
A Architecture, Training, and Evaluation Details499

A.1 Video Diffusion Training Details500

We use the same base architecture and training setup as [45] which utilizes Video U-Net architecture501

with 3 residual blocks of 512 base channels and channel multiplier [1, 2, 4], attention resolutions [6,502

12, 24], attention head dimension 64, and conditioning embedding dimension 1024. We use noise503

schedule log SNR with range [-20, 20]. We make modifications Video U-Net to support first-frame504

conditioning during training. Specifically, we replicate the first frame to be conditioned on at all505

future frame indices, and apply temporal super resolution model condition on the replicated first506

frame by concatenating the first frame channel-wise to the noisy data similar to [46]. We use temporal507

convolutions as opposed to temporal attention to mix frames across time, to maintain local temporal508

consistency across time, which has also been previously noted in [19]. We train each of our video509

diffusion models for 2M steps using batch size 2048 with learning rate 1e-4 and 10k linear warmup510

steps. We use 256 TPU-v4 chips for our first-frame conditioned generation model and temporal super511

resolution model.512

We use T5-XXL [22] to process input prompts which consists of 4.6 billion parameters. For513

combinatorial and multi-task generalization experiments on simulated robotic manipulation, we train514

a first-frame conditioned video diffusion models on 10x48x64 videos (skipping every 8 frames) with515

1.7B parameters and a temporal super resolution of 20x48x64 (skipping every 4 frames) with 1.7B516

parameters. The resolution of the videos are chosen so that the objects being manipulated (e.g.,517

blocks being moved around) are clearly visible in the video. For the real world video results, we518

finetune the 16x40x24 (1.7B), 32x40x24 (1.7B), 32x80x48 (1.4B), and 32x320x192 (1.2B) temporal519

super resolution models pretrained on the data used by [19].520

A.2 Inverse Dynamics Training Details521

UniPi’s inverse dynamics model is trained to directly predict the 7-dimensional controls of the522

simulated robot arm from an image observation mean squared error. The inverse dynamics model523

consists of a 3x3 convolutional layer, 3 layers of 3x3 convolutions with residual connection, a524

mean-pooling layer across all pixel locations, and an MLP layer of (128, 7) channels to predict the525

final controls. The inverse dynamics model is trained using the Adam optimizer with gradient norm526

clipped at 1 and learning rate 1e-4 for a total of 2M steps where linear warmup is applied to the first527

10k steps.528

A.3 Baselines Training Details529

We describe the architecture details of various baselines below. The training details (e.g., learning530

rate, warm up, gradient clip) of each baseline follow those of the inverse dynamics model detailed531

above.532

Transformer BC [6, 26]. We employ the same transformer architecture as the 10M model of [26]533

with 4 attention layers of 8 heads each and hidden size 512. We apply 4 layers of 3x3 convolution534

with residual connection to extract image features, which, together with T5 text embeddings, are used535

as inputs to the transformer. We additionally experimented with vision transformer style linearization536

of the image patches similar to [26], but found the performance to be similar. We use a context length537

of 4 and skip every 4 frames similar to UniPi’s inverse dynamics. We tried increasing the context538

length of the transformer to 8 but it did not help improve performance.539

Transformer TT [25]. We use a similar transformer architecture as the Transformer BC baseline540

detailed above. Instead of predicting the immediate next control in the sequence as in Transformer541

BC, we predict the next 8 controls (skipping every 4 controls similar to other baselines) at the output542

layer. We have also tried autoregressively predicting the next 8 controls, but found the errors to543

accumulate quickly without additional discretization.544

State-Based Diffusion [21]. For the state-based diffusion baseline, we use a similar architecture545

as UniPi’s first-frame conditioned video diffusion, where instead of diffusing and generating future546

image frames, we replicate future controls across different pixel locations and apply the same U-Net547

structure as UniPi to learn state-based diffusion models.548

A.4 Details of the Combinatorial Planning Task549

In the combinatorial planning tasks, we sample random 6 DOF poses for blocks, colored bowls, the550

final placement box. Blocks start off uncolored (white) and must be placed in a bowl to obtain a551

color. The robot then must manipulate and move the colored block to have the desired geometric552
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relation in the placement box. The underlying action space of the agent corresponds to 6 joint553

values of robot plus a discrete contact action. When the contact action is active, the nearest block554

on the table is attached to the robot gripper (where for methods that predict continuous actions, we555

thresholded action prediction > 0.5 to correspond to contact). Given individual action predictions556

for different models, we simulate the next state of the environment by running the joint controller in557

Pybullet to try reach the predicted joint state (with a timeout of 2 seconds due to certain actions being558

physically infeasible). As only a subset of the video dataset contained action annotations, we trained559

the inverse-dynamics model on action annotations from 20k generated videos.560

A.5 Details of the CLIPort Multi-Environment Task561

In the CLIPort environment, we use the same action space as the combinatorial planning tasks and562

execute actions similarly using the built in joint controller in Pybullet. As our training data, we use a563

scripted agent on put-block-in-bowl-unseen-colors, packing-unseen-google-objects-564

seq, assembling-kits-seq-unseen-colors, stack-block-pyramid-seq-seen-colors,565

tower-of-hanoi-seq-seen-colors, assembling-kits-seq-seen-colors, tower-of-566

hanoi-seq-unseen-colors, stack-block-pyramid-seq-unseen-colors, packing-seen-567

google-objects-seq, packing-boxes-pairs-seen-colors, packing-seen-google-568

objects-group. As our test data, we used the environments put-block-in-bowl-seen-colors,569

packing-unseen-google-objects-group, packing-boxes-pairs-unseen-colors. We570

trained the inverse dynamics on action annotation across the 200k generated videos.571
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B Additional Results572

B.1 Additional Results on Combinatorial Generalization573

Put A Brown Block 
on An Orange Block

Put A Red Block Right 
of An Orange Block

Put a Yellow block in 
the Brown box

Input Frame Synthesized Frames

Figure 10: Combinatorial Video Generation. Additional results on UniPi’s generated videos for unseen
language goals at test time.

B.2 Additional Results on Multi-Environment Transfer574

Put the Gray Blocks 
in A Brown Bowl

Pack All the Purple And 
Red Blocks into the 

Brown Box

Pack All the Pepsi 
Max Box Objects in 

the Brown Box

Input Frame Synthesized Frames

Figure 11: Multitask Video Generation. Additional results on UniPi’s generated video plans on different new
tasks in the multitask setting.
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B.3 Additional Results on Real-World Transfer575

Close small box flaps

Lift bowl

Put potato on plate

Input Frame Synthesized Frames

Put sweet potato in 
pot which is in sink 

distractors

Turn lever vertical to 
front distractors

Figure 12: High Fidelity Plan Generation. Additional results on UniPi’s high resolution video plans across
different language prompts.
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