

Finally, the number of trajectories of length T that can be obtained from D and having k informative

rewards, is given by (nT)×C(k,T )

(nT)×T !
= 1

T !

[
T
k

]
, which is equal to the probability of getting k cycles in a

permutation sampled randomly in ST . Therefore the expected number of informative rewards in a
trajectory of length T is equal to the average number of cycles in a permutation sampled uniformly in
ST , which is a known result [59], thus is equal to the T th harmonic number HT = log T +O(1).

B Experimental setup

In this section we give more details about the experimental setup. In particular, we add details about
the experiments environments and baselines where needed. We also give some more intuition on the
NAP training and data augmentation scheme used. Finally we list all important hyperparameters as
well as the hardware used in our experiments.

B.1 Tasks

HPO-B As mentioned in Section 4 for this experiment we choose a subset of tasks from the HPO-B
benchmark set. HPO-B is a collection of HPO datasets first grouped by search space. Each search

16



space corresponds to the hyperparameters of a particular model, e.g. SVM, XGBoost, . . . Each such
search space then has multiple associated datasets split into a set for training, validating and for
testing. The multi-task RL setting from Section 3.1 states that we limit ourselves to MDPs sharing
state and action spaces across tasks hence we don’t train NAP on multiple search spaces at the same
time. We train one model per search space, being careful to choose a search space for each type of
underlying model. When multiple search spaces related to the same underlying model we choose the
search space with the least amount of total data in order to focus on the low-data regime as much as
possible. We pick the following search spaces: 5860 (glmnet), 4796 (rpart.preproc), 5906 (xgboost),
5889 (ranger), 5859 (rpart), 5527 (svm). Refer to Table 3 in Pineda-Arango et al. [44] for more
details.

Electronic Design Automation Following the description in Section 4 we search for the sequence
of operators to optimise an objective combining two metrics associated with circuit performance, the
area and the delay. The area is the number of gates in the mapped netlist, while the delay corresponds
to the length of the longest directed path in the mapped netlist. As these two metrics are not directly
commensurable, we normalise them by the area and delay obtained when running twice the reference
sequence resyn2 [51] made of 10 operators, as follows:

fEDA(seq) =
Area(seq)

Area(2× resyn2)
+

Delay(seq)
Delay(2× resyn2)

where seq is a sequence of operators from ABC.

B.2 Baselines

OptFormer The results reported by Chen et al. [41] are for the continuous HPO-B benchmark where
XGBoost models approximate the black-box functions from the discrete points. To evaluate every
approach in a fairer and more robust manner, we instead focused on the original discrete setup of HPO-
B which uses only true values from the black-boxes. We relied on the shared OptFormer checkpoint
trained and validated on HPO-B. We adapted the inference code for the discrete setting and noticed
that the default parameters were set to NaPolicy.DROP which drop the missing values in the HPO-B
benchmark and removes the additionnal "na" columns. We switched it to NaPolicy.CONTINUOUS
to keep every column leading to better performances. We also had to increase the maximum number
of tokens possible in a trajectory from 1024 to 2048.

B.3 NAP training

We conduct our experiments in a consistent manner. We define a training , validation and test sets
that are kept the same for each method. We also ensure reproducibility by ensuring random seeds
are similar across experiments and initial points too. Finally we run the tests on 10 different random
seeds in all experiments and 5 for HPO-B as there are only 5 seeds available for other baselines.

Data augmentation When training on tasks with low number of points in each dataset, we perform
data augmentation using Gaussian processes. On each dataset we fit an exact GP and during training
we sample a new dataset directly from the posterior of that GP. This has an interpolating effect such
that between original data points, the GP can make predictions that are roughly realistic. Training
on these augmented datasets sampled from GP posteriors is handy in practice because it helps to
create datasets of the desired size (we can sample as many data points as we like) and datasets that
resemble the original one, provided we don’t sample from the GP posterior too far from the original
inputs. In practice we sample inputs points from the original dataset, add to them a random uniform
perturbation and sample from the GP posterior at those new points.

Value function The value function takes as input t/T and the best y value observed inHt.

B.4 Hyperparameters

We share in Table 2 a comprehensive list of the hyperparameters used during training and inference.
More details can be found in the associated code repository. We want to underline that none of
these presented hyperparameters were tuned. This is only fair as we did also not optimise any

17



Policy πθ
State st

Ht

T, t

pθ(·)
αθ(·) xt

Action

Rt =
∑t

i=1 γ
iri

Reward

∇θR

Lt = pθ(y|x,Ht)

Auxiliary loss

∇θL

Ht+1 := Ht ∪{(xt, yt)}

Figure 3: Summary of our proposed Neural Acquisition Process (NAP) architecture. At iteration
t = 1, . . . , T the state consists of st = {Ht, t, T}, respectively the history of collected points, the
current iteration index and the total budget. The action is sampled from the policy xt ∼ πθ(·|st). For
a set of locations x ⊆ A, the gradients flow back to parameters θ from both the cumulative regret
returns Rt and the auxiliary likelihood loss Lt.

hyperparameters from the other baseline methods. Hyperparameters that are shared between our
method and previous baselines are simply taken as is from their respective codebases as we assume
the authors have already tuned them. We use the same for all experiments. Note that the ablation
study in C.1 can be seen as a simple tuning of the parameter λ introduced to weight both losses in
NAP.

Table 2: List of used hyperparameters in NAP.

PPO

Learning rate for gradient descent 3 · 10−5

Learning rate decay Linear decay to 0 over 2000 iterations
Number of training PPO iterations 2000
Horizon of episodes used in training 24
Trajectories collected per iteration 60
Total numbers of transformer updates 90,000
Minibatch size 32
Weight of auxiliary loss in total loss (λ) 1.0
Weight of the value function loss in total loss 1.0
Generalised Advantage Estimator-λ 0.98
Discount factor γ 0.98
Clip of importance sampling ratio ϵ 0.15
L2 gradient clipping 0.5

BO environment
Range of Uniform perturbation for data augmentation [−0.05, 0.05]
Number of random initial points 0 during training, 5 during validation

Architecture
Number of buckets in the output histogram 1000
Point-wise feed-forward dimension of Transformer 1024
Embedding dimension of Transformer 512
Number of self-attention layers of Transformer 6
Number of self-attention heads of Transformer 4
Dropout rate of Transformer 0.0
Softmax temperature to compute π from α 0.1 for training, argmax otherwise
Value function network Linear(2, 512), TanH, Linear(512, 1)

18



B.5 Hardware

We train our model on a machine with 4 GPUs Tesla V100-SXM2-16GB and an Intel(R) Xeon(R)
CPU E5-2699 v4 @ 2.20GHz with 88 threads with an average training time of approximately 10
hours per experiment.

C Additional Results

C.1 Ablation

In this section we perform an ablation study to answer some of the questions that arise naturally from
the proposed framework. Notably, is end-to-end training useful? Does the auxiliary loss help? Is
it useful to learn the acquisition function and not simply a surrogate model? We run an additional
experiment on a dataset from the HPOBench benchmark [60]. For reference, we detail the methods
of this ablation in Table 3 for easier comparison.

Table 3: Variations of NAP and their components.
pθ αθ RL Supervision End-to-end

NAP (ours) ✔ ✔ ✔ ✔ ✔
Pre-NAP ✔ ✔ ✔ ✔ ✘
NAP-RL ✔ ✔ ✔ ✘ ✔

NP-EI ✔ ✘ ✘ ✔ ✘

0 50 100 150 200 250 300

10 4

10 3

10 2

10 1

100

NP-EI
NAP

PreNAP NAP-RL

Figure 4: Average regret vs iterations on
HPOBench dataset for XGBoost. Error bars
are confidence intervals across ten runs.

This study uses datasets of HPOBench [60] for XG-
Boost hyperparameters, similarly to Volpp et al. [13].
It consists of hyperparameter configurations and their
associated accuracy of the XGBoost model on a clas-
sification task.

We analyse the effects of training end-to-end with
the introduced auxiliary loss to better understand
the method’s strengths and limitations. Six hyper-
parameters (learning rate, regularisation, etc.) and
48 classification tasks exist. We have 1000 hyperpa-
rameter configurations evaluated for each task and
the corresponding XGBoost model accuracy, creat-
ing 48 datasets of different black-box functions. We
meta-train on 20 datasets, validate on 13 and test on
15.

Is it worthwhile to learn a meta-acquisition function? A valid question to ask is whether or not
we need to meta-learn an acquisition function. There exist popular methods for meta-learning models,
as discussed in the main paper, so one could use such a surrogate model and apply it directly in BO,
using its posterior distribution to compute an acquisition function. Such an approach matches our
baseline NP-EI, where we train a PFN [11] on the same training data and apply it directly in BO.
Comparing NAP and NP-EI, Figure 4 reveals the benefits of learning the acquisition function as
part of the end-to-end architecture instead of using a pre-defined expected improvement acquisition
function.

Does training end-to-end using the auxiliary loss help? Training end-to-end, we check that using
supervised information through the auxiliary loss helps compared to end-to-end training with only
the reinforcement learning reward. We name the latter NAP-RL and show the results in Figure 4
which suggests that indeed, the inductive bias introduced with the auxiliary loss is beneficial for
downstream performance.

Is end-to-end training beneficial? To investigate this question, we first pre-train the probabilistic
model part of a NAP with the supervised auxiliary loss and then use PPO to update the meta-
acquisition function while keeping the rest of the weights frozen. We denote this method as PreNAP

19



as the architecture is partly pre-trained. Figure 4 shows that PreNAP . Thus, training jointly end-to-
end NAP with both objectives translate into improved regret at test time, validating our hypothesis in
Section 3.

C.2 HPO-B per search space results

Additionally to the aggregated regret plot in Figure 2 of Section 4 we show ranks and regrets per
search space.

Figure 5 shows the regret for each method per search space, aggregated on all the test datasets of that
search space and across 5 random seeds. Figure 6 shows the relative rank of each method (lower is
better) per search space, aggregated across all the test datasets of that search space and 5 random
seeds.

0 15 30 45 60 75 90 105

10 4

10 3

10 2

10 1

Av
er

ag
e 

Re
gr

et

Search space No. 4796

0 15 30 45 60 75 90 105
10 5

10 4

10 3

10 2

10 1
Search space No. 5860

0 15 30 45 60 75 90 105

10 3

10 2

10 1

Search space No. 5906

0 15 30 45 60 75 90 105
Number of trials

10 2

10 1

Av
er

ag
e 

Re
gr

et

Search space No. 5527

0 15 30 45 60 75 90 105
Number of trials

10 3

10 2

10 1

Search space No. 5889

0 15 30 45 60 75 90 105
Number of trials

10 5

10 4

10 3

10 2

10 1

100 Search space No. 5859

Random GP FSBO2 NAP OptFormer NP-EI

Figure 5: Average regret vs. BO iterations on each search space with 5 initial points. For each
method, error bars show confidence intervals computed across 5 runs.

20



0 15 30 45 60 75 901052

3

4

5

Av
er

ag
e 

Ra
nk

Search space No. 4796

0 15 30 45 60 75 90105
2

3

4

Search space No. 5860

0 15 30 45 60 75 90105
2

3

4

5

Search space No. 5906

0 15 30 45 60 75 90105
Number of trials

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e 

Ra
nk

Search space No. 5527

0 15 30 45 60 75 90105
Number of trials

2

3

4

5
Search space No. 5889

0 15 30 45 60 75 90105
Number of trials

2

3

4

5

6
Search space No. 5859

Random GP FSBO2 NAP OptFormer NP-EI

Figure 6: Average rank (lower is better) vs. BO iterations on each search space with 5 initial points.
For each method, error bars show confidence intervals computed across 5 runs.

C.3 Time Comparison

While in our BO setting we assume that querying the black-box objective is the main bottleneck (hence
our focus on sample efficiency), it is also interesting to analyse the time efficiency of algorithms to
gain another perspective on various methods. In this section we summarise some average test running
time results to provide a different point of view. In short, we see that even though some methods
require offline pre-training (e.g. MetaBO, FSBO, NAP), the time required to evaluate points in the
objective function out-weights this cost. Hence when measuring the total running time, it makes little
difference if some methods require this pre-training.

For example, in the antibody experiment, evaluating the objective is costly. This is true both in terms
of monetary and time costs as evaluating the objective could mean manufacturing the molecule and
testing it in a wet-lab experiment. In our experiments we use a simulator as a proxy. The HPO-B
black-box function is also very expensive to evaluate as it relies on training and testing several models.
We use result files posted on the authors’ repository which only contain black-box values for some
baselines.

However we do have at our disposal the true black-boxes for the MIP and EDA experiments. By
design of the experiment, evaluating one set of hyperparameters on the MIP experiment takes 2
hours. Compared to that, the time to train a GP model or doing a forward pass in NAP at test time is
negligible. On EDA, the black-box time depends on the circuit so we approximate an average running
time of 1 minute per circuit on open-source circuits, but this can take several hours on industrial
circuits.

Table 4 and 5 compare the average test time of one seed across all methods. In the first column, we
can see that methods which have to fit a GP during the BO loop (FSBO, MetaBO and GP-EI) are
considerably slowed down compared to methods like NAP that only do forward passes through their
network. This is because fitting the GP surrogate at each BO step is time consuming, and increasingly
so, as its dominant computational cost is cubic in the number of observed points. Note also that

21



FSBO not only fits a GP at each step but also fine tunes the MLP of its deep kernel, hence the extra
time. The second column, with the black-box time taken into account, further underlines that even
though NAP is faster at test time than e.g. FSBO or GP-EI, this time gain it is negligible compared to
the black-box evaluations. The third column takes into account the pre-training time for methods that
require it. Note that for different test functions within the same search space, we can reuse the same
model for NAP, NP-EI, MetaBO and FSBO without having to redo the pre-training, so we divided
the pre-training time by the number of seeds and test functions. Hence, it does not add much time to
the total.

It should be underlined that this way of presenting BO results is less readable than presenting regret
vs BO steps as the more seeds and test tasks we have, the more negligible the pre-training time
becomes compared to the black-box evaluation time.

Table 4: Average test time of 1 seed on the MIP experiment.
Method without bbox with bbox with bbox & pretrain

GP-EI 585sec 25d 0hr 9min 45sec 25d 0hr 9min 45sec
FSBO 330sec 25d 0hr 5min 30sec 25d 0hr 10min

MetaBO 30sec 25d 0hr 0min 30sec 25d 0hr 12min
NP-EI 2sec 25d 0hr 0min 2sec 25d 0hr 36min

NAP 3sec 25d 0hr 0min 3sec 25d 1hr

Table 5: Average test time of 1 seed on the EDA experiment.
Method without bbox with bbox with bbox & pretrain

GP-EI 17sec 1hr 5min 17sec 1hr 5min 17sec
FSBO 516sec 1hr 13min 36sec 1hr 14min 6sec

MetaBO 35sec 1hr 5min 35sec 1hr 12min 5sec
NP-EI 8sec 1hr 5min 8sec 1hr 7min 34sec

NAP 9sec 1hr 5min 9sec 1hr 7min 42sec

D Discussions

We give a more detailed explanation of Table 1 below.

OptFormer OptFormer encodes a history as follows: a short meta-data sequence describing the
variables taken as input and a sequence of trials (a trial corresponds to an ⟨x, y⟩ pair). Each trial is
composed of the values present in x, the value of y and a separator to mark the end of a trial (D+ 2).
They need to use positional encoding to keep the sequence consistent (for instance the order of the
dimensions is important to identify which dimension of x it is). Because of that, their architecture is
not history-order invariant.

The query independence of their model is debatable. We can achieve it by splitting the queries across
batches, but it is not doable in a single batch without substantial modifications of their code, their
masks and their positional encoding. Note that splitting queries across batches results in a very slow
inference. To evaluate OptFormer on HPO-B in a fair manner we had to do it, and it took us more
than 2 weeks to obtain the results with 16 GPUs.

Transformer NP Nguyen and Grover [12] propose several transformer-based neural process
architecture. Omitting the fact that they predict a Gaussian distribution over function values and not
acquisitions, their TNP-D transformer architecture is the closest to ours. It does not rely on positional
encoding, hence it is history-order invariant.

However, instead of summing the embeddings of x and y as we do, they concatenate them in a
fixed representation, forcing them to set y = 0 in the queries. Hence, the only way to achieve query
independence is to train on the same queries during testing and training. As we cannot assume we
know what the queries will be during testing, Property 3.3 is not respected for any queries.

22



Prior Fitted Transformer PFN satisfies the two properties 3.2 and 3.3 since they do not rely on
positional encoding and sum the embeddings of x and y.

The main differences with them are that our input is different and that we predict AF values with
reinforcement learning.

23


