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Abstract

Large language models (LLMs) exhibit in-context learning abilities which enable1

the same model to perform several tasks without any task-specific training. In2

contrast, traditional adaptation approaches, such as fine-tuning, modify the under-3

lying models for each specific task. In-context learning, however, consistently4

underperforms task-specific tuning approaches even when presented with the same5

examples. While most existing approaches (e.g., prompt engineering) focus on the6

LLM’s learned representations to patch this performance gap, our experiments ac-7

tually reveal that LLM representations contain sufficient information to make good8

predictions. As such, we focus on the LLM’s reasoning abilities and demonstrate9

that this performance gap exists due to their inability to perform simple proba-10

bilistic reasoning tasks. This raises an intriguing question: Are LLMs actually11

capable of learning how to reason in a task-agnostic manner? We answer this in the12

affirmative and, as a proof of concept, propose TART which generically improves13

an LLM’s reasoning abilities using a synthetically trained reasoning module. TART14

trains this Transformer-based reasoning module in a task-agnostic manner using15

only synthetic logistic regression tasks and composes it with an arbitrary real-world16

pre-trained model without any additional training. With a single inference module,17

TART improves performance across different model families (GPT-NEO, PYTHIA,18

BLOOM), model sizes (100M - 6B), tasks (14 NLP classification tasks), and even19

across different modalities (audio and vision). On the RAFT Benchmark, TART20

improves GPT-NEO (125M)’s performance such that it outperforms BLOOM21

(176B), and is within 4% of GPT-3 (175B).22

1 Introduction23

Large language models (LLMs) show in-context learning capabilities which enable them to perform24

a task given only a few examples, without updating the model parameters [9, 7]. This task-agnostic25

capability allows for a single model to be applied to a wide range of tasks [1, 39, 27]. In contrast,26

traditional task adaptation approaches, such as fine-tuning, update the model parameters for each27

specific task.28

Despite being task-agnostic, in-context learning is seldom the practitioner’s method of choice since it29

consistently underperforms task-specific adaptation approaches [19, 9]. Most existing works attribute30

this performance gap to the limited context window of LLMs which can only accommodate a few task31

examples [15, 14, 22]. However, we show that this gap between in-context learning and fine-tuning32

approaches exists even when presented with the same task examples.33

This observation raises the question whether this performance gap is a generic limitation of task-34

agnostic methods for adaptation or is it specific to in-context learning? Specifically, can we design35

adaptation approaches which satisfy the following desiderata:36
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Figure 1: Taxonomy of task adaptation strategies. (Left) Comparison of different adaptation strategies
across three desiderata: task-agnostic, quality, scalability. (Right) Demonstration of parameter updates across
adaptations strategies, colored regions represent parameter changes as a result of the adaptation strategy.

• Task-agnostic: The same model generalizes across several different tasks.37

• Quality: Achieves accuracy competitive with task-specific methods across these different tasks.38

• Data-scalable: Scales with number of task-specific examples available.39

We first investigate why this quality gap exists. We decompose an LLM’s in-context learning40

capability into two abilities: learning good representations for the task and performing probabilistic41

inference, or reasoning, over these representations. Is the gap because the representations do not42

contain sufficient information or because the LLMs are unable to reason over them? We explore43

this hypothesis experimentally in Section 2 by measuring both the reasoning and the representation44

gaps across a variety of LLM families (GPT-NEO [6], PYTHIA [5], BLOOM [31]) over a suite of45

classification tasks. We conclude that LLMs possess good representations, and the majority of the46

quality gap (up to 79%) can be attributed to their insufficient reasoning ability. We further find that47

task-specific adaptation methods improve the base model on both these axes, but primarily improve48

the task-specific reasoning ability which accounts for 72% of the gained performance on the task.49

Rather surprisingly, most existing techniques for improving the performance gap, such as prompt50

engineering or active example selection, focus entirely on the LLM’s learned representations. In51

contrast, our work explores the orthogonal direction of improving the LLM’s reasoning abilities. As52

a first step, we fine-tune LLMs using synthetically generated probabilistic inference tasks to improve53

their reasoning capabilities. While this approach provides an improvement over the model’s base54

in-context learning performance (up to 30%, see Figure 7 in App. A), this approach requires one to55

fine-tune each LLM individually. Taking a step further, we consider the possibility of whether one56

can improve the reasoning capabilities in a manner that is agnostic to both tasks and models.57

We show that it is indeed possible to improve the reasoning capabilities in a completely agnostic58

manner. We propose TART (see Figure 2) which improves upon an LLM’s reasoning abilities using a59

synthetically trained reasoning module. TART trains a Transformer-based reasoning module using60

only synthetically generated logistic regression tasks independent of the downstream task or the base61

LLM. This inference module can be composed, without any additional training, with the embeddings62

of an LLM to improve upon its reasoning abilities. Notably, TART satisfies the desired objectives:63

• Task-agnostic: TART’s inference module is only trained once using synthetic data.64

• Quality: Outperforms base LLM on all tasks and closes gap to task specific fine-tuning methods.65

• Data-scalable: Can accommodate 10x more examples than in-context learning.66

TART is task, model, and domain agnostic. Using a single inference module trained on synthetic data,67

we exhibit that TART not only generalizes across three model families (GPT-NEO, PYTHIA, BLOOM)68

over 14 NLP classification tasks, but even across different domains (vision and speech; see Figure 6).69

In terms of quality, we show that TART’s performance is 18.4% better than in-context learning, 3.4%70

better than task-specific adapters, and is within 3.1% of full task-specific fine-tuning across a suite of71

NLP tasks. On the RAFT Benchmark [2], TART improves GPT-NEO (125M)’s performance such72

that it outperforms BLOOM (176B), and is within 4% of GPT-3 (175B).73
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Figure 2: TART. (Left) Inference module training procedure: The inference module is trained on sequences of
synthetically generated logistic regression tasks. (Right) End-to-end framework: TART composes a pre-trained
LLM with the inference module. TART uses the LLM to embed the input text. These embeddings, along with
the train labels, are passed as a sequence to the inference module which generates a final prediction.

TART is data-scalable and overcomes the limited context length bottleneck of in-context learning.74

While each example spans multiple tokens in an LLM, often spanning hundreds of tokens, TART’s75

reasoning module encodes each example using only two tokens – one for the context and the other76

for the label. This data-scalability can lead to improvements of up to 6.8% (see Figure 5c).77

From a theoretical standpoint, we show that the generalization abilities of TART depends mainly on78

the distribution shift between the natural text embedding distribution produced by the LLM and the79

synthetic data distribution, measured in terms of the Wasserstein-1 metric (Theorem 1).80

To summarize, our main contributions are as follows:81

• Study why in-context learning does not perform as well as task-specific fine-tuning despite having82

access to the same information, via a representation-reasoning decomposition.83

• Propose a new task-agnostic method, TART, which bridges the performance gap to task-specific84

methods and is trained using only synthetic data.85

• Demonstrate that TART works across different NLP tasks for a range of model families. The same86

inference module generalizes to vision and speech domains as well.87

Related work. Prompt engineering focuses on improving the in-context task adaptation abilities88

of LLMs by modifying prompts. A line of work improves performance by carefully designing the89

natural language task specifications [4, 40] while others improve performance by optimizing the90

examples chosen for the prompt [10, 23], encouraging the models to sequentially reason [16, 40,91

43] and aggregating prompts [37, 36]. Unfortunately, prompt-based task adaptation is noisy [25].92

Alternatively, prompt tuning improves the in-context abilities of models by training a small amounts93

of learnable vectors [20, 19, 24] for specific tasks. While these methods have been shown to improve94

in-context learning performance, they require task-specific fine-tuning and are not task-agnostic.95

Recent works seek to understand the in-context learning property of LLMs by presenting mecha-96

nistic interpretations of in-context learning [34] and performing exploratory analysis of in-context97

learning behaviors [41]. Existing literature demonstrates that LLMs can learn simple function classes98

in-context [11] and propose that LLMs are performing gradient descent when learning tasks in-99

context [34]. Complementary to these, our work provides insights on the mechanisms of in-context100

learning and its deficiencies. Furthermore, task transfer strategies adapt LLMs to a pre-specified target101

task. Strategies range from parameter efficient finetuning (PEFT) [12, 45] to Low-Rank adaptation102

(LoRA) [13] which introduces trainable rank decomposition matrices into each layer.103

2 Task adaptation strategies: Taxonomy and evaluation104

We begin by describing the problem of adapting pre-trained language models for a collection of105

downstream tasks while being task-agnostic, competent in performance, and data-scalable. Given106

these criteria, we evaluate existing task adaptation approaches and propose a representation-reasoning107

decomposition to understand their relative performances.108
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2.1 Problem statement and evaluation criteria109

Our focus is on methods for adapting pre-trained large language models (LLMs) for downstream110

tasks. Specifically, given an LLM and limited labeled data for a task, how does one adapt the model111

to the task? When evaluating a task adaptation strategy, we care about the following properties:112

Task-agnostic. Given the general capabilities of pre-trained LLMs, we strive to utilize the same113

model across different tasks without requiring any task-specific training. With the increase in model114

sizes, the cost of deploying task-specific models increase both during training (expensive hyper-115

parameter search) as well as during inference (deploying several models). In general, task-agnostic116

methods will scale better with increasing model sizes by side-stepping both these costs.117

Performance quality. We would like the adaptation approaches to be competitive in performance118

when compared with task-specific approaches across a wide range of tasks. For the binary classifica-119

tion tasks, the method should have accuracy comparable with task-specific approaches.120

Data-scalable. The task adaptation method should be scalable with the number of labeled task121

examples. In particular, the method should be capable of learning from large datasets, and continually122

improve its performance quality.123

2.2 Taxonomy of task adaptation strategies124

We can broadly taxonomize the existing task adaptation strategies for LLMs as in-context learning,125

fine-tuning the model, and training task-specific adapters (see Figure 1).126

In-context learning. In-context learning allows for adapting the model without updating any model127

parameters, by simply providing a few demonstrations of the task in the LLM prompt. In-context128

learning is completely task-agnostic since the same model can be used across tasks since no weights129

are updated at inference time. However, its performance is usually not at par when compared with130

task-specific methods and it does not scale well with data since the number of examples that can be131

utilized is bottlenecked by the context length of the model.132

Fine-tuning. This traditional class of methods update the model weights to adapt it specifically133

for the task, typically by performing gradient descent over the labeled dataset. Fine-tuning methods134

are not task-agnostic since they change the underlying model significantly but usually achieve135

state-of-the-art performance for any given task and are data scalable.136

Adapters. Adapters adapt the underlying LLM to a specific task by composing the LLM base137

model with an additional set of parameters which are optimized for the task. In contrast to fine-tuning138

which performs updates to the base model, adapters keep the base model frozen and only update the139

additional parameters. Performance of adapters is usually competitive with full fine-tuning.140

2.3 Understanding performance via Representation-Reasoning decomposition141

From the taxonomy of task adaptation approaches, only in-context learning satisfies the task-agnostic142

property but it consistently underperforms the task-specific tuning approaches. This section investi-143

gates why this performance gap exists. We hypothesize that it is either because (a) the representations144

learned by the LLM are insufficient to learn a good predictor for the specific task, or (b) the LLM145

lacks the capability to reason over these representations to make good predictions for the task.146

To understand whether the representations have sufficient information, we train a task-specific linear147

classifier using these representations, also known as linear probing, and evaluate its accuracy (AccLR).148

Using this as an intermediate, we decompose the performance gap149

∆perf : = AccFT − AccICL = AccFT − AccLR︸ ︷︷ ︸
∆rep

+AccLR − AccICL︸ ︷︷ ︸
∆reas

(1)

where ∆rep represents the gap in performance which can be attributed to insufficient representa-150

tion capacity and ∆reas is the performance gap due to insufficient reasoning abilities. Using this151

decomposition, we consider the following hypotheses:152

H1. LLM representations have enough information to perform the task in-context, but they lack153

the reasoning abilities to perform the task well.154

H2. Fine-tuning affects both the representations and reasoning but the improvement in reasoning155

abilities primarily leads to better performance.156
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(a) (b) (c)

Figure 3: All results for GPT-NEO (125M). (a) Accuracy of in-context learning vs. linear probing on model
embeddings: representations have sufficient information. (b) Fine-tuning majorly improves task-specific
reasoning across datasets. (c) Accuracy (averaged across 6 datasets) of task-specific fine-tuned model vs.
accuracy of model fine-tuned on AGNews and evaluated on task. Fine-tuning hurts task-agnosticity.

H3. Fine-tuning and adapters are not task-agnostic because the task-specific training hurts their157

ability to transfer reasoning.158

We now analyze each of the task adaptation approaches through the lens of the above hypotheses.159

We perform all experiments with three different classes of language models (GPT-NEO, PYTHIA,160

BLOOM) across a collection of 6 binary classification tasks. See Appendix B for further details.161

In-context learning: LLMs lack reasoning abilities. We begin by studying the representation162

and reasoning gaps, as defined in eq. (1), for in-context learning. In Figure 3a, we plot the average163

accuracy across datasets for in-context learning, task-specific fine-tuning, and linear probing. We see164

that across models and different numbers of in-context examples, the reasoning gap ∆reas accounts165

for up to 79.11% of the performance gap between in-context learning and fine-tuning. This indicates166

that the LLM representations have sufficient information but they lack the ability to reason over them.167

Fine-tuning: Improves task-specific reasoning. We next investigate how fine-tuning for a specific168

task affects the performance of the base model. In Figure 3b, we show a scatter plot of the gains169

that can be attributed to improved representations against the reasoning gains. We see that, across170

models, reasoning improvements accounts for 73.06% of the improvements. This indicates that while171

fine-tuning improves both reasoning and representations of the LLM, the gains are predominantly due172

to improvements in task-specific reasoning. Furthermore, this task-specific fine-tuning of the LLM173

hurts its performance on other tasks. In Figure 3c, we show that the accuracy of a model fine-tuned on174

the AGNews dataset [46], leads to an average decrease of 25.77% on other tasks. Furthermore, this175

drop in accuracy can be attributed to the drop in task-specific reasoning capabilities—these account176

for 72.58% of the drop (see Appendix B for more details).177

Adapters: Impairs task-agnosticity via reasoning. Task-specific adapters do not change the178

underlying representation ability of the model. To study their ability to generalize across tasks, we179

train an adapter for the AGNews dataset and evaluate it on other tasks. In Appendix B, we show180

that the performance drops across tasks by an average of 19.8%, indicating that adapters only learn181

task-specific reasoning abilities.182

3 TART: Task-Agnostic Reasoning Transformers183

The above analysis showed how it is the effective reasoning capabilities of the LLMs which limits184

its performance when compared with task-specific adaptation approaches. Building on this insight,185

we propose TART, which learns a general-purpose reasoning module completely agnostic to the186

underlying base LLM and when composed with any LLM via its embeddings, generically improves187

upon its reasoning abilities. TART is a completely task-agnostic method which works across a suite188

of tasks without any task-specific training.189

3.1 Overview of algorithm190

TART comprises of two components: a generic task-agnostic reasoning module, and embeddings191

from the base LLM. The reasoning module is trained using only synthetic data (Gaussian logistic192
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regression problems), agnostic of the auto-regressively trained language model, with the objective of193

learning to perform probabilistic inference (Section 3.2). This learned transformer module is then194

composed with the base LLM, without any training, by simply aggregating the output embedding195

and using those as an input along with the class label (Section 3.3). Together, these components196

make TART task-agnostic, boost performance quality by improving reasoning, and make the approach197

data-scalable by aggregating input embeddings into a single vector.198

3.2 Reasoning module: Can transformers learn to do probabilistic inference?199

TART’s reasoning module is a Transformer-based model which is trained to perform probabilistic200

inference in-context using only synthetically generated data.201

3.2.1 Training the reasoning module202

The reasoning module is a Transformer model which is auto-regressively trained on a family of203

logistic regression tasks, with each input sequence corresponding to a different logistic regression204

problem. We next describe the model architecture and the training procedure.205

Model architecture. The reasoning module is based on the standard decoder-only Transformer206

architecture from the GPT-2 family (see Appendix C.1 for details). The architecture takes as207

input a sequence of vectors and is trained to predict the next vector in the sequence. The input208

sequence consists of k pairs of labeled examples (x1, y1), (x2, y2), . . . , (xk, yk), with each example209

zi = (xi, yi) using only two input positions of the transformer – one for the covariates x and the210

other for the label y. This is in contrast to standard LLMs where each example is spread over multiple211

tokens which limits how many examples can be put in the context. For example, with a context212

window of 2048, our module can support 1024 examples while the base model can support only 100213

examples, assuming each demonstration comprises 200 natural language tokens.214

Training procedure. This module is trained using gradient descent to minimize the population loss215

ℓ(Tθ) := Ex,y

[
1

k

k∑
i=1

ℓCE(Tθ(z1:i−1, xi), yi)

]
, (2)

where z1:i−1 corresponds to the first i− 1 examples and ℓCE is the cross-entropy loss evaluated on216

the transformer prediction and the true yi. Each training sequence st used to update the parameters w217

comprises a different d-dimensional logistic regression problem, sampled as218

Sequence st : wt ∼ N (0, Id), xi,t ∼ N (0, Id), yi,t ∼ σ(α⟨xi,t, wt⟩) for i ∈ [k] , (3)

where σ represents the sigmoid function and the multiplier α determines the noise level of the219

problem. We train our model with d = 16 and k = 256. We describe the model hyper-parameters220

and the training procedure in more detail in Appendix C.1. Observe that the embedding dimension of221

the base LLM and the input dimension of the reasoning module might not always match. In order222

to compose these models together, we perform a dimensionality reduction via PCA to reduce the223

embedding dimension.224

3.2.2 Properties of reasoning module225

The task-agnostic reasoning module described above is trained to perform well on a family of logistic226

regression tasks. We study some properties of the reasoning module, in particular how well it learns227

to perform the task at an instance level and how robust is it to variations in the noise level α.228

Accuracy of probabilistic inference. For understanding the instance level performance of our229

reasoning module, we evaluate it on a sample of 64 different logistic regression problems, sampled230

according to eq. (3). For each problem, we train task-specific linear classifiers using logistic regression231

and compare them with our task-agnostic reasoning module. In Figure 4a we plot the deviation232

of the predicted probabilities (averaged over the 64 problems) from the true probabilities for our233

reasoning module and the task-specific logistic solvers as a function of the number of examples used234

for predictions. We observe that the error for our reasoning module decreases as a function of the235

number of in-context examples and is within 2% of the task-specific logistic function.236

Robustness to noise level. We study the robustness of the learned module to the noise levels, α, of237

the logistic regression problem. Recall that we trained our inference module by fixing the noise level238

α = 10. At inference time, we vary the noise level to [0.5, 1, 10, 20], where lower values corresponds239
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(a) (b) (c)

Figure 4: Properties of TART’s inference module. (a) Comparison with learned logistic function: inference
module recovers underlying probabilities. (b) Variation in error with different noise levels for model trained on
α = 10. (c) Comparison of TART performance when using LOO embeddings and vanilla embeddings.

to noisier problem. The reasoning module generalizes to easier problem without any drop in accuracy240

but as we make the problem harder (α = [0.5, 1]), the error increases progressively (see Figure 4b).241

3.3 Role of representations: Which embeddings to take?242

The reasoning module composes with a base LLM through its final layer embeddings. A natural243

way to produce these embeddings is to place all the train examples in-context and then average244

the embedding vectors corresponding to the particular example (see Figure 2). At inference time,245

we append the test example to the training set, and average the embeddings corresponding to this246

example. We call these vanilla embeddings. Our experiments reveal that these embeddings seem to247

saturate (or even hurt performance) beyond a certain number of in-context examples (see Figure 4c).248

One reason can be that the causal nature of the model causes these embeddings to have asymmetric249

information—the embeddings of each example is influenced by its preceding examples.250

To counter this asymmetry, we propose leave-one-out (LOO) embeddings where the embeddings for251

each training point is formed by placing all the other train examples before it in the prompt such252

that all the embedding are formed with the same information content. In Figure 4c, changing the253

embedding style from vanilla to LOO consistently improves performance across models and tasks.254

The LOO-embeddings help TART be data-scalable by enabling it to embed a much larger number of255

points than the context window can support. To do so, we use only a subset of the train examples as256

the in-context prompt. The reasoning module, by its architecture design, can already accommodate257

many more examples than supported by the context window of the base LLM.258

3.4 Theoretical analysis: Generalization of TART to natural language tasks259

We study the generalization properties of the proposed task-agnostic method TART. Note that that260

the inference module is trained completely on synthetic data while at evaluation time, our input is261

the embeddings from a natural language task. In Theorem 1 we show that its performance on the262

natural language task depends on the distribution shift from the synthetic to the true distribution (see263

Appendix C.3 for a formal statement and proof).264

Theorem 1 (Informal). Let T represent the class of transformer models and TS ∈ T denote265

the trained reasoning module on set S of synthetic regression with nsyn sequences sampled from266

distribution Psyn in eq. (3). The error of the transformer TS when evaluated on a distribution PNL267

over natural language sequences is268

errPNL
≲ W1(PNL, Psyn) +

√
Comp(T )

nsyn
+ êrrPsyn(TS) , (4)

where W1 denotes the Wasserstein-1 metric, Comp(T ) represents the complexity of class T , and êrr269

represents the error on the empirical distribution.270

A few comments are in order: The first term represents the distribution shift error between the true271

natural language task and the synthetic task. The second term corresponds to the generalization error272

on the logistic regression task, which can be made arbitrarily small because scales with nsyn, the273

number of synthetic datapoints which can be generated without any cost. The third term above is the274

optimization error indicating how well has the reasoning module TS fit to the synthetic training set.275
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(a) (b) (c)

Figure 5: Effects of scale. (a) Effect of number of in-context examples on performance for different task
adaptation strategies. (b) Effect of model size on the performance of different task adaptation strategies. (c)
Beyond context length limitations, performance comparison with respect to number of in-context examples.

4 Experimental evaluation276

We evaluate TART on a wide range of binary classification tasks across three domains: language,277

vision and audio. We demonstrate that TART improves base in-context performance and closes the278

gap with standard task-specific strategies. We also conduct ablations to demonstrate that TART scales279

with model size and can support 10x more samples than in-context learning.280

4.1 Experimental setup281

Datasets. We briefly describe the datasets used, with details available in Appendix D.1. We282

consider 14 different binary classification tasks ranging from sentiment classification, news article283

categorization to spam detection. The evaluation datasets include: SST [33], Rotten Tomatoes [28],284

SMS Spam [3], IMDB [26], Civil Comments [8], AGNews [46], DBPedia [46], and the Youtube285

dataset [44]. Since AGNews and DBPedia14 are multi-class datasets, we construct 4 binary classifi-286

cation tasks from each dataset respectively. For each dataset, we truncate the input text to be at most287

100 characters to enable us to fit sufficient number of samples in-context.288

Model families. We evaluate our method across three different families of models: GPT-NEO [6],289

PYTHIA [5], and BLOOM [31]. For our evaluations across 14 datasets, we use GPT-NEO (125M),290

PYTHIA (160M) and BLOOM (560M). For ablations on larger models, we evaluate models with 1B291

parameters across each of the model families (i.e., GPT-NEO (1.3B), PYTHIA (1.4B) and BLOOM292

(1.7B)) and models with 3B parameters (i.e., GPT-NEO (2.7B), PYTHIA (2.8B) and BLOOM (3B)).293

We additionally evaluate on GPT-J (6B) [35].294

Baselines. We evaluate our models against all types of task-adaptation strategies described in295

Section 2.2: 1) in-context learning, 2) full fine-tuning, 3) last layer fine-tuning, 4) LM head fine-tuning,296

and 5) adapters. For each baseline, we perform an extensive hyper-parameter search over number297

of epochs and learning rate for each dataset in order to optimize performance (see Appendix D.1298

for hyperparameter details). For TART, we chose a base default set of parameters and use the same299

inference module with the exact same weights for all the experiments in this section.300

4.2 Natual language benchmark evaluations301

For this section, all reported accuracies are averaged over 5 independent random seeds. A complete302

set of results with standard deviations can be found in Appendix D.2.303

Performance with respect to baselines. As shown in Appendix D.2, averaged across all tasks and304

model families, TART improves upon the base in-context learning performance by an average of 18.4305

points, improves upon adapter heads by 3.4 points, and is within 3.1 points of full fine-tuning. We306

also observe that TART consistently outperforms the task specific strategies of LM head fine-tuning307

and last layer fine-tuning.308

Performance on RAFT Benchmark We evaluate TART on all binary classification tasks in the309

RAFT Benchmark, following the protocol used in HELM [21]. When applied with GPT-NEO310

(125M), TART [0.634] outperforms BLOOM (176B) [0.595], and is within 4% points of GPT-3311

(175B) [0.673], both of which are 1000x larger in size.312
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(a) MNIST (b) CIFAR-10 (c) Speech Commands

Figure 6: TART can generalize across domains using the same inference module that was used for language
benchmarks: Performance across vision tasks (MNIST, CIFAR-10) and an audio task (Speech Commands).

Performance with number of in-context examples. Our results demonstrate that performance313

of TART scales with number of in-context examples (see Figure 5a). Across 14 tasks and 3 model314

families, when scaling from 18 to 64 examples, TART improves performance by an average of 4.8%.315

Correspondingly, full fine-tuning improves performance by 9.0%.316

Scaling with base model size. We analyze how different task-adaptation strategies scale with317

respect to model size using the GPT-Neo family: GPT-NEO (125M), GPT-NEO (1.3B) and GPT-J318

(6B). Figure 5b shows that when scaling from 100M to 6B parameters, performance of task-specific319

methods and TART increases as a function scale. For TART, the performance increases by 9.8% while320

using the same inference module across model sizes. Furthermore, the difference in performance321

between TART and fine-tuning baseline reduces from 7.5% to 2.2% from the 100M scale to 6B scale.322

323

Beyond context length. We evaluate the data-scaling properties for both in-context learning and324

TART (Figure 5c). To demonstrate the scaling property, we do not truncate the input text to 100325

characters and utilize the entire text sequences. For TART, we observe that accuracy continues326

to improve when scaling from 18 to 256 in-context examples with 6.8% lift in performance. In327

comparison, ICL, which is bottlenecked by context length, supports 10x less samples, with the context328

window saturating at 24 examples only and lags TART by an average of 19.1%.329

4.3 Extensions to other modalities330

We demonstrate that TART is not only agnostic to models and tasks, but also modalities. We extend331

TART to classification tasks on modalities beyond language: vision and audio. For vision tasks, we332

use representations from Google’s 307M parameter pretrained Vision Transformer (ViT) model [42]:333

VIT-LARGE-PATCH16-224. For audio tasks, we use representations from OpenAI’s 1.5B parameter334

pretrained Whisper model [29]: WHISPER-LARGE. In applying TART to the representations from335

these models, we provide a way for performing in-context learning in modalities beyond text. We336

refer the reader to Appendix D.3 for further details on the experiment setup.337

Vision application. We evaluate the performance of TART on binary classification versions of338

CIFAR-10 [17] (classes 0 and 8) and MNIST [18] (classes plane and bird). As shown in Figure 6a339

and 6b, performance of TART is competitive with task-specific adaptation approaches.340

Audio application. We evaluate TART on a binary classification version of the Speech Commands341

dataset [38], where the task is to classify “stop” and “go” utterances. As shown in Figure 6c,342

performance of TART is competitive with task-adaptation approaches.343

5 Discussion344

We look at the problem of task-agnostic learning with LLMs. We show that LLMs lack the ability345

to perform simple reasoning over their learned representations and introduce TART, a task, model346

and domain agnostic method for improving their reasoning abilities. In this work, we focus on347

classification tasks, showing that synthetic, logistic regression task data can be used to train a generic348

reasoning module capable of completing this class of tasks. In future work, we seek to understand349

whether synthetic tasks exist for training other generic reasoning modules, capable of improving base350

LLM performance on tasks such as generation or summarization.351
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(a) (b)

Figure 7: Fine-tuning with NL synthetic task. (Left) Averaged over 6 different tasks, fine-tuning with the NL
synthetic task provides a lift over base in-context learning, and scales with number of examples. (Right) Dataset
level comparisons between task-specific fine-tuning, in-context learning and synthetic fine-tuning: synthetic
fine-tuning outperforms base in-context learning on 4 out of 6 datasets, but lags task-specific tuning.

A Fine-tuning model with NL-based Probabilistic Inference Tasks486

As highlighted in Section 1, we describe the details for directly fine-tuning an LLM on syntheti-487

cally generated probabilistic inference tasks to improve reasoning capabilities. For the following488

experiments, we use GPT-NEO (125M) as the base model.489

A.1 Training Task490

We fine-tune the base model using a sequence of k pairs of synthetically generated labeled natural491

language examples (x, y). Each example x in the sequence s = (x1, y1), . . . , (xk, yk) consists of492

a list of strings constructed from a fixed V size of dimension d = 30 . We use the following fixed493

vocabulary: [ “sports”, “love”, “hate”, “car”, “school”, “family”, “work”, “sleep”, “water”, “tree”,494

“fox”, “train”, “random”, “movie”, “music”, “book”, “play”, “house”, “spell”, “bar”, “jump”, “park”,495

“run”, “hill”, “fast”, “slow”, “talk”, “wallet”, “orange”, “apple”, “ball”, “cat” ].496

To generate a particular example xi, we sample each coordinate xi,j uniformly from the set {−1,+1}.497

If the sampled value is +1, we set the value to be the corresponding word in the vocabulary, that is,498

xi,j = Vj . Otherwise, the word xi,j is set to “null”. For a given sequence s, we generate each of the499

labels {yi} as:500

wt ∼ N (0, Id), yi ∼ σ(α⟨xi, w⟩), for i ∈ [k] , (5)

where we set noise parameter α = 5. If the sampled output is 0, we set the yi to “negative” and501

“positive” otherwise.502

Finally, the inputs are formatted with following template: “x1 : y1 , x2 : y2 , ... , xk : yk” and the503

model is trained using gradient descent on the loss504

ℓ(Tθ) := Ex,y

[
1

k

k∑
i=1

ℓCE(Tθ(z1:i−1, xi), yi)

]
, (6)

where z1:i−1 corresponds to the first i− 1 examples and ℓCE is the cross-entropy loss evaluated on505

the transformer prediction and the true yi.506

More concretely, a sample input sample sequence s to be used for training looks like:507

"sports love null car ... cat: positive,508

null love null car ... null: negative,509

...510

sports null hat null ... cat : positive"511
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 8: Comparison of linear probing, in-context learning, and fine-tuning. Accuracy of in-context
learning vs. linear probing on model embeddings across three model families: representations have sufficient
information.

A.2 Training Parameters512

We train GPT-NEO (125M) on this synthetic task with a learning rate of 0.0001 and a batch size of513

4. For each sequence we sampled a total of k = 60 examples and trained the model for 10000 steps.514

A.3 Evaluation515

We evaluate on 6 datasets: AG News [46], DBPedia [46], SST [33], SMS Spam [3], Youtube [44] and516

Rotten Tomatoes [28]. We truncate the input texts to 100 characters to fit more in-context examples.517

We evaluate over a range of context sizes (k=[18, 32, 48, 60]). At evaluation time, we use the same518

“sentence : label” format that was used to train the model. We evaluate over 3 random seeds. In519

Figure 7, we compare the performance of the model fine-tuned on probabilistic inference tasks and520

the base in-context learning performance. While the performance of the fine-tuned model is better521

than the base in-context learning capabilities, task-specific fine-tuning still outperforms it by an522

average of 16.87% (see Figure 7).523

B Details for Representation-Reasoning decomposition evaluations524

In this section, we provide details for the experimental evaluation and additional results for the525

representation-reasoning decomposition introduced in Section 2.3.526

B.1 Experimental setup527

For these experiments, we evaluate three different language models: GPT-NEO (125M), PYTHIA528

(160M), and BLOOM (560M) on a collection of 6 binary classification datasets: AG News [46],529

DBPedia [46], SST [33], SMS Spam [3], Youtube [44] and Rotten Tomatoes [28]. For each model,530

we run evaluations for three different random seeds, where the randomness was in the set of datapoints531

chosen for the training task. For the hyperparameters, we performed an extensive search for all532

models across datasets. For details on these hyperparameters and the adapter architecture we evaluate533

over, see Appendix D.1.534

To conduct linear probing over the embeddings, we perform logistic regression over the output535

embeddings of each model and the given labels in the training set using the built-in logistic regression536

solver from the scikit-learn python library, utilizing the lbgfs solver.537

B.2 Detailed results538

For each class of methods in the task-adaptation taxonomy from Section 2.2, we now describe the539

details of the experimental evaluation and present additional results.540

In-context learning. To understand the representation and reasoning gaps for in-context learning,541

we evaluated three accuracies: a) using in-context learning with base models, b) fine-tuning the model542

for the task, and c) linear probing the model specifically for the task. The gap due to representation543
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(a) GPT-NEO (125M)

(b) PYTHIA (160M)

(c) BLOOM (560M)

Figure 9: Linear probing vs. in-context learning. Scatter plot of accuracy of in-context learning vs. linear
probing on model embeddings across model families and different number of in-context examples: linear
probing consistently outperforms in-context learning indicating that the learned representations have sufficient
information. Each point in the plot represents a dataset.

was taken to be the difference between the fine-tuning and linear probing accuracies while the544

reasoning gap was the gap between linear probing and in-context learning, as described in eq. (1).545

In Figure 8, we show the average accuracies of in-context learning, linear probing, and fine-tuning546

across the 6 tasks. Linear probing closes the gap between in-context learning and fine-tuning, while547

being task-specific. In Figure 9, we show a scatter plot of the accuracies of linear probing vs. the548

accuracies of base in-context learning. Linear probing consistently out performs in-context learning549

showing that the learned representations across these models have sufficient information to complete550

the tasks but lack reasoning abilities.551

Fine-tuning. For the fine-tuning approach, we are interested in understanding two hypotheses:552

a) how does fine-tuning improve the model performance, and b) whether fine-tuning hurts task-553

agnosticity of the base model and if yes, what is the underlying reason for it.554

For the first hypothesis, we evaluate the proportion of gains that can be attributed to improved555

representations of the the underlying model. This is computed as the difference in performance556

of linear probing over the base model and over the fine-tuned model — this evaluates how much557

the representations have changed specifically for this task. The reasoning gains are then computed558

by subtracting the representation gains from the total gain (fine-tuning accuracy minus in-context559

accuracy). Figure 10 shows a scatter plot of these representation gains and reasoning gains, plotted560

across different datasets and number of examples (k). Most of the gains which are realized by561

fine-tuning are because of improved task-specific reasoning capabilities across the model families.562
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 10: Effects of fine-tuning on reasoning. Across datasets (each point in plot represents a dataset) and
model families, fine-tuning improves task-specific reasoning which improves it performance over base in-context
learning.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 11: Effects of fine-tuning on task-agnosticity Accuracy of task-specific fine-tuned model vs. accuracy
of model fine-tuned on AG-News-0 and evaluated on task. Fine-tuning hurts task-agnosticity across all three
model families.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 12: Effects of fine-tuning on task-agnosticity (dataset level) Accuracy of task-specific fine-tuned
model vs. accuracy of model fine-tuned on AG-News-0 and evaluated on task. Fine-tuning consistently hurts
task-agnosticity across all three model families and datasets.

For the second hypothesis, we first evaluate whether fine-tuning hurts task-agnosticity. For this we563

evaluate two sets of accuracies: accuracy of a model fine-tuned for the specific task and the accuracy564

of a model on the task but fine-tuned on the AG News dataset. From Figures 11 and 12, we see that565

there is a drop in accuracy—over 25.77% across models and datasets. For the second part, we again566

decompose the drop in accuracy into a representation drop and a reasoning drop. The representation567

drop is computed by training a linear probe over the two models (task-specific fine-tuned and AG568

News fine-tuned) and looking at the difference between them. The reasoning drop, as before, is569

computed by subtracting this representation drop from the total drop. Figure 13 shows that most of570
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 13: Effects of fine-tuning on task agnosticity. Scatter plot of reasoning loss against representation
loss when the base model is trained on AG-News-0 and evaluated on other tasks. Across datasets (each point in
plot represents a dataset), fine-tuning majorly impairs reasoning when transferring to tasks outside the specific
fine-tuned task.

(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 14: Effects of fine-tuning on task-agnosticity of adapters. Accuracy of task-specific fine-tuned adapter
vs. accuracy of adapter fine-tuned on AG-News-0 and evaluated on task. Fine-tuning consistently hurts the
generalization ability of adapters across datasets.

this drop in task-agnosticity can be attributed to over-fitting of the reasoning abilities over the task for571

which the models are fine-tuned.572

Adapters. Since adapters do not modify the underlying representations of the model, we look at573

how a single adapter generalizes across tasks. For this we train an adapter on the AG News dataset574

and evaluate it on the other datasets. We compare this set of accuracies with those obtained by575

task-specific adapters in Figure 14. The main conclusion is that task-specific adapters are not agnostic576

learners and over-fit to the task for which they are fine-tuned.577

C Details for TART implementation578

This section contains the details on training TART’s reasoning module and extended results on the579

choice of embeddings from Section 3.580

C.1 TART’s reasoning module581

Architecture details. We use the standard GPT-2 architecture [30] for training our reasoning582

module. We set the embedding size to 256, number of decoder layers to 12, and number of heads to 8583

for a total of 22 million parameters. Since the GPT-2 backbone outputs a sequence of embeddings,584
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Figure 15: TART reasoning module architecture. The reasoning module takes as input sequences of (x, y)
pairs of dimension d. A linear layer is used to project d to the hidden dimension size of the GPT-2 backbone.
Finally, a linear layer is applied to the outputs of the backbone to generate predictions for each xk in the input
sequence.

Figure 16: Training loss vs. number of steps. The plot shows the variation in training loss as a function of the
number of steps of gradient descent for TART’s reasoning module.

we additionally add a linear layer in the end to convert the output to scalar values (see Figure 15).585

Additionally, the binary labels y are encoded as a one-hot vector to match the input dimension d of586

the corresponding covariates x.587

Training procedure. We trained TART’s reasoning module with a context length of 258 (allowing588

for up to 256 in-context examples). The batch size was set to 64, learning rate to 0.0001 and the589

model was trained for a total of 24000 epochs. Each batch of training data consists of sampling a590

sequence of 258 examples using eq. (3). In addition to these hyperparameters, we used a curriculum591

on the input dimensions and on the number of examples in the sequence to train our module—the592

input dimensions started from a value of 4 and were incremented by 4 every 1000 epochs while the593

number of examples started from 18 and were incremented by 30 every 1000 epochs.594

Combining reasoning module with base LLM. We trained the reasoning module with input595

dimension set to 16. However, most base models produce representations which are much higher596

dimensional (ranging from 784 to 2048). In order to reduce the dimensionality of these representations,597

we perform PCA on the output embeddings of the base model, learning the components using only598

the training points available for that specific task. The test examples are then projected onto these599

principal components to produce 16 dimensional input representations.600

C.2 Choice of representations601

As discussed in Section 3.3 there are two possible options for forming the representations, the vanilla602

embeddings and the leave-one-out (LOO) embeddings. Figure 18 shows the schematic differences603

between the two style of embedding. In Figure 17, we plot the average accuracies across different604

datasets for both vanilla and LOO embeddings, observing that the LOO embeddings consistently605

perform better across the different model families.606
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 17: LOO embeddings vs. Vanilla Embeddings. Comparison of TART performance when using LOO
embeddings and vanilla embeddings. Vanilla embeddings see a performance collapse, but LOO embeddings do
not.

(a) Vanilla embeddings

(b) LOO embeddings

Figure 18: TART Embedding Protocols. (a) For the vanilla embeddings, the test example is appended to the
training set and the sequence is passed to the base model. The representation for each train example in this
sequence is taken as the average embedding across all its tokens. (b) For the LOO embeddings, we generate
embeddings for each train example separately by placing all the other train examples before it in the prompt and
averaging the embeddings over the final example’s tokens.
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C.3 Proof of Theorem 1607

In this section, we provide a formal statement of Theorem 1 from Section 3.4. Our theorem quantifies608

the expected error of the Transformer, trained on synthetic data, on natural language tasks in terms of609

the change in the two input distributions.610

We begin by introducing some notation. We denote the class of Transformer family by611

TΘ : = {Tθ : R(2k+1)×d 7→ R | θ ∈ Θ} , (7)

where k represents the maximum number of in-context examples the Transformer can support, d612

represents the input dimensions, and Θ represents the corresponding parameter class over which the613

Transformer family is defined.614

Observe that the Transformer family TΘ takes as input a sequence of k train examples, each corre-615

sponding to two tokens of hidden dimension d: a covariate x ∈ Rd and a binary label, encoded as a616

one-hot vector in d dimension. This sequence of train examples is followed by a test example, for617

which we only have the features xk+1.618

Given this background, let Psyn denote the synthetic distribution over sequences619

{(x1, y1), . . . , (xk, yx), (xk+1)}. Similarly, let PNL denote the corresponding distribution620

over sequences derived from natural language tasks where xi denotes the LLM embeddings of the621

example. Recall from Section 3.2.1, the synthetic training distribution Psyn is given by622

Sequence st : wt ∼ N (0, Id), xi,t ∼ N (0, Id), yi,t ∼ σ(α⟨xi,t, wt⟩) for i ∈ [k] , (8)

for each training point (xi,t, yi,t). The test point is also sampled similarly from an independent623

standard normal distribution. Let ℓ : R × R 7→ R be the loss function used for evaluating the624

performance of the reasoning module. Further, let use denote the expected loss under a distribution P625

errP (T ) := E(s,y)∼P [ℓ(T (s), y)] , (9)

and the corresponding empirical distribution over samples S by êrrP , where the dependence on the626

samples is implicit. Given these samples, we denote the empirical risk minimizer627

TS = arg min
T∈TΘ

1

|S|
∑
s∈S

ℓ(T (s), y) . (10)

In addition to these notation, we make the following Lipschitz assumption on the the loss function ℓ628

and the Transformer model T .629

Assumption 1. [Lipschitz loss.] For any two output labels y, y′, the loss function ℓ is Lipschitz with630

constant c1, that is,631

|ℓ(Tr(s), y)− ℓ(Tr(s), y′)| ≤ c1|y − y′| . (11)
Assumption 2. [Lipschitz models.] For any two input sequences s, s′, each any model T ∈ TΘ is632

Lipschitz with constant L, that is,633

|T (s)− T (s′)| ≤ L∥s− s′∥. (12)

Given this setup, we are now ready to state a formal version of Theorem 1.634

Theorem 2 (Formal version of Theorem 1). Let TS ∈ TΘ denote the trained reasoning module on set635

S of synthetic logistic regression tasks with nsyn sequences sampled from distribution Psyn in eq. (3).636

Let the loss function ℓ satisfy Assumption 1 and the model class TΘ satisfy Assumption 2. Then, with637

probability at least 1− δ, we have638

errPNL(TS) ≤ c1 max(1, L) ·W1(PNL, Psyn) + c1 ·

√
2VC(TΘ) lnm

nsyn
+ 4

√
2 ln(4/δ)

nsyn
+ êrrPsyn(TS) , (13)

where W1 denotes the Wasserstein-1 metric and VC(TΘ) represents the VC dimension of class TΘ639

Proof. We begin by decomposing the error errPNL
(TS) into three components as640

errPNL
(TS) = errPNL

(TS)− errPsyn(TS)︸ ︷︷ ︸
(I)

+ errPsyn(TS)− êrrPsyn(TS)︸ ︷︷ ︸
(II)

+êrrPsyn(TS) . (14)

We now upper bound each of the terms (I) and (II) separately.641
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Bound on Term (I). Let γ denote an arbitrary joint distribution over the distributions Psyn and PNL.642

Then, we can bound the first term as643

errPNL
(TS)− errPsyn(TS) = EPNL

[ℓ(T (s), y)]− EPsyn [ℓ(T (s
′), y′)]

(i)
= Eγ [ℓ(T (s), y)− ℓ(T (s′), y′)]

(ii)

≤ inf
γ

Eγ |ℓ(T (s), y)− ℓ(T (s′), y′)| , (15)

where (i) follows from the independence of the two expectations and (ii) follows from that (i) holds644

for any arbitrary joint distribution γ. The final bound on this term now follows:645

inf
γ

Eγ |ℓ(T (s), y)− ℓ(T (s′), y′)| = inf
γ

∫
|ℓ(T (s), y)− ℓ(T (s), y′) + ℓ(T (s), y′)− ℓ(T (s′), y′)| dγ

(i)

≤ c1 inf
γ

∫
|y − y′| − ∥T (s′)− T (s)∥dγ

(ii)

≤ c1 max(1, L) · inf
γ

∫
|y − y′| − ∥s′ − s∥dγ

= c1 max(1, L) ·W1(PNL, Psyn) , (16)

where the inequalities (i) follows from Assumption 1 and (ii) follows from Assumption 2. This646

completes the bound on Term (I).647

Bound on Term (II). Using a standard generalization bound [32, see Theorem 26.5], we have with648

probability at least 1− δ649

errPsyn(TS)− êrrPsyn(TS) ≤ R(ℓ ◦ TΘ) + 4

√
2 ln(4/δ)

nsyn

≤ c1 · R(TΘ) + 4

√
2 ln(4/δ)

nsyn

(i)

≤ c1 ·

√
2VC(TΘ) lnm

nsyn
+ 4

√
2 ln(4/δ)

nsyn
(17)

where R(ℓ◦TΘ) denotes the Rademacher complexity of the class TΘ composed with the loss function650

ℓ and inequality (i) follows from Sauer’s Lemma.651

Combining the bounds in equations (16) and (17) completes the proof of the theorem.652

D Details for experimental evaluation653

We describe supplementary experimental details from Section 4 as well as additional results for the654

natural language benchmark evaluations (Section D.2) and results for other modalities (vision and655

audio) (Section D.3).656

D.1 Experimental setup657

We begin by providing dataset statistics and details of the baselines.658

D.1.1 Dataset construction and statistics659

Table 2 and 1 provides a detailed breakdown of dataset statistics. For each dataset, we use the660

original test sets with the exception of Civil Comments [8], AG News [46] and DBPedia [46]. For the661

multi-class datasets—AG News [46] and DBPedia [46] — we construct 4 binary classification tasks662

for each datasets. More concretely, AG News labels news articles into four categories: World, Sports,663

Business, and Science/Technology. We create a separate binary classification task for each category,664

sampling negatives from the remaining classes. DBPedia is a 14-way ontology classification dataset.665
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Dataset Test size Max char Max token Avg. char Avg. token
length length length length

AG-News-0 3800 732 259 237.07 51.36
AG-News-1 3800 814 213 232.01 51.46
AG-News-2 3800 814 225 236.10 52.25
AG-News-3 3800 892 259 234.86 51.38

Civil Comments 11576 1000 634 272.72 61.73
DBPedia-0 10000 2081 629 300.94 65.83
DBPedia-1 10000 2081 629 298.81 66.91
DBPedia-2 10000 2081 883 286.85 66.53
DBPedia-3 10000 2081 629 275.81 63.88

IMDB 25000 12988 2972 1293.79 292.82
Rotten Tomatoes 1066 261 63 115.52 25.36

SMS Spam 4181 612 258 81.46 23.76
SST 2210 256 60 102.40 22.34

Youtube 250 1125 292 112.50 31.84

Table 1: Dataset (test) statistics for all NLP datasets.

Dataset Max char Max token Avg. char Avg. token
length length length length

AG-News-0 701 256 236.15 51.53
AG-News-1 749 180 232.48 51.61
AG-News-2 735 256 241.70 53.91
AG-News-3 1002 258 241.21 53.21

Civil Comments 1000 347 280.97 63.44
DBPedia-0 707 207 300.48 65.79
DBPedia-1 1023 280 299.89 66.57
DBPedia-2 628 203 288.21 66.22
DBPedia-3 758 203 279.45 64.24

IMDB 7068 1630 1284.20 290.00
Rotten Tomatoes 260 62 112.46 24.82

SMS Spam 911 217 106.90 31.87
SST 248 56 101.97 22.34

Youtube 1089 767 90.12 29.98

Table 2: Dataset (train) statistics for all NLP datasets.

We create 4 separate binary classification tasks for the educational institution, company, artist, and666

athlete ontologies, sampling negatives from the remaining classes. For the train set, we sample a667

class-balanced set of 64 examples from the original dataset. For each dataset, we sample 5 separate668

training sets, using 5 different random seeds. In evaluations, we evaluate TART and the baseline669

methods across each of these 5 different training sets.670

D.1.2 Baseline methods671

For each dataset, we compare TART to 4 baseline task-adaptation methods: 1) in-context learning, 2)672

full fine-tuning, 3) last layer fine-tuning, and 4) adapters. The last layer fine-tuning and the adapters673

are trained as follows:674

• Last layer fine-tuning: Freeze all layers of transformer but the final transformer block and the675

language modeling head.676

• Adapter: Combine a frozen LLM base transformer model with a trainable adapter head—an MLP677

composed of a single linear layer followed by non-linearity.678
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 19: Comparison of all methods. TART significantly improves base in-context learning performance and
is competitive with full-finetuning across model families.

Model TART GPT-J (6B) OPT (175B) BLOOM (176B) GPT-3 (175B)
Accuracy 0.634 0.608 0.637 0.595 0.673

Table 3: RAFT (HELM) Binary Classification Performance (Average Accuracy). TART is used with GPT-
NEO (125M) model which is 1000x smaller than the corresponding 175B parameter models. TART outperforms
BLOOM (176B) and is competitive with OPT (175B) and GPT-3 (175B).

Hyperparameter search. For each baseline, we perform an extensive hyperparameter search over679

number of epochs and learning rate for each dataset in order to optimize performance. We search over680

a range of learning rates (1e-3, 1e-4, 3e-5, 1e-5, 8e-6), and range of epochs (5, 10, 15, 20, 50). For all681

models < 1B parameters, we use a batch size of 1. For all models > 1B parameters, we use a batch682

size of 8. We use these same batch sizes at evaluation time. We perform our hyperparameter searches683

with a fixed number of train samples (64). We run our hyperparameter searches over 3 random seeds.684

D.2 NL benchmarks685

In this section, we provide additional results deferred from Section 4 on the NLP benchmark686

evaluations, RAFT evaluations and demonstration of TART’s data-scalability.687

D.2.1 Performance on benchmark datasets688

Figure 19 shows the performance of the baseline methods with TART averaged across the suite of689

14 datasets. TART, while being task-agnostic, shows similar performance quality to task-specific690

approaches across the different model families, and consistently outperforms in-context learning.691

Figures 20, 21, and 22 show the scatter plots of the accuracies of TART with the baseline methods692

across datasets and different values of in-context examples k. An interesting observation is that as the693

number of examples k increases from 18 to 64, the performance of fine-tuning improves at a better694

rate than that of TART.695

D.2.2 Real-world Annotated Few-shot Tasks (RAFT) evaluation696

For our evaluations on the RAFT benchmark [2], we follow the protocol (same train and test sets)697

used in HELM benchmark. The HELM benchmark [21] contains the evaluation results for many open698

and closed models enabling us to accurately compare the performance of TART with other models.699

We evaluate TART on all RAFT binary classification datasets (twitter-complaints, neurips-impact-700

statement-risks, overulling, ade-corpusv2, tweet-eval-hate, terms-of-service, tai-safety-research) with701

the exception of systematic-review-inclusion which contains zero positive samples in the train set.702

TART requires at least one example of each class in the training set. Table 3 contains a detailed703

performance comparison of TART with respect to other models. TART when combined with GPT-704

NEO (125M) is able to outperform BLOOM (176B) and is competitive with OPT (175B) and705

GPT-3 (175B), all of which have 1000x more parameters.706
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(a) Number of examples = 18

(b) Number of examples = 32

(c) Number of examples = 48

(d) Number of examples = 64

Figure 20: Comparison of TART and task-adaptation approaches (GPT-NEO (125M)). We see that for
GPT-NEO (125M), TART outperforms in-context learning and is competitive with full fine-tuning and adapters
across all k.
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(a) Number of examples = 18

(b) Number of examples = 32

(c) Number of examples = 48

(d) Number of examples = 64

Figure 21: Comparison of TART and task-adaptation approaches (PYTHIA (160M)). We see that for
PYTHIA (160M), TART outperforms in-context learning and adapters and is competitive with full fine-tuning
across all k.

D.2.3 Beyond context length: TART is data-scalable707

Setup. For these evaluations, we use the a subset of 6 datasets: AG-News-0, DBPedia-0, SST, SMS708

Spam, Youtube and Rotten Tomatoes. We evaluate the performance of TART over k=[18, 32, 48, 64,709
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(a) Number of examples = 18

(b) Number of examples = 32

(c) Number of examples = 48

(d) Number of examples = 64

Figure 22: Comparison of TART and task-adaptation approaches (BLOOM (560M)). We see that for BLOOM
(560M), TART outperforms in-context learning and adapters and is competitive with full fine-tuning across all k.

128, 192, 256] where k is the number of in-context examples. When evaluating our base models, we710

evaluate over k=[8, 24]—values of k that maximize the context window. We use a lower-bound of 8711

given that the maximum input sequence length in the training set for AG News is 256. With such a712
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(a) GPT-NEO (125M) (b) PYTHIA (160M) (c) BLOOM (560M)

Figure 23: Beyond context window constraints. Performance comparison with respect to number of in-context
examples. Base in-context learning is bound with respect to total numbers of examples and performance saturates.
TART is not bound by context length, and performance continues to scale as number of examples increases.

Figure 24: Stream embeddings. Another protocol for generating representations for in-context examples where
each example is embedded by the base model separately.

sequence length, the maximum number of in-context examples that fit in the context-window is 8,713

hence the lower bound.714

Embeddings. For these evaluations, we use what we call “streaming” embeddings (see Figure 24).715

In this setup, we use the context window of the LLM to encode a single example at a time. The final716

embeddings are then averaged and used in-context with TART’s reasoning module. This is in contrast717

to the vanilla and LOO embeddings which use multiple examples in-context with the base LLM to718

obtain the embeddings.719

Evaluation. Figure 23 shows the performance of base in-context learning with TART across the720

three different model families. Observe that while in-context learning is bottlenecked by the context721

window of the base LLM, TART is able to learn from 10x more examples and exhibits an increasing722

trend in accuracy with number of examples across models.723

D.3 Extension to other modalities: TART is domain-agnostic!724

We begin by providng a description of the datasets we used to evaluate TART on audio and vision725

tasks, and then provide additional results comparing our algorithm with baselines.726

D.3.1 Dataset details727

For audio classification, we use the Speech Commands (Version 0.01) dataset [38]. Speech Commands728

is a multi-class classification task where the task is to detect preregistered keywords by classifying729

utterances into a predefined set of words. We construct a 3 binary classification task over the keywords730

“stop” and “go”, “up” and “down”, and “yes” and “no” (see Table 4 for more details).731

For image classification, we use CIFAR-10 [17] and MNIST [18]. Both tasks are multi-class732

classification tasks. We create 3 binary classification tasks for each of the datasets. For CIFAR-10 the733

tasks are: airplane vs. bird, bird vs. horse, and ship vs. automobile. For MNIST the tasks are: 0 vs. 8,734

1 vs. 6 and 2 vs. 4. See Table 4 for more details.735
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Dataset Modality Train size Test size

MNIST (0 vs. 8) image 256 1954
MNIST (1 vs. 6) image 256 1940
MNIST (2 vs. 4) image 256 2014
Speech Commands (stop vs. go) audio 256 500
Speech Commands (up vs. down) audio 256 508
Speech Commands (yes vs. no) audio 256 525
CIFAR-10 (airplane vs. bird) image 256 2000
CIFAR-10 (bird vs. horse) image 256 2000
CIFAR-10 (ship vs. automobile) image 256 2000

Table 4: Dataset statistics for all audio and image evaluation datasets.

(a) MNIST (1 vs. 6) (b) MNIST (2 vs. 4)

Figure 25: Additional MNIST binary classification tasks. TART is competitive with task-specific full fine-
tuning and adapters.

For both the audio and image datasets, we sample a class-balanced set of 256 samples from the736

training set. For the test sets, we filter the original test sets to only include samples of the two classes737

we are learning to predict for (i.e., airplane and bird for CIFAR10 and 0 and 8 for MNIST).738

D.3.2 Algorithms for comparison739

For these evaluations, we use the “streaming embeddings” described in Figure 24 to obtain the740

embedding for TART. We evaluate over k=[18, 32, 48, 64, 128, 256].741

We compare against two baseline task-adaptation methods: 1) full fine-tuning and 2) adapters. We742

use the same architectures as described in Appendix D.1.2. For vision tasks, we use Google’s 307M743

parameter pretrained Vision Transformer (ViT) model [42]: VIT-LARGE-PATCH16-224. For audio744

tasks, we use OpenAI’s 1.5B parameter pretrained Whisper model [29]: WHISPER-LARGE.745

Hyperparameter search For each baseline, we perform an extensive hyperparameter search over746

number of epochs and learning rate for each dataset in order to optimize performance. We search747

over a range of learning rates (1e-3, 5e-04, 1e-4, 5e-5, 1e-5, and 8e-6) and a range of epochs (5, 10,748

15 and 20). For all models we use a batch size of 1. We perform our hyperparameter searches for a749

fixed number of train samples (128) and run our hyperparameter searches over 3 random seeds.750

D.3.3 Evaluation751

We plot the accuracy as a function of the number of examples for TART, fine-tuning and adapter in752

Figure 25 (MNIST), Figure 26 (CIFAR-10), and Figure 27 (Speech Commands). TART is competitive753

with both these baselines, showing how task-agnostic methods can compete with task-specific754

adaptation methods across different modalities.755
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(a) CIFAR-10 (ship vs. automobile) (b) CIFAR-10 (bird vs. horse)

Figure 26: Additional CIFAR-10 binary classification tasks. TART is competitive with task-specific full
fine-tuning and adapters.

(a) Speech Commands (yes vs. no) (b) Speech Commands (up vs. down)

Figure 27: Additional Speech Commands binary classification tasks. TART is competitive with task-specific
full fine-tuning and adapters.

E Broader Impact756

Our submission focuses on understanding in-context learning and how it compares to task-specific757

fine-tuning approaches. We view our work as a general understanding paper and, to the best of our758

knowledge, see no negative consequences of our work. We hope that our work furthers the state of759

understanding of large language models (LLMs). Furthermore, because TART is a plug-and-play760

solution that doesn’t require any fine-tuning, we hope that our method can help domain experts761

(e.g., lawyers, scientists) incorporate LLMs into their workflows. In this sense, we view TART as a762

contribution that is democratizing ML by making them more accessible and usable to experts in a763

variety of domains.764

F Compute Resource Estimates765

Resources for training TART We use a single NVIDIA RTX A6000 GPU ( $2/hr) for 6 hours to766

train our TART inference head, costing a total of $18 to train.767

Resources for training task-specific baselines We use 4 NVIDIA A100 GPU’s ( $3.5 per GPU/hr)768

for 100 hours for hyperparamter tuning, costing a total of $1,400. We use 8 NVIDIA A100 GPU’s769

( $3.5 per GPU/hr) for 50 hours to fine-tune all task-adaptation baseline models. Total cost for770

fine-tuning amounted to $1,440.771

Resources for inference We use 8 NVIDIA A100 GPU’s ( $3.5 per GPU/hr) for 480 hours for all772

inference runs costing a total of $13,440.773
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.790 ± 0.036 0.552 ± 0.049 0.724 ± 0.070 0.852 ± 0.019 0.824 ± 0.031
AG-News-1 0.828 ± 0.021 0.541 ± 0.037 0.779 ± 0.137 0.903 ± 0.021 0.868 ± 0.020
AG-News-2 0.751 ± 0.023 0.513 ± 0.014 0.626 ± 0.057 0.765 ± 0.025 0.755 ± 0.012
AG-News-3 0.743 ± 0.031 0.502 ± 0.017 0.736 ± 0.035 0.786 ± 0.025 0.727 ± 0.066
Civil Comments 0.559 ± 0.027 0.499 ± 0.002 0.520 ± 0.033 0.515 ± 0.019 0.555 ± 0.036
DBPedia-0 0.866 ± 0.030 0.611 ± 0.091 0.802 ± 0.020 0.825 ± 0.012 0.837 ± 0.022
DBPedia-1 0.778 ± 0.036 0.579 ± 0.100 0.766 ± 0.056 0.740 ± 0.041 0.778 ± 0.044
DBPedia-2 0.798 ± 0.042 0.609 ± 0.136 0.862 ± 0.041 0.908 ± 0.011 0.832 ± 0.048
DBPedia-3 0.812 ± 0.032 0.611 ± 0.135 0.817 ± 0.034 0.859 ± 0.025 0.848 ± 0.028
IMDB 0.537 ± 0.022 0.507 ± 0.007 0.625 ± 0.013 0.560 ± 0.021 0.556 ± 0.014
Rotten Tomatoes 0.535 ± 0.030 0.550 ± 0.043 0.689 ± 0.019 0.541 ± 0.037 0.524 ± 0.018
SMS Spam 0.869 ± 0.063 0.736 ± 0.099 0.925 ± 0.011 0.833 ± 0.015 0.886 ± 0.023
SST 0.544 ± 0.021 0.542 ± 0.024 0.715 ± 0.009 0.555 ± 0.026 0.547 ± 0.009
Youtube 0.784 ± 0.047 0.658 ± 0.089 0.833 ± 0.089 0.768 ± 0.100 0.715 ± 0.136

Table 5: Standard deviation of accuracy, number of examples = 18, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.805 ± 0.029 0.498 ± 0.002 0.758 ± 0.127 0.601 ± 0.072 0.669 ± 0.044
AG-News-1 0.825 ± 0.023 0.517 ± 0.019 0.916 ± 0.015 0.702 ± 0.097 0.690 ± 0.034
AG-News-2 0.758 ± 0.027 0.500 ± 0.000 0.596 ± 0.031 0.500 ± 0.001 0.588 ± 0.026
AG-News-3 0.754 ± 0.033 0.501 ± 0.003 0.661 ± 0.093 0.552 ± 0.041 0.613 ± 0.022
Civil Comments 0.575 ± 0.019 0.500 ± 0.003 0.525 ± 0.049 0.500 ± 0.000 0.515 ± 0.008
DBPedia-0 0.861 ± 0.018 0.508 ± 0.016 0.786 ± 0.054 0.638 ± 0.109 0.704 ± 0.038
DBPedia-1 0.813 ± 0.020 0.499 ± 0.010 0.787 ± 0.067 0.599 ± 0.078 0.710 ± 0.059
DBPedia-2 0.870 ± 0.035 0.502 ± 0.025 0.878 ± 0.071 0.701 ± 0.113 0.767 ± 0.052
DBPedia-3 0.850 ± 0.050 0.502 ± 0.003 0.864 ± 0.034 0.603 ± 0.114 0.734 ± 0.030
IMDB 0.550 ± 0.027 0.507 ± 0.005 0.590 ± 0.046 0.500 ± 0.000 0.526 ± 0.012
Rotten Tomatoes 0.544 ± 0.027 0.491 ± 0.013 0.589 ± 0.074 0.500 ± 0.000 0.522 ± 0.023
SMS Spam 0.901 ± 0.038 0.867 ± 0.030 0.892 ± 0.052 0.867 ± 0.004 0.851 ± 0.042
SST 0.572 ± 0.016 0.517 ± 0.002 0.617 ± 0.074 0.517 ± 0.000 0.539 ± 0.007
Youtube 0.847 ± 0.047 0.611 ± 0.084 0.810 ± 0.060 0.528 ± 0.000 0.598 ± 0.103

Table 6: Standard deviation of accuracy, number of examples = 18, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.813 ± 0.021 0.511 ± 0.013 0.702 ± 0.102 0.790 ± 0.033 0.689 ± 0.060
AG-News-1 0.851 ± 0.020 0.511 ± 0.014 0.801 ± 0.086 0.891 ± 0.037 0.752 ± 0.032
AG-News-2 0.744 ± 0.034 0.509 ± 0.009 0.622 ± 0.083 0.711 ± 0.070 0.652 ± 0.047
AG-News-3 0.763 ± 0.026 0.508 ± 0.014 0.626 ± 0.016 0.775 ± 0.035 0.706 ± 0.027
Civil Comments 0.561 ± 0.029 0.489 ± 0.009 0.491 ± 0.032 0.540 ± 0.029 0.533 ± 0.030
DBPedia-0 0.851 ± 0.009 0.531 ± 0.044 0.811 ± 0.116 0.813 ± 0.057 0.812 ± 0.043
DBPedia-1 0.760 ± 0.037 0.546 ± 0.088 0.750 ± 0.129 0.718 ± 0.067 0.754 ± 0.041
DBPedia-2 0.800 ± 0.032 0.567 ± 0.110 0.850 ± 0.086 0.904 ± 0.018 0.851 ± 0.055
DBPedia-3 0.848 ± 0.025 0.528 ± 0.046 0.739 ± 0.133 0.785 ± 0.132 0.849 ± 0.011
IMDB 0.552 ± 0.031 0.550 ± 0.044 0.630 ± 0.016 0.608 ± 0.014 0.526 ± 0.025
Rotten Tomatoes 0.574 ± 0.029 0.539 ± 0.031 0.638 ± 0.037 0.618 ± 0.049 0.507 ± 0.010
SMS Spam 0.830 ± 0.112 0.613 ± 0.261 0.883 ± 0.130 0.911 ± 0.035 0.885 ± 0.045
SST 0.574 ± 0.019 0.561 ± 0.062 0.707 ± 0.024 0.636 ± 0.025 0.531 ± 0.015
Youtube 0.762 ± 0.116 0.584 ± 0.144 0.753 ± 0.140 0.726 ± 0.052 0.769 ± 0.084

Table 7: Standard deviation of accuracy, number of examples = 18, BLOOM (560M)
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.808 ± 0.030 0.551 ± 0.041 0.795 ± 0.049 0.874 ± 0.022 0.830 ± 0.034
AG-News-1 0.883 ± 0.014 0.577 ± 0.055 0.852 ± 0.070 0.911 ± 0.021 0.902 ± 0.011
AG-News-2 0.764 ± 0.019 0.540 ± 0.027 0.705 ± 0.063 0.812 ± 0.019 0.782 ± 0.019
AG-News-3 0.798 ± 0.025 0.521 ± 0.039 0.762 ± 0.046 0.813 ± 0.012 0.806 ± 0.028
Civil Comments 0.575 ± 0.054 0.498 ± 0.002 0.554 ± 0.029 0.543 ± 0.022 0.579 ± 0.044
DBPedia-0 0.886 ± 0.021 0.632 ± 0.096 0.884 ± 0.019 0.866 ± 0.013 0.859 ± 0.020
DBPedia-1 0.809 ± 0.031 0.593 ± 0.062 0.802 ± 0.030 0.783 ± 0.022 0.813 ± 0.023
DBPedia-2 0.886 ± 0.011 0.586 ± 0.078 0.916 ± 0.029 0.932 ± 0.013 0.899 ± 0.017
DBPedia-3 0.868 ± 0.022 0.565 ± 0.041 0.902 ± 0.016 0.908 ± 0.012 0.868 ± 0.023
IMDB 0.537 ± 0.040 0.543 ± 0.029 0.609 ± 0.029 0.556 ± 0.024 0.551 ± 0.036
Rotten Tomatoes 0.549 ± 0.035 0.554 ± 0.036 0.667 ± 0.036 0.550 ± 0.045 0.528 ± 0.020
SMS Spam 0.903 ± 0.027 0.768 ± 0.105 0.931 ± 0.014 0.861 ± 0.027 0.920 ± 0.011
SST 0.573 ± 0.009 0.564 ± 0.045 0.711 ± 0.022 0.594 ± 0.022 0.551 ± 0.022
Youtube 0.810 ± 0.072 0.759 ± 0.074 0.854 ± 0.044 0.773 ± 0.052 0.722 ± 0.113

Table 8: Standard deviation of accuracy, number of examples = 32, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.835 ± 0.020 0.499 ± 0.002 0.791 ± 0.100 0.855 ± 0.017 0.712 ± 0.028
AG-News-1 0.900 ± 0.012 0.504 ± 0.004 0.911 ± 0.022 0.926 ± 0.009 0.738 ± 0.028
AG-News-2 0.773 ± 0.012 0.510 ± 0.006 0.687 ± 0.034 0.742 ± 0.044 0.683 ± 0.025
AG-News-3 0.823 ± 0.024 0.514 ± 0.017 0.792 ± 0.022 0.833 ± 0.011 0.697 ± 0.023
Civil Comments 0.596 ± 0.024 0.499 ± 0.007 0.588 ± 0.052 0.536 ± 0.020 0.542 ± 0.016
DBPedia-0 0.890 ± 0.016 0.514 ± 0.026 0.880 ± 0.049 0.777 ± 0.055 0.782 ± 0.044
DBPedia-1 0.833 ± 0.018 0.522 ± 0.023 0.834 ± 0.061 0.768 ± 0.024 0.760 ± 0.022
DBPedia-2 0.912 ± 0.010 0.522 ± 0.031 0.916 ± 0.033 0.903 ± 0.012 0.859 ± 0.019
DBPedia-3 0.879 ± 0.021 0.520 ± 0.026 0.900 ± 0.019 0.863 ± 0.018 0.812 ± 0.022
IMDB 0.541 ± 0.041 0.510 ± 0.008 0.630 ± 0.017 0.575 ± 0.024 0.540 ± 0.018
Rotten Tomatoes 0.576 ± 0.042 0.495 ± 0.007 0.659 ± 0.064 0.568 ± 0.027 0.542 ± 0.019
SMS Spam 0.937 ± 0.017 0.856 ± 0.080 0.913 ± 0.044 0.953 ± 0.014 0.877 ± 0.036
SST 0.602 ± 0.015 0.509 ± 0.013 0.705 ± 0.021 0.605 ± 0.043 0.542 ± 0.003
Youtube 0.862 ± 0.045 0.626 ± 0.081 0.874 ± 0.046 0.762 ± 0.052 0.654 ± 0.050

Table 9: Standard deviation of accuracy, number of examples = 32, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.825 ± 0.031 0.503 ± 0.003 0.802 ± 0.041 0.818 ± 0.014 0.739 ± 0.049
AG-News-1 0.880 ± 0.012 0.516 ± 0.026 0.898 ± 0.043 0.912 ± 0.034 0.829 ± 0.010
AG-News-2 0.771 ± 0.009 0.519 ± 0.025 0.736 ± 0.071 0.773 ± 0.039 0.684 ± 0.040
AG-News-3 0.810 ± 0.016 0.509 ± 0.013 0.753 ± 0.058 0.805 ± 0.031 0.742 ± 0.030
Civil Comments 0.587 ± 0.025 0.500 ± 0.011 0.549 ± 0.016 0.564 ± 0.062 0.555 ± 0.009
DBPedia-0 0.857 ± 0.035 0.592 ± 0.083 0.801 ± 0.125 0.822 ± 0.043 0.834 ± 0.038
DBPedia-1 0.802 ± 0.031 0.558 ± 0.047 0.870 ± 0.037 0.800 ± 0.041 0.813 ± 0.034
DBPedia-2 0.879 ± 0.018 0.609 ± 0.025 0.938 ± 0.018 0.920 ± 0.031 0.903 ± 0.021
DBPedia-3 0.866 ± 0.035 0.634 ± 0.110 0.812 ± 0.163 0.911 ± 0.004 0.876 ± 0.037
IMDB 0.553 ± 0.046 0.541 ± 0.024 0.636 ± 0.016 0.600 ± 0.018 0.536 ± 0.024
Rotten Tomatoes 0.589 ± 0.037 0.575 ± 0.039 0.713 ± 0.029 0.630 ± 0.026 0.527 ± 0.015
SMS Spam 0.933 ± 0.017 0.762 ± 0.033 0.956 ± 0.026 0.905 ± 0.056 0.917 ± 0.017
SST 0.579 ± 0.032 0.502 ± 0.020 0.739 ± 0.013 0.638 ± 0.035 0.562 ± 0.017
Youtube 0.799 ± 0.117 0.710 ± 0.182 0.887 ± 0.033 0.756 ± 0.115 0.850 ± 0.024

Table 10: Standard deviation of accuracy, number of examples = 32, BLOOM (560M)
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.812 ± 0.021 0.560 ± 0.046 0.832 ± 0.023 0.876 ± 0.012 0.833 ± 0.016
AG-News-1 0.904 ± 0.009 0.623 ± 0.051 0.924 ± 0.026 0.932 ± 0.007 0.923 ± 0.009
AG-News-2 0.786 ± 0.008 0.566 ± 0.023 0.791 ± 0.016 0.824 ± 0.010 0.797 ± 0.010
AG-News-3 0.822 ± 0.030 0.533 ± 0.029 0.800 ± 0.042 0.840 ± 0.015 0.825 ± 0.034
Civil Comments 0.591 ± 0.029 0.497 ± 0.003 0.568 ± 0.038 0.554 ± 0.029 0.614 ± 0.028
DBPedia-0 0.911 ± 0.011 0.676 ± 0.097 0.892 ± 0.017 0.898 ± 0.012 0.894 ± 0.023
DBPedia-1 0.823 ± 0.025 0.644 ± 0.115 0.838 ± 0.058 0.819 ± 0.018 0.833 ± 0.026
DBPedia-2 0.902 ± 0.015 0.622 ± 0.114 0.931 ± 0.032 0.940 ± 0.005 0.913 ± 0.007
DBPedia-3 0.883 ± 0.023 0.620 ± 0.129 0.891 ± 0.015 0.911 ± 0.006 0.889 ± 0.021
IMDB 0.557 ± 0.033 0.522 ± 0.025 0.641 ± 0.008 0.564 ± 0.017 0.577 ± 0.020
Rotten Tomatoes 0.572 ± 0.014 0.548 ± 0.045 0.710 ± 0.010 0.575 ± 0.048 0.572 ± 0.029
SMS Spam 0.882 ± 0.044 0.860 ± 0.036 0.946 ± 0.019 0.881 ± 0.013 0.925 ± 0.010
SST 0.570 ± 0.019 0.563 ± 0.032 0.705 ± 0.019 0.575 ± 0.028 0.542 ± 0.035
Youtube 0.810 ± 0.039 0.792 ± 0.081 0.923 ± 0.014 0.874 ± 0.029 0.832 ± 0.053

Table 11: Standard deviation of accuracy, number of examples = 48, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.846 ± 0.018 0.496 ± 0.007 0.871 ± 0.015 0.871 ± 0.005 0.732 ± 0.036
AG-News-1 0.923 ± 0.005 0.528 ± 0.044 0.942 ± 0.004 0.935 ± 0.009 0.780 ± 0.040
AG-News-2 0.798 ± 0.009 0.509 ± 0.004 0.731 ± 0.040 0.782 ± 0.018 0.722 ± 0.019
AG-News-3 0.845 ± 0.012 0.515 ± 0.014 0.787 ± 0.046 0.852 ± 0.011 0.718 ± 0.026
Civil Comments 0.605 ± 0.037 0.512 ± 0.009 0.607 ± 0.039 0.556 ± 0.014 0.556 ± 0.018
DBPedia-0 0.905 ± 0.020 0.549 ± 0.057 0.924 ± 0.020 0.830 ± 0.034 0.798 ± 0.021
DBPedia-1 0.840 ± 0.021 0.592 ± 0.062 0.867 ± 0.024 0.808 ± 0.031 0.780 ± 0.011
DBPedia-2 0.916 ± 0.009 0.636 ± 0.081 0.937 ± 0.017 0.923 ± 0.013 0.870 ± 0.022
DBPedia-3 0.888 ± 0.022 0.618 ± 0.096 0.927 ± 0.011 0.885 ± 0.007 0.827 ± 0.026
IMDB 0.557 ± 0.034 0.503 ± 0.008 0.632 ± 0.013 0.566 ± 0.030 0.545 ± 0.008
Rotten Tomatoes 0.601 ± 0.026 0.480 ± 0.014 0.683 ± 0.033 0.556 ± 0.033 0.562 ± 0.018
SMS Spam 0.956 ± 0.008 0.869 ± 0.044 0.966 ± 0.011 0.960 ± 0.008 0.891 ± 0.035
SST 0.612 ± 0.024 0.500 ± 0.025 0.702 ± 0.046 0.594 ± 0.042 0.560 ± 0.023
Youtube 0.872 ± 0.019 0.654 ± 0.063 0.904 ± 0.033 0.826 ± 0.046 0.666 ± 0.027

Table 12: Standard deviation of accuracy, number of examples = 48, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.829 ± 0.029 0.507 ± 0.005 0.829 ± 0.071 0.847 ± 0.022 0.788 ± 0.028
AG-News-1 0.909 ± 0.010 0.543 ± 0.052 0.940 ± 0.011 0.935 ± 0.004 0.856 ± 0.014
AG-News-2 0.789 ± 0.016 0.511 ± 0.012 0.715 ± 0.057 0.793 ± 0.027 0.708 ± 0.011
AG-News-3 0.832 ± 0.018 0.530 ± 0.038 0.834 ± 0.029 0.843 ± 0.014 0.763 ± 0.015
Civil Comments 0.602 ± 0.030 0.506 ± 0.011 0.605 ± 0.044 0.592 ± 0.039 0.566 ± 0.008
DBPedia-0 0.889 ± 0.022 0.703 ± 0.085 0.933 ± 0.021 0.888 ± 0.024 0.873 ± 0.027
DBPedia-1 0.817 ± 0.023 0.734 ± 0.076 0.891 ± 0.028 0.836 ± 0.036 0.834 ± 0.024
DBPedia-2 0.900 ± 0.011 0.847 ± 0.037 0.949 ± 0.013 0.940 ± 0.009 0.914 ± 0.013
DBPedia-3 0.884 ± 0.020 0.815 ± 0.105 0.928 ± 0.024 0.917 ± 0.015 0.891 ± 0.037
IMDB 0.565 ± 0.033 0.545 ± 0.033 0.641 ± 0.020 0.604 ± 0.022 0.542 ± 0.015
Rotten Tomatoes 0.605 ± 0.015 0.505 ± 0.005 0.704 ± 0.025 0.672 ± 0.042 0.531 ± 0.018
SMS Spam 0.933 ± 0.009 0.636 ± 0.130 0.929 ± 0.058 0.919 ± 0.032 0.914 ± 0.027
SST 0.610 ± 0.030 0.489 ± 0.004 0.695 ± 0.020 0.673 ± 0.029 0.538 ± 0.011
Youtube 0.834 ± 0.049 0.797 ± 0.090 0.805 ± 0.095 0.851 ± 0.020 0.865 ± 0.012

Table 13: Standard deviation of accuracy, number of examples = 48, BLOOM (560M)
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Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.817 ± 0.024 0.539 ± 0.044 0.855 ± 0.030 0.877 ± 0.013 0.830 ± 0.023
AG-News-1 0.904 ± 0.007 0.561 ± 0.048 0.923 ± 0.027 0.939 ± 0.003 0.922 ± 0.010
AG-News-2 0.790 ± 0.026 0.576 ± 0.022 0.814 ± 0.009 0.839 ± 0.009 0.816 ± 0.014
AG-News-3 0.833 ± 0.015 0.550 ± 0.035 0.803 ± 0.017 0.852 ± 0.013 0.842 ± 0.018
Civil Comments 0.581 ± 0.039 0.499 ± 0.002 0.587 ± 0.018 0.576 ± 0.039 0.605 ± 0.036
DBPedia-0 0.915 ± 0.005 0.652 ± 0.095 0.917 ± 0.011 0.908 ± 0.019 0.909 ± 0.025
DBPedia-1 0.825 ± 0.037 0.633 ± 0.104 0.838 ± 0.032 0.829 ± 0.012 0.852 ± 0.011
DBPedia-2 0.887 ± 0.020 0.606 ± 0.088 0.950 ± 0.007 0.952 ± 0.011 0.916 ± 0.014
DBPedia-3 0.873 ± 0.033 0.611 ± 0.136 0.898 ± 0.034 0.927 ± 0.007 0.909 ± 0.008
IMDB 0.558 ± 0.029 0.515 ± 0.024 0.646 ± 0.010 0.563 ± 0.021 0.566 ± 0.035
Rotten Tomatoes 0.601 ± 0.020 0.533 ± 0.053 0.708 ± 0.015 0.579 ± 0.049 0.556 ± 0.033
SMS Spam 0.869 ± 0.023 0.825 ± 0.074 0.934 ± 0.016 0.898 ± 0.008 0.927 ± 0.004
SST 0.570 ± 0.038 0.554 ± 0.041 0.712 ± 0.033 0.609 ± 0.021 0.567 ± 0.016
Youtube 0.790 ± 0.050 0.819 ± 0.050 0.926 ± 0.014 0.891 ± 0.031 0.837 ± 0.055

Table 14: Standard deviation of accuracy, number of examples = 64, GPT-NEO (125M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.851 ± 0.024 0.502 ± 0.003 0.858 ± 0.009 0.869 ± 0.010 0.764 ± 0.030
AG-News-1 0.925 ± 0.002 0.529 ± 0.030 0.937 ± 0.011 0.938 ± 0.004 0.820 ± 0.021
AG-News-2 0.812 ± 0.007 0.513 ± 0.013 0.752 ± 0.051 0.795 ± 0.010 0.738 ± 0.008
AG-News-3 0.851 ± 0.007 0.503 ± 0.004 0.820 ± 0.020 0.855 ± 0.009 0.741 ± 0.019
Civil Comments 0.606 ± 0.029 0.500 ± 0.001 0.659 ± 0.032 0.566 ± 0.023 0.566 ± 0.018
DBPedia-0 0.910 ± 0.013 0.518 ± 0.020 0.912 ± 0.027 0.858 ± 0.019 0.825 ± 0.015
DBPedia-1 0.839 ± 0.027 0.542 ± 0.028 0.897 ± 0.016 0.824 ± 0.031 0.788 ± 0.018
DBPedia-2 0.916 ± 0.011 0.609 ± 0.106 0.953 ± 0.013 0.922 ± 0.012 0.882 ± 0.019
DBPedia-3 0.887 ± 0.028 0.527 ± 0.022 0.940 ± 0.013 0.904 ± 0.007 0.857 ± 0.020
IMDB 0.556 ± 0.024 0.506 ± 0.005 0.619 ± 0.030 0.574 ± 0.017 0.552 ± 0.009
Rotten Tomatoes 0.624 ± 0.024 0.485 ± 0.020 0.686 ± 0.040 0.577 ± 0.033 0.568 ± 0.019
SMS Spam 0.937 ± 0.018 0.905 ± 0.017 0.960 ± 0.021 0.961 ± 0.006 0.899 ± 0.014
SST 0.606 ± 0.022 0.508 ± 0.022 0.688 ± 0.047 0.602 ± 0.036 0.567 ± 0.017
Youtube 0.888 ± 0.028 0.715 ± 0.097 0.897 ± 0.046 0.878 ± 0.050 0.675 ± 0.019

Table 15: Standard deviation of accuracy, number of examples = 64, PYTHIA (160M)

Dataset TART In-context learning Fine-tuning full Fine-tuning layer Adapters

AG-News-0 0.836 ± 0.018 0.509 ± 0.008 0.850 ± 0.027 0.856 ± 0.008 0.799 ± 0.029
AG-News-1 0.918 ± 0.007 0.543 ± 0.033 0.900 ± 0.024 0.933 ± 0.008 0.875 ± 0.015
AG-News-2 0.799 ± 0.012 0.515 ± 0.019 0.784 ± 0.018 0.831 ± 0.022 0.732 ± 0.017
AG-News-3 0.836 ± 0.011 0.504 ± 0.003 0.811 ± 0.034 0.853 ± 0.011 0.784 ± 0.022
Civil Comments 0.602 ± 0.030 0.510 ± 0.012 0.573 ± 0.035 0.611 ± 0.025 0.572 ± 0.013
DBPedia-0 0.905 ± 0.015 0.667 ± 0.052 0.936 ± 0.018 0.902 ± 0.022 0.882 ± 0.020
DBPedia-1 0.809 ± 0.022 0.687 ± 0.117 0.887 ± 0.039 0.852 ± 0.032 0.853 ± 0.008
DBPedia-2 0.881 ± 0.026 0.799 ± 0.075 0.955 ± 0.022 0.947 ± 0.009 0.922 ± 0.014
DBPedia-3 0.877 ± 0.014 0.793 ± 0.106 0.906 ± 0.027 0.921 ± 0.017 0.899 ± 0.024
IMDB 0.571 ± 0.033 0.539 ± 0.020 0.621 ± 0.039 0.618 ± 0.013 0.542 ± 0.012
Rotten Tomatoes 0.597 ± 0.025 0.536 ± 0.047 0.684 ± 0.053 0.672 ± 0.041 0.543 ± 0.024
SMS Spam 0.907 ± 0.045 0.659 ± 0.133 0.942 ± 0.024 0.931 ± 0.030 0.909 ± 0.033
SST 0.620 ± 0.039 0.495 ± 0.015 0.672 ± 0.039 0.716 ± 0.032 0.554 ± 0.020
Youtube 0.844 ± 0.059 0.765 ± 0.137 0.879 ± 0.058 0.865 ± 0.033 0.883 ± 0.016

Table 16: Standard deviation of accuracy, number of examples = 64, BLOOM (560M)
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