
Non-adversarial training of Neural SDEs with
signature kernel scores

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural SDEs are continuous-time generative models for sequential data. State-1

of-the-art performance for irregular time series generation has been previously2

obtained by training these models adversarially as GANs. However, as typical3

for GAN architectures, training is notoriously unstable, often suffers from mode4

collapse, and requires specialised techniques such as weight clipping and gradient5

penalty to mitigate these issues. In this paper, we introduce a novel class of scoring6

rules on pathspace based on signature kernels and use them as objective for training7

Neural SDEs non-adversarially. By showing strict properness of such kernel8

scores and consistency of the corresponding estimators, we provide existence and9

uniqueness guarantees for the minimiser. With this formulation, evaluating the10

generator-discriminator pair amounts to solving a system of linear path-dependent11

PDEs which allows for memory-efficient adjoint-based backpropagation. Moreover,12

because the proposed kernel scores are well-defined for paths with values in infinite13

dimensional spaces of functions, our framework can be easily extended to generate14

spatiotemporal data. Our procedure significantly outperforms alternative ways15

of training Neural SDEs on a variety of tasks including the simulation of rough16

volatility models, the conditional probabilistic forecasts of real-world forex pairs17

where the conditioning variable is an observed past trajectory, and the mesh-free18

generation of limit order book dynamics.19

1 Introduction20

Stochastic differential equations (SDEs) are a dominant modelling framework in many areas of21

science and engineering. They naturally extend ordinary differential equations (ODEs) for modelling22

dynamical systems that evolve under the influence of randomness.23

A neural stochastic differential equation (Neural SDE) is a continuous-time generative model24

for irregular time series where the drift and diffusion functions of an SDE are parametrised by25

neural networks [TR19, JB19, HvdHRM20, LWCD20, KFL+21, MSKF21]. These models have26

become increasingly popular among financial practitioners for pricing and hedging of derivatives and27

overall risk management [ASS20, GSVŠ+20, CJB23, HFH+]. Training a Neural SDE amounts to28

minimising over model parameters an appropriate notion of distance between the law on pathspace29

generated by the SDE and the empirical law supported on observed data sample paths.30

Various choices of training mechanisms have been proposed in the literature; state-of-the-art perfor-31

mance has been achieved by training Neural SDEs adversarially as Wasserstein-GANs [KFL+21].32

However, as typical for GAN architectures, training is notoriously unstable, often suffers from mode33

collapse, and requires specialised techniques such as weight clipping and gradient penalty.34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

In this paper we introduce a novel class of scoring rules based on signature kernels, a class of35

characteristic kernels on paths [LSD+21, CFC+21, SLL+21, LSC+21, CLS23, HLL+23], and use36

them as objective for training Neural SDEs non-adversarially. We provide existence and unique-37

ness guarantees for the minimiser by showing strict properness of the signature kernel scores and38

consistency of the corresponding estimators.39

With this training formulation, the generator-discriminator pair becomes entirely mesh-free and can40

be evaluated by solving a system of linear path-dependent PDEs which allows for memory-efficient41

adjoint-based backpropagation. In addition, because the proposed kernel scores are well-defined for42

classes of paths with values in infinite dimensional spaces of functions, our framework can be easily43

extended to the generation of spatiotemporal signals.44

We demonstrate how our procedure is more stable and outperforms alternative ways of training Neural45

SDEs on a variety of tasks from quantitative finance including the simulation of rough volatility46

models, the conditional probabilistic forecasts of real-world forex pairs where the conditioning47

variable is an observed past trajectory, and the mesh-free generation of limit order book dynamics.48

2 Related work49

Prior to our work, two main approaches have been proposed to fit a Neural SDE as a time series50

generative model, differing in their choice of divergence to compare laws on pathspace.51

The SDE-GAN model introduced in [KFL+21] uses the 1-Wasserstein distance to train a Neural SDE52

as a Wasserstein-GAN [ACB17]. Namely, the "witness functions" of the 1-Wasserstein distance are53

parameterised by neural controlled differential equations [KMFL20, MSK+20] and the generator-54

discrimator pair is trained adversarially. SDE-GANs are relatively unstable to train mainly because55

they require a Lipschitz disciminator. Several techniques such as weight clipping and gradient penalty56

have been introduced to enforce the Lipschitz constraint and partially mitigate the instability issue57

[Kid22]. SDE-GANs are also sensitive to other hyperparameters, such as the choice of optimisers,58

their learning rate and momentum, where small changes can yield erratic behavior.59

The latent SDE model [LWCD20] trains a Neural SDE with respect to the KL divergence using60

the principles of variational inference for SDEs [Opp19]. This approach consists in maximising an61

objective that includes the KL divergence between the laws produced by the original SDE (the prior)62

and an auxiliary SDE (the approximate posterior). The two SDEs have the same diffusion term but63

different initial conditions and drifts, and a standard formula for their KL divergence exists. After64

training, the learned prior can be used to generate new sample paths. Latent SDEs can be interpreted65

as variational autoencoders, and generally yield worse performance than SDE-GANs, which are more66

challenging to train, but offer greater model capacity.67

Besides Neural SDEs, other time series generative models have been proposed, including discrete-68

time models such as [YJVdS19] and [NSW+20]1 which are trained adversarially, continuous-time69

flow processes [DCB+20] and score-based diffusion models for audio generation [CZZ+, KPH+].70

The class of score-based generative models (SGMs) seeks to map a data distribution into a known71

prior distribution via an SDE [SSDK+20, VKK21]. During training, the (Stein) score [LLJ16] of the72

SDE marginals is estimated and then used to construct a reverse-time SDE. By sampling data from73

the prior and solving the reverse-time SDE, one can generate samples that follow the original data74

distribution. We note that our techniques for generative modelling via scoring rules, although similar75

in terminology, are fundamentally different, as we train Neural SDEs with respect to a loss function76

that directly consumes the law on pathspace generated by the SDE.77

Scoring rules [GR07] have been used to define training objectives for generative networks [BMN16,78

GSvdB+20] which have been shown to be easier to optimize compared to GANs [PADD21, PD22].79

Closer to our work is [PADD21] which constructs statistical scores for discrete (spatio-)temporal80

signals. However, their strict properness is ensured under Markov-type assumptions and their81

continuous-(space-)time limit has not been studied. A key aspect of our work is to develop consistent82

and effective scoring rules for generative modelling in the continuous-time setting. While [BO21]83

1In [NSW+20] the discriminator is formulated in continuous-time based on a different parametrisation to
approximate the 1-Wasserstein distance, also later used in [NSSV+21].

2

has also introduced scoring rules for continuous-time processes, our emphasis lies in constructing84

so-called kernel scores specifically for training Neural SDE and Neural SPDE generative models.85

The Neural SPDE model introduced in [SLG22] parametrises the solution operator of stochastic86

partial differential equations (SPDEs), which extend SDEs for modelling signals that vary both in87

space and in time. So far, Neural SPDEs have been trained in a supervised fashion by minimizing the88

pathwise L2 norm between pairs of spatiotemporal signals. While this approach has proven effective89

in learning fast surrogate SPDE solvers, it is not well-suited for generative modeling where the goal is90

to approximate probability measures supported on spatiotemporal functions. In this work, we propose91

a new training objective for Neural SPDEs to improve their generative modeling capabilities.92

3 Training Neural SDEs with signature kernel scores93

3.1 Background94

We take (Ω,F ,P) as the underlying probability space. Let T > 0 and dx ∈ N. Denote by X be the95

space of continuous paths of bounded variation from [0, T] to Rdx with one monotone coordinate2.96

For any random variable X with values on X , we denote by PX := P ◦X−1 its law.97

The signature map S : X → T is defined for any path x ∈ X as the infinite collection S(x) =98 (
1, S1(x), S2(x), ...

)
of iterated Riemann-Stieltjes integrals99

Sk(x) :=

∫
0<t1<...<tk<T

dxt1 ⊗ dxt2 ⊗ ...⊗ dxtk , k ∈ N,

where ⊗ is the standard tensor product of vector spaces and T := R⊕ Rdx ⊕ (Rdx)⊗2 ⊕ ...100

Any inner product ⟨·, ·⟩1 on Rdx yields a canonical Hilbert-Schmidt inner product ⟨·, ·⟩k on (Rdx)⊗k101

for any k ∈ N, which in turn yields, by linearity, a family of inner products ⟨·, ·⟩T on T . We refer the102

reader to [CLX21] for an in-depth analysis of different choices. By a slight abuse of notation, we use103

the same symbol to denote the Hilbert space obtained by completing T with respect to ⟨·, ·⟩T .104

3.2 Neural SDEs105

Let W : [0, T] → Rdw be a dw-dimensional Brownian motion and a ∼ N (0, Ida
) be sampled from106

da-dimensional standard normal. The values dw, da ∈ N are hyperparameters describing the size of107

the noise. A Neural SDE is a model of the form108

Y0 = ξθ(a), dYt = µθ(t, Yt)dt+ σθ(t, Yt) ◦ dWt, Xθ
t = AθYt + bθ (1)

for t ∈ [0, T], with Y : [0, T] → Rdy the strong solution, if it exists, to the Stratonovich SDE, where109

ξθ : Rda → Rdy , µθ : [0, T]× Rdy → Rdy , σθ : [0, T]× Rdy → Rdy×dw

are suitably regular neural networks, and Aθ ∈ Rdx×dy , bθ ∈ Rdx . The dimension dy ∈ N is a110

hyperparameter describing the size of the hidden state. If µθ, σθ are Lipschitz and Ea[ξθ(a)
2] < ∞111

then the solution Y exists and is unique.112

Given a target X -valued random variable X true with law PX true , the goal is to train a Neural SDE so113

that the generated law PXθ is as close as possible to PX true , for some appropriate notion of closeness.114

3.3 Signature kernels scores115

Scoring rules are a well-established class of functionals to represent the penalty assigned to a116

distribution given an observed outcome, thereby providing a way to assess the quality of a probabilistic117

forecast. Scoring rules have been applied to a wide range of areas including econometrics [MS13],118

weather forecasting [GR05], and generative modelling [PADD21]. How to effectively select a119

scoring rule is a challenging and somewhat task-dependent problem, particularly when the data is120

sequential. Scoring rules based on kernels offer the advantages of working on unstructured and121

2This is a technical assumption needed to ensure characteristicness of the signature kernel. See Proposition
(3.1). The monotone coordinate is usually taken to be time.

3

infinite dimensional data without some of the concomitant drawbacks, such as the absence of densities.122

Next, we introduce a class of scoring rules on paths based on signature kernels to measure closeness123

between path-valued random variables. These will be used in the next section to train Neural SDEs.124

The signature kernel ksig : X ×X → R is a symmetric positive semidefinite function defined for any125

pair of paths x, y ∈ X as ksig(x, y) := ⟨S(x), S(y)⟩T . In [SCF+21] the authors provided a kernel126

trick proving that the signature kernel satisfies127

ksig(x, y) = f(T, T) where f(s, t) = 1 +

∫ s

0

∫ t

0

f(u, v)⟨dxu, dyv⟩1, (2)

which reduces to a linear hyperbolic PDE in the when the paths x, y are almost-everywhere dif-128

ferentiable. Several finite difference schemes are available for numerically evaluating solutions to129

Equation (2), see [SCF+21, Section 3.1] for details.130

We denote by H the unique reproducing kernel Hilbert space (RKHS) of ksig. From now on we endow131

X with a topology with the respect to which the signature is continuous; see [CT22] for various132

choices of such topologies. Denote by P(X) the set of Borel probability measures on X .133

Proposition 3.1. The signature kernel is characteristic for every compact set K ⊂ X , i.e. the map134

P 7→
∫
ksig (x, ·)P (dx) from P(K) to H is injective.135

Remark 3.2. The proof of this statement is classical and is a simple consequence of the universal136

approximation property of the signature [KBPA+19, Proposition A.6] and the equivalence between137

universality of the feature map and characteristicness of the corresponding kernel [SGS18, Theorem138

6]. In particular, Proposition (3.1) implies that the signature kernel is cc-universal, i.e. for every139

compact subset K ⊂ X , the linear span of the set of path functionals {ksig(x, ·) : x ∈ K} is dense in140

C(K) in the the topology of uniform convergence.141

We define the signature kernel score ϕsig : P(X)×X → R for any P ∈ P(X) and y ∈ X as142

ϕsig(P, y) := Ex,x′∼P[ksig(x, x
′)]− 2Ex∼P[ksig(x, y)].

A highly desirable property to require from a score is its strict properness, consisting in assigning the143

lowest expected score when the proposed prediction is realised by the true probability distribution.144

Proposition 3.3. For any compact K ⊂ X , ϕsig is a strictly proper kernel score relative to P(K), i.e.145

Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)] for all P,Q ∈ P(K), with equality if and only if P = Q.146

The proof of this statement can be found in the appendix and follows from [GR07, Theorem 4] and147

Proposition 3.1. We note that the signature kernel score induces a divergence on P(X) known as the148

signature kernel maximum mean discrepancy (MMD), defined for any P,Q ∈ P(X) as149

Dksig(P,Q)2 = Ey∼Q[ϕsig(P, y)] + Ey,y′∼Q[ksig(y, y
′)]. (3)

The following result provides a consistent and unbiased estimator for evaluating the signature kernel150

score from observed sample paths. The proof can be found in the appendix and follows from standard151

results for the associated MMD [GBR+12, Lemma 6].152

Proposition 3.4. Let P ∈ P(X) and y ∈ X . Given m sample paths {xi}mi=1 ∼ P, the following is a153

consistent and unbiased estimator of ϕsig154

ϕ̂sig(P, y) =
1

m(m− 1)

∑
j ̸=i

ksig(x
i, xj)− 2

m

∑
i

ksig(x
i, y). (4)

3.4 Non-adversarial training of Neural SDEs via signature kernel scores155

We now have all the elements to outline the procedure we propose to train the Neural SDE model (1)156

non-adversarially using signature kernel scores introduced in the previous section.157

Unconditional setting We are given a target X -valued random variable X true with law PX true .158

Recall the notation PXθ for the law generated by the SDE (1). The training objective is given by159

min
θ

L(θ) where L(θ) = Ey∼PXtrue [ϕsig(PXθ , y)]. (5)

4

Note that training with respect to Dksig is an equivalent optimisation as the second expectation in160

equation (3) is constant with respect to θ. This means that in the unconditional setting our model161

corresponds to a continuous time generative network of [LSZ15].162

Combining equations (1), (2), (4) and (5) the generator-discriminator pair can be evaluated by solving163

a system of linear PDEs depending on sample paths from the Neural SDE; in summary:164

Generator: Xθ ∼ SDESolve(θ) Discriminator: L(θ) ≈ PDESolve
(
Xθ, X true) . (6)

Remark 3.5. The generation of sample paths from Xθ from the SDE solver and the evaluation165

of the objective L via the PDE solver can in principle be performed concurrently, although, in our166

implementation we evaluate the full model (6) in a sequential manner.167

Conditional setting It is straightforward to extend our framework to the conditional setting where168

Q is some distribution we wish to condition on, and PX true(·|x) is a target conditional distribution169

with x ∼ Q. By feeding the observed sample x as an additional variable to all neural networks of the170

Neural SDE (1), the generated strong solution provides a parametric conditional law PXθ (·|x), and171

the model can be trained according to the modified objective172

min
θ

L′(θ) where L′(θ) = min
θ

Ex∼QEy∼PXtrue (·|x) [ϕsig(PXθ (·|x), y)] . (7)

Because ϕsig is strictly proper, the solution to (7) is PXθ (·|x) = PX true(·|x) Q-almost everywhere.173

With data sampled as {(xi, yi)}ni=1 where xi ∼ Q and yi ∼ PX true(·|xi) we can replace eq. (7) by174

min
θ

1

n

n∑
i=1

ϕsig(PXθ (·|xi), yi), (8)

We note that in our experiments we focus on the specific case where the conditioning variable x is a175

path in X corresponding to the observed past trajectory of some financial assets (see Figure 2).176

3.5 Additional details177

Interpolation Samples from X true are observed on a discrete, possibly irregular, time grid while178

samples from Xθ are generated from (1) by means of an SDE solver of choice (see [Kid22, Section179

5.1] for details). Interpolating in time between observations produces a discrete measure on path180

space, the ones desired to be modelled. The interpolation choice is usually unimportant and simple181

linear interpolation is often sufficient. See [MKYL22] for other choices of interpolation.182

Backpropagation Training a Neural SDE usually means backpropagating through the SDE solver.183

Three main ways of differentiating through an SDE have been studied in the literature: 1) Discretise-184

then-optimise backpropagates through the internal operations of the SDE solver. This option is185

memory inefficient, but will produce accurate and fast gradient estimates. 2) Optimise-then-discretise186

derives a backwards-in-time SDE, which is then solved numerically. This option is memory efficient,187

but gradient estimates are prone to numerical errors and generally slow to compute. We note that188

unlike the case of Neural ODEs, giving a precise meaning to the backward SDE falls outside the189

usual framework of diffusions. However, rough path theory [Lyo98, FLMS23] provides an elegant190

remedy by allowing solutions to forward and backward SDEs to be defined pathwise, similarly to191

the case of ODEs; see [Kid22, Appendix C.3.3] for a precise statement. 3) Reversible solvers are192

memory efficient and accurate, but generally slow. Here we do not advocate for any particular choice193

as all of the above backpropagation options are compatible with our pipeline.194

Similarly, because the signature kernel score can be evaluated by solving a system of PDEs, backprop-195

agation can be carried out by differentiating through the PDE solver analogously to the discretise-then-196

optimise option for SDEs. We note that [LSC+21] showed that directional derivatives of signature197

kernels solve a system of adjoint-PDEs, which can be leveraged to backpropagate through the198

discriminator using an optimise-then-discretise approach. We used this approach in our experiments.199

Itô vs Stratonovich Stratonovich SDEs are slightly more efficient to backpropagate through using200

an optimise-then-discretise approach. In the case of Itô SDEs, the backward equation is derived by201

applying the Itô-Stratonovich correction term to convert it into a Stratonovich SDE, deriving the202

corresponding backward equation through rough path theoretical arguments, and then converting it203

back to an Itô SDE by applying a second Stratonovich-Itô correction.204

5

Paths with values in infinite dimensional spaces While we have defined the signature kernel for205

paths of bounded variation with values in Rdx , the kernel is still well-defined when Rdx is replaced206

with a generic Hilbert space V . Remarkably, even when V is infinite dimensional, the evaluation207

of the kernel can be carried out, as Equation (2) only depends on pairwise inner products between208

the values of the input paths. In particular, the kernel can be evaluated on paths taking their values209

in functional spaces, which has far-reaching consequences in practice. For example, this gives the210

flexibility to map the values of finite dimensional input paths into a possibly infinite dimensional211

feature space, such as the reproducing kernel Hilbert space of a kernel κ on Rdx , that is, V = Hκ.212

This also provides a natural kernel for spatiotemporal signals, such as paths taking their values in213

V = L2(D), the space of square-integrable functions on a compact domain D ⊂ Rd. For practical214

applications, the inner product in Equation (2) can be approximated using discrete observations of215

the input signals on a mesh of the spatial domain D. The inner product in L2(D) can be replaced216

with more general kernels as those introduced in [WD22]. While it has become common practice to217

use signature kernels on the RKHS-lifts of Euclidean-valued paths, the ability to define and compute218

signature kernels on spatiotemporal signals has been, to our knowledge, overlooked in the literature.219

4 Experiments220

We perform experiments across five datasets. First is a univariate synthetic example, the benchmark221

Black-Scholes model, which permits to readily verify the quality of simulated outputs. The second222

synthetic example is a state of-the-art univariate stochastic volatility model, called rough Bergomi223

model. The rough Bergomi model realistically captures many relevant properties of options data,224

but due to its rough (and hence non-Markovian) nature it is well-known to be difficult to simulate.225

The third is a multidimensional example with foreign exchange (forex, or FX) currency pairs, which226

was chosen not only because of the relevance and capitalisation of FX markets but also due to its227

well-known intricate complexity. Fourth is a univariate example, where we demonstrate the method’s228

ability to condition on relevant variables, given by paths. Finally we present a spatiotemporal229

generative example, where we seek to simulate the dynamics of the NASDAQ limit order book.230

For the unconditional examples, we compare against the SDE-GAN from [KFL+21] and against the231

same pipeline as the one we proposed, but using an approximation ϕN
sig of the signature kernel score232

ϕsig obtained by truncating signatures at some level N ∈ N. We evaluate each training instance with233

a variety of metrics. The first is the Kolmogorov-Smirnov (KS) test on the marginals between a batch234

of generated paths against an unseen batch from the real data distribution. We repeated this test 5000235

times at the 5% significance level and reported the average KS score along with the average Type236

I error. Each training instance was kept to a maximum of 2 hours for the synthetic examples, and237

4 hours for the real data example. Finally, as mentioned at the end of Section 3.5, when training238

with respect to ϕsig we mapped path state values into (H, κ) where κ denotes the RBF kernel on239

Rd. Additional details on hyperparameter selection, learning rates, optimisers and further evaluation240

metrics can be found in the Appendix.241

4.1 Geometric Brownian motion242

As a toy example, we seek to learn a geometric Brownian motion (gBm) of the form243

dyt = µytdt+ σytdWt, y0 = 1, (9)

We chose µ = 0, σ = 0.2 and generated time-augmented paths of length 64 over the grid ∆ =244

{0, 1, . . . , 63} with dt = 0.01. Thus our dataset is given by time-augmented paths y : [0, 63] → R2245

embedded in path space via linear interpolation. For all three discriminators, the training and test set246

were both comprised of 32768 paths and the batch size was chosen to be N = 128. We trained the247

SDE-GAN for 5000 steps, ϕsig for 4000 and ϕN
sig for 10000 steps. Table 1 gives the KS scores along248

each of the specified marginals, along with the percentage Type I error. Here the generator trained249

with ϕsig performs the best, achieving a Type I error at the assumed confidence level.250

4.2 Rough Bergomi volatility model251

It is well-known that the benchmark model (9) oversimplifies market reality. More complex models,252

(rough) stochastic volatility (SV) were introduced in the past decades, that are able to capture relevant253

6

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1641, 41.1% 0.1094, 5.2% 0.1421, 24.2% 0.1104, 5.9% 0.1427, 26.2%

ϕN
sig (N = 3) 0.1298, 15.4% 0.1277, 16.1% 0.1536, 37.4% 0.2101, 78.8% 0.2416, 92.3%

ϕsig (ours) 0.1071, 5.0% 0.1084, 6.0% 0.1086, 5.9% 0.1089, 5.8% 0.1075, 5.5%

Table 1: KS test average scores and Type I errors on marginals on gBm.

properties of market data are used by financial practitioners to price and hedge derivatives. Prominent254

examples of stochastic volatility mdoels include the Heston and SABR models [HKLW02, HLW15,255

Hes93]. State-of-the-art models in this context have been introduced in [GJR18]. They display a256

stochastic volatility with rough sample paths. Most notable among these for pricing and hedging is257

the rough Bergomi (rBergomi) model [BFG16] which is of the form258

dyt = −1

2
Vtdt+

√
VtdWt where dξut = ξut η

√
2α+ 1(u− t)αdBt, (10)

and where ξut is the instantaneous forward variance for time u at time t, with ξtt = Vt, and α =259

H − 1/2 where H is the Hurst exponent. The parameter set is given by (η, ρ,H) with initial260

conditions X0 = x and ξut = ξ0. It has been a well-known headache for modellers that—despite261

their many modelling advantages—rough volatility models (such as (10)) are slow to to simulate262

with traditional methods. We demonstrate how our method can be used to capture the dynamics of263

the rough Bergomi model (10), and in passing we also note that our method provides a significant264

simulation speedup for (10) compared to previously available simulation methods.265

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1929, 68.3% 0.2244, 86.2% 0.2273, 87.0% 0.2205, 83.4% 0.1949, 68.7%

ϕN
sig (N = 5) 0.1126, 8.1% 0.1172, 10.1% 0.1146, 8.2% 0.1153, 8.5% 0.1134, 7.0%

ϕsig (ours) 0.1086, 5.4% 0.1129, 5.9% 0.1118, 5.2% 0.1127, 6.2% 0.1159, 6.9%

Table 2: KS test average scores and Type I errors on marginals on rBergomi model

To do so, we simulate paths of length 64 over the time window to [0, 2], and specify dt = 1/32. Thus266

paths are of length 64. The parameters are (ξ0, η, ρ,H) = (0.04, 1.5,−0.7, 0.2) and set d = 1. Paths267

are again time-augmented. The hyperparameters for training are the same as in the previous section.268

The results on the marginal distributions are summarized in Table 2. We see that that training with269

respect to ϕsig vastly outperforms the other two discriminators.270

4.3 Foreign exchange currency pairs271

We consider an example where samples from the data measure PX true are time-augmented paths272

y : [0, T] → R3 corresponding to hourly market close prices of the currency pairs EUR/USD and273

USD/JPY3. To deal with irregular sampling, we linearly interpolate each sample y over a fixed grid274

∆ = {t0, t1, . . . , t63}. Training hyperparameters were kept the same as per the rBergomi example:275

paths are comprised of 64 observations, the batch size was taken to be N = 128, and the number276

of training epochs was taken to be 10000 for the SDE-GAN, 4000 for ϕsig and 15000 for ϕN
sig. KS277

scores for each of the marginals are given in Table 3 and 4. We note that only the generator trained278

with ϕsig is able to achieve strong performance on nearly all marginals.279

We also present a histogram of sample correlations between generated EUR/USD and USD/JPY280

paths for each of the three discriminators alongside those from the data distribution. From Figure 1281

it appears that only the Neural SDE trained with ϕsig correctly identifies the negative correlative282

structure between the two pairs. This is likely due to the fact that these dependencies are encoded in283

higher order terms of the signature that the truncated method does not capture.284

3Data is obtained from https://www.dukascopy.com/swiss/english/home/

7

https://www.dukascopy.com/swiss/english/home/

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1889, 62.9% 0.2760, 98.2% 0.3324, 99.9% 0.3781, 100.0% 0.4209, 100.0%

ϕN
sig (N = 5) 0.1098, 4.2% 0.1279, 12.0% 0.1399, 18.7% 0.1507, 28.1% 0.1608, 37.5%

ϕsig (ours) 0.1270, 12.8% 0.1085, 5.2% 0.1060, 4.3% 0.1065, 5.1% 0.1049, 4.0%

Table 3: KS test average scores on marginals (EUR/USD)

Model t = 6 t = 19 t = 32 t = 44 t = 57

SDE-GAN 0.1404, 20.5% 0.1665, 44.2% 0.1771, 56.4% 0.1855, 63.8% 0.1948, 70.3%

ϕN
sig (N = 5) 0.1666, 43.8% 0.1877, 72.4% 0.2008, 84.7% 0.2154, 93.2% 0.2311, 98.3%

ϕsig (ours) 0.1189, 9.2% 0.1121, 5.8% 0.1069, 4.9% 0.1075, 3.8% 0.1051, 3.3%

Table 4: KS test average scores on marginals (USD/JPY).

Figure 1: Histogram of correlation coefficients between EURUSD and USDJPY pairs, 1024 samples.

We now consider a conditional generation problem, where the conditioning variables are time-285

augmented paths Q ∼ x : [t0−dt, t0] → R2 representing the trajectory of prior dt = 32 observations286

of EUR/USD 15-minute close prices, and the target distribution is X true : [t0, t0 + dt′] → R2287

representing the following dt′ = 16 observations. Given batched samples {xi, yi}Ni=1, where xi ∼ Q288

and yi ∼ PX true(·|xi), we train our generator according to equation (7). We encoded the conditioning289

paths via the truncated (log)signatures of order 5, and fed these values into each of the neural networks290

of the Neural SDE. In Figure 2, it is evident that the conditional generator exhibits the capability to291

produce conditional distributions that frequently encompass the observed path. Furthermore, it is292

noteworthy that these generated distributions capture certain distinctive characteristics of financial293

markets, such as martingality, mean reversion, or leverage effects when applicable.294

Figure 2: Given a conditioning path x ∼ Q, the generator provides (in blue) the conditional
distribution PXθ (·|x). The dotted line gives the true path y ∼ PX true(·|x).

8

4.4 Simulation of limit order books295

Here, we consider the task of simulating the dynamics of a limit order book (LOB), that is, an296

electronic record of all the outstanding orders for a financial asset, representing its supply and demand297

over time. Simulating LOB dynamics is an important challenge in quantitative finance and several syn-298

thetic market generators have been proposed [LWL+20],[VBP+20],[SCC21],[CPC+21],[CMVB22].299

An order o = (to, xo, vo) submitted at time to with price xo and size vo > 0 (resp., vo < 0) is a300

commitment to sell (resp., buy) up to |vo| units of the traded asset at a price no less (resp., no greater)301

than xo. Various events are tracked (e.g. new orders, executions, and cancellations) and the LOB302

B(t) is the set of all active orders in a market at time t. While prior work typically fit a generator that303

produces the next event, and run it iteratively to generate a sequence of events, we propose to model304

directly the spatiotemporal process Yt(x) =
∑

o∈B(t):xo=x vo. To generate LOB trajectories, we use305

the Neural SPDE model and train it by minimising expected spatiotemporal kernel scores constructed306

by composing the signature kernel ksig with 3 different SE-T type kernels introduced in [WD22],307

namely the ID, SQR and CEXP kernels. We fit our model on real LOB data from the NASDAQ308

public exchange [NMK+18] which consists of about 4M timestamped events with L = 10 price309

levels. We split this LOB trace into sub-traces of size T = 30 to construct our dataset. On Figure 3310

report the average KS scores for each of the L× T marginals, using the 3 different kernel scores.311

Figure 3: KS test average scores for each spatiotemporal marginal, 100 runs, NASDAQ data.

5 Conclusion and future work312

This work showcases the utilization of Neural SDEs as a generative model, highlighting their313

advantages over competitor models in terms of simplicity and stability, particularly via non-adversarial314

training. Additionally, we show how Neural SDEs exhibit the ability to be conditioned on diverse315

and intricate data structures, surpassing the capabilities of existing competitor works. We have316

achieved this by introducing the signature kernel score on paths and by showing their applicability317

to our setting (by proving strict properness). Performance of our methods are given computational318

time and memory is competitive with state-of-the-art methods. Moreover, we have shown that this319

approach extends to the generation of spatiotemporal signals, which has multiple applications in320

finance including limit order data generation. Further extensions of this work may include extending321

its generality to include jump processes in the driving noise of the approximator process (Neural322

SDEs) used. On the theoretical level extensions may include the validity of results to paths with323

lower regularity than currently considered. Although sample paths from a Stratonovich SDE are not324

of bounded variation almost surely, sample paths generated by an SDE solver, once interpolated, are325

piecewise linear, and hence of bounded variation. A similar point can be made about compactness326

of the support of the measures. It is possible to ensure characteristicness of the signature kernel327

on non-compact sets of less regular paths using limiting arguments and changing the underlying328

topology on pathspace. Further extensions for practical applications can (and should) include the329

inclusion of more varied evaluation metrics and processes. Notably, in a later step, the generated data330

should be tested by assessing whether existing risk management frameworks and investment engines331

can be improved when data used for backtesting is augmented with synthetic samples provided by332

our methods. Furthermore, the spatiotemporal results can be extended to more complex structures,333

including being used for the synthetic generation of implied volatility surface dynamics, which has334

been a notoriously difficult modelling problem in past decades.335

9

References336

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-337

sarial networks. In International conference on machine learning, pages 214–223.338

PMLR, 2017.339

[ASS20] Imanol Perez Arribas, Cristopher Salvi, and Lukasz Szpruch. Sig-sdes model for340

quantitative finance. In ACM International Conference on AI in Finance, 2020.341

[BCR84] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on342

semigroups: theory of positive definite and related functions, volume 100. Springer,343

1984.344

[BFG16] Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under rough volatility. Quanti-345

tative Finance, 16(6):887–904, 2016.346

[BMN16] Diane Bouchacourt, Pawan K Mudigonda, and Sebastian Nowozin. Disco nets:347

Dissimilarity coefficients networks. Advances in Neural Information Processing348

Systems, 29, 2016.349

[BO21] Patric Bonnier and Harald Oberhauser. Proper scoring rules, gradients, divergences,350

and entropies for paths and time series. arXiv preprint arXiv:2111.06314, 2021.351

[CFC+21] Thomas Cochrane, Peter Foster, Varun Chhabra, Maud Lemercier, Cristopher Salvi,352

and Terry Lyons. Sk-tree: a systematic malware detection algorithm on streaming353

trees via the signature kernel. arXiv preprint arXiv:2102.07904, 2021.354

[CJB23] Vedant Choudhary, Sebastian Jaimungal, and Maxime Bergeron. Funvol: A multi-355

asset implied volatility market simulator using functional principal components and356

neural sdes. arXiv preprint arXiv:2303.00859, 2023.357

[CLS23] Nicola Muca Cirone, Maud Lemercier, and Cristopher Salvi. Neural signature kernels358

as infinite-width-depth-limits of controlled resnets. arXiv preprint arXiv:2303.17671,359

2023.360

[CLX21] Thomas Cass, Terry Lyons, and Xingcheng Xu. General signature kernels, 2021.361

[CM21] Rama Cont and Marvin S Muller. A stochastic partial differential equation model for362

limit order book dynamics. SIAM Journal on Financial Mathematics, 12(2):744–787,363

2021.364

[CMVB22] Andrea Coletta, Aymeric Moulin, Svitlana Vyetrenko, and Tucker Balch. Learning to365

simulate realistic limit order book markets from data as a world agent. In Proceedings366

of the Third ACM International Conference on AI in Finance, pages 428–436, 2022.367

[CPC+21] Andrea Coletta, Matteo Prata, Michele Conti, Emanuele Mercanti, Novella Bartolini,368

Aymeric Moulin, Svitlana Vyetrenko, and Tucker Balch. Towards realistic market369

simulations: a generative adversarial networks approach. In Proceedings of the370

Second ACM International Conference on AI in Finance, pages 1–9, 2021.371

[CT22] Thomas Cass and William F Turner. Topologies on unparameterised path space. arXiv372

preprint arXiv:2206.11153, 2022.373

[CZZ+] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William374

Chan. Wavegrad: Estimating gradients for waveform generation. In International375

Conference on Learning Representations.376

[DCB+20] Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas Lehrmann.377

Modeling continuous stochastic processes with dynamic normalizing flows. Advances378

in Neural Information Processing Systems, 33:7805–7815, 2020.379

[FLMS23] Adeline Fermanian, Terry Lyons, James Morrill, and Cristopher Salvi. New directions380

in the applications of rough path theory. IEEE BITS the Information Theory Magazine,381

2023.382

10

[GBR+12] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and383

Alexander Smola. A kernel two-sample test. The Journal of Machine Learning384

Research, 13(1):723–773, 2012.385

[GJR18] Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quanti-386

tative finance, 18(6):933–949, 2018.387

[GPW+13] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn,388

and Sam D Howison. Limit order books. Quantitative Finance, 13(11):1709–1742,389

2013.390

[GR05] Tilmann Gneiting and Adrian E Raftery. Weather forecasting with ensemble methods.391

Science, 310(5746):248–249, 2005.392

[GR07] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and393

estimation. Journal of the American statistical Association, 102(477):359–378, 2007.394

[GSvdB+20] Alexey Gritsenko, Tim Salimans, Rianne van den Berg, Jasper Snoek, and Nal395

Kalchbrenner. A spectral energy distance for parallel speech synthesis. Advances in396

Neural Information Processing Systems, 33:13062–13072, 2020.397

[GSVŠ+20] Patryk Gierjatowicz, Marc Sabate-Vidales, David Šiška, Lukasz Szpruch, and Žan398

Žurič. Robust pricing and hedging via neural sdes. arXiv preprint arXiv:2007.04154,399

2020.400

[Hes93] Steven L Heston. A closed-form solution for options with stochastic volatility with401

applications to bond and currency options. The review of financial studies, 6(2):327–402

343, 1993.403

[HFH+] Melker Höglund, Emilio Ferrucci, Camilo Hernández, Aitor Muguruza Gonzalez,404

Cristopher Salvi, Leandro Sánchez-Betancourt, and Yufei Zhang. Solving and learning405

non-markovian stochastic control problems in continuous-time with neural rdes.406

[HKLW02] Patrick S Hagan, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward.407

Managing smile risk. The Best of Wilmott, 1:249–296, 2002.408

[HKN20] Ben Hambly, Jasdeep Kalsi, and James Newbury. Limit order books, diffusion ap-409

proximations and reflected spdes: from microscopic to macroscopic models. Applied410

Mathematical Finance, 27(1-2):132–170, 2020.411

[HLL+23] Blanka Horvath, Maud Lemercier, Chong Liu, Terry Lyons, and Cristopher Salvi.412

Optimal stopping via distribution regression: a higher rank signature approach. arXiv413

preprint arXiv:2304.01479, 2023.414

[HLW15] Patrick Hagan, Andrew Lesniewski, and Diana Woodward. Probability distribution in415

the sabr model of stochastic volatility. In Large deviations and asymptotic methods in416

finance, pages 1–35. Springer, 2015.417

[HvdHRM20] Liam Hodgkinson, Chris van der Heide, Fred Roosta, and Michael W Mahoney.418

Stochastic normalizing flows. arXiv preprint arXiv:2002.09547, 2020.419

[JB19] Junteng Jia and Austin R Benson. Neural jump stochastic differential equations.420

Advances in Neural Information Processing Systems, 32, 2019.421

[KBPA+19] Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and Terry422

Lyons. Deep signature transforms. Advances in Neural Information Processing423

Systems, 32, 2019.424

[KFL+21] Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons.425

Neural sdes as infinite-dimensional gans. arXiv preprint arXiv:2102.03657, 2021.426

[Kid22] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435,427

2022.428

11

[KMFL20] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled429

differential equations for irregular time series. arXiv preprint arXiv:2005.08926,430

2020.431

[KPH+] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave:432

A versatile diffusion model for audio synthesis. In International Conference on433

Learning Representations.434

[LLJ16] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for435

goodness-of-fit tests. In International conference on machine learning, pages 276–436

284. PMLR, 2016.437

[LSC+21] Maud Lemercier, Cristopher Salvi, Thomas Cass, Edwin V Bonilla, Theodoros438

Damoulas, and Terry J Lyons. Siggpde: Scaling sparse gaussian processes on se-439

quential data. In International Conference on Machine Learning, pages 6233–6242.440

PMLR, 2021.441

[LSD+21] Maud Lemercier, Cristopher Salvi, Theodoros Damoulas, Edwin Bonilla, and Terry442

Lyons. Distribution regression for sequential data. In International Conference on443

Artificial Intelligence and Statistics, pages 3754–3762. PMLR, 2021.444

[LSZ15] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks.445

In International conference on machine learning, pages 1718–1727. PMLR, 2015.446

[LWCD20] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud.447

Scalable gradients and variational inference for stochastic differential equations. In448

Symposium on Advances in Approximate Bayesian Inference, pages 1–28. PMLR,449

2020.450

[LWL+20] Junyi Li, Xintong Wang, Yaoyang Lin, Arunesh Sinha, and Michael Wellman. Gener-451

ating realistic stock market order streams. In Proceedings of the AAAI Conference on452

Artificial Intelligence, volume 34, pages 727–734, 2020.453

[Lyo98] Terry J Lyons. Differential equations driven by rough signals. Revista Matemática454

Iberoamericana, 14(2):215–310, 1998.455

[MKYL22] James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. On the choice of456

interpolation scheme for neural cdes. Transactions on Machine Learning Research,457

2022(9), 2022.458

[MS13] Edgar C Merkle and Mark Steyvers. Choosing a strictly proper scoring rule. Decision459

Analysis, 10(4):292–304, 2013.460

[MSK+20] James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, and Terry Lyons. Neu-461

ral rough differential equations for long time series. arXiv preprint arXiv:2009.08295,462

2020.463

[MSKF21] James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough464

differential equations for long time series. In International Conference on Machine465

Learning, pages 7829–7838. PMLR, 2021.466

[NMK+18] Adamantios Ntakaris, Martin Magris, Juho Kanniainen, Moncef Gabbouj, and Alexan-467

dros Iosifidis. Benchmark dataset for mid-price forecasting of limit order book data468

with machine learning methods. Journal of Forecasting, 37(8):852–866, 2018.469

[NSSV+21] Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese, and470

Shujian Liao. Sig-wasserstein gans for time series generation. In Proceedings of the471

Second ACM International Conference on AI in Finance, pages 1–8, 2021.472

[NSW+20] Hao Ni, Lukasz Szpruch, Magnus Wiese, Shujian Liao, and Baoren Xiao. Conditional473

sig-wasserstein gans for time series generation. arXiv preprint arXiv:2006.05421,474

2020.475

12

[Opp19] Manfred Opper. Variational inference for stochastic differential equations. Annalen476

der Physik, 531(3):1800233, 2019.477

[PADD21] Lorenzo Pacchiardi, Rilwan Adewoyin, Peter Dueben, and Ritabrata Dutta. Probabilis-478

tic forecasting with conditional generative networks via scoring rule minimization.479

arXiv preprint arXiv:2112.08217, 2021.480

[PD22] Lorenzo Pacchiardi and Ritabrata Dutta. Likelihood-free inference with generative481

neural networks via scoring rule minimization. arXiv preprint arXiv:2205.15784,482

2022.483

[SCC21] Zijian Shi, Yu Chen, and John Cartlidge. The lob recreation model: Predicting the484

limit order book from taq history using an ordinary differential equation recurrent485

neural network. In Proceedings of the AAAI Conference on Artificial Intelligence,486

volume 35, pages 548–556, 2021.487

[SCF+21] Cristopher Salvi, Thomas Cass, James Foster, Terry Lyons, and Weixin Yang. The488

signature kernel is the solution of a goursat pde. SIAM Journal on Mathematics of489

Data Science, 3(3):873–899, 2021.490

[SGS18] Carl-Johann Simon-Gabriel and Bernhard Schölkopf. Kernel distribution embeddings:491

Universal kernels, characteristic kernels and kernel metrics on distributions. The492

Journal of Machine Learning Research, 19(1):1708–1736, 2018.493

[SLG22] Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. Neural stochastic pdes:494

Resolution-invariant learning of continuous spatiotemporal dynamics. Advances in495

Neural Information Processing Systems, 35:1333–1344, 2022.496

[SLL+21] Cristopher Salvi, Maud Lemercier, Chong Liu, Blanka Hovarth, Theodoros Damoulas,497

and Terry Lyons. Higher order kernel mean embeddings to capture filtrations of498

stochastic processes. arXiv preprint arXiv:2109.03582, 2021.499

[SSDK+20] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Er-500

mon, and Ben Poole. Score-based generative modeling through stochastic differential501

equations. arXiv preprint arXiv:2011.13456, 2020.502

[TR19] Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep503

latent gaussian models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.504

[VBP+20] Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic,505

Manuela Veloso, and Tucker Balch. Get real: Realism metrics for robust limit order506

book market simulations. In Proceedings of the First ACM International Conference507

on AI in Finance, pages 1–8, 2020.508

[VKK21] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in509

latent space. Advances in Neural Information Processing Systems, 34:11287–11302,510

2021.511

[WD22] George Wynne and Andrew B Duncan. A kernel two-sample test for functional data.512

Journal of Machine Learning Research, 23(73):1–51, 2022.513

[YJVdS19] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative514

adversarial networks. Advances in neural information processing systems, 32, 2019.515

13

A Signature Kernel Scores516

Proof of Proposition 3.3517

Proof (Appendix). The general result was first shown in [GR07]. We first show that ϕsig is proper.518

By Proposition 3.1 the signature kernel is positive definite and characteristic on P(K). It remains to519

show that Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)]. This means we must have520

Ex∼P,y∼Q[ksig(x, y)] ≤
1

2
Ex,x′∼P[ksig(x, x

′)] +
1

2
Ey,y′∼Q[ksig(y, y

′)].

Writing M = 1
2P+ 1

2Q, a modification of Theorem 2.1 in Berg et al. [BCR84] (pg. 235) gives that521 ∫
ksig(x, y) d(P⊗Q)(x, y) ≤

∫
ksig(x, y) d(M⊗M)(x, y), (11)

where P⊗Q denotes the natural product measure on K ×K. Re-arranging (11), one arrives at the522

desired result.523

To show strict properness, we need to show that Ey∼Q[ϕsig(Q, y)] ≤ Ey∼Q[ϕsig(P, y)] holds with524

equality iff P = Q for all P,Q ∈ P(K). Suppose that there exists another P′ ∈ P(K) such that525

Ey∼Q[ϕsig(Q, y)] = Ey∼Q[ϕsig(P′, y)]. Then we would have that526

Ex,x′∼P′ [ksig(x, x
′)]− 2Ex∼P′,y∼Q[ksig(x, y)] + Ey,y′∼Q[ksig(y, y

′)] = 0,

or that Dksig(P′,Q) = 0, which is only true if P′ = Q due to characteristicness of the kernel ksig.527

Proof of Proposition 3.4528

Proof (Appendix). The proof follows directly from [GBR+12], Lemma 6. Note that an unbiased529

estimator for Ex,x′∼P[ksig(x, x
′)] from i.i.d samples (x1, . . . , xm), xi ∼ P is given by the U-statistic530

T 1
U (x1, . . . , xm) =

1

m(m− 1)

∑
i ̸=j

ksig(xi, xj).

Moreover, an unbiased estimate of Ex∼P[ksig(x, y)] is given by531

T 2
U (x1, . . . , xm, y) =

1

m

m∑
i=1

ksig(xi, y).

Writing ϕ̂sig(P, y) = T 1
U (x1, . . . , xm)− 2T 2

U (x1, . . . , xm, y) completes the proof.532

B Experiments533

All experiments were run on a NVIDIA GeForce RTX 3070 Ti GPU, except the experiment in534

Section 4.4 for which the NSPDE model was trained using a NVIDIA A100 40GB GPU.535

Here we provide details for each of the experiments outlined in the body of the paper. We also provide536

some extra methods of evaluation aside from the KS test. These include the following:537

1. Qualitative plot: We give a plot of samples PXθ from a trained generator against the true538

data measure PX true .539

2. Autocorrelation: To measure temporal dependencies or correlations, we leverage the
autocorrelation function

ACFℓ =
1

Nσ2

N∑
t=l

(Xt − µ)(Xt−l − µ),

where µ is the average of the path Xt over [0, N] and σ2 is the corresponding variance. We540

provide a qualitative plot of ACFℓ for each generator against the real data measure. We also541

provide a table summarizing the scores for some of the earliest lags ℓ ∈ N.542

14

3. Cross-correlation: We provide average cross-correlation scores (rt, r
2
t,ℓ) between the543

returns process associated to Xt ∼ PXθ and the squared, lagged returns process r2t,ℓ. We544

present the scores in matrix form. Finally, we provide the MSE between the matrix obtained545

from PX true and those obtained from each generator.546

We make a note here that each of the three discriminators performed similarly in the additional547

quantitative metrics omitted from the body. Finally, we wish to first make the following general notes548

about each of the three methods studied in this paper:549

• Speed: Training with respect to the ϕN
sig was the fastest, followed by the Wasserstein SDE-550

GAN, and finally with ϕsig. It was possible to speed up training with respect to the latter551

by using a coarser dyadic refinement in the PDE solver, however we felt that the trade-off552

between accurate gradients for reduced speed was worthwhile.553

• Stability: The Wasserstein SDE-GAN was the least stable, in terms of the difficulty in554

obtaining a training instance where the loss converged in reasonable time. Even with fine-555

tuning of both generator and discriminator parameters, the loss associated to the SDE-GAN556

tended to oscillate, making obtaining a converged model a very difficult task with the557

hardware available to us.558

• Scaling: All of the results in the paper are sensitive to path scalings; moreso with the559

signature kernrel-based approaches, less so with the Wasserstein approach. The basic idea560

is as follows: the signature kernel-based methods will tend to fail if paths are scaled too561

low (resulting in lower-order terms dominating the calculation of ksig) or too high (the sum,562

although finite, can exceed a 64-bit float quite easily). Path scaling (and transformations)563

form an integral part in training a successful generative model, and we have tried to be as564

descriptive as possible regarding this matter. The details as to why scalings matter have been565

touched upon in [CLX21]; we intend to expand upon this in a future work.566

• Standardisation: On a similar note, standardizing path data before training was often567

found to improve the stability of training in any setting. By standardization we are referring568

to transforming each marginal of paths X ∼ PX true via the transformation X̂t = (Xt −569

µT)/σT , where µT = EPXtrue [XT] and σT = EPXtrue [(XT − µT)
2]. By having the terminal570

marginal distributed standard normal, the task of finding suitable path scalings and smoothing571

parameters in the RBF kernel was made much simpler, as this task became less problem-572

specific.573

B.1 Geometric Brownian motion574

Data processing and hyperparameters To generate our data measure, we simulate 32768 paths575

according to eq. (9) using the torchsde package. These were solved over the interval [0, 64]576

by setting y0 = 1, µ = 0, σ = 0.2, with dt = 0.1. Paths were then interpolated along the grid577

∆ = {0, 1, 2, . . . , 63}, so each element of the training set had total length 64. Stochastic integrals578

were taken in the Itô sense and the driving noise W was taken in the general sense. We used the SRK579

method to solve the corresponding SDE. Each path is time-augmented, so X̂t = (t,Xt) at each point580

on the grid. After we have simulated our dataset, we standardized each path as outlined in the dot581

points above.582

Generator hyperparameters The generator is a neural SDE with vector fields µθ : [0, T]×Ry →
Ry and σθ : [0, T]× Ry×w → Ry taken to be neural networks with 1 hidden layer, and 16 neurons
in said layer. As per [KFL+21] the LipSwish activation function was used to ensure the Lipschitz
condition held on the vector fields of the Neural SDE. We also used the final tanh regularisation
which we found was necessary for training success. Thus we have that

µθ, σθ ∈ NN (1, 16, 1,LipSwish, tanh).

The size of the hidden state of the neural SDE was chosen to be y = 8, and the noise dimension was583

chosen to be w = 3. Stochastic integration was taken in the Itô sense and we set dt = 1 over [0, 63].584

As we are not learning an initial distribution in this instance, we modified the generator architecture585

to have ξθ(X0) = a for some a ∈ R, where ξθ is the network acting on the initial condition. Before586

passing to the discriminator, both generated and real paths were translated to start at 0.587

15

Discriminator hyperparameters For the signature kernel-based discriminators, we applied the
time normalisation transformation so the time component of both the real and generated paths was
over [0, 1] as opposed to [0, 63]. This was to ensure each channel of the generated and real data
evolved over a similar scale. For training with respect to ϕsig, we set the order of dyadic refinement
associated to the PDE solver for the signature kernel to 1. We also used three different kernels,
corresponding to three different scalings of the paths, for increased expressivity. For ϕN

sig, we set the
order of truncation equal to N = 3. Finally, for the SDE-GAN, we chose the drift and diffusion
vector fields to be feed-forward neural networks

fϕ, gϕ ∈ NN (1, 16, 1,LipSwish, tanh),

matching that from the generator.588

Training hyperparameters All methods used a batch size of 128 and the Adam optimisation589

algorithm for backpropagating through the generator optimisers, except for the SDE-GAN, which as590

suggested by the authors we used Adadelta. As a remark, we did not see much difference in using591

either Adam, Adadelta, or RMSProp, although we did see poorer performance using pure SGD, with592

or without momentum. Learning rates were roughly proportional to the average size of the batched593

loss: as a rough guide, proportionality like ηG × L(θ) ≈ 10−5 tended to yield good results, with the594

generator learning rate being around ηG ≈ 10−4 for the signature kernel(s), and ηD ≈ ηG × 10−2595

for the SDE-GAN. As mentioned in the body, we trained for 4000 steps with ϕsig, 10000 with ϕN
sig596

and 5000 with the SDE-GAN to normalise for training time.597

Results We begin with a qualitative plot of the results from each generator.598

Figure 4: Qualitative plot of generator output versus data measure. Trained with (from left to right):
ϕsig, ϕN

sig, SDE-GAN

Table 5 gives the autocorrelation scores for the first five lags for each of the three models, along with599

plots of the mean ACF values in Figure 5 and the associated 95% confidence intervals. We can see600

that all three models do well at capturing temporal effects, with the Neural SDE trained with respect601

to ϕsig most closely matching the data measure, except in the first lag.602

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.887 ± 0.120 0.782± 0.211 0.686± 0.282 0.597± 0.342 0.515± 0.384

ϕN
sig (N = 3) 0.883± 0.115 0.781± 0.197 0.684± 0.261 0.594± 0.320 0.514± 0.364

ϕsig 0.886± 0.111 0.785 ± 0.199 0.696 ± 0.267 0.612 ± 0.315 0.535 ± 0.350
Data measure 0.892± 0.105 0.793± 0.183 0.702± 0.258 0.616± 0.319 0.532± 0.374

Table 5: Sample autocorrelation scores, gBm

Finally, we present the cross-correlation matrices between the returns process rt and the lagged603

squared returns process r2t−l for lags l = {0, 1, 2, 3, 4, 5}. Again all models tend to perform quite604

well in that they match relational dynamics observed in the data measure. Table 6 gives the MSE605

between the generated matrices and the data matrix. We see that the Neural SDE trained with ϕsig606

16

Figure 5: Qualitative plot of ACF scores, generator output versus data measure. Trained with (from
left to right): ϕsig, ϕN

sig, SDE-GAN

achieves the lowest score of the three, however again performance is strong regardless of method607

used for training.608

(a) Data measure. (b) ϕsig (c) ϕN
sig (d) SDE-GAN.

Figure 6: Cross-correlation matrices, gBm

Discriminator MSE

SDE-GAN 0.014688

ϕN
sig (N = 3) 0.066745

ϕsig 0.010718

Table 6: MSE between cross-correlation matrices, gBm

B.2 Rough Bergomi609

Data processing and hyperparameters We simulate 32768 paths to make up our data measure via610

the rBergomi Python package4. We fixed the time window to be [0, 2], and specified dt = 1/32, so611

paths were of length 64. We chose (ξ0, η, ρ,H) = (0.04, 1.5,−0.7, 0.2) and set d = 1. Paths started612

at 1. As always, paths were time-augmented. Paths were normalised to start at 0 via translation613

and were standardized again according to the terminal data from the train set. A final point is that614

although the data was generated over [0, 2], the time grid passed to the generators in an optimiser615

step was ∆ = {0, 1, . . . , 63}. We found that this improved performance.616

Generator hyperparameters Given the increased complexity of the data generating model, we
increased the expressivity of the vector fields governing the drift and diffusion vector fields µθ and
σθ. This was done by increasing the depth and width of the constituent feed-forward networks to
include 3 hidden layers of size 32. We also increased the size of the hidden state to y = 16 and the

4see https://github.com/ryanmccrickerd/rough_bergomi

17

https://github.com/ryanmccrickerd/rough_bergomi

noise dimension to w = 8. Thus

µθ ∈ NN (17, 32, 32, 32, 16; LipSwish,LipSwish,LipSwish, tanh)

and
σθ ∈ NN (17, 32, 32, 32, 128; LipSwish,LipSwish,LipSwish, tanh).

Discriminator hyperparameters For training with respect to ϕsig, we mapped path state values to617

(H, κ) where κ denotes the RBF kernel on R2. We set associated the smoothing parameter σ = 1.618

For ϕN
sig, we increased the truncation level to N = 5. In both these settings we again applied the619

time normalisation transformation on both the generated and data measure paths before being passed620

through the loss function. For the SDE-GAN, we increased the expressiveness of the vector fields621

governing the Neural CDE in the same way as we did the Neural SDE.622

Training hyperparameters Learning rates for the Neural SDE trained according to ϕsig was set to623

ηG = 1× 10−4. Due to the increasing number of terms in the expected signature for the truncated624

MMD approach, we had to reduce the learning rate to ηG = 1×10−6 - larger values caused instability625

in the training procedure. The SDE-GAN was again quite difficult to train, however we were able626

to have some success by setting ηD ≈ 2× 10−3 and ηG ≈ 1× 10−3. Initialisation of the generator627

vector fields was especially important for the Wasserstein method, as initialisation too far from the628

data measure cause oscillatory patterns in the training loss, which leads to more epochs required629

for the loss to converge. We again used the Adam optimisation algorithm for the MMD-based630

discriminator/generators and Adadelta for the SDE-GAN. We trained for the same number of steps as631

per the gBm method.632

Results Figure 7 gives a qualitative plot of the simulated paths.633

Figure 7: Qualitative plot of generator output versus data measure. Trained with (from left to right):
ϕsig, ϕN

sig, SDE-GAN

Figure 8 gives the same plot of the ACF scores at corresponding lags for the data measure and each of634

the generated models, along with the 95% confidence interval. Table 7 explicitly gives these scores.635

Figure 8: Qualitative plot of ACF scores, generator output versus data measure. Trained with (from
left to right): ϕsig, ϕN

sig, SDE-GAN

18

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.893± 0.105 0.795± 0.191 0.705± 0.262 0.622± 0.319 0.543± 0.377

ϕN
sig (N = 5) 0.897± 0.115 0.799± 0.208 0.710± 0.289 0.628± 0.338 0.546± 0.383

ϕsig 0.890 ± 0.115 0.790 ± 0.203 0.702 ± 0.269 0.618 ± 0.316 0.521 ± 0.382
Data measure 0.885± 0.121 0.778± 0.215 0.685± 0.278 0.600± 0.336 0.521± 0.380

Table 7: Sample autocorrelation scores, rBergomi

Finally, we present the same cross-correlation matrices, along with the MSE between either of the636

three generators and the data measure. Although each of the models perform well, the generator637

trained with ϕsig achieves the best results.638

(a) Data measure. (b) ϕsig (c) ϕN
sig (d) SDE-GAN

Figure 9: Cross-correlation matrices, rBergomi

Discriminator MSE

SDE-GAN 0.091707

ϕN
sig (N = 5) 0.054731

ϕsig 0.016785

Table 8: MSE between cross-correlation matrices, rBergomi

B.3 Multidimensional real data639

We now give the details regarding the unconditional generation of foreign exchange data.640

Data processing and hyperparameters Data is given by hourly returns associated to the currency641

pairs EUR/USD and USD/JPY. We stride the concatenated time series (corresponding to close prices642

at each time) into paths of length ℓ = 64. Paths are normalized to start at 1. We augmented the state643

values with their original timestamps, (as epoch seconds). Call this dataset Y . As we are dealing with644

financial data, one can expect the time intervals between prices to be irregular. This is not usually an645

issue when using signature methods. However, in this setting we found training to be less stable if646

paths were not normalised to evolve over the same time grid as that which the neural SDE was solved647

over in a forward pass.648

To circumvent this issue, for every y ∈ Y we find the median terminal time T̃ , where

T̃ = Mediani=1,...,|Y|[t
i
ℓ/t

i
0].

All paths whose terminal time is greater than T̃ were filtered out of the dataset which we call Ỹ .649

We then define an evenly-spaced time grid ∆∗ = {0, . . . , T̃} containing 64 observations in total,650

and linearly interpolate each y ∈ Ỹ over this grid, where we use these interpolated coefficients to651

19

form our train and test sets. Again we standardize using the terminal values of the train set data. We652

simulate our generators over the time grid ∆ = {0, . . . , 63} as we found that using ∆∗, the realistic653

time-grid (in fractions of a year) induced little variability in the generated paths; i.e., the quadratic654

variation associated to the generated paths was significantly lower than that obtained from the real655

data measure.656

Generator hyperparameters The generator maintains the same architecture as outlined in the657

rBergomi section. We tried increasing the size of the hidden state to x = 32 and the noise state658

w = 16 but found that this had little impact on training performance. We also found that increasing659

the expressivity of the neural vector fields did not overly impact performance; neither refining the660

mesh over which the Neural SDE was solved.661

Discriminator hyperparameters We used the same discriminator hyperparameters for each of the662

three methods as per the rBergomi section.663

Training hyperparameters We used the same batch size (128) as per the previous sections. We664

allowed for increased training time here, training with respect ϕsig for 4000 steps, 15000 for ϕN
sig665

and 10000 for the SDE-GAN. The same learning rate parameters were used as well. We did not use666

any learning rate annealers. The ADAM optimisation algorithm was employed for the MMD-based667

generators, whereas again Adadelta was used for the Wasserstein case.668

Results Extended results are provided as per the previous sections. We being with the qualitative669

plots.670

(a) EUR/USD

(b) USD/JPY

Figure 10: Qualitative plot of generator output versus data measure. Trained with (from left to right):
ϕsig, ϕN

sig, SDE-GAN

Visual inspection gives that the generator trained with respect to ϕsig appears to have most accurately671

captured the data measure, in particular the less regular, outlier paths. In contrast the SDE-GAN and672

truncated kernel methods tend to over-represent the mean element. For the GAN this could be the673

“mode collapse” phenomenon in effect, whereas in the case of the Neural SDE trained with ϕN
sig, it is674

likely that higher-order terms cannot be discarded if one wishes to accurately model the data measure.675

20

We now provide the plot associated to the ACF scores obtained from training with respect to each676

generator, along with the summarizing table. Table 9 shows that that each of the discriminators677

perform relatively well, aside from the EURUSD autocorrelative factors obtained via traning the678

Neural SDE in the SDE-GAN framework. Finally we give the cross-correlation matrices and the679

associated MSEs. The Neural SDE trained with respect to ϕsig appears to perform the best by this680

evaluation metric.681

(a) EUR/USD

(b) USD/JPY

Figure 11: Qualitative plot of ACF scores, generator output versus data measure. Trained with (from
left to right): ϕsig, ϕN

sig, SDE-GAN

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.905± 0.108 0.817± 0.195 0.736± 0.264 0.660± 0.319 0.590± 0.362

ϕN
sig (N = 5) 0.889 ± 0.123 0.788 ± 0.215 0.695 ± 0.289 0.610± 0.345 0.532± 0.388

ϕsig 0.890± 0.123 0.790± 0.218 0.699± 0.291 0.615 ± 0.347 0.538 ± 0.388
Data measure 0.885± 0.140 0.785± 0.236 0.696± 0.302 0.615± 0.302 0.541± 0.387

(a) EUR/USD

Discriminator Lags
l = 1 l = 2 l = 3 l = 4 l = 5

SDE-GAN 0.891± 0.121 0.791± 0.216 0.700± 0.290 0.616± 0.346 0.539 ± 0.389

ϕN
sig (N = 5) 0.887 ± 0.123 0.785 ± 0.218 0.692 ± 0.292 0.607± 0.348 0.529± 0.390

ϕsig 0.891± 0.121 0.790± 0.215 0.698± 0.288 0.614 ± 0.344 0.537± 0.385
Data measure 0.885± 0.132 0.784± 0.227 0.694± 0.296 0.613± 0.347 0.539± 0.385

(b) USD/JPY.

Table 9: Sample autocorrelation scores, forign exchange data

21

(a) EUR/USD (b) ϕsig (c) ϕN
sig (d) SDE-GAN

(e) USD/JPY (f) ϕsig. (g) ϕN
sig (h) SDE-GAN

Figure 12: Cross-correlation matrices, foreign exchange data

Discriminator MSE

EUR/USD USD/JPY

SDE-GAN 0.051728 0.027539

ϕN
sig (N = 5) 0.045966 0.036628

ϕsig 0.035791 0.003898

Table 10: MSE between cross-correlation matrices, foreign exchange data

B.4 Conditional generation682

In this section we describe in detail the training procedure for the conditional generator.683

Problem setting The conditioning variables are given by path segments x : [t0 − dt, t0] → R2,684

representing time-augmented asset price values. At time t0, one wishes to make a prediction about the685

resultant path y : [t0, t0 + dt′] → R2 conditional on x. Here, dt, dt′ are hyperparameters describing686

how much of the past one wishes to consider and how far into the future one wishes to forecast. With687

x ∼ Q We thus want to train a conditional generator so that PXθ (·|x) = PX real(·|x). We briefly state688

the three major difficulties associated to this generation problem:689

1. Unobservable true conditional distribution. In practice, one never observes the entire690

true conditional distribution PX real(·|x): only a sample from it. This means that classical691

metrics on path space (MMD, Wasserstein, and so on) cannot be used without modification,692

or making assumptions about the relationship between the conditioning and resultant paths.693

2. Using paths as conditioning variables. It is not immediately clear what is the best way to694

consume a path as a conditioning variable for a given generator.695

3. “Unseen” conditioning variables. It is not guaranteed that the conditional generator will696

behave in an expected way if an as-yet unseen conditioning variable is provided (by unseen,697

we are referring to within the training procedure). These conditioning variables are often the698

ones of interest.699

22

Our procedure attempts to solve the first and second problems with our architecture choices on the700

conditional generator, and our choice of loss function. The third issue is omnipresent in conditional701

modelling.702

The generator now is given by a (conditional) Neural SDE with architecture given by703

Y0 = ξθ(xt0 , C(x)), dYt = µθ(t, Yt, C(x))dt+ σθ(t, Yt, C(x)) ◦ dWt, Xt = πθ(Yt, C(x))

for µθ : [t0, t0+dt′]×Ry×RdC → Ry , σθ : [t0, t0+dt′]×Rx×RdC → Rx×w, ξθ : Rx×RdC → Ry ,704

and πθ : Ry × RdC → Rx. Here, C(x) denotes the function acting on the conditioning path and705

encoding it as a vector in RdC . A natural way to perform this encoding is via the truncated signature706

SM (X) of the path x. In this way the neural networks defining the vector fields in the generator (for707

instance) are now mappings708

µθ : [t0, t0 + dt′]× Ry × R1+d+d2+···+dN

→ Ry,

σθ : [t0, t0 + dt′]× Ry × R1+d+d2+···+dN

→ Ry×w.

We note here that all of the regularity conditions required to ensure a strong solution to the standard709

Neural SDE here remain satisfied; we are only augmenting each of the trainable components to accept710

the encoded conditioning path. We also note here that this technique is flexible enough to include any711

amount of Rd−valued conditioning variables.712

Data processing and hyperparameters Data comes from 15-minute close prices associated to the713

EUR/USD price pair. We again extracted paths of length 48 (normalising for erroneous terminal times714

as per the unconditional setting) and split these paths into conditioning-resultant pairs {xi, yi}Ni=1715

with xi representing the first 32 observations and yi the next 16. We normalized both sets of paths by716

their initial value. Instead of standardizing, in this setting we scaled all path values up by a factor of717

100. We found this was crucial so that the lower-order signature terms did not overly contribute to718

the value of the signature kernel. Both conditioning and resultant paths were then translated to start719

at 0. In total the dataset size was comprised of 52428 conditioning/resultant pairs.720

Generator hyperparameters The generator is a conditional Neural SDE. Stochastic integration721

was again taken in the Itô sense and we used the Euler method. The noise size was set to w = 8,722

the size of the hidden state was taken y = 16. The MLPs governing the vector fields were the723

same as per the rBergomi and multidimensional unconditional examples, except we increased the724

width of the layers in the neural networks to 64 neurons. We conditionalized the input paths via the725

truncated log-signature of order 5. In order to estimate the batched loss, we need to specify the size726

of the conditional distribution PXθ (·|x) output by the conditional generator, which we set to 32 paths.727

Finally, we applied the time normalisation and lead-lag transformations to the input paths x before728

taking their truncated log-signature.729

Discriminator hyperparameters We trained with respect to ϕsig. Again we lifted paths via the730

RBF kernel and chose the smoothing parameter σ = 1. We used a dyadic refinement level of 1 for731

the PDE solver associated to ksig. All paths had the time normalisation transformation applied to732

them before having the loss evaluated.733

Training hyperparameters We set the batch size equal to 128 and trained the conditional generator734

for 10000 steps. We set the learning rate ηG = 2× 10−6 and used the Adam optimisation algorithm735

in PyTorch. No learning rate annelears were used.736

Results Results are presented in the body of the paper.737

B.5 Simulation of limit order books738

The Neural SPDE model introduced in [SLG22] extends Neural SDEs to model spatiotemporal739

dynamics by parametrising the differential operator, drift and diffusion of SPDEs of the type740

dYt = (LYt + µ(Yt))dt+ σ(Yt)dWt (12)

23

where both µ and σ are local operators acting on the function Yt that is, µ(Yt)(x) and σ(Yt)(x)741

only depend on Yt(x). Moreover, it is assumed that L is a linear differential operator generating a742

semigroup etL which can be written as a convolution with a kernel Kt.743

Let D ⊂ Rd be a bounded domain. Let W : [0, T] → L2(D,Rdw) be a Wiener process and a744

an L2(D,Rda)-valued Gaussian random variable. The values dw, da ∈ N are hyperparameters745

describing the size of the noise. A Neural SPDE is a model of the form746

Y0(x) = ℓθ(a(x)), Yt = Kt ∗ Y0 +

∫ t

0

Kt−s ∗ (µθ(Ys) + σθ(Ys)Ẇ
ϵ
s)ds, Xθ

t (x) = πθ(Yt(x)).

for t ∈ [0, T] and x ∈ D where Y : [0, T] → L2(D,Rdy) is the mild solution, if it exists to the
SPDE in Equation (12) with regularised driving noise W ϵ and where ∗ denotes the convolution in
space with the kernel Kt : D×D → Rdy×dy (see [SLG22] for more details). Similarly to the Neural
SDE model,

ℓθ : Rda → Rdy , µθ : Rdy → Rdy , σθ : Rdy → Rdy×dw , πθ : Rdy → Rdx

are feedforward neural networks. Imposing globally Lipschitz conditions (by using ReLU or tanh747

activation functions in the neural networks µθ and σθ) ensures the existence and uniqueness of the748

mild solution Y . Finally, we note that in [SLG22], the authors propose two distinct algorithms to749

evaluate the Neural SPDE model based on two different parameterisations of the kernel K.750

Next, we provide more details on how we trained such a Neural SPDE model to generate Limit751

Order Book (LOB) dynamics [GPW+13]. The increasing availability of LOB data has instigated752

a significant interest in the development of statistical models for LOB dynamics. In recent years,753

new models based on SPDEs have been proposed to accurately describe and analyse these complex754

dynamics [HKN20, CM21].755

Data processing and hyperparameters We used real LOB data from the NASDAQ public ex-756

change made publicly available in [NMK+18] which consists of about 4 million timestamped events757

over 10 consecutive trading days with L = 10 price levels on each side (bid and ask) of the LOB.758

Three versions of this dataset are provided, each normalised using a different technique. We used the759

data normalised with z-scores and split the LOB trace into sub-traces of length T = 30.760

Generator hyperparameters The generator is a Neural SPDE driven by a cylindrical Wiener
process W with dw = 2. The vector fields µθ and σθ are taken to be single layer perceptrons with
dy ∈ {16, 32} followed by batch normalization and tanh activation function. Thus we obtain

µθ ∈ NN (dh, dh,BatchNorm, tanh), σθ ∈ NN (dh, dh × dw,BatchNorm, tanh)

We used the second evaluation method proposed in [SLG22, Section 3.3] with 4 Picard’s iterations761

and maximum number of frequency modes in {10, 20} in the spatial direction and fixed to 20 in the762

temporal direction. Instead of sampling the initial condition a from a L2(D,Rda)-valued Gaussian,763

we simply used the samples from X true
0 , in which case da = 1.764

Discriminator hyperparameters We integrated in time the output trajectories from the generator,765

as we observed this yielded more stable kernel scores. We mapped the path state values into Hκ where766

κ denotes a SE-T kernel on L2(D) with D = [0, 1], that is, a kernel defined for all f, g ∈ L2(D)767

by κ(f, g) = e−
1

2σ2 ∥T (f)−T (g)∥2
Y where T : L2(D) → Y is a Borel measurable, continuous and768

injective map. We considered three SE-T kernels respectively termed ID, SQR and CEXP:769

1. (ID) SE-T kernel with T : L2(D) → L2(D) defined for all f ∈ L2(D) by T (f) = f770

2. (SQR) SE-T kernel with T : L2(D) → L2(D)⊕ L2(D) defined by T (f) = (f, f2)771

3. (CEXP) SE-T kernel with T : L2(D) → L2(D) defined by T (f) = CF,l(f) where CF,l is
the covariance operator associated to the kernel kF,l defined for all x, x′ ∈ D by

kF,l(x, x
′) = e−

1
2l2

(x−x′)2
F−1∑
n=0

cos(2πn(x− x′))

For ID and SQR, we used σ ∈ {1, 10}, and for CEXP we used (σ, l, F) ∈ {(1, 1, 5), (10, 10, 5)}.772

We then used a dyadic order of 1 to compute the signature kernel.773

24

Training hyperparameters We set the learning rate of the generator ηG to be 1× 10−3 and trained774

it for a maximum number of 1 500 epochs. We used a batch size of 64 due to memory constraints and775

the ADAM optimizer with the default parameters of PyTorch.776

25

	Introduction
	Related work
	Training Neural SDEs with signature kernel scores
	Background
	Neural SDEs
	Signature kernels scores
	Non-adversarial training of Neural SDEs via signature kernel scores
	Additional details

	Experiments
	Geometric Brownian motion
	Rough Bergomi volatility model
	Foreign exchange currency pairs
	Simulation of limit order books

	Conclusion and future work
	Signature Kernel Scores
	Experiments
	Geometric Brownian motion
	Rough Bergomi
	Multidimensional real data
	Conditional generation
	Simulation of limit order books

