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A Approximating Hausdorff distance

Suppose the underlying metric for X (the space of weighted point sets) is Hausdorff distance, dH . To
clarify, given S1 = {(xi, wi) : xi ∈ Rd,

∑n
i=1 wi} and S2 = {(yi, w′

i : yi ∈ Rd,
∑m

i=1 w
′
i},

dH(S1, S2) = dH({x1, . . . , xn}, {y1, . . . , ym}).

To get an encoding/decoding for X equipped with Hausdorff distance using max-pooling, we will
use the construction given in the proof of universality in [11], which we will briefly recap here. As in
Lemma 3.4, we consider a δ-net for our original space X , {y1, . . . , ya}. For each yi, we will again
let hi(x) = e−dX(x,Bδ(yi)) and define h : X → Ra as h(x) = [h1(x), . . . , ha(x)]. However, instead
of using sum-pooling to define h : X → Ra, we will use max-pooling as

h(S) = max
x∈S

h(x)

where max is element-wise max. Then the decoding function g : Ra → X is defined as

g(v) = {(yi,
vi

∥v∥1
) : vi ≥ 1}

Note that vi ≥ 1 when there is an xi ∈ S such that xi ∈ Bδ(yi). So for each xi ∈ S there is
yi ∈ g ◦ h(S) such that dX(xi, yi) < δ. Thus, dH(S, g ◦ h(S)) < δ.

The final NProductNet for approximating uniformly continuous functions for Hausdorff distance with
max-pooling is

Nmax
ProductNet(A,B) = ρθ3

(
ϕθ2

(
max
x∈A

(hθ1(x))
)
+ ϕθ2

(
max
y∈B

(hθ1(y))
))

.

Note that Nmax
ProductNet is able to approximate Hausdorff distance to ϵ-accuracy.

B Comparison with other neural network architectures for approximating
Wasserstein distance

Through the lens of 1-Wasserstein approximation, we compare the power of NProductNet with other
natural architectures, namely standard MLPs and Siamese networks. The standard MLP and Siamese
networks are the natural points of comparison for NProductNet as (1) MLPs are the go-to choice in
deep learning due to their versatility and efficacy across diverse problem domains and (2) Siamese
networks have gained significant prominence in the context of metric learning, frequently employed
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for tasks aimed at learning effective similarity metrics between pairs of inputs[5, 2, 7] However,
we discuss the limitations of both the standard MLP and Siamese networks for the taks of learning
Wasserstein distances. For this setting, we will let (X,dX) be some compact Euclidean space, i.e.
X ⊆ Rd is compact and dX is some ℓp norm. Then X be the set of weighted point sets of cardinality
at most N i.e. S = {(xi, wi) : wi ∈ R+,

∑
i wi = 1, xi ∈ X}.

Comparison with multilayer perceptrons (MLPs). First, we consider a standard MLP model
where the model takes a single tensor as input. Note that for each S, there is an S̃ ∈ X such that

S̃ = {(xi, wi) : (xi, wi) ∈ S} ∪ {(x1, 0)×(N−|S|)}

where (x1, 0)×(N−|S|) means that we repeat the element (x1, 0) (N − |S|) times. Notice that
Wp(S, S̃) = 0 and for any S′ ∈ X , Wp(S, S

′) = Wp(S̃, S
′). If |S| = N , S̃ = S To use an MLP

model to approximate Wasserstein distance, we want to represent any (S1, S2) ∈ X × X as an
element of R(d+1)×2N where S1 = {(xi, wi) : wi ∈ R+,

∑
i wi = 1, xi ∈ X} and S2 = {(x′

i, w
′
i) :

w′
i ∈ R+,

∑
i w

′
i = 1, x′

i ∈ X}. Informally, given any “empty" element in R(d+1)×2N , we will map
S1 to the first N columns and map S2 to the last N columns. Formally, we will define the mapping
β : X × X → R(d+1)×2N given S1 and S2 as defined above as

β(S1, S2) = β(S̃1, S̃) =

[
x1 · · · xN x′

1 · · · x′
N

w1 · · · wN w′
1 · · · w′

N

]
where we abuse notation slightly and use (xi, wi) and (x′

i, w
′
i) to describe the elements in S̃1 and S̃2

respectively. Given M ∈ R(d+1)×2N , define β−1 : Image(β) → X ×X as

β−1

([
x1 · · · xN x′

1 · · · x′
N

w1 · · · wN w′
1 · · · w′

N

])
= ({(xi, wi)}, {(x′

i, w
′
i)})

Now, in order to use the classical universal approximation theorem to approximate Wp to an ϵ-
approximation error, we must show that there is a continuous function f : Image(β) → R such that
Wp(S1, S2) = f(β(S1, S2)).

Lemma B.1 Given β : X × X → R(d+1)×2N as defined previously, there is a continuous function
f : Image(β) → R such that for any ϵ > 0, and for any (S1, S2) ∈ X × X , |Wp(S1, S2) −
f(β(S1, S2))| < ϵ.

Proof: Let ϵ > 0. From Corollary 3.5, there is a δ > 0 such that are continuous h : X → Ra(δ),
ϕ : Ra(δ) → Ra′

, and ρ : Ra′ → R, such that for any A,B ∈ X∣∣∣∣∣Wp(A,B)− ρ
(
ϕ
(∑

x∈A

wxh(x)
)
+ ϕ

(∑
x∈B

wxh(x)
))∣∣∣∣∣ < ϵ.

Let (S1, S2) ∈ X ×X and let M = β(S1, S2). Note that β−1(M) = (S1, S2). Let M ∈ Image(β),
let M [:, i] denote the ith column vector of M , let M [: d, i] denote vector of the first d elements in the
ith column vector of M and let M [i, j] denote the ijth entry of M . We know that M [:, i] ∈ Rd+1.
Since M [:, i] ∈ Image(β), we know that M [: d, i] ∈ X and M [d, i] corresponds to a weight.
Furthermore, since h is a continuous mapping from X → R, M [d, i]h(M [: d, i]) is continuous. Thus,
since ϕ is also continuous, the function f ′ : Image(β) → Ra′

ϕ(

N∑
i=1

M [d, i]h(M [: d, i])) + ϕ(

2N∑
i=N+1

M [d, i]h(M [: d, i]))

is continuous. Since ρ is also continuous, we get that ρ ◦ f ′ : Image(β) → R is continuous. Thus,
f : Image(β) → R which is f = ρ ◦ f ′ is also continuous and |f(β(S1, S2))−Wp(S1, S2)| < ϵ by
the property from Corollary 3.5

Since f in the above Lemma operates on fixed dimensional space, we can now use an MLP to
approximate it. Then by the above Lemma and universal approximation of MLPs, there is an MLP
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which can approximate Wp : X ×X → R to an arbitrary ϵ additive error. However, this approach has
the following issues: while an MLP can approximate Wp to an arbitrary ϵ additive error, the model
complexity of the MLP depends on not only the approximation error, but also on the maximum size
N of the input point set. In contrast, our neural network NProductNet introduced in Eqn (2) has model
complexity which is independent of N ; see Corollary 3.6. Furthermore, the function represented
by the MLP (that we use to approximate ϕ) however may not be symmetric to the two point sets,
and may not guarantee permutation invariance with respect to G×G. In practice, computationally
expensive techniques such as data augmentation are often required in order for an unconstrained
MLP to approximate a structured function such as our Wasserstein distance function, which is an
SFGI-function.

Comparison with Siamese architectures. As mentioned previously, one common way of learning
product functions is to use a Siamese network which embeds X to Euclidean space and then use
some ℓp norm to approximate the desired product function. Consider the learning of Wasserstein
distances again. To approximate Wp(A,B) for two point sets A and B. The Siamese network will
first embed each point set to a fixed dimensional Euclidean space RD via a function ϕθ modeled by a
neural network, and then compute ∥ϕθ(A)− ϕθ(B)∥q for some 1 ≤ q < ∞. Intuitively, compared
to our neural network NProductNet introduced in Eqn (2) (and recall Figure 1), the Siamese network
will replace the outer function ρ by simply the Lq-norm of ϕθ(A)− ϕθ(B). However, this approach
intuitively requires that one can find a near-isometric embedding of the Wasserstein distance to the
Lq distance in a Euclidean space. However, there exists lower bound results on the distortion incurred
when embedding Wasserstein distance to Lp space. In the following section, we will review one
such result on the lower bound of metric distortions when embedding the Wasserstein distance to L1

space; implying that if we chose q = 1, then in the worst case the Siamese network will incur at least
as much distortion as that lower bound.

C Non-embeddability theorems for Wasserstein distances

Here we summarize results pertaining to the limitations of embedding Wasserstein distance to the
Lq distance in a Euclidean space. Consider probability distributions over a grid of points in R2,
{0, 1, . . . , D}2 equipped with the 1-Wasserstein distance, (P({0, 1, . . . , D}2),W1). Let L1 denote
the space of Lebesgue measureable functions f : [0, 1] → R such that

∥f∥1 =

∫ 1

0

|f(t)|dt.

Given a mapping F : (P({0, 1, . . . , n}2),Wp) → L1 such that for any µ, ρ ∈
(P({0, 1, . . . , D}2),Wp),

Wp(µ, ρ) ≤ ∥F (µ)− F (ρ)∥ ≤ L ·Wp(µ, ρ) (1)

the distortion is the value of L.

Theorem C.1 ([9]) Any embedding (P({0, 1, . . . , n}2,W1) → L1 must incur distortion at least
Ω(

√
logD)

For (P({0, 1, . . . , D}d),W1) where d ≥ 2, P({0, 1, . . . , D}d contains P({0, 1, . . . , D}2) so the
lower bound O(

√
D) still applies for L1 embeddings from P({0, 1, . . . , D}d), d > 2.

From the above results, we can see that for any Siamese architecture (even in the simple case of
finite point sets in R2 and R3), we are unable to approximate the Wassserstein distances via any L1

embedding.

Corollary C.2 Given a neural network NSiamese : X → Rd where X are weighted point sets over
{0, 1, . . . , D}2, ∥NSiamese(µ)−NSiamese(ν)∥1 incurs distortion at least Ω(

√
logD).

Note that if we consider our input for a Siamese architecture to be finite point sets over {0, 1, . . . , D}2,
we allow multisets so the input set size is not bounded by D.
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Table 1: Size of the output point set from the WPCE decoder for each dataset.
noisy-sphere-2 noisy-sphere-6 uniform ModelNet-small ModelNet-large RNAseq

Size 200 200 256 100 2048 100

D Experimental details

D.1 Baseline models for comparison with NProductNet

Here, we will detail two baseline neural networks in our experiments.

Wasserstein point cloud embedding (WPCE) network First defined by [6], the WPCE network
is an Siamese autoencoder architecture. It consists of an encoder network Nencoder and a decoder
network Ndecoder. WPCE takes as input two point sets P,Q ⊆ Rd. Nencoder is a permutation
invariant neural network - which we chose to be DeepSets. In other words,

Nencoder(P ) = ϕθ2

(∑
x∈P

hθ1(x)
)
.

Note that one may also choose PointNet to be Nencoder. However, in our experiments, we did not
see a large difference in approximation quality between using PointNet and DeepSets (where the
difference between the two amounts to using a sum vs. max aggregator). For sake of consistency
with NProductNet, we chose to use a sum aggregator for Nencoder (DeepSets). The decoder network,
Ndecoder, is a fully connected neural network which outputs a fixed-size point set in Rd. WPCE then
uses a Sinkhorn reconstruction loss term to regularize the embedding produced by the encoder. Thus,
given a set of paired input point sets and their Wasserstein distance {(Pi, Qi,W1(Pi, Qi)) : i ∈ [N ]}
the loss which we optimize over for WPCE is

L(P,Q) =
1

N

∑(
∥Nencoder(Pi)−Ndecoder(Qi)∥2 −W1(Pi, Qi)

)2
+ λ

( 1

N

∑
Sϵ(Ndecoder(Nencoder(Pi)) +

1

N

∑
Sϵ(Ndecoder(Nencoder(Qi))

)
(2)

where λ is some constant in R that controls the balance between the two loss terms and Sϵ is the
Sinkhorn divergence between Pi and Qi. Note that ϵ in Sϵ refers to the regularization parameter for
the Sinkhorn divergence. For our experiments, we chose λ = 0.1 and ϵ = 0.1. Furthermore, for each
dataset used in our experiments, we set used a range of different sizes for the fixed-size output point
set. This parameter is summarized per dataset in Table 1.

Siamese DeepSets. The baseline Siamese DeepSets model, NSDeepSets(·, ·), consists of a single
DeepSets model which maps two input point sets to some Euclidean space Rd. The ℓ2-norm
between the final embeddings is then used as the final estimate for Wasserstein distance. Formally,
let NDeepSets(P ) = ϕθ2

(∑
x∈P hθ1(x)

)
, where ϕθ2 and hθ1 are both MLPs, be the DeepSets

model. Then given two point sets P,Q, the final approximation of Wasserstein distance given by
NSDeepSets(P,Q) is

NSDeepSets(P,Q) = ∥NDeepSets(P )−NDeepSets(Q)∥2.

D.2 Training and implementation details

Datasets. We used several synthetic datasets as well as the ModelNet40 point cloud dataset.
Furthermore, we used two different types of synthetic datasets. We construct the ‘noisy-sphere-d’
dataset by sampling pairs of point clouds from four d-dimensional spheres centered at the origin with
increasing radiuses of 0.25, 0.5, 0.75, and 1.0. For our experiments, we used ‘noisy-sphere-3’ and
‘noisy-sphere-6’. Finally, the ‘uniform’ dataset of points sets in R2 is constructed by sampling points
sets from the uniform distribution on [−4, 4]× [−4, 4]. The full details and names of each dataset are
summarized in Table 2.
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Table 2: Summary of details for each dataset. Note that min and max refer to the minimum and
maximum number of points per input point set.

dim min max training pairs val pairs

noisy-spheres-2 3 100 300 2000 200
noisy-spheres-6 6 100 300 3600 400
uniform 2 256 256 3000 300
ModelNet-small 3 20 200 3000 300
ModelNet-large 3 2048 2048 4000 400
RNAseq 2000 20 200 3000 300

Implementation. We implement all neural network architectures using the PyTorch[10] and Ge-
omLoss [3] libraries. The ground truth 1-Wasserstein distances and Sinkhorn approximations were
computed using Python Optimal Transport (POT) [4]. Note that for large point sets and for higher
dimensional datasets, there is often a high degree of numerical instability in the POT implementation
of the Sinkhorn algorithm. In these cases (ModelNet-large and RNAseq) we used our own imple-
mentation of the Sinkhorn algorithm. For each model, we used the Leaky-ReLU as the non-linearity.
To train each model, we set the batch size for each dataset to be 128 and the learning rate to 0.001.
All models were trained on an Nvidia RTX A6000 GPU. For both NProductNet and NSDeepSets,
given two input point sets, we minimize on the mean squared error between the approximation
produced by the network and the true Wasserstein distance. In other words, given two point sets P,Q,

the loss for NProductNet is defined as LNProductNet
(P,Q) =

(
NProductNet(P,Q) − W1(P,Q)

)2
and the loss for Siamese DeepSets is LNSDeepSets

(P,Q) =
(
NSDeepSets(P,Q)−W1(P,Q)

)2
. For

WPCE, we train the network using the loss function defined in Eq. 2. Note that for NProductNet, the
hyperparameters are the width, depth, and output dimension for the MLPs which represent hθ1 and
ϕθ2 and the width and depth the MLP which represents ρθ3 . For WPCE, we set the decoder to a three
layer neural network with width 100 and adjusted the width, depth, and output dimension for the
MLPs which represent ϕθ2 and hθ1 in Nencoder. To find the best model for each architecture, we
randomly sampled hyperparameter configurations and conducted a hyperparameter search over 85
models for NProductNet and 75 models for both WPCE and NSDeepSets.

D.3 Approximating 2-Wasserstein distance

To further show the use of our model, we additionally approximate the 2-Wasserstein distance;
see Table 5 for results. The experimental set-up is the same as for 1-Wasserstein distance and we
largely see the same trends as we see for 1-Wasserstein distance; that is, NProductNet outperforms
all other neural network implementations. Note that Table 5 shows that the Sinkhorn approximation
with ϵ = 0.01 is more accurate than NProductNet. However, as the ϵ parameter for the Sinkhorn
approximation decreases, the computation time increases. In Table ??, we show that the Sinkhorn
approximation is already much slower than NProductNet at ϵ = 0.1 while also having a less accurate
approximation. The Sinkhorn approximation with ϵ = 0.01 (reported in Table 5 is slower the
Sinkhorn approximation with ϵ = 0.1 and additionally, is also much slower than NProductNet at
inference time.

D.4 Generalization to large point sets

In addition to the results reported in Tables 1 and 5, which record the average relative error for
point sets of unseen sizes during training, we have also included several plots in Figures 2 and 1
which demonstrate how the error for each approximation method changes as the input point set size
increases for both 1-Wasserstein distance and 2-Wasserstein distance. Observe that for ModelNet-
small, noisy-sphere-3, and noisy-sphere-6, the error for NProductNet exhibits a significantly slower
increase as compared to WPCE. The rate at which the error increases is not as evident for the uniform
and ModelNet-large datasets. It is worth mentioning that we trained the model on fixed-size input for
both of these datasets. It is possible that training with fixed-size input leads a rapid deterioration in
approximation quality for WPCE and NSDeepSets when dealing with point sets of sizes not seen at
training time. Furthermore, consider that WPCE may be especially sensitive to differences in input
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Table 3: Time for 500 1-Wasserstein distance computations in seconds. Note that we chose input
point set size to be the maximum possible point set size that we trained on. Additionally, the Sinkhorn
distance reported uses ϵ = 0.1 as the regularization parameter. Note that as ϵ decreases, the error
incurred by the Sinkhorn approximation will decrease but the computation time will also increases.
Here, when ϵ = 0.1, the Sinkhorn approximation is already much slower than the neural network
approximations while being less accurate.

Models

Dataset Input size NProductNet WPCE NSDeepSets Sinkhorn Ground truth

noisy-sphere-3 300 1.050 0.676 0.4904 2.591 2.813
noisy-sphere-6 300 0.752 0.491 0.503 1.986 6.6770
uniform 256 0.155 0.184 0.137 15.113 1.018
ModelNet-small 200 0.330 0.330 0.191 2.074 1.615
ModelNet-large 2048 1.174 1.571 0.612 239.448 254.947
RNAseq 200 1.128 0.856 0.792 92.153 105.908

Table 4: Comparison of the mean relative error versus overall computation time for 500 approxi-
mations of 1-Wasserstein distance for NProductNet and the Sinkhorn distance. Note that the input
point set size is the same as in Table 3 for each dataset. The parameter ϵ controls the accuracy of
the Sinkhorn approximation with lower ϵ corresponding to a more accurate approximation once the
Sinkhorn algorithm converges. However, notice that in some cases, the Sinkhorn algorithm with
ϵ = 0.01 has a higher relative error than the Sinkhorn algorithm with ϵ = 0.1 as the algorithm fails to
converge within a reasonable number of iterations (1000).

Dataset NProductNet Sinkhorn (ϵ = 0.10) Sinkhorn (ϵ = 0.01)

ModelNet-small
Error 0.084 ± 0.077 0.187 ± 0.232 0.011 ± 0.003

Time (s) 0.330 2.074 104.712

ModelNet-large
Error 0.140 ± 0.206 0.148 ± 0.048 0.026 ± 0.008

Time (s) 1.174 239.448 1930.852

Uniform
Error 0.097 ± 0.073 0.073 ± 0.009 0.023 ± 0.098

Time (s) 0.155 15.113 63.028

noisy-sphere-3 Error 0.046 ± 0.043 0.187 ± 0.232 0.162 ± 0.132
Time (s) 1.050 2.591 214.185

noisy-sphere-6 Error 0.015 ± 0.014 0.137 ± 0.122 0.326 ± 0.135
Time (s) 0.752 1.986 101.763

RNAseq Error 0.012 ± 0.010 0.040 ± 0.009 0.035± 0.013
Time (s) 1.128 92.153 91.573

sizes at testing time as training WPCE depends on minimizing the Wasserstein difference between the
input point set and a fixed-size decoder point set which may cause the model to be overly specialized
to point sets of a fixed input size. This observation could provide an explanation for the observed
plots in both the ModelNet-large and uniform cases. Finally, as predicted in our theoretical analysis,
the performance of the model degrades for higher dimensional datasets i.e. the RNAseq dataset.

E Extra proofs

E.1 Proof of DeepSets Universality.

Here we will provide extra details on the proof of Theorem 2.1 using multisymmetric polynomials.
Note that multisymmetric polynomials were previously used in [12] and [8] to show universality for
equivariant set networks and arbitrary G-invariant neural networks for any permutation group G.

Proof: To begin, we will first define multisymmetric polynomials and power sum multisymmetric
polynomials. Let A[y1, . . . , yn] be the ring of polynomials in n variables with coefficients in a ring
A.
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(a) ModelNet-small (b) noisy-sphere-3. (c) noisy-sphere-6.

(d) uniform. (e) ModelNet-large. (f) RNAseq.

Figure 1: Average error for 1-Wasserstein approximation for each model as the maximum number of
points increases. Note that the Sinkhorn approximation is the ϵ = 0.1. These graphs include point
set sizes not seen at training time to display how each approximation performs on unseen examples.
Note that especially for ModelNet-small, noisy-sphere-3, and noisy-sphere-6, we can see that the
error for NProductNet increases at a slower rate than WPCE.

(a) ModelNet-small (b) noisy-sphere-3. (c) noisy-sphere-6.

(d) uniform. (e) ModelNet-large. (f) RNAseq.

Figure 2: Average 2-Wasserstein error for each model as the maximum number of points increases.
Note that for all datasets, the Sinkhorn error is with ϵ = 0.10.
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Table 5: Mean relative error between approximations and 2-Wasserstein distance between point
sets. The top row for each dataset shows the error for point sets with input sizes that were seen at
training time; while the bottom row shows the error for point sets with input sizes that were not seen
at training time. Note that the Sinkhorn approximation is computed with the regularization parameter
set to ϵ = 0.01.

Dataset Input size NProductNet WPCE NSDeepSets Sinkhorn

noisy-sphere-3 [100, 300] 0.054 ± 0.071 0.291 ± 0.201 0.400 ± 0.336 0.078 ± 0.186
[400, 600] 0.188 ± 0.197 0.387 ± 0.386 0.427 ± 0.375 0.161 ± 0.311

noisy-sphere-6 [100, 300] 0.024 ± 0.010 0.331 ± 0.237 0.358 ± 0.231 0.019 ± 0.057
[400, 600] 0.092 ± 0.074 0.434 ± 0.598 0.623 ± 0.596 0.050 ± 0.039

uniform 256 0.112 ± 0.082 0.221 ± 0.162 0.241 ± 0.171 0.182 ± 0.044
[200, 300] 0.175 ± 0.123 2.431 ± 2.162 4.058 ± 3.324 0.055 ± 0.053

ModelNet-small [20, 200] 0.078 ± 0.095 0.178 ± 0.148 0.183 ± 0.148 0.023 ± 0.059
[400, 600] 0.163 ± 0.151 0.216 ± 0.252 0.227 ± 0.179 0.034 ± 0.031

ModelNet-large 2048 0.187 ± 0.335 0.281 ± 0.203 0.538 ± 0.298 0.172 ± 0.065
[1800, 2000] 0.185 ± 0.302 0.523 ± 0.526 33.086 ± 28.481 0.046 ± 0.039

RNAseq [20, 200] 0.049 ± 0.029 0.508 ± 0.291 0.490 ± 0.271 0.024 ± 0.009
[400, 600] 0.281 ± 0.057 0.533 ± 0.300 0.568 ± 0.317 0.987 ± 0.0002

Table 6: Comparison of the mean relative error versus overall computation time for 300 approx-
imations of 2-Wasserstein distance for NProductNet and the Sinkhorn distance. The parameter ϵ
controls the accuracy of the Sinkhorn approximation with lower ϵ corresponding to a more accurate
approximation.

Dataset NProductNet Sinkhorn (ϵ = 0.10) Sinkhorn (ϵ = 0.01)

ModelNet-small
Error 0.078 ± 0.097 0.232 ± 0.132 0.019 ± 0.057

Time (s) 0.208 1.165 9.857

ModelNet-large
Error 0.187 ± 0.335 0.363 ± 0.255 0.172 ± 0.089

Time (s) 2.841 6.079 36.265

uniform
Error 0.112 ± 0.082 0.0303 ± 0.022 0.182 ± 0.044

Time (s) 0.712 16.515 29.312

noisy-sphere-3 Error 0.054 ± 0.071 0.225 ± 0.093 0.078 ± 0.186
Time (s) 0.677 1.591 12.760

noisy-sphere-6 Error 0.024 ± 0.010 0.324 ± 0.316 0.023 ± 0.059
Time (s) 0.428 0.877 9.831

RNAseq
Error 0.049 ± 0.029 0.031 ± 0.014 0.024 ± 0.009

Time (s) 0.716 47.701 81.016

Definition E.1 (Multisymmetric polynomials) The multisymmetric polynomials on the n families
of k variables x1 . . . ,xn where xi = (xi,1, . . . , xi,k) are those polynomials that remain unchanged
under every permutation of the n families, x1, . . . ,xn.

Let A be a ring. The algebra of multisymmetric polynomials in n families of k variables with
coefficients in A is denoted Jkn(A).

Furthermore, we define the multisymmetric power-sum polynomials:

Definition E.2 (Multisymmetric power-sum polynomials) Let α = (α1, . . . , αk) ∈ Nk. Given
x = (x1, . . . , xk), let

xα = xα1
1 · · ·xαk

k

The multisymmetric power sum with multi-degree α is

pα =

n∑
i

xα
i

Among them, we will consider the set of elementary multisymmetric power sums to be those with
|α| ≤ n.
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Notice that there t =
(
n+k
k

)
multisymmetric power sums. Let α1, . . . , αt be the list of all α ∈ Nk

such that |α| ≤ n.

Theorem E.3 ([1]) Let A be a ring in which n! is invertible. Then the multisymmetric power sums
generate Jrn(A) as an A-algebra.

If we take A = R, we get that the multisymmetric power sum polynomials generate JkN . Now given
a continuous function f : Rk×N → R which is invariant to permutations of the columns, we know
that f can be approximated by a polynomial p which is invariant to permutations of columns (see [8]
for a detailed argument). Such a polynomial p is a multisymmetric polynomial in N families of k
variables with coefficients in R i.e., p ∈ JkN . Given x ∈ Rk,

ϕ(x) = [xα1 , . . . , xαt ]

Then

N∑
i=1

ϕ(xi) =


∑N

i xα1
i∑N

i xα2
i

...∑N
i xαt

i

 =


pα1

pα2

...
pαt


By Theorem E.3, we have that pα1 , . . . , pαt will generate any polynomial in JkN . Then we have some
polynomial q ∈ R[y1, . . . , yt] such that p = q(pα1

, . . . , pαt
).

E.2 Proofs from Section 3

E.2.1 Proof of Lemma 3.2

Proof: Let ϵ > 0. Since f is uniformly continuous, ∃δ such that for all
(A1, . . . , Am), (A′

1, . . . , A
′
m) ∈ X1×· · ·×Xm where dX1×···×Xk

((A1, . . . , Am), (A′
1, . . . , A

′
m)) <

δ, we have |f(A1, . . . , Am)− f(A′
1, . . . , A

′
m)| < ϵ. Since for any δ > 0 and any i ∈ [m], (Xi,dXi)

has a (δ, a,G)-sketch, we know that there is an ai ∈ N+ where there are continuous hi : Xi → Rai

and gi : Rai → Xi where dXi
(gi ◦ hi(A), A) < δ/m for each A ∈ Xi.

Let g′ : Ra1 × · · · × Ram → Xi × · · · × Xm be defined as (u1, . . . , um) 7→ (g1(u1), . . . , gm(um)).
Since dXi(gi ◦ hi(Ai), Ai) < δ/k for Ai ∈ Xi and i ∈ [m],

dX1×···×Xm
((g1 ◦ h1(A1), . . . , gm ◦ hm(Am)), (A1, . . . , Am)) < δ.

Let ρ = f ◦ g′ and ϕi = hi Then

|f(A1, . . . , Am)− ρ(ϕ1(A1), . . . , ϕk(Am))| = |f(A1, . . . , Am)− f ◦ g′(h1(A1), . . . , hm(Am))|
= |f(A1, . . . , Am)− f(g ◦ h(A1), . . . , g ◦ h(Am))| < ϵ.

Note that if X1 = X2 = · · · = Xm and G1 = G2 = · · · = Gm, we can use the same encoding and
decoding function - hi and gi, respectively - for all Xi. Thus, in this case, ϕ1 = ϕ2 = · · · = ϕm.

E.2.2 Proof of Lemma 3.3

Proof: Using the same argument as Theorem 3.2, we know that for ϵ/2, there is a continuous
h : X → Ra and g : Ra → R such that

|f(A1, . . . , Am)− f(g ◦ h(A1), . . . , g ◦ h(Am))| < ϵ

2
.

As before, let g′ : Ra×m → R be g′(u1, . . . , um) = (g(u1), . . . , g(um)). Take F : Ra×m → R as
F (u1, . . . , um) = f ◦ g′(u1, . . . , um) = f(g(u1), . . . , g(um)) where ui represents the ith column
of an element in Ra×m. Note that F is continuous and invariant to permutations of the columns. Let
t =

(
a+m
m

)
. Therefore, by Theorem 2.1, there is a γ : Ra → Rt and ρ such that∣∣∣∣∣f ◦ g′(v1, . . . , vm)− ρ

( m∑
i=1

γ(vi)
)∣∣∣∣∣ < ϵ

2
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Now set ϕ = γ ◦ h which is a function from Ra → Rt. We thus have that∣∣∣f(A1, . . . , Am)− ρ
( m∑

i=1

ϕ(Ai)
)∣∣∣

=

∣∣∣∣∣f(A1, . . . , Am)− f ◦ g′(h(A1), . . . , h(Am)) + f ◦ g′(h(A1), . . . , h(Am))− ρ
( m∑

i=1

ϕ(Ai)
)∣∣∣∣∣

<
ϵ

2
+

ϵ

2
= ϵ

This completes the proof.
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