
6 Supplementary344

To make our model fully reproducible, we present complete implementation details in Section 6.1.345

Besides, our code library will be released upon acceptance. We report more comparisons between346

our QVM module and the 2D matching/relation techniques [1, 5, 43] in Section 6.2 to demonstrate347

the superiority of QVM in instance-level 3D matching. For clear reference, we display samples from348

the newly proposed RoboTools benchmark in Section 6.3. In Section 6.4 and Section 6.5, we present349

more detection qualitative results and voxel visualizations, respectively. Finally, we provide extended350

related works discussions in Section 6.6, where we exhaustively compare VoxDet with the existing351

instance-level tasks, including visual tracking, instance pose estimation, and instance retrieval.352

6.1 Implementation Details353

Model Structure: We adopt ResNet50 [44] with feature pyramid network [25] as our feature354

extractor ψ(·). The default multi-scale ROIAlign in [25] is leveraged to obtain the 2D proposal355

features, where the dimensions are N = 500, C = 256, w = 7. In our 2D-3D mapping, we356

set C/d = 32, d = 8, which results in the voxel feature dimension Cv = 256, D = 16, L =357

14. All the 3D convolutions in TVA and QVM take kernel size as 3 and the padding equals358

to 1, so that the dimension of the voxels remains the same throughout the two modules. For359

the Rot(·, ·) function, we have followed [10] to use torch.nn.functional.affine_grid() and360

torch.nn.functional.grid_sample() functionalities. Though the 2D-3D mapping can learn the361

rotations in the physical world, it sacrifices some semantics information in the feature channels362

when reshaping. Therefore, in QVM, we have a global matching branch to retrieve the lost semantic363

information. To be more specific, we apply global average pooling on the support features to get364

a support vector k ∈ R1×C×1×1. Then we adopt depth-wise convolution between k and FQ to365

get a correlation map. Note that this correlation map preserved all the semantic channels from the366

backbone ψ(cot), so that the lost information in the 2D-3D mapping. The map is added to the voxel367

relation output Rv(V
S,Rot(VQ, R̂Q)) for the final score.368

Training Details: In the first reconstruction stage, we set the loss weights as wrecon = 10.0, wgan =369

0.01, wpercep = 1.0. The model is trained for 16 epoch on the 9600 instances from OWID datasets.370

We leveraged Adam optimizer [45] with a base learning rate of 5 × 10−5 during training. In the371

second detection stage, we initialize the 2D-3D mapping modules in TVA and QVM with the372

reconstruction pre-trained weights. VoxDet first only learns the detection task, without learning the373

rotation estimation, i.e., the loss weights are set as w1 = w2 = w3 = w4 = w5 = 1.0, w6 = 0 in the374

first 10 epochs, where SGD is leveraged as an optimizer with 0.02 base learning rate. Note that in375

this stage, the 2D-3D mapping part only takes 1
10 of the base learning rate. Then in the final epoch,376

VoxDet learns the rotation estimation with the detection part fixed, i.e., w1 = w2 = w3 = w4 =377

w5 = 0.0, w6 = 1.0.378

6.2 More Matching Module Comparison379

Table 4: Comparison with different types of match-
ing module. We compare QVM with the correla-
tion in [5], class-level relation proposed in [1], and
the class distance defined in FSDet [43].

Method mAR AR50 AR75

QVM (Ours) 21.70 25.40 19.05
QVM† 20.80 22.45 18.35

2D Corr. [5] 18.30 20.95 16.00
2D Relation [1] 19.70 20.65 18.55

FSDet [43] 16.05 19.05 14.10
Local Matching [46, 47] 10.60 9.600 7.850

We compare QVM with more matching tech-380

niques in Table 4, where the averaged results on-381

the cluttered LM-O [16] and RoboTools bench-382

mark are reported. We first ablate the Voxel Re-383

lation module in QVM, which results in QVM†.384

Specifically, all the Voxel Relation in QVM†385

are replaced by a simple depth-wise convolu-386

tion, i.e., we first apply global average pooling387

on the template voxel to get a feature vector,388

which is then taken as the convolution kernel to389

calculate the correlation voxel from the queries.390

We can see such a naive design will result in a391

performance drop.392

For all the rest methods, we used the same open-393

world detector to obtain the universal proposals,394

which are then matched with the template images using different matching techniques. To be395

more specific, 2D Corr. [5] constructs support vectors from every reference image. Then, depth-396

wise convolution is conducted between each support vector and the proposal patch. The resulting397

correlation maps are sent to an MLP for classification score. In 2D Relation [1], we substitute the398

simple depth-wise convolution in 2D Corr. with the spatial and channel relation proposed in [1]. In399

10



Figure 8: The instances and test scenes in the newly built RoboTools benchmark. The 20 unique
instances are recorded as multi-view videos, where the relative camera poses between frames are
provided. RoboTools consists of various challenging scenarios, where the desired instance could be
under severe occlusion or in different orientation.

FSDet [43], the depth-wise convolution in 2D Corr is replaced by the distance defined in [43]. Since400

they are geometry-unaware, we find all the 2D matching/relation techniques worse than our QVM401

module.402

Additionally, we designed a Local Matching baseline [47, 46]. In Local Matching, we first extract403

local key points from the reference images and proposals using SuperPoint [47]. Then the points404

descriptors are matched by SuperGlue [46]. We take the mean matching score of all the points in the405

proposal as their classification score. We find such an implementation, though geometry-invariant,406

falls short in our task since it lacks semantic representation of the whole instance.407

6.3 Datasets Examples408

The 20 instances and 24 scenes in the newly built RoboTools benchmarks are presented in Fig. 8.409

Compared with existing benchmarks [16, 17], RoboTools is much more challenging with more410

cluttered backgrounds and more severe pose variation.411

6.4 More Detection Visualizations412

We present more detection qualitative comparisons in Fig. 9. VoxDet, in red, is compared with three413

baselines, DTOID [6], Gen6D [5], and OLNDINO. Compared with previous instance detectors [6, 5],414

VoxDet is more robust under orientation variation and severe occlusion by virtue of the learned415

geometric knowledge. For example, in the LM-O benchmark, second column, when the duck is416

partially occluded and the egg box is in different orientations, VoxDet can still find them while Gen6D417

fails. Compared with similarity matching [9], VoxDet can better distinguish similar instances via418
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Figure 9: Detection qualitative results comparison between VoxDet and 2D baselines, DTOID [6],
Gen6D [5], OLNDINO [13, 9] on the three benchmarks. VoxDet shows better robustness under pose
variance and occlusion. These qualitative comparisons can be better visualized in our supplementary
video.

the QVM module. For instance, in the RoboTools benchmark, the third column, the desired instance419

could be distracted by the motor, which has similar appearances but different geometry. Our VoxDet420

can discover such geometric differences and make correct classification, while the similarity matching421

falls short even if the feature from DINO [9] is stronger than ResNet50 [44].422

6.5 More Voxel Visualizations423

We display more voxel activation visualization in Fig. 10. In these experiments, we backpropagate424

the final proposal’s classification scores and visualize each grid’s activation value in the template425

voxel, following GradCAM [48]. For better visualization effects, we set a threshold and only display426

the volumes with high activation values with the rest nearly transparent. We find that as the query427
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Support Query and Voxel Activation Support Query and Voxel Activation

Figure 10: Visualization of the high activation grids during matching. When query instance rotates
along a certain axis, the location of the high-activated grids also roughly rotates in the corresponding
direction. The rotation axises are displayed for better understanding.

rotates along a certain axis, the location of the high-activated grids also rotates along corresponding428

axes. We attribute these results to the learned geometric knowledge in our voxel representation.429

6.6 Extended Related Works430

Visual Object Tracking aims to localize a general target instance in a video, given its initial431

state in the first frame. Early methods adopt discriminative correlation filters [49–51], where the432

calculation in the frequency domain is so efficient that real-time speed can be achieved on a single433

CPU. More recently, methods are developed on Siamese Network [52] and Transformers [53–55].434

Unlike detection, object tracking has a strong temporal consistency assumption, i.e., the location and435

appearance of the instance in the next frame do not largely vary from the previous frame. So that they436

only conduct detection/matching in the small search region with a single 2D template, which can’t437

work for our whole image detection setting.438

Instance Pose Estimation is developed to estimate the 6 DoF pose of an unseen instance. Some439

of them [56, 57] match the local point features and resort to RANSAC to optimize the relative pose.440

While others [5, 58] first selects the closest template frame and then conducts pose refinement on the441

known template poses. Most of these methods usually assume the instance detection is perfect, i.e.,442

they crop the instance out of the query image with the ground truth box and estimate the pose on the443

small object-centered patch. Our VoxDet can serve as their front-end, which is robust to cluttered444

environments, thus making the detection-pose estimation framework more reliable.445

Instance Retrieval hopes to retrieve a specific instance from a large database with a single reference446

image [59–64]. Some early work extracts local point features from template and query patch for image447

matching [60, 47], which may suffer from poor discriminative capability. More recent work resorts448

to the deep neural network for a global representation of the instance [61–64], which is compared449

with the features from query images. However, most of them construct 2D template features from450

the reference, so that their representation is unaware of the 3D geometry of the instance, which451

may not be robust under severe pose variation. Besides, instance retrieval methods usually require452

high-resolution query images for the discriminative features, while the instance in our cluttered query453

image could be in low-resolution, which sets additional barriers to these approaches.454
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