
Privacy Assessment on Reconstructed Images:
Are Existing Evaluation Metrics Faithful to

Human Perception?

Xiaoxiao Sun†

Australian National University
xiaoxiao.sun@anu.edu.au

Nidham Gazagnadou‡

Sony AI
nidham.gazagnadou@sony.com

Vivek Sharma‡
Sony AI

viveksharma@sony.com

Lingjuan Lyu‡�

Sony AI
lingjuan.lv@sony.com

Hongdong Li†
Australian National University

hongdong.li@anu.edu.au

Liang Zheng†
Australian National University

liang.zheng@anu.edu.au

Abstract

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used
to evaluate model privacy risk under reconstruction attacks. Under these metrics,
reconstructed images that are determined to resemble the original one generally
indicate more privacy leakage. Images determined as overall dissimilar, on the other
hand, indicate higher robustness against attack. However, there is no guarantee that
these metrics well reflect human opinions, which offers trustworthy judgement for
model privacy leakage. In this paper, we comprehensively study the faithfulness
of these hand-crafted metrics to human perception of privacy information from
the reconstructed images. On 5 datasets ranging from natural images, faces, to
fine-grained classes, we use 4 existing attack methods to reconstruct images from
many different classification models and, for each reconstructed image, we ask
multiple human annotators to assess whether this image is recognizable. Our
studies reveal that the hand-crafted metrics only have a weak correlation with
the human evaluation of privacy leakage and that even these metrics themselves
often contradict each other. These observations suggest risks of current metrics
in the community. To address this potential risk, we propose a learning-based
measure called SemSim to evaluate the Semantic Similarity between the original
and reconstructed images. SemSim is trained with a standard triplet loss, using
an original image as an anchor, one of its recognizable reconstructed images
as a positive sample, and an unrecognizable one as a negative. By training on
human annotations, SemSim exhibits a greater reflection of privacy leakage on the
semantic level. We show that SemSim has a significantly higher correlation with
human judgment compared with existing metrics. Moreover, this strong correlation
generalizes to unseen datasets, models and attack methods. We envision this work
as a milestone for image quality evaluation closer to the human level. The project
webpage can be accessed at https://sites.google.com/view/semsim.

1 Introduction

This paper studies the evaluation of privacy risks of image classification models, with a focus on
reconstruction attacks [6, 43]. During inference, a target classifier, a reconstruction attack algorithm
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Figure 1: Inconsistency between existing metrics and human judgements on privacy information
leakage. For each original image, we present two reconstructions produced by InvGrad [8]. Below
the reconstructed images, each colored ✓corresponds to a different metric, indicating that the
corresponding metric evaluates the reconstruction to have more information leakage. In (A), according
to PSNR, MSE, SSIM and LPIPS, the first reconstructed image is evaluated to have more privacy
leakage [8, 7] than the second one (i.e., the first one has a higher PSNR, SSIM values, and a lower
MSE and LPIPS values). However, human annotators perceive the first image as having less privacy
leakage, since they cannot recognise this recognition (in contrast to the second reconstruction, which
is recognizable and suggested to have more information leakage). Such inconsistency in privacy
assessment is our key observation and motivation. Moreover, we observe in (B) that even these
metrics themselves often disagree with each other.

and a test set are used. For each original test image, the attack algorithm intercepts gradients of the
target model to obtain a reconstructed image [7, 40]. The evaluation objective is to measure whether
the reconstructed image leaks any private information of the original one.

In the literature, objective evaluation metrics [29, 25] such as peak signal-to-noise ratio (PSNR),
mean squared error (MSE) and structural similarity index (SSIM) are commonly used. They measure
the similarity between two images on the pixel-level. In common practice, the high similarity
between the original and reconstructed image indicates a good reconstruction attack, thus a more
vulnerable classification model. Conversely, the low similarity between the two images means poor
reconstruction, which is believed to indicate weak privacy risk.

However, it is often subject to human perception whether privacy is leaked or preserved. In Figure 1,
we show examples where hand-craft evaluation metrics, such as PSNR and SSIM, and CNN-feature-
based metric learned perceptual image patch similarity (LPIPS) [39] give different judgments of
privacy assessment on reconstructed images from human perception. For example, in (A), the
reconstructed image that is recognizable (privacy-leaked) by annotators is evaluated as better privacy-
preserved by PSNR, SSIM, and LPIPS. In (B), sometimes some of these metrics provide consistent
judgments with human annotators, but their evaluation accuracy is still unstable for different images.

In light of the above discussions, this paper raises the question: is model privacy preservation ability
as measured by existing metrics faithful to human perception? To answer this question, we conduct
extensive experiments to study the correlation of model privacy preserving ability measured by human
perception and existing evaluation metrics. Specifically, for each reconstructed image, we ask five
independent annotators whether the reconstruction is recognizable. We use the average annotator
responses over the test set as human perception of privacy information leakage. On a wide range of
scenarios (5 datasets of different concepts, many different classification models and 4 reconstruction
attack methods), we find that there is only a weak correlation between human perception and existing
metrics. It suggests that a model determined as less vulnerable to reconstruction attacks by existing
metrics may actually reveal more private information as judged by humans.

Recognizing such discrepancy, we propose a new learning-based metric, semantic similarity (Sem-
Sim), to measure model vulnerability to reconstruction attack. Using binary human labels that
indicate whether a reconstructed image is recognizable, we train a simple neural network with a
standard triplet loss function. For an unseen pair of images, we extract their features from the neural
network and compute their ℓ2 distance, which is referred to as the SemSim score. If a model has a
low (resp. high) average SemSim score, it is considered to have a high (resp. low) risk of privacy
leakage, We experimentally show models’ vulnerability to reconstruction attack which is ranked by
SemSim has a much stronger correlation with human perception than existing metrics. Our main
contributions are summarized below.
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• We find model privacy leakage against reconstruction attacks measured by existing metrics is often
inconsistent with human perception.

• We propose SemSim, a learning-based and generalizable metric to assess model vulnerability
to reconstruction attack. Its strong correlation with human perception under various datasets,
classifiers and attack methods demonstrates its effectiveness.

• We collect human perception annotations on whether privacy is preserved for 5 datasets, 14 different
architectures of each set, and 4 reconstruction methods. These annotations will become valuable
benchmarks for future study.

2 Related Work

Image quality and similarity metrics are usually used to indicate the performance of reconstruc-
tion attack approaches [42, 43, 41] and also in privacy assessment [7, 36, 32] of methods against
reconstruction attacks. These metrics can be broadly categorized into pixel-level and perceptual
metrics. Pixel-level metrics, such as PSNR [14, 29] and MSE [34], evaluate differences between pixel
values of the original and reconstructed images [7, 36, 32], to reflect the degree of privacy leakage.
Perceptual metrics, such as SSIM [35] and LPIPS [39] are designed to take into account the perceptual
quality of images for privacy leakage evaluation [13]. This paper examines the effectiveness of these
metrics in privacy leakage evaluation and finds they exhibit weak correlation with human annotations.

Reconstruction attacks [43, 8, 41, 42, 1] aim to recover the training samples from the shared
gradients. Phong et al. [26] show provable reconstruction feasibility on a single neuron or single layer
networks, which provide theoretical insights into this task. Wang et al. [33] propose an empirical
approach to extract single image representations by inverting the gradients of a 4-layer network.
Meanwhile, Zhu et al. [43] formulate this attack as an optimization process in which the adversarial
participant searches for optimal samples in the input space that can best match the gradients. They
employed the L-BFGS [19] algorithm to implement this attack. Zhao et al. [41] extend the approach
with a label restoration step, hence improving speed of single image reconstruction. We focus on
model privacy assessment against reconstruction attacks and evaluate different metrics using several
attack methods.

Human perception annotations play an essential role in evaluating machine learning models [22,
20, 27, 38]. Most public test sets, such as the ImageNet [2] dataset from the computer vision, are
annotated by humans, allowing for conventional evaluation. Moreover, human feedback has been used
to improve machine learning models, such as InstructGPT [24]. In fields where human annotations
were expensive to obtain, e.g., medical image analysis [37] and image generation [28], there is
increasing evidence that the human judgements or evaluation is valuable and offers new insights. In
our paper, we consider the information leakage of reconstructed images

3 Privacy Assessment Metrics on Reconstructed Images: A Revisit

Pipeline of privacy assessment on the reconstructed images. As shown in Figure 2, the goal of
evaluation is to compare privacy risks of a series of K image classification models {Mk}Kk=1, under
reconstruction attacks. The evaluation process simulates stealing data from gradients [43, 41]. Its
input consists of an original image set X = {xi ∈ Rm×n}Ni=1, where N is the number of images,
and a reconstruction algorithm A used to attack models {Mk}Kk=1. Given a target model M1, whose
parameter weights are denoted by W , its gradients ∇WX can be calculated using the original data
X . The attack algorithm A is applied to the target model M and its gradients ∇WX to obtain a set
of reconstructed images denoted by X̄ := A(M,∇WX ) = {x̄i}Ni=1. Note that, A can access the
gradients, but has not access to X . We can evaluate the privacy leakage of a target model M over the
original set of X̄ as follows:

PL(M) := InfoLeak(X , X̄ ) = InfoLeak(X ,A(M,∇WX )), (1)

where InfoLeak(·, ·) represents the amount of information leakage in reconstructed images. Therefore,
it is important to have an effective metric for indicating InfoLeak(·, ·).

1Unless explicitly stated otherwise, the subscript of M is omitted when this does not create ambiguity.
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Figure 2: Task definition: privacy leakage assessment on reconstructed images. Given K
classification models M1,M2, ...,MK against the image reconstruction attack A (we use K = 3 as
an example in this figure) on a set of original images X . For each model, we get a set of reconstructed
images. The main goal of privacy leakage assessment on reconstructed images is to measure whether
semantic information of an original image, is still accessible. We can ask human annotators to
evaluate whether they can recognize the image class and then average across the set of images to
obtain the overall human evaluation score of privacy leakage. In the existing literature, image quality
metrics, such as PSNR, are used to measure privacy leakage. Here, the evaluation of example images
shows again that PSNR deviates from human evaluation.

Information leakage formulation. As introduced in Section 2, information leakage is often as-
similated to reconstruction quality and is based on a distance between an original image xi and its
reconstructed counterpart x̄i. Under such pointwise metric, InfoLeak(·, ·) of an image set X and its
reconstructed set X̄ can be defined as:

InfoLeak(X , X̄ ) =
1

N

N∑
i=1

d(xi, x̄i), (2)

where d can be a hand-crafted metric, such as MSE [34], PSNR [14, 29] or SSIM [35], or model
based, such as LPIPS [39]. Equation (2) averages the distances or similarities over all the original - re-
constructed image pairs to obtain the information leakage score of the attacked model M. Apart from
these, we can also use Fréchet Inception Distance (FID) [10]. It measures information leakage as the
distribution difference between original and reconstructed images: InfoLeak(X , X̄ ) ∝ FID(X , X̄ ).

4 Diagnosis of Existing Metrics and Our Proposal

4.1 Collecting human assessment of privacy leakage from reconstructed images

To evaluate whether a reconstructed image leaks privacy, human perception offers very useful
judgement. In the context of image recognition and face recognition, it is to determine if the human
can still recognize the reconstructed object or face.

For image classification, given an image, we provide human annotators with an incomplete list
of classes. For example, for the CIFAR-100 dataset, instead of providing annotators with a list of
all the 100 classes which are hard to memorize, we provide them with a list of the top-20 possible
classes that includes the ground truth. We request annotators to annotate the class of a given image.
If the annotate thinks the images is “incomprehensible” (i.e., severely blurry) or the right class does
not appear in the candidate list, then the annotation is ‘none’. We compare the human annotations
between an image and its reconstructed version. If they are the same, privacy is not preserved;
otherwise, privacy is preserved. The annotation pipeline and more details of the annotation process
are provided in the supplementary material.

For face recognition and fine-grained image recognition, because it is by nature very difficult
for a human to assign a class label from 20 candidates, we give annotators two images at a time:
an original image and its reconstruction. We then ask the annotator to tell whether the two images

4



𝜌𝜌 = 0.3938

𝜏𝜏 = 0.2904

𝜌𝜌 = 0.6703

𝜏𝜏 = 0.4725

𝜌𝜌 = −0.5127

𝜏𝜏 = −0.3978

Human Human Human 

PS
N

R
 

LP
IP

S 

𝜌𝜌 = −0.7363

𝜏𝜏 = −0.5604

Human 

FI
D

 

SS
IM

 

PSNR 

SS
IM

LP
IP

S 

PSNR 

𝜌𝜌 = −0.6865

𝜏𝜏 = −0.5304

𝜌𝜌 = 0.8955

𝜏𝜏 = 0.7956

LPIPS 

SS
IM

 

LPIPS 

FI
D

 

𝜌𝜌 = 0.2860

𝜏𝜏 = 0.2210

𝜌𝜌 = − 0.5088

𝜏𝜏 =−−0.4111

(A)  correlation between existing metrics themselves 

(B)  correlation between the existing metrics and human perception

Figure 3: Correlation between existing metrics and their alignment with human perception
in measuring privacy risk. 14 classification models are attacked by InvGrad [8] on the CIFAR-
100 dataset. Each subfigure presents the correlation between the rankings of model privacy leakage
obtained by two metrics. The correlation strength is measured by Spearman’s rank correlation (ρ) [31]
and Kendall’s rank correlation (τ ) [16]. Between existing metrics, (A) indicates that correlation is
sometimes very weak. Furthermore, (B) indicates that the correlation between existing metrics and
human perception is generally weak.

contain the same person or category. If yes, then privacy is not considered as preserved; otherwise, it
is. Note that in this procedure, to mitigate the potential bias of annotators, we also give reconstructed
images that do not pair with the original image.

In all the above procedures, each image or image pair is labeled by 5 independent annotators. Binary
labels, i.e., whether a reconstructed image is recognizable, are obtained via majority voting. In this
study, we deal with five datasets: CIFAR-100, Caltech-101, Imagenette and Celeb-A and Stanford
Dogs2. For each classification model being attacked, we annotate 600, 700, and 100 reconstructed
images for the CIFAR-100, Caltech-101, and the other three datasets, respectively.

4.2 Correlation analysis between human perception and existing metrics

Examples from Figure 1 motivate us to conduct a more comprehensive analysis of the inconsistency
between human perception and existing metrics in terms of privacy leakage. To this end, for the
reconstructed image set of 14 target models, we plot their privacy risk measured by various metrics
against collected human labels in Figure 3 (B). We find that the correlation strength between human
evaluation and existing metrics is relatively weak. For example, Kendall’s rank correlation τ that
measures rank consistency is only 0.2904 and 0.3978 for SSIM and LPIPS. Even in the best case, i.e.,
FID vs human, correlation is only moderate with τ = 0.5604. It signifies that a model identified as
more robust against reconstruction attacks based on existing metrics may actually be perceived as
highly vulnerable according to human judgment when comparing different models.

The primary issue lies in the fact that existing metrics are computed on either a pixel-wise or patch-
wise basis, without considering the semantic understanding of privacy leakage. As a result, these
metrics fail to accurately capture the image semantics related to privacy risks. This problem motivates
us to design privacy-oriented metrics to better assess privacy leakage.

4.3 Proposed metric

To obtain a metric that is more faithful to human perception, we propose SemSim, a learning-based
metric using human annotations as training data. The pipeline of SemSim is presented in Figure 4.

Training. Using binary human labels whether a reconstructed image is recognizable, we train a simple
neural network fθ with a standard triplet loss function. We take the original image xi as an anchor

2The new annotated dataset is distributed under license CC BY-NC 4.0 1, which allows others to share, adapt,
and build upon the dataset and restricts its use for non-commercial purposes.
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Figure 4: Training and inference pipeline of SemSim. Feature extractor fθ is trained on human-
annotated images with a triplet loss [30]. An original image x is used as anchor, and its reconstructions
are split into positive (recognizable) and negative (unrecognizable) samples based on human anno-
tations (Section 4). The goal is to minimize the anchor distance to positive samples and maximize
that to negative ones. During inference, given an original image and its reconstruction, we use fθ to
extract their features and compute the ℓ2 distance between the two features.

and split its reconstructions into positive x̄+
i and negative x̄−

i samples based on human annotations.
The loss function is L =

∑N
i=1 max{d(xi, x̄

+
i )− d(xi, x̄

−
i ) + α, 0}, where xi is an original image

and x̄+
i (resp. x̄−

i ) stands for one of its recognizable (resp. unrecognizable) reconstruction, and α is
the margin. Thus, we obtain our neural network fθ trained on human-annotated datasets.

Inference. During the evaluation, fθ is used for extracting features for original and reconstructed
images. We calculate the ℓ2 distance between their feature vectors, that is SemSim(x, x̄) =
ℓ2(fθ(x), fθ(x̄)), and then average this score over test set as the overall model performance score.

Key Observations. We believe SemSim captures semantic information, which plays a crucial role in
privacy preservation. There are several key factors contributing to its effectiveness. (1) Being trained
on human annotations enables SemSim to capture privacy leakage semantics better than metrics based
on pixel-level similarity or patch CNN features. (2) By utilizing a CNN model that extracts relevant
higher-level features, SemSim captures visual information related to information leakage effectively.
(3) It incorporates the relationship between the original image and recognizable/unrecognizable
reconstructions, improving its accuracy in assessing privacy leakage and providing better privacy
assessment. SemSim has a limitation in that it requires annotated data for training. While we show
that it is very generalizable and can work better than existing metrics with limited training data (refer
to Figure 7), we prioritize our future work to annotate more data for even improved generalization.

4.4 Discussions

Are there other ways than human perception to assess privacy leakage? Yes. We can use a
classification model trained on a dataset that contains the same categories as the reconstruction set to
classify the reconstructions. If the model accurately predicts the categories, it indicates a potential
privacy leakage. In our preliminary study, we used two models trained on the CIFAR-100 dataset,
achieving accuracies of 82% and 65% on the test set, respectively, for recognizing reconstructed
images. By using their recognition accuracies as indicators of privacy leakage, we obtained Kendall’s
rank correlation coefficients of 0.7023 and 0.5044 with human evaluation, respectively. These results
are considered acceptable. However, there are limitations to this approach. The classification model
must be trained on a dataset that matches the categories of the task, and it needs to be accurate. These
limitations affect the scope of this method. Nonetheless, exploring the use of classifiers to evaluate
privacy risk offers an alternative viewpoint to human perception, and it merits further investigation

Is privacy leakage on reconstructed images a binary problem? No. We simplify this problem by
binarizing it. It can be continuous, where privacy information is leaked to a greater or lesser degree,
depending on various factors such as the task and the type and amount of data that is leaked.

How to define privacy leakage on reconstructed images in other vision tasks? The definition
depends on the task context. For example, in object counting [23], privacy information can be defined
as the number of objects. Therefore, for different tasks, the definition of privacy leakage should be
carefully designed and accompanied by a tailored evaluation method.

Relationship between image quality and private leakage of reconstructed images. The relation-
ship between the image quality of a reconstructed image and its information leakage is complex.
While better image quality can indicate better reconstruction performance, it does not necessarily
imply higher privacy leakage. Conversely, a reconstructed image with poor image quality can still
contain private information, while an image with higher quality may preserve privacy better. There-
fore, the relationship between image quality and privacy leakage is not always straightforward and
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Figure 5: Sample annotation results. For each original image (leftmost column), its reconstructed
images are placed left to right by their PSNR values from large to small. The red cross denotes that
the human annotator fails to recognize the image. We observe that human evaluation is inconsistent
with PSNR ranking, e.g., some images that are top-ranked, or equivalently determined as high quality
by PSNR are actually not recognizable by humans.

requires careful consideration and evaluation. These discussions also encourage us to explore new
metrics that incorporate semantic-level information in order to better assess privacy leakage.

Limitation and potential improvement methods for Semsim. One limitation of SemSim is its
potential performance decrease when faced with significant distributional shifts (such as using it on
medical images). To address this limitation, we can annotate diverse types of data to enhance the
adaptability of Semsim to a wider range of domain variations. Additionally, exploring other strategies,
such as incorporating local image regions and utilizing multi-valued annotated training data, could
also be considered to further enhance the effectiveness of SemSim.

5 Experiments

Experimental Setups

− Datasets. We evaluate using the CIFAR-100 [18], Caltech-101 [5], Imagenette [2]3, CelebA [21],
and Stanford Dogs [17] datasets. The first three are for generic object recognition, CelebA is for face
recognition, and Stanford Dogs is a fine-grained classification dataset.
− Classification models. We use the following backbones: ResNet20, ResNet50, ResNet152 [9],
DenseNet [12] and 8-layer CoveNet [7]. They were trained using different strategies, such as data aug-
mentation [7], gradients with Gaussian/Laplacian noise [43], and layer-wise pruning techniques [4].
In total, there are 70 different models. Details are provided in the supplementary material.
− Reconstruction attack methods. We mainly use InvGrad [8]. In the ablation study, we evaluate
SemSim using four additional attack methods, including DLG [43], CAFE [15], and GradAttack [13].
− Correlation strength measurements. We use two rank correlation coefficients: Spearman’s
rank correlation ρ [31] and Kendall’s rank correlation τ [16] to measure the consistency between
different metrics with human perception. Values of ρ and τ are between [−1, 1]. Being closer to -1 or
1 indicates a stronger correlation, and 0 means no correlation. For clarity, the absolute values of ρ
and τ are provided in the paper.

Implementation Details

− Classification model training. The training of all the models to be evaluated was conducted
using the PyTorch framework. The details of the classifier training, such as the specific architectures
and hyperparameters used for each model, are provided in the supplementary material. We perform
model training with one RTX-2080TI GPU and a 16-core AMD Threadripper CPU @ 3.5Ghz.
−SemSim model training. In the main evaluation, SemSim is trained using a learning rate of 0.1
and a batch size of 128 on the ResNet50 architecture for 200 epochs. We use leave-one-out evaluation
on the 5 datasets. Some examples of the annotation data are provided in Figure 1 and Figure 5.

3Imagenette is a subset of 10 easily classified classes from ImageNet. https://www.tensorflow.org/
datasets/catalog/imagenette
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Table 1: Comparison of different metrics on different datasets. For each metric, we rank the 14
models and compute the correlation with rankings made by human assessment. For each test set
(Column 1), SemSim is trained on the combination of the rest four datasets. Here, InvGrad [8] attack
is used. |ρ| and |τ | are reported. SemSim has a much stronger correlation with human annotations.

Datasets Metrics PSNR MSE SSIM LPIPS FID SemSim

CIFAR-100 Spearman’s |ρ| 0.6703 0.6176 0.3939 0.5127 0.7363 0.8637
Kendall’s |τ | 0.4725 0.4286 0.2904 0.3978 0.5604 0.7143

Caltech-101 Spearman’s |ρ| 0.6970 0.7349 0.7218 0.5127 0.2242 0.8182
Kendall’s |τ | 0.5556 0.5525 0.5244 0.4072 0.1556 0.6889

Imagenette Spearman’s |ρ| 0.5382 0.6395 0.6433 0.6539 0.4791 0.8257
Kendall’s |τ | 0.4349 0.5525 0.5108 0.5922 0.4252 0.7012

CelebA Spearman’s |ρ| 0.7495 0.7349 0.6846 0.5824 0.1516 0.8263
Kendall’s |τ | 0.5604 0.5525 0.5264 0.4505 0.0989 0.6923

Stanford Dogs Spearman’s |ρ| 0.4023 0.3968 0.4782 0.5031 0.3969 0.7120
Kendall’s |τ | 0.3537 0.2743 0.3048 0.3929 0.3196 0.5938

Table 2: Comparison of different metrics under different attacks on the CIFAR-100 dataset.
SemSim is trained using human annotations obtained through the InvGrad [8] attack method and
evaluated on different attack methods listed in the table.

Attacks Metrics PSNR MSE SSIM LPIPS FID SemSim

DLG [43] Spearman’s |ρ| 0.6515 0.6367 0.4069 0.5477 0.7268 0.8749
Kendall’s |τ | 0.4857 0.4174 0.2858 0.4294 0.5237 0.7342

CAFE [15] Spearman’s |ρ| 0.7104 0.6916 0.5870 0.6793 0.6925 0.8864
Kendall’s |τ | 0.5392 0.4259 0.3318 0.4762 0.4735 0.7510

GradAttack [13] Spearman’s |ρ| 0.6831 0.6944 0.5753 0.6841 0.7204 0.8437
Kendall’s |τ | 0.4943 0.4980 0.3495 0.4531 0.4819 0.7260

5.1 Main Evaluation

Inconsistency between existing metrics and human perception: more results. On each of the five
test sets, we rank the 14 models according to each of the existing metrics as well as human perception.
The model ranking of each metric is correlated with that from human assessment. We find that PSNR,
MSE, SSIM, LPIPS, and FID do not have a high correlation with human assessment. The worst
performing metric is FID: Kendal’s |τ | is only 0.1556, 0.4252, 0.0989, and 0.3196 between FID and
human perception, on the four test sets, respectively. While the rest four metrics exhibit a stronger
correlation than FID, Kendall’s |τ | is generally around 0.5, which is considered only moderate.

Moreover, from Figure 3, we find that the correlation between existing metrics themselves is often
weak. For example, In Figure 3 right, Kendall’s |τ | is only 0.2904 between PSNR and LPIPS. This
contradiction also exists between PSNR and LPIPS and others. The above results advocate the study
of new metrics that are privacy oriented.

Comparing SemSim with existing metrics in terms of faithfulness to human perception. We
utilize SemSim to rank the models and examine its correlation with the ranking based on human
perception, as shown in Table 1. We make two key observations.

First, SemSim exhibits a much stronger correlation with human perception. On the five test sets,
Kendall’s |τ | is 0.7143, 0.6889, 0.7012, 0.6923, and 0.5938, respectively, which is 0.2418, 0.1333,
0.2663, 0.1319 and 0.2401 higher than PSNR, for example. The above results suggest the risks of
current metrics in the community and advocate the proposed learning-based, privacy-oriented metric.

Second, on Stanford Dogs, while SemSim is still much more faithful to human perception than other
metrics, the overall correlation is lower than other datasets. Because dog species are hard to recognize,
more noise was introduced to human annotation and thus to the ranking results and correlation. We
speculate that fine-grained datasets are harder for privacy interception through reconstruction: humans
themselves will find it hard to recognize the private content.

Generalization ability of SemSim. In Table 1, we adopt a leave-one-out setup, where SemSim
is trained on four datasets and tested on the fifth dataset. Moreover, for each dataset, the model
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Figure 6: Comparing the ranking of reconstruction images using PSNR and SemSim. From
the visualizations, we can observe that PSNR exhibits some inconsistencies with human perception,
while SemSim consistently aligns with the judgments of human annotators. In the two examples,
SemSim correctly ranks all the images with noticeable information leakage (including a laptop or
chair) before the ones without or with less information leakage (that are unrecognizable). However,
the rankings provided by PSNR are inaccurate for some images.
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Figure 7: Analysis of SemSim. Evaluating the impact of (A) size of human-annotated training
data, (B) variations of SemSim backbones, and (C) different loss functions for SemSim training.
Experiments are conducted on the CIFAR-100 dataset.

architectures are different. For example, when using CelebA as a test set, the tested target models
are ResNet50 and DesNet etc, while target models in training are Resnet20, 8-layer CoveNet and
ResNet152 etc. As such, the superior results in Table 1 demonstrate the generalization ability of
SemSim for test sets and model architectures.

Furthermore, we use SemSim to evaluate model vulnerability to unseen attacks. Results are provided
in Table 2, where SemSim is trained using human annotations obtained through the InvGrad [8] attack
method and evaluated on other attack methods such as DLG, CAFE, and GradAttack. Remarkably,
we consistently observe higher correlation between SemSim and human perception compared to
existing metrics. On the CIFAR-100 dataset, we observe significant improvements in Kendall’s
|τ | of 0.7342, 0.7510, and 0.7260, respectively, for DLG, CAFE, and GradAttack. These findings
demonstrate the robustness of SemSim in capturing the privacy leakage of reconstructed images
across different reconstruction attacks.

Visualization results of SemSim. Figure 6 presents two examples of ranking reconstruction images
using PSNR and SemSim. In both cases, SemSim outperforms PSNR and provides better results.

5.2 Further Analysis

Impact of the number of human annotations on SemSim training. To evaluate this impact, we
use the CIFAR100 dataset for testing and randomly select human-annotated training samples from
the rest four datasets to train SemSim. Results are shown in Figure 7 (A). We observe a correlation
drop between SemSim and human perception as the number of training samples decreases. However,
even with as few as 50 training samples (each samples includes 14 reconstructed images), SemSim
outperforms existing metrics like PSNR and FID.

9



Impact of different backbones for SemSim. As mentioned in the implementation details, SemSim
uses a simple ResNet50 network. Here, we try several different opinions such as LeNet and ResNet18,
and present their correlation with human perception in Figure 7 (B). We show that even a simple
LeNet model can achieve |τ | scores higher than 0.65, surpassing the best score of 0.5604 obtained
by FID. Moreover, we observe that there is a correlation between the complexity of the backbone
architectures and the performance of SemSim. This indicates that utilizing more advanced and
sophisticated backbone models may be able to further enhance SemSim to capture and represent
visual information, leading to improved evaluation of privacy leakage in reconstructed images.

Impact of other loss functions for SemSim training. We further experiment with different loss
functions and hyperparameters, including the contrastive loss and the triplet loss (where we set α = 1
in experiments). From the results shown in Figure 7 (C), we observe that the triplet loss shows a
comparable correlation strength to the contrastive loss in relation to human assessment.

6 Conclusion

This paper investigates the suitability of existing evaluation metrics when privacy is leaked by a
reconstruction attack. We first collect comprehensive human perception annotations on whether a
reconstructed image leaks information from the original image. We find that model vulnerability
to such attacks measured by existing metrics such as PSNR has a relatively weak correlation with
human perception, which poses a potential risk to the community. We then propose SemSim trained
on human annotations to address this problem. On five test sets, we show that SemSim has much
stronger faithfulness to human perception than existing metrics. Such faithfulness remains strong
when SemSim is used for different model architectures, test categories, and attack methods, thus
validating its effectiveness. In future work, we will collect human perception labels from a wider
source of datasets and train a more generalizable metric for privacy leakage assessment.
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A Data Annotation

In Section 4.1, we briefly introduced how humans annotate the reconstructed images for different
datasets. In the supplementary material, we have included a graphical user interface (GUI) that was
utilized by the annotators. Figure 8 displays the GUI, where (A) and (B) were specifically designed
for annotating different datasets.

(A) image classification 

(B) face recognition and fine-grained image classification

Figure 8: Graphical user interface (GUI) used in our human annodation process. For (A)
image classification, we ask annotators to give a category to the reconstructed image. In (B) face
recognition and fine-grained classification, we ask annotators to tell whether the original image and
its reconstruction have the same or different identity / category.

To minimize the influence of subjective bias, we use a relatively objective formulation: whether
the reconstructed image can be correctly labeled. Specifically, for CIFAR-100, Caltech-101, and
Imagenette, we provide up to 20 candidate categories and see if the annotators can correctly recognize
the reconstructed image; for more difficult tasks like face recognition and fine-grained classification
(Celeb-A and Stanford Dogs), we give both the original and the reconstructed images and ask the
annotator if they are of the same identity or species.

B Impact of margin value α in the triplet loss on SemSim

The effect of the margin parameter α in the triplet loss on the performance of SemSim is depicted in
Figure 9. It can be observed that when α is set to a value close to 1, both Spearman’s rank correlation
(ρ) and Kendall’s rank correlation (τ ) coefficients yield better results compared to other values, on
CIFAR-100 and Caltech-101 datasets. We think there are two potential reasons for this observation.
Firstly, if the value of α is too small, the model may struggle to effectively learn the discriminative
features that distinguish positive (recognizable reconstructed images) and negative (unrecognizable
reconstructed images) samples. On the other hand, if α is set to a value that is too large, the model
may become excessively confident in distinguishing between positive and negative samples. However,
this can lead to convergence challenges, as the loss function may have difficulty approaching 0.
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Figure 9: Impact of α on SemSim when testing on (A) CIFAR-100 and (B) Caltech-101. The
margin value α is used in the triplet loss to ensure that negative samples are kept far apart. When
evaluating the reconstructed images of CIFAR-100 or Caltech-101, we trained the ResNet50 model
on the four datasets (excluding CIFAR-100 or Caltech-101) using the triplet loss. The training process
involved utilizing different values of the margin parameter α for each dataset.

Table 3: Details of classification models. On each test set, we have two backbones trained without
(vanilla, 2nd column ) and with different strategies, such as using data augmentation (3rd − 6th

columns) and existing defence methods (7th − 8th columns).

Datasets Models

CIFAR-100 ResNet20

+ Random-
ResizedCrop
& Random-
HorizontalFlip

+ TranslateX
& Invert
& ranslateY

+ ranslateY
& Autocontrast
& Autocontrast

+ [7]
+ defense
Gaussian (10−3)

+ defense
Pruning (70%)

CoveNet8

Caltech-101 ResNet20
DenseNet

Imagenette ResNet50
ResNet152

CelebA ResNet20
DenseNet

Stanford Dogs ResNet50
ResNet152

In our experiments, we set α to 1. However, we acknowledge that there is potential for improved
performance by carefully selecting the optimal value of α for different datasets.

C Classification models and training details

We conducted experiments using five datasets, CIFAR-100 [18], Caltech101 [5], CelebA [21],
ImageNette [2], and Stanford dogs [17]. In our evaluation process, we considered 14 classification
models for each set. Table 3 provides detailed information about these models. They were trained
using stochastic gradient descent (SGD) as the optimizer, with a learning rate of 0.1.

D Metrics for reconstruction quality

Mean squared error. Assuming x, x̄ ∈ Rn×m are two images to compare, the mean squared error
(MSE) is given by,

MSE(x, x̄) := (1/mn)

m∑
i=1

n∑
j=1

(xij − x̄ij)
2. (3)

The value of MSE is between 0 and +∞. The lower MSE is, the closer two images are.

Peak-Signal-to-Noise ratio. The Peak-Signal-to-Noise ratio (PSNR) is widely used in image quality
assessment, which measures the ratio between the maximal power of a signal and its noise. Its value,
expressed in dB, is given by:

PSNR(x, x̄) = 20 log10

(
MAXx√
MSE(x, x̄)

)
, (4)

where MAXx is the maximal value in the image x (often replaced by 255 for int8 images).
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SSIM. Unlike PSNR, the structural similarity index measure (SSIM) [35] is a perception-based
metric as it was designed to take into account characteristics of the human vision system through
three metrics: luminance, contrast and structure of the image. It is shown that there is an analytical
link between PSNR and SSIM and that it is often possible to predict one from the other for controlled
perturbations (Gaussian blur, additive Gaussian noise and jpeg compressions) [11]. The above three
metrics compute a pixel-wise distance between both images which is very limited when we assess
semantic content of an image such as privacy leakage.

LPIPS. LPIPS [39], which stands for learned perceptual image patch similarity, is a perceptual metric
based on a neural network aiming at correlating better with perceptual judgments. The authors take
inspiration from neuroscience findings, where their model compares the activations between two
images as neurons in a human cortex would. As explained in its torchmetrics documentation4, a
low LPIPS score indicates high similarity. Thus, in the context of privacy assessment, low LPIPS
values for an original image and its reconstruction suggest high privacy leakage [13].

Fréchet Inception Distance. Aside from LPIPS and the aforementioned hand-crafted metrics
calculated at the image level, our works also uses Fréchet inception distance (FID) [10] to measure
information leakage. FID is commonly used to evaluate the domain gap between two distributions,
where higher values suggest a larger domain gap. For example, FID is extensively used to evaluate
the quality of images generated by generative adversarial networks (GANs) [10], by computing the
distribution difference between real and generated images. In this paper, FID may reflect the difference
between the original and reconstructed image distributions to reflect privacy leakage. As opposed to
the pointwise metrics, FID is computed directly on image sets: InfoLeak(X , X̄ ) ∝ FID(X , X̄ ).

As defined in [10, 3], given two Gaussian distributions with mean and covariance (m,C), resp.
(m̄, C̄), FID is given by:

FID((m,C), (m̄, C̄)) = ∥m− m̄∥22 + Tr
(
C + C̄ − 2(CC̄)1/2

)
. (5)

Its evaluation on finite sets X and X̄ follows verbatim by computing their empirical mean and
covariance matrix. The value of FID is between 0 and +∞. The lower the FID value is, the closer
two distributions are.

Relationship between ℓ2 and cosine similarity.

The ℓ2 norm can be used as a tool to measure the distance between vectors, often embeddings of
images like those produced by our SimSem model:

ℓ2(u,v) = ∥u− v∥2 , (6)

The issue with distances to estimate the similarity between vectors is that they are only bounded
below by zero (when u = v). This makes it hard to set a threshold above which vectors u and v can
be considered dissimilar. Thus, cosine similarity is often preferred to ℓ2 distance as its values belong
to the interval [−1, 1], 1 indicating proportional vectors and −1 vectors of opposite directions. Let
u,v be normalized vectors, then the relationship between cosine similarity and ℓ2 norm is

ℓ2(u,v) =
√

2(1− cossim(u,v)) . (7)

E More Discussions

How much extra effort needs to be paid to extend the current approach? The effort required
to extend the current method to other tasks also depends on the nature of the tasks. If we evaluate
privacy leakage for the counting task, it would be useful to ask human annotators to count the number
of objects in the reconstructed image: if it equals the number of objects in the original image, then
privacy may be considered leaked. For this particular counting task, we speculate that manageable
efforts will be needed to extend our current approach. On the other hand, tasks that need specialized
or professional annotations will likely require more effort, such as medical image understanding.

4https://torchmetrics.readthedocs.io/en/stable/image/learned_perceptual_image_
patch_similarity.html
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