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Abstract

We consider the problem of estimating the causal effect of a treatment on an
outcome in linear structural causal models (SCM) with latent confounders when
we have access to a single proxy variable. Several methods (such as difference-in-
difference (DiD) estimator or negative outcome control) have been proposed in
this setting in the literature. However, these approaches require either restrictive
assumptions on the data generating model or having access to at least two proxy
variables. We propose a method to estimate the causal effect using cross moments
between the treatment, the outcome, and the proxy variable. In particular, we
show that the causal effect can be identified with simple arithmetic operations on
the cross moments if the latent confounder in linear SCM is non-Gaussian.In this
setting, DiD estimator provides an unbiased estimate only in the special case where
the latent confounder has exactly the same direct causal effects on the outcomes
in the pre-treatment and post-treatment phases. This translates to the common
trend assumption in DiD, which we effectively relax. Additionally, we provide
an impossibility result that shows the causal effect cannot be identified if the
observational distribution over the treatment, the outcome, and the proxy is jointly
Gaussian. Our experiments on both synthetic and real-world datasets showcase the
effectiveness of the proposed approach in estimating the causal effect.

1 Introduction

Estimating the effect of a treatment (or an action) on an outcome is an important problem in many
fields such as healthcare [SJS17], social sciences [Gan10], and economics [IR]. Randomized control
trials are the gold standard to estimate causal effects. However, in many applications, performing
randomized experiments are too costly or even infeasible, say due to ethical or legal concerns. Thus,
estimating the causal effect from merely observational studies is one of the main topics of interest
in causal inference. This problem has been studied extensively in two main frameworks, potential
outcome (PO) framework [Rub74] and structural causal model (SCM) framework [Pea09]. The main
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quantity of interest in PO framework is the individual-based response variable, i.e., the value of
outcome for a specific individual in the population considering a particular value for the treatment. In
SCM framework, a set of structural causal assignments are defined to describe the data generation
mechanism among a set of variables. This set of assignments is often represented by a directed
acyclic graph (DAG) to show the causal relationships among the variables in the model. It can be
shown that the two frameworks are logically equivalent in the sense that any theorem in one can be
translated to the other [PJS17].

Difference-in-Difference (DiD) [L+11] is one of the most frequently used non-experimental methods
to estimate the effect of a treatment by comparing the average of outcome before and after applying
the treatment in a treatment and control group. In fact, 26 of 100 most cited papers published by
the American Economic Review used some variant of DiD or two-way fixed effect (an extension
to multi-group and multi-time slots) to estimate the causal effect [DCD22]. DiD is an estimation
process in PO framework for the setting where we have access to a population partitioned into control
and treatment groups. The goal is to estimate the effect of treatment D on outcome Y where D
is equal to one if a treatment is given to an individual and zero otherwise. It is also assumed that
the value of the outcome is observed just before giving any treatment (this pre-treatment value is
denoted by Z) and it can be seen as a proxy variable for latent common causes of D and Y . DiD
method computes the causal effect by subtracting the difference of average outcome in two groups
before applying treatment (i.e., E[Z|D = 1]− E[Z|D = 0]) from the one after the treatment (i.e.,
E[Y |D = 1] − E[Y |D = 0]). It can be shown the output of DiD is an unbiased estimate of the
causal effect under some assumptions such as the parallel/common trend assumption which states
that the outcome of the treatment group would have followed the same trend as the control group in
the absence of the treatment (see (2) for the exact definition).

D Y

Z U

Figure 1: The suggested causal graph in SCM
framework for the approaches in DiD and negative
outcome control.

Although the initial setting of DiD is in PO
framework, its counterpart in the SCM frame-
work was considered in the negative outcome
control approach [SRC+16]. A negative out-
come variable is a type of proxy variable that
is not causally affected by the treatment. The
causal graph in this approach is represented in
Figure 1 where the unmeasured common cause
of D and Y is represented by a latent variable
U and D is not a cause of proxy variable Z.
The causal effect of D on Y cannot be iden-
tified from the observational distribution over
(D,Y, Z) because of the common confounder U . However, imposing further assumptions on the
SCM, the causal effect of D on Y can become identified. Such assumptions include monotonicity
[SRC+16], knowledge of the conditional probability P (Z|U) [KP14], or having at least two proxy
variables [KP14, MGTT18, TYC+20, CPS+20], all of which may not hold in practice (see related
work in Section 4 for a more detailed discussion). Recently, [SGKZ20] considered linear SCMs with
non-Gaussian exogenous noise 1 and proposed a method that can identify the causal effect for the
causal graph in Figure 1 from the observational distribution over (D,Y, Z). The proposed method
is based on solving an over-complete independent component analysis (OICA) [HKO01]. However
given the landscape of the optimization problem, in practice, OICA can get stuck in bad local minima
and return wrong results [DGZT19].

In this paper, we consider the setup in causal graph in Figure 1 in linear SCM where we have access
to a proxy variable Z. We propose a “Cross-Moment" algorithm that estimates the causal effect using
cross moments between the treatment, the outcome, and the proxy variable. Our main contributions
are as follows:

• We show that the causal effect can be identified correctly from the observational distribution if
there exists n ∈ N such that for the latent confounder U , we have: E[Un] ̸= (n−1)E[Un−2]E[U2]
(Theorem 1). Under additional mild assumption (Assumption 3), this condition implies that our
proposed method can recover the causal effect when U is non-Gaussian. Additionally, when the
observational distribution is jointly Gaussian, we prove that it is impossible to identify the causal
effect uniquely (Theorem 3).

1More precisely, at most one of the exogenous noises in the system can be Gaussian.
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• Unlike previous work [SGKZ20, AHZ21, YGN+22] which requires solving an OICA problem,
the proposed approach only performs simple arithmetic operations on cross moments. Therefore, it
does not suffer from the drawbacks of OICA such as getting stuck in bad local optima.

• We show that DiD estimator in general provides a biased estimate of the causal effect over the
data generated by the linear SCM consistent with the causal graph in Figure 1 unless the latent
confounder has exactly the same values of direct causal effects on the outcomes in the pre-treatment
and post-treatment phases. Our proposed method does not require such a strong restriction.

The structure of the paper is as follows. In Section 2, we define the notation and provide some
background on DiD estimator. In Section 3, we describe Cross-Moment algorithm and show that it
recovers the true causal effect under mild assumptions on the distribution of the latent confounder.
We also show that DiD estimator is in general biased if the data generative model follows a linear
SCM. In Section 4, we review the related work. In Section 5, we evaluate the proposed algorithm
experimentally and show its superior performance compared to the state of the art. Finally, we
conclude the paper in Section 6.

2 Preliminaries and Notations

Throughout the paper, we denote random variables by capital letters and their realizations by small
letters e.g., X and x, respectively. Bold capital letters are used to specify a set of random variables
and their realizations are denoted by small capital letters (e.g., X and x).

A SCM M over a set of random variables V is defined by a set of assignments {X :=
fM
X (PaG(X), ϵX)}X∈V, where ϵX is the exogenous noise corresponding to X and PaG(X) ⊆ V. It

is assumed that the exogenous noises are mutually independent. Let us denote by O and U, the set of
observed and unobserved variables in V, respectively. Note that V = O ∪U and O ∩U = ∅.

The set of assignments in SCM M is commonly represented by a DAG. Let G = (V,E) be a DAG
with the set of vertices V and set of edges E. For ease of notation, we use the notation of V for the
set of vertices in the graph. We also use the term “vertex" and “random variable" interchangeably.
Each vertex in the graph represents some random variable and each direct edge shows a direct causal
relationship between a pair of random variables. In particular, we say that X is a parent of Y or,
equivalently, Y is a child of X if (X,Y ) ∈ E. We define PaG(X) as a set of all parents of X in
graph G.

2.1 Difference-in-Difference (DiD)

Difference-in-difference (DiD) was proposed in the PO framework in order to estimate the causal
effect from observational studies under some assumptions. In this framework, the population under
study is divided into control and treatment groups and only individuals in the treatment group receive
the treatment. In particular, the treatment variable D represents treatment assignment which is
equal to 1 if the treatment was given and 0 otherwise. Let Y (0) and Y (1) be two random variables
representing the outcome under treatment value D = 0 and D = 1, respectively. Denote the value of
the outcome right before administering the treatment by Z and assume it is measurable. Our goal is
to obtain the average causal effect in the treatment group E[Y (1)− Y (0)|D = 1]. DiD estimate of
the average causal effect equals:

(E[Y |D = 1]− E[Y |D = 0])− (E[Z|D = 1]− E[Z|D = 0]). (1)
This quantity is an unbiased estimate of the average causal effect as long as the following assumptions
hold.

• Stable Unit Treatment Value Assumption (SUTVA):
Y = DY (1) + (1−D)Y (0).

• Common trend assumption:
E[Y (0)− Z(0)|D = 1] = E[Y (0)− Z(0)|D = 0]. (2)

SUTVA states that the potential outcome for each individual is not related to the treatment value
of the other individuals. The common trend assumption states that there would be the same “trend”
in both groups in the absence of treatment which allows us to subtract group-specific means of the
outcome in estimating the average causal effect in (1).
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3 Methodology: Cross-Moment Algorithm

In this section, we propose Cross-Moment algorithm to estimate the causal effect of treatment D on
outcome Y . Throughout this section, we consider linear SCMs, i.e., each random variable in SCM
M is a linear combination of its parents and its corresponding exogenous noise. More precisely, the
linear assignments in M for the causal graph in Figure 2 are:

U := ϵu,

Z := αzU + ϵz = αzϵu + ϵz,

D := αdU + ϵd = αdϵu + ϵd,

Y := βD + γU + ϵy = (αdβ + γ)ϵu + βϵd + ϵy,

(3)

Without loss of generality, we assume that ϵu, ϵy, ϵz , ϵd are arbitrary random variables with zero
mean. This assumption can always be achieved by centering the observational data.

D Y

Z U

β

α d
γ

αz

Figure 2: The considered causal graph with linear
assignments in the SCM framework.

Moreover, we assume that the only observed
random variables are given by O = {D,Y, Z}.
Our goal is to identify β (the causal effect of D
on Y ) from the distribution over the observed
variables O. We consider SCMs that satisfy the
following assumption.
Assumption 1. In the linear SCM given by (3),
αz ̸= 0 and Var(ϵd) > 0.

Assumption 1 is necessary for identifying the
causal effect. In particular, if αz = 0, the di-
rected edge from U to Z is removed and the
causal effect cannot be identified even if all the
exogenous noises are non-Gaussian as shown in [SGKZ20]. Moreover, if Var(ϵd) = 0, then ϵd is
zero almost surely (as we assumed that all the exogenous noises are mean zero). In this case, we
can construct another SCM M′ which encodes the same observational distribution as our original
SCM but results in a different value of the causal effect of D on Y compared to the original SCM.
More specifically, in this SCM, we delete the directed edge from U to Y and change the structural
assignment of Y to Y := (β + γ/αd)D + ϵy. Hence, the assumption Var(ϵd) > 0 is necessary for
the unique identification of the causal effect.

Under Assumption 1, it can be shown that:

β =
Cov(D,Y )− αd

αz
Cov(Y,Z)

Var(D)− αd

αz
Cov(D,Z)

, (4)

where Cov(A,B) denotes the covariance of random variables A and B and Var(A) is the
variance of A. β is identifiable as long as the ratio αd/αz is known as we can obtain
Cov(D,Y ),Cov(Y,Z),Var(D), and Cov(D,Z) from the observational distribution. In the sequel,
we will show how this ratio can be learnt as long as ϵu has bounded moments.
Assumption 2. For all n ∈ N, assume that: E[ϵnu] < ∞.

When the bounded moment assumption of 2 holds, the following theorem provides an approach for
recovering αd/αz .
Theorem 1. For variables Z and D as defined in (3), under Assumptions 2, αd

αz
can be determined

uniquely if ∃n ∈ N such that:

E [ϵ̂nu] ̸= (n− 1)E
[
ϵ̂n−2
u

]
E
[
ϵ̂2u
]
, (5)

where ϵ̂u =
√
αdαzϵu.

The detailed proof of the Theorem 1 is provided in the Appendix A.

It is interesting to see for what families of distributions, the condition in Theorem 1 is satisfied.
Assume (5) is not satisfied. Recall that from the definition of SCM (3), E[ϵ̂u] = 0 and E[(ϵ̂u)2] =
E[DZ]. These in a combination with E [ϵ̂nu] = (n − 1)E

[
ϵ̂n−2
u

]
E
[
ϵ̂2u
]

for any n ∈ N determine
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Figure 3: Example of causal graph extended with two observed covariates, two latent confounders,
and corresponding proxy variables.

uniquely all the moments of ϵ̂u. More specifically, recursively solving for E [ϵ̂nu] we have E [ϵ̂nu] =

(n− 1)!!E[(ϵ̂u)2] for even n ≥ 1 and E [ϵ̂nu] = 0 for odd n ≥ 1 where n!! denotes double factorial.
Double factorial notation n!! denotes the product of all numbers from 1 to n with the same parity as
n. Specifically the moments of Gaussian distribution satisfy the aforementioned moment equation.
Therefore when ϵu is Gaussian, we cannot identify the causal effect. Under some mild technical
assumption on ϵu (see Assumption 3 in the following), we can prove that the moments of ϵu uniquely
determine its distribution. As a result, as long as ϵu is non-Gaussian, we can identify the causal effect.

Assumption 3. We assume that there exists some s > 0 such that the power series
∑

k E[ϵku]rk/k!
converges for any 0 < r < s.

Corollary 1. Under Assumptions 1, 2 and 3, the causal effect β can be recovered uniquely as long
as ϵu is not Gaussian.

In [SGKZ20], it was shown that β can be recovered as long as all exogenous noises are non-Gaussian.
Therefore, our result relaxes the restrictions on the model in [SGKZ20] by allowing ϵD, ϵY , ϵZ to be
Gaussian.

Based on Theorem 1, we present Cross-Moment algorithm in Algorithm 1 that computes coefficient β
from the distribution over the observed variables Z,D, Y . Algorithm 1 is comprised of two functions
GetRatio and GetBeta. In the proof of Theorem 1, we show that |αd/αz| = (num/den)1/(n−2) for
the smallest n such that den ̸= 0 where num and den are defined in lines 6 and 7 of function GetRatio,
respectively. Moreover, E[DZ] has the same sign as αd/αz and we can recover the sign of the ratio
αd/αz from E[DZ]. Thus, in lines 8-10, for the smallest n such that den ̸= 0, we obtain the ratio
αd/αz and then use it in function GetBeta to recover β.

For ease of presentation, we presented the Cross-Moment algorithm for the specific causal graph
in Figure 2 with only one proxy. However, the Cross-Moment algorithm can be utilized in a more
general setting with additional covariates and latent confounders such as in the graph depicted in
Figure 3. This generalization is stated in the following theorem.

Theorem 2. Suppose that the linear SEM of (3) with the graph in Figure 2 is extended with observed
covariates X, non-Gaussian latent confounders U and proxy variables Z such that

• none of the observed covariate is a descendant of any latent variable;

• no latent confounder U ∈ U of variables D and Y is an ancestor of any other latent
confounder;

• for each latent confounder U ∈ U there exists a unique proxy variable Z ∈ Z which is not
an ancestor of Y ;

• each latent confounder and its unique proxy variable satisfy the Assumptions 1, 2 and 3.

Then the causal effect β from D to Y can be computed uniquely from the observational distribution.

The proof of the theorem appears in Appendix A. The main idea of the proof is to reduce the problem
to a set of sub-problems that can be solved with Cross-Moment algorithm. As mentioned earlier, an
example of the causal graph satisfying the conditions of the theorem is depicted in Figure 3.
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Algorithm 1 Cross-Moment algorithm

1: Function GetBeta(D,Z, Y )
2: ratio := GetRatio(D,Z)
3: β := (E[DY ]− ratio · E[Y Z])/(E[D2]− ratio · E[DZ])
4: Return β

1: Function GetRatio(D,Z)
2: findRatio := False
3: n := 2
4: while findRatio ̸= True do
5: n := n+ 1
6: num := E[Dn−1Z]− (n− 1)E[Dn−2]E[DZ]
7: den := E[Zn−1D]− (n− 1)E[Zn−2]E[DZ]
8: if den ̸= 0 then
9: ratio := sign(E[DZ])

∣∣( num
den )

1/(n−2)
∣∣

10: findRatio := True
11: end if
12: end while
13: Return: ratio

3.1 Impossibility Result

In the previous sections, we showed that the causal effect β can be identified if the distribution of
latent confounder is non-Gaussian. Herein, we show that no algorithm can learn β uniquely if the
observed variables are jointly Gaussian in any linear SCM defined by (3) satisfying the following
assumption.
Assumption 4. In the linear SCM defined by (3), αd ̸= 0, γ ̸= 0 and Var(ϵz) > 0.
Theorem 3. Suppose that the observed variables in linear SCM defined by (3) are jointly Gaussian.
Under Assumptions 1, 2 and 4, the total causal effect β cannot be identified uniquely.

The proof of the Theorem 3 appears in the Appendix A. The key idea in the proof is to show that there
exist two linear SCMs that encode the same observational distribution and are consistent with the
causal graph in Figure 2 but the causal effect of D on Y has two different values in these two models.

Note that it is known that the causal structure is not identifiable in a linear SCM with Gaussian
exogenous noises [PJS17]. Our impossibility result here is different from the non-identifiability result
in linear Gaussian models. Specifically, in the linear Gaussian models, the goal is to recover all the
coefficients in the linear SCM from the observational distribution. In our setting, we have additional
knowledge of the exact DAG (restriction on the form of the linear SCM in (3)), and the goal is to
identify a specific coefficient (i.e., β) from the linear SCM. Therefore, we have more constraints on
the model and need to infer less information about it. Still, we show that the target coefficient β
cannot be determined in the causal graph in Figure 2 if the observed variables are jointly Gaussian.

3.2 Bias in DiD Estimator

Suppose that the data is generated from a linear SCM consistent with the causal graph in Figure 2.
We show that DiD estimator is biased except when the latent variable U has the exact same direct
causal effect on Z that it has on Y , i.e., αZ = γ. Our Cross-Moment algorithm identifies the true
causal effect without any such restrictive assumption on the coefficients of the linear SCM.

DiD estimator is given by the following linear regression [L+11]:

Ŷ = β̂1T + β̂2D + β̂DT, (6)

where β̂1, β̂2, and β̂ are the regression coefficients and T is a binary variable that equals zero for the
pre-treatment phase and equals one otherwise. In the pre-treatment phase, Z (i.e., the outcome before
the treatment) is predicted as β̂2D and in the post-treatment phase, Y (the outcome after giving
treatment to the treatment group) is predicted accordingly as β̂1 + (β̂ + β̂2)D. In order to obtain
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the regression coefficients, the expectation of squared residuals over the population is minimized as
follows (see Appendix C for the derivations of the following minimization problem and subsequent
equations in this section):

min
β̂1,β̂2,β̂

E[(Z − β̂2D)2] + E[(Y − β̂1 − (β̂ + β̂2)D)2].

This results in the following regression coefficients:

β̂1 = 0, β̂2 =
E[ZD]

E[D2]
, β̂ =

E[Y D]− E[ZD]

E[D2]
.

DiD estimator returns β̂ in the above equation as the estimation of causal effect which is equal to:

β̂ = β +
αd(γ − αz)E[U2]

E[D2]
. (7)

Thus, β̂ is an unbiased estimate of β only when γ = αz . In other words, latent variable U should
have the same direct causal effect on Z and Y . This is akin to the so-called common trend assumption
which says that the average natural drift (here, the effect of U ) is assumed to be the same across
both the control and treatment groups. This result is consistent with the findings in [RSBP23],
which studied a similar phenomenon in the DiD setting. In summary, whenever the common trend
assumption is violated, the DiD estimator is biased.

4 Related work
In the past few years, there has been a growing interest in the literature to exploit proxy variables to
de-bias the effect of latent confounders. A special type of such proxy variable is the so-called negative
outcome which is a variable known not to be causally affected by the treatment [LTC10]. For instance,
the variable Z in Figure 1 may be considered as negative outcome. In fact, [SRC+16] interpreted
DiD as a negative outcome control approach and proposed a method inspired by change-in-change
[AI06] to identify the causal effect under the assumption that Y (0) and Z are monotonic increasing
functions of latent confounders and some observed covariates.

[KP14] considered three settings in causal inference with proxy variables: 1- There exists only one
proxy variable such as Z as a negative outcome. In this case, for discrete finite variables Z and U ,
they showed that the causal effect can be identified if Pr(Z|U) is known from some external studies
such as pilot studies. 2- Two proxy variables, for instance Z and W are considered where U , Z,
and W are all discrete finite variables and Z does not have a directed path to D or Y . It has been
shown that the causal effect is identifiable under some assumptions on the conditional probabilities
of Pr(Y |D,U) and Pr(Z,W |X). In the setting, it is not necessary to know Pr(Z|U) but two proxy
variables are required to identify the causal effect. 3- In linear SCM, [KP14] showed that β (the
average causal effect of D on Y ) can be recovered using two proxy variables. Later, [MGTT18] also
considered a setting with two proxy variables Z and W . Unlike the second setting in [KP14], here, Z
and W can be parents of D and Y , respectively. For the discrete finite variables, they showed that the
causal effect can be identified if the matrix P (W |Z,D = d) is invertible. Moreover, they provided
the counterpart of this condition for continuous variables. [SMNTT20] extended the identification
result in [MGTT18], with a weaker set of assumptions. Still, they required two proxy variables to
identify the causal effect. Based on the results in [MGTT18], [TYC+20] introduced a proximal
causal inference in PO framework. Later, [CPS+20] provided an alternative proximal identification
result to that of [MGTT18], again when two proxy variables were avaialble. More recently, [SLZ+23]
considered the PO framework under linearity assumptions for treatment and post-treatment phase. In
this setting, the authors showedthe identifiability of causal effect if in the pre-treatment phase, the
latent confounder jointly with observed outcome follows a multivariate Gaussian distribution, and in
the treatment phase, the exogenous noise of outcome variable is non-Gaussian.

In linear SCMs, to the best of our knowledge, the methods that can identify the causal effect with
only one proxy variable in Figure 2 are based on solving an OICA problem. In particular, [SGKZ20]
considered linear SCM with non-Gaussian exogenous noises in the presence of latent variables.
They showed that under some structural conditions, the causal effects among observed variables
can be identified and the causal graph in Figure 2 satisfies such structural conditions. [YGN+22]
extended the results in [SGKZ20]. They showed that the causal structure (direction) can always be
identified, and the causal effect can be identified up to equivalence classes depending on the graphical
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conditions (the causal graph in Figure 2 is still uniquely identifiable). However, both proposed
methods [SGKZ20, YGN+22] require solving an OICA, and existing algorithms for solving such a
problem might get stuck in bad local optima. Recently, [AHZ21] provided two graphical conditions
for the same setting in [SGKZ20] which are necessary for the identification of the causal structure.
These conditions are closely related to the sparsity of the causal graphs. For the causal graph in
Figure 2, the method proposed in [AHZ21] for estimating the causal effect is the same as the one in
[SGKZ20] and thus has the same drawback. Concurrent to our submission, [CHC+23] considered
the problem of causal discovery for the linear non-Gaussian models. Under the specific assumptions
on the true causal graph, they proposed an algorithm for learning the causal structure as well as the
causal coefficients using high-order cumulants.

In PO framework, the setting of having just a pre-treatment phase and a post-treatment phase can be
generalized to the case with multiple time slots in the panel data model [ABD+21]. In this paper, we
mainly focus on the setting with two groups and two time slots but one can also study the extensions
of the current work for other settings in the panel data model described in the following. Consider
two N × T matrices Y and D where N is the number of individuals in the population and T is the
number of time slots. Assume that only the outcome for some individuals and time slots is observable.
In particular: Yit = (1−Dit)Yit(0)+DitYit(1), where the realized outcome for individual i at time
slot t is denoted by Yit(Dit). DiD method has been proposed for the case T = 2, i.e., two time slots
(pre-treatment and post-treatment phases). In the literature, other cases have been also studied for
various assumptions on matrix Y. For instance, in unconfounded case [RR83, IR], the number of
individuals is much larger than the number of time slots (N ≫ T ), and the treatment is provided
only at the last time slot. Another setting is that of synthetic control [AG03, ADH10, ADH15, DI16]
where T ≫ N . In this setting, there is a single treated individual (suppose individual N ) and the goal
is to estimate its missing potential outcomes for any t ∈ [T0, T ] after administering the treatment at
time T0. The last setting considers N ≈ T and a two-way-fixed-effect (TWFE) regression model has
been proposed to estimate the causal effect (see for a survey on TWFE in [DCd20]). It is noteworthy
that TWFE estimator is equivalent to DiD estimator for two groups and two time slots.

5 Experiments

In this section, we first evaluate our algorithm on synthetic data and compare it to DiD estimator and
as well as the related work in [KP14] which estimates the causal effect in linear SCMs with two proxy
variables. Further, we apply our algorithm to a real dataset provided by [CK93]. The implementation
of the algorithm and additional experimental results are provided in https://github.com/ykivva/Cross-
Moments-Method.

5.1 Synthetic data

We generated samples according to the SCM in (3) and with all the exogenous noises distributed
according to exponential distribution. Note that the distribution of ϵu, i.e., the exponential distribution
satisfies Assumptions 2 and 3. Therefore β is identifiable according to the Corollary 1.

Given the observational data, we estimated the value of β from the following four approaches:

1. Cross-Moment algorithm (proposed in this work).

2. DiD estimator of (6).

3. A simple linear regression model based on the following equation: Ŷ = αZ + β̂D.

4. Causal effect estimate for linear SCM with two proxy variables (proposed in [KP14]). In
the experiments, we call this estimate “two-proxy” method.

It is noteworthy that we also evaluated the method in [SGKZ20] which uses OICA as a subroutine.
Unfortunately, the performance was too poor to be included.

For each sample size, we sampled parameters αz , αd, β, γ randomly and then generated the samples
of Z, D, Y accordingly to (3) (More details regarding the data generation mechanism can be found
in Appendix B). We ran an experiment 10 times and reported the the average relative error for each
value of sample size: err = E

[∣∣∣β−β̂
β

∣∣∣] .
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(a) The average relative error of Cross-Moment,
DiD estimator, and simple linear regression with
one proxy variable.

(b) The average relative error of three variants
of Cross-Moment algorithm and the two-proxy
method in [KP14] when we have access to two
proxy variables.

Figure 4: The performance measure err against the number of samples. Colored regions show the
standard deviation of the err.

Figure 4a, depicts the performances of Cross-Moment algorithm, DiD estimator, and the simple
linear regression when we have access to only one proxy variable. The colored region around each
curve shows the empirical standard deviation of |(β − β̂)/β|. Cross-Moment algorithm outperforms
the other two methods significantly. In fact, DiD estimator is biased if αz ̸= γ which occurs with
measure one as αz and γ are generated randomly. Moreover, DiD estimate is no better than simple
linear regression if γ is not close to αz . In the literature, it has been noted that the parallel trend
assumption (in linear SCM, this assumption is equivalent to the condition αz = γ) is violated if the
scale of the proxy variable Z and outcome variable Y are different which can be the case in many
practical applications [L+11].

We compared Cross-Moment with the two-proxy method in [KP14] when we have access to two
proxy variables. In particular, we assumed that there is an additional proxy variable W such that
W := αwU + ϵw. For Cross-Moment algorithm, we considered three versions: I - “Cross-Moment:
Z”, which estimates the causal effect by using only proxy variable Z (we denote this estimate by
βZ ), II - “Cross-Moment: W”, which estimates β from only proxy variable W (which we denote the
estimate by βW ), III - “Cross-Moment: W-Z”, which estimates β from aggregating the estimates
of the methods I and II. In particular, “Cross-Moment: W-Z” uses bootstrapping method (Monte
Carlo algorithm for case resampling [ET94]) to estimate the variances of estimates βZ and βW ,
denoted by σ2

βZ
and σ2

βW
, respectively. Subsequently, β is estimated by combining two estimates

βZ and βW with an inverse-variance weighting scheme [SHK11] where we give a higher weight to

the estimate with the lower variance:
σ2
βZ

σ2
βZ

+σ2
βW

βW +
σ2
βW

σ2
βZ

+σ2
βW

βZ . When Var(ϵw)/Var(W ) and

Var(ϵz)/Var(Z) are small, the causal effect can be estimated with a low estimation error from either
Z or W as they contain low noise versions of the latent confounder U . In our experiments, we
considered the case where one of the proxy variables (herein, W ) is too noisy but not the other one.
Specifically, we chooseVar(ϵw)/Var(ϵu) = 10 and Var(ϵz)/Var(ϵu) = 0.1. Figure 4b illustrates
the performances of the three aforementioned variants of Cross-Moment algorithm and the two-proxy
method in [KP14]. “Cross-Moment: Z” has the best performance since it uses Z with less noise as
the proxy variable. Moreover, “Cross-Moment: W-Z” has a comparable performance by combining
the estimates of βZ and βW . The two-proxy estimate does not exhibit robustness and has a large
average relative error for various values of sample size.

5.2 Minimum Wage and Employment Dataset

We evaluate our method on the real data which contains information about fast-food stores (Burger
King, Roy Rogers, and Wendy’s stores) in New Jersey and Pennsylvania in 1992, and some details
about them such as minimum wage, product prices, open hours, etc [CK93]. The goal of study was
to estimate the effect of the increment in minimum wage in New Jersey from $ 4.25 to $ 5.05 per
hour on the employment rate.
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TWFE Cross-Moment
With X 2.68 2.68
Without X 3.24 4.03

Table 1: Causal effect estimation of minimum wage on employment level in the real dataset in
[CK93].

The data was collected by interviews in two waves, before and after the rise in the minimum wage.
The information was gathered from 410 restaurants with similar average food prices, store hours,
and employment levels. In this experiment, stores from Pennsylvania are treated as a control group
and stores from New Jersey are considered as the treatment group. We define employment level Y
as Y = Yf + 1

2Yp, where Yp is a number of employees working part-time and Yf is a number of
employees working full-time.

First, we reproduced the results in [CK93]. We considered an extended version of TWFE model
[CK93]:

Ŷ = β̂1T +XT α̂+ β̂2D + β̂DT,

where Ŷ is the estimate of number of employees in the store, T is a binary variable that equals 0
prior to raising the minimum wage and equals to 1 after the raise. D is equal to 0 if the store is in
Pennsylvania and equal to 1 if the store is in New Jersey. X is a vector that contains additional infor-
mation such as the opening hours, product prices, etc. α̂ is also a vector of parameters corresponding
to the vector X. We dropped all the stores from the dataset that contain NaN values after which
246 restaurants were left. The estimate of β computed by TWFE is given in the first row of Table
1. According to [CK93], the estimate of β is equal to 2.76. The difference in estimation is due to
the slight difference in the features of the vector X, i.e., [CK93] added a few additional manually
computed features to X.

For the Cross-Moment algorithm, in order to incorporate the features X in estimating β, we first
regressed Y on X and then used Y − Xα̂ instead of Y as the outcome. The result of applying
Cross-Moment algorithm to this newly defined outcome is given in the first row of Table 1 and is
very close to the estimate by TWFE.

Finally, we assumed that the additional information X gathered during the interview is not available.
Then TWFE model for the employment level takes the following form

Ŷ = β̂1T + β̂2D + β̂DT.

We used the previously pre-processed dataset but dropped the columns corresponding to X. Sub-
sequently, we applied TWFE and Cross-Moment method to estimate β. The respective estimates
appear in the second row of Table 1, which stipulate the rise in the minimum wage had a positive
effect on the employment level.

6 Conclusion
We considered the problem of estimating the causal effect of a treatment on an outcome in the linear
SCM where we have access to a proxy variable for the latent confounder of the treatment and the
outcome. This problem has been studied in both PO framework (such as DiD estimator) and SCM
framework (such as the negative outcome control approach). We proposed a method that uses cross
moments between the treatment, the outcome, and the proxy variable and recovers the true causal
effect if the latent confounder is non-Gaussian. We also showed that the causal effect cannot be
identified if the joint distribution over the observed variable are Gaussian. Unlike previous work
which requires solving an OICA problem, our performs simple arithmetic operations on the cross
moments. We evaluated our proposed method on synthetic and real datasets. Our experimental results
show the proposed algorithm has remarkable performance for synthetic data and provides consistent
results with previous studies on the real dataset we tested on.
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